|
<p>You are writing a new revolutionary archiver. The archive is essentially a |
|
pair of non-decreasing sequences of integers of equal length <strong>K</strong>: <strong>0≤x<sub>1</sub>≤...≤x<sub>k</sub></strong> and |
|
<strong>0≤y<sub>1</sub>≤...≤y<sub>k</sub></strong>.</p> |
|
|
|
<p> |
|
The decompression algorithm proceeds as follows: |
|
<ol> |
|
<li>Sequence <strong>(0,0), (x<sub>1</sub>,y<sub>1</sub>), ... (x<sub>k</sub>,y<sub>k</sub>), (x<sub>k</sub>, 0), (0, 0)</strong> defines a polygon <strong>P</strong></li> |
|
<li>Starting from the point <strong>(0,0)</strong>, increase either <strong>x</strong> or <strong>y</strong> coordinate by 1 without |
|
moving outside of <strong>P</strong>. If both moves are available, you should increase y. |
|
After each step write <strong>0</strong> to output if incremented <strong>x</strong> or <strong>1</strong> otherwise.</li> |
|
<li>Repeat step 2 until you end up in point <strong>(x<sub>k</sub>,y<sub>k</sub>)</strong>.</li> |
|
</ol> |
|
</p> |
|
|
|
<p>Example: decompression of sequence <strong>(3,4), (7,6), (7,8)</strong> will produce string <strong>010101100100111</strong>.</p> |
|
|
|
<p>Your task is to write a compression rate calculator, that is given |
|
binary string s find the smallest value of <strong>K</strong> for which there exists archive |
|
that decompresses to s.</p> |
|
|
|
<h2>Input</h2> |
|
<p> |
|
The first line contains a single integer <strong>T</strong>, <strong>T</strong> ≤ 20. <strong>T</strong> test cases follow, where each test case consists of one binary string with length <strong>≤ 1,000,000</strong>. |
|
</p> |
|
|
|
<h2>Output</h2> |
|
<p>Output a single line containing the smallest possible <strong>K</strong>.</p> |
|
|