|
|
|
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
#include <deque>
|
|
#include <queue>
|
|
#include <stack>
|
|
#include <bitset>
|
|
#include <sstream>
|
|
using namespace std;
|
|
|
|
#define LL long long
|
|
#define LD long double
|
|
#define PR pair<int,int>
|
|
|
|
#define Fox(i,n) for (i=0; i<n; i++)
|
|
#define Fox1(i,n) for (i=1; i<=n; i++)
|
|
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
|
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
|
#define FoxR1(i,n) for (i=n; i>0; i--)
|
|
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
|
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
|
#define Min(a,b) a=min(a,b)
|
|
#define Max(a,b) a=max(a,b)
|
|
#define Sz(s) int((s).size())
|
|
#define All(s) (s).begin(),(s).end()
|
|
#define Fill(s,v) memset(s,v,sizeof(s))
|
|
#define pb push_back
|
|
#define mp make_pair
|
|
#define x first
|
|
#define y second
|
|
|
|
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
|
|
template<typename T> T Sqr(T x) { return(x*x); }
|
|
|
|
const int INF = (int)1e9;
|
|
const LD EPS = 1e-9;
|
|
const LD PI = acos(-1.0);
|
|
|
|
bool Read(int &x)
|
|
{
|
|
char c,r=0,n=0;
|
|
x=0;
|
|
for(;;)
|
|
{
|
|
c=getchar();
|
|
if ((c<0) && (!r))
|
|
return(0);
|
|
if ((c=='-') && (!r))
|
|
n=1;
|
|
else
|
|
if ((c>='0') && (c<='9'))
|
|
x=x*10+c-'0',r=1;
|
|
else
|
|
if (r)
|
|
break;
|
|
}
|
|
if (n)
|
|
x=-x;
|
|
return(1);
|
|
}
|
|
|
|
#define LIM 2000001
|
|
#define MOD 1000000007
|
|
#define DIV2 500000004
|
|
|
|
int Add(int a,int b)
|
|
{
|
|
a+=b;
|
|
if (a>=MOD)
|
|
a-=MOD;
|
|
return(a);
|
|
}
|
|
|
|
int Sub(int a,int b)
|
|
{
|
|
a-=b;
|
|
if (a<0)
|
|
a+=MOD;
|
|
return(a);
|
|
}
|
|
|
|
int Mult(int a,int b)
|
|
{
|
|
return((LL)a*b%MOD);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
|
|
int T,t;
|
|
int N;
|
|
int O,Ao,Bo,Co,Do;
|
|
int C,Ac,Bc,Cc,Dc;
|
|
int i,j,k,d,d2,ans;
|
|
int r1,r2,m;
|
|
LL a,b,c;
|
|
static int E[LIM],dist[LIM],sum[LIM];
|
|
static LL D1[LIM],D2[LIM],S1[LIM],S2[LIM];
|
|
static vector<PR> con[LIM];
|
|
priority_queue<PR> Q;
|
|
|
|
Read(T);
|
|
Fox1(t,T)
|
|
{
|
|
|
|
Read(N);
|
|
Fox(i,N+1)
|
|
con[i].clear();
|
|
Read(O),Read(Ao),Read(Bo),Read(Co),Read(Do);
|
|
Fox(i,N)
|
|
{
|
|
E[i]=O;
|
|
j=(i+1)%N;
|
|
con[i].pb(mp(j,O));
|
|
con[j].pb(mp(i,O));
|
|
O=((LL)Ao*O+Bo)%Co+Do;
|
|
}
|
|
Read(C),Read(Ac),Read(Bc),Read(Cc),Read(Dc);
|
|
Fox(i,N)
|
|
{
|
|
con[N].pb(mp(i,C));
|
|
con[i].pb(mp(N,C));
|
|
C=((LL)Ac*C+Bc)%Cc+Dc;
|
|
}
|
|
|
|
D1[0]=D2[0]=S1[0]=S2[0]=0;
|
|
Fox(i,N*2)
|
|
{
|
|
D1[i+1]=D1[i]+E[i%N];
|
|
D2[i+1]=D2[i]+E[(N*2-i-1)%N];
|
|
S1[i+1]=Add(S1[i],D1[i+1]%MOD);
|
|
S2[i+1]=Add(S2[i],D2[i+1]%MOD);
|
|
}
|
|
|
|
Fill(dist,60);
|
|
Q.push(mp(0,N)),dist[N]=0;
|
|
while (!Q.empty())
|
|
{
|
|
d=-Q.top().x;
|
|
i=Q.top().y;
|
|
Q.pop();
|
|
if (d!=dist[i])
|
|
continue;
|
|
Fox(j,Sz(con[i]))
|
|
{
|
|
k=con[i][j].x;
|
|
d2=d+con[i][j].y;
|
|
if (d2<dist[k])
|
|
Q.push(mp(-d2,k)),dist[k]=d2;
|
|
}
|
|
}
|
|
|
|
sum[0]=0;
|
|
Fox(i,N*2)
|
|
sum[i+1]=Add(sum[i],dist[i%N]);
|
|
|
|
j=ans=0;
|
|
Fox(i,N)
|
|
{
|
|
|
|
for(;;)
|
|
{
|
|
c=D1[j]-D1[i];
|
|
a=min(c,D1[N]-c);
|
|
c=D1[j+1]-D1[i];
|
|
b=min(c,D1[N]-c);
|
|
if (b<=a)
|
|
break;
|
|
j++;
|
|
}
|
|
|
|
r1=i,r2=j;
|
|
while (r2>r1)
|
|
{
|
|
m=(r1+r2+1)>>1;
|
|
if (D1[m]-D1[i]<dist[i]+dist[m%N])
|
|
r1=m;
|
|
else
|
|
r2=m-1;
|
|
}
|
|
a=r1;
|
|
|
|
r1=j,r2=i+N;
|
|
while (r2>r1)
|
|
{
|
|
m=(r1+r2)>>1;
|
|
if (D1[i+N]-D1[m]<dist[i]+dist[m%N])
|
|
r2=m;
|
|
else
|
|
r1=m+1;
|
|
}
|
|
b=r1;
|
|
if (a==b)
|
|
{
|
|
c=D1[a]-D1[i];
|
|
if (c<D1[N]-c)
|
|
b++;
|
|
else
|
|
a--;
|
|
}
|
|
|
|
ans=Add(ans,Sub(S1[a],S1[i]));
|
|
ans=Sub(ans,Mult(D1[i]%MOD,a-i));
|
|
|
|
ans=Add(ans,Sub(S2[N*2-b],S2[N*2-(i+N)]));
|
|
ans=Sub(ans,Mult(D2[N*2-(i+N)]%MOD,i+N-b));
|
|
|
|
if (a+1<=b-1)
|
|
{
|
|
ans=Add(ans,Mult(dist[i],b-a-1));
|
|
ans=Add(ans,Sub(sum[b],sum[a+1]));
|
|
}
|
|
}
|
|
|
|
ans=Mult(ans,DIV2);
|
|
ans=Add(ans,sum[N]);
|
|
|
|
printf("Case #%d: %d\n",t,ans);
|
|
}
|
|
return(0);
|
|
} |