File size: 4,743 Bytes
ab396f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
// Evening of the Living Dead
// Solution by Jacob Plachta
#define DEBUG 0
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x*x); }
string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#if DEBUG
#define GETCHAR getchar
#else
#define GETCHAR getchar_unlocked
#endif
bool Read(int &x)
{
char c,r=0,n=0;
x=0;
for(;;)
{
c=GETCHAR();
if ((c<0) && (!r))
return(0);
if ((c=='-') && (!r))
n=1;
else
if ((c>='0') && (c<='9'))
x=x*10+c-'0',r=1;
else
if (r)
break;
}
if (n)
x=-x;
return(1);
}
#define LIM 3003
#define MOD 1000000007
int A[LIM],B[LIM];
PR GCD(int a,int b)
{
if (!b)
return(mp(1,0));
PR p=GCD(b,a%b);
return(mp(p.y,p.x-p.y*(a/b)));
}
int Add(int a,int b)
{
return((a+b)%MOD);
}
int Sub(int a,int b)
{
return((a-b+MOD)%MOD);
}
int Mult(int a,int b)
{
return((LL)a*b%MOD);
}
int Div(int a,int b)
{
int inv=GCD(b,MOD).x;
if (inv<0)
inv+=MOD;
return(Mult(a,inv));
}
int Prob(int i,int a,int b)
{
Max(a,A[i]);
Min(b,B[i]);
if (a>b)
return(0);
return(Div(b-a+1,B[i]-A[i]+1));
}
int main()
{
if (DEBUG)
freopen("in.txt","r",stdin);
// vars
int T,t;
int N,M;
int i,j,h,z,d,p,ans;
int mH[LIM];
int nh,H[LIM];
static int dynSafe[LIM][LIM]; // [yard][max fence height protecting safe yard]
static int dynZomb[LIM][LIM]; // [yard][max active zombie height]
int aggr[LIM];
// testcase loop
Read(T);
Fox1(t,T)
{
// input
Read(N),Read(M);
Fox(i,N-1)
Read(A[i]),Read(B[i]);
Fill(mH,0);
Fox(i,M)
{
Read(j),Read(h);
Max(mH[j-1],h);
}
// coordinate compress zombie heights
nh=0;
H[nh++]=0;
H[nh++]=INF;
Fox(i,N)
if (mH[i])
H[nh++]=mH[i];
sort(H,H+nh);
nh=unique(H,H+nh)-H;
Fox(i,N)
mH[i]=lower_bound(H,H+nh,mH[i])-H;
// DP
Fill(dynSafe,0);
Fill(dynZomb,0);
if (mH[0])
dynZomb[1][mH[0]]=1;
else
dynSafe[1][0]=1;
Fox1(i,N-1)
{
Fill(aggr,0);
Fox(h,nh)
{
z=mH[i];
if (d=dynSafe[i][h])
{
// new zombie's lower anyway?
if ((!z) || (z<h))
{
// new fence is no taller?
p=Prob(i-1,0,H[h]);
dynSafe[i+1][h]=Add(dynSafe[i+1][h],Mult(d,p));
// new fence is taller?
aggr[h+1]=Add(aggr[h+1],d); // aggregate
}
else
{
// new fence is no taller than the zombie?
p=Prob(i-1,0,H[z]);
dynZomb[i+1][z]=Add(dynZomb[i+1][z],Mult(d,p));
// new fence is taller?
aggr[z+1]=Add(aggr[z+1],d); // aggregate
}
}
if (d=dynZomb[i][h])
{
// new zombie's at least as tall?
if (z>=h)
dynZomb[i+1][z]=Add(dynZomb[i+1][z],d);
else
{
// prev zombie carrying over?
p=Prob(i-1,0,H[h]);
dynZomb[i+1][h]=Add(dynZomb[i+1][h],Mult(d,p));
// not carrying over?
p=Sub(1,p);
if (z) // new zombie
dynZomb[i+1][z]=Add(dynZomb[i+1][z],Mult(d,p));
else // now safe
dynSafe[i+1][0]=Add(dynSafe[i+1][0],Mult(d,p));
}
}
}
// handle aggregated transitions
d=0;
Fox1(j,nh-1)
{
d=Add(d,aggr[j]);
if (d)
{
p=Prob(i-1,H[j-1]+1,H[j]);
dynSafe[i+1][j]=Add(dynSafe[i+1][j],Mult(d,p));
}
}
}
// compute answer
ans=0;
Fox(h,nh)
ans=Add(ans,dynSafe[N][h]);
// output
printf("Case #%d: %d\n",t,ans);
}
return(0);
} |