Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 1,697 Bytes
91a79e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Let's start with some notations and definitions. Let **m** be the fixed
positive integer.

  1. Let **a** be an integer that coprime to **m**, that is, **gcd(a, m) = 1**. The minimal positive integer **k** such that **m** divides **ak βˆ’ 1** is called the _multiplicative order of **a** modulo **m**_ and denoted as **ordm(a)**. For example, ** ord7(2) = 3** since **23 βˆ’ 1 = 7** is divisible by **7** but **21 βˆ’ 1** and **22 βˆ’ 1** are not. It can be proven that **ordm(a)** exists for every **a** that coprime to **m**. 
  2. Denote by **L(m)** the maximal possible multiplicative order of some number modulo **m**. That is, **L(m) = max{ordm(a) : 1 ≀ a ≀ m, gcd(a, m)=1}**. For example, 

**L(5) = max{ ord5(1), ord5(2), ord5(3), ord5(4)} = max{1, 4, 4, 2} = 4**

and

**L(6) = max{ord6(1), ord6(5)} = max{1, 2} = 2.**

  3. Denote by **N(m)** the number of positive integers **a ≀ m** such that ** ordm(a) = L(m)**. For example, **N(5) = 2**, **N(6) = 1**, **N(8) = 3** (numbers that have maximal multiplicative order modulo **8** are **3, 5** and **7**). 

Now your task is to find for the given positive integers **L** and **R** such
that **L ≀ R** the product

**N(L) βˆ™ N(L+1) βˆ™ ... βˆ™ N(R)**

modulo **109 \+ 7**.

### Input

The first line contains a positive integer **T**, the number of test cases.
**T** test cases follow. The only line of each test case contains two space
separated positive integers **L** and **R**.

### Output

For each of the test cases numbered in order from **1** to **T**, output "Case
#i: " followed by the value of required product modulo **109 \+ 7**.

### Constraints

**1 ≀ T ≀ 20  
1 ≀ L ≀ R ≀ 1012  
R βˆ’ L ≀ 500000**