File size: 12,318 Bytes
f7ba5f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
#include <algorithm>
#include <chrono>
#include <iostream>
#include <random>
#include <unordered_map>
#include <vector>
using namespace std;
using LL = long long;
struct Point {
LL x, y;
Point() : x(0), y(0) {}
Point(LL _x, LL _y) : x(_x), y(_y) {}
bool operator==(const Point &p) const { return x == p.x && y == p.y; }
bool operator!=(const Point &p) const { return x != p.x || y != p.y; }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
};
struct Line {
Point left, right;
Line() : left() {}
Line(const Point &p1, const Point &p2) : left(p1), right(p2) {
if (left.x > right.x) {
swap(left, right);
}
}
bool operator==(const Line &l) const {
return left == l.left && right == l.right;
}
bool is_horizontal() const { return left.y == right.y; }
bool is_vertical() const { return left.x == right.x; }
};
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
struct Treap {
Line *key;
Treap *left, *right;
int weight;
Treap() : key(nullptr), left(nullptr), right(nullptr), weight(rng()) {}
Treap(Line *l) : key(l), left(nullptr), right(nullptr), weight(rng()) {}
};
static Treap *rotate_left(Treap *x) {
// assert(x && x->left);
Treap *y = x->left;
x->left = y->right;
y->right = x;
return y;
}
static Treap *rotate_right(Treap *x) {
// assert(x && x->right);
Treap *y = x->right;
x->right = y->left;
y->left = x;
return y;
}
template <typename TCompare>
static Treap *persistent_insert(Treap *h, Line *key, const TCompare &cmp) {
if (!h) {
return new Treap(key);
}
Treap *x = new Treap(*h);
if (cmp(key, x->key)) {
x->left = persistent_insert(x->left, key, cmp);
if (x->left->weight < x->weight) {
return rotate_left(x);
}
} else if (cmp(x->key, key)) {
x->right = persistent_insert(x->right, key, cmp);
if (x->right->weight < x->weight) {
return rotate_right(x);
}
} else {
// assert(false); // Already inserted.
}
// assert(x != nullptr);
return x;
}
static Treap *persistent_remove(Treap *h) {
if (h->left != nullptr && h->right != nullptr) {
Treap *y;
if (h->left->weight < h->right->weight) {
h->left = new Treap(*h->left);
y = rotate_left(h);
y->right = persistent_remove(h);
} else {
h->right = new Treap(*h->right);
y = rotate_right(h);
y->left = persistent_remove(h);
}
return y;
}
Treap *next = h->left;
if (h->right != nullptr) {
next = h->right;
}
// delete h;
return next;
}
template <typename TCompare>
static Treap *persistent_remove(Treap *h, Line *key, const TCompare &cmp) {
// assert(h != nullptr);
Treap *x = new Treap(*h);
if (cmp(key, x->key)) {
x->left = persistent_remove(x->left, key, cmp);
} else if (cmp(x->key, key)) {
x->right = persistent_remove(x->right, key, cmp);
} else {
return persistent_remove(x);
}
return x;
}
using TreapPair = pair<Treap *, Treap *>;
template <typename TCompare>
TreapPair floor_and_ceil(Treap *h, const Point &p, const TCompare &cmp) {
Treap *x = h;
TreapPair result(nullptr, nullptr);
while (x) {
if (cmp(p, x->key)) {
result.second = x;
x = x->left;
} else {
result.first = x;
x = x->right;
}
}
return result;
}
template <class It>
pair<vector<Line *>, vector<Line *>> get_lower_and_upper_hull(It lo, It hi) {
auto cross = [&](const Point &a, const Point &b, const Point &o) {
return (a.x - o.x)*(b.y - o.y) - (a.y - o.y)*(b.x - o.x);
};
int len = distance(lo, hi), k = 0;
// assert(len >= 3);
vector<Point> hull(2 * len);
sort(lo, hi);
for (It it = lo; it != hi; ++it) {
while (k >= 2 && cross(hull[k - 1], *it, hull[k - 2]) >= 0) {
k--;
}
hull[k++] = *it;
}
int t = k;
for (It it = hi - 2; it != lo - 1; --it) {
while (k > t && cross(hull[k - 1], *it, hull[k - 2]) >= 0) {
k--;
}
hull[k++] = *it;
}
hull.resize(k);
vector<Line *> lower, upper;
for (int i = 1; i < t; i++) {
upper.push_back(new Line(hull[i - 1], hull[i]));
}
for (int i = t; i < k; i++) {
lower.push_back(new Line(hull[i - 1], hull[i]));
}
return make_pair(lower, upper);
}
enum class EventType : int {
Open = 1,
Close = 2,
};
struct Event {
Line *line;
EventType type;
Event() : line(nullptr) {}
Event(Line *_line, const EventType _type) : line(_line), type(_type) {}
};
struct EnclosedPolygons {
vector<Line *> edges;
unordered_map<Line *, int> poly_id;
unordered_map<Line *, bool> is_upper;
unordered_map<int, int> parent;
vector<LL> xvals;
vector<Event> events;
Treap *tlatest;
vector<Treap *> tversions;
static double eval_line(const Line *l, LL x) {
// assert(!l->is_vertical());
double m = (double)(l->right.y - l->left.y) / (l->right.x - l->left.x);
double b = l->left.y - m * l->left.x;
return m * x + b;
}
static bool cmp_point(const Point &p, const Line *l) {
if (p == l->left || p == l->right) {
return false;
}
return p.y < eval_line(l, p.x);
}
EnclosedPolygons(vector<vector<Point>> &_polygons) : tlatest(nullptr) {
for (size_t i = 0; i < _polygons.size(); ++i) {
auto &points = _polygons[i];
for (const Point &p : points) {
xvals.push_back(p.x);
}
auto hulls = get_lower_and_upper_hull(points.begin(), points.end());
auto add_edge = [&](Line *l) {
edges.push_back(l);
events.push_back(Event(l, EventType::Open));
events.push_back(Event(l, EventType::Close));
poly_id[l] = i;
};
for (Line *l : hulls.first) {
add_edge(l);
}
for (Line *l : hulls.second) {
add_edge(l);
is_upper[l] = true;
}
}
sort(xvals.begin(), xvals.end());
xvals.resize(distance(xvals.begin(), unique(xvals.begin(), xvals.end())));
auto cmp_events = [&](const Event &a, const Event &b) {
LL ax = a.type == EventType::Open ? a.line->left.x : a.line->right.x;
LL ay = a.type == EventType::Open ? a.line->left.y : a.line->right.y;
LL bx = b.type == EventType::Open ? b.line->left.x : b.line->right.x;
LL by = b.type == EventType::Open ? b.line->left.y : b.line->right.y;
if (ax != bx) {
return ax < bx;
}
if (ay != by) {
return ay < by;
}
// We sort Close events first, so we delete from the treap first, thus
// avoiding comparing equal points.
if (a.type != b.type) {
return a.type == EventType::Close;
}
// When 2 open events to have the same point, it must be the vertex that
// joins the upper and lower hull of the same polygon. We will sort the
// one on the lower hull before.
// assert(poly_id[a.line] == poly_id[b.line]);
return ay < max(b.line->left.y, b.line->right.y);
};
stable_sort(events.begin(), events.end(), cmp_events);
parent[0] = -1;
auto xit = xvals.begin();
auto eit = events.begin();
while (xit != xvals.end() && eit != events.end()) {
LL curr_x = *xit;
tversions.push_back(tlatest);
// Returns whether l1 is below l2, assuming they don't intersect.
auto cmp = [curr_x](const Line *l1, const Line *l2) {
// First check if equal endpoints as we need a strict BST ordering.
if (l1->left == l2->left) {
int x = min(l1->right.x, l2->right.x);
return eval_line(l1, x) < eval_line(l2, x); // edges meet at <
}
if (l1->right == l2->right) {
int x = max(l1->left.x, l2->left.x);
return eval_line(l1, x) < eval_line(l2, x); // edges meet at >
}
if (l1->right == l2->left) { // edges meet like --l1--x--l2--
return l1->left.y < l2->right.y;
}
if (l1->left == l2->right) {
// else l1->left == l2->right and edges meet like --l2--x--l1--
return l1->right.y < l2->left.y;
}
return eval_line(l1, curr_x) < eval_line(l2, curr_x);
};
// Process all events at this x, starting from the bottom.
while (eit != events.end()) {
if (eit->line->is_vertical()) { // Vertical edges are of no use.
++eit;
continue;
}
if (curr_x != (eit->type == EventType::Open ? eit->line->left.x
: eit->line->right.x)) {
break;
}
int id = poly_id[eit->line];
if (parent.find(id) == parent.end()) { // If no parent is found yet...
LL curr_y = eit->type == EventType::Open ? eit->line->left.y
: eit->line->right.y;
auto res = floor_and_ceil(tlatest, Point(curr_x, curr_y), cmp_point);
Line *line_below = res.first ? res.first->key : nullptr;
// assert(line_below != nullptr);
int below_id = poly_id[line_below];
if (is_upper[line_below]) {
parent[id] = parent[below_id];
} else { // If the line below is a lower hull edge,
// then it must either be ourself or our parent.
if (id != below_id) {
parent[id] = below_id;
}
}
}
if (eit->type == EventType::Open) {
tlatest = persistent_insert(tlatest, eit->line, cmp);
} else {
tlatest = persistent_remove(tlatest, eit->line, cmp);
}
++eit;
}
++xit;
}
}
int get_containing_polygon(const Point &p) {
// Search for an x. No need to consider 0, which is an empty treap.
size_t left = 1, right = xvals.size() - 1;
while (left + 1 < right) {
int mid = (left + right) / 2;
if (xvals[mid] <= p.x) {
left = mid;
} else {
right = mid;
}
}
if (left != right && xvals[left] <= p.x) {
left = right;
}
// Query the line immediately below.
auto res = floor_and_ceil(tversions[left], p, cmp_point);
Line *line_below = res.first ? res.first->key : nullptr;
// assert(line_below != nullptr);
int below_id = poly_id[line_below];
return is_upper[line_below] ? parent[below_id] : below_id;
}
~EnclosedPolygons() {
for (Line *l : edges) {
delete l;
}
}
};
const size_t SEED = chrono::steady_clock::now().time_since_epoch().count();
size_t get_hash(size_t v) {
size_t x = v + SEED;
// http://xorshift.di.unimi.it/splitmix64.c
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
vector<size_t> subtree_hash, overall_hash;
void dfs1(int u, const vector<vector<int>> &adj) {
size_t tot = 0;
for (int v : adj[u]) {
dfs1(v, adj);
tot += subtree_hash[v];
}
subtree_hash[u] = get_hash(tot);
}
void dfs2(int u, const vector<vector<int>> &adj, size_t par_hash) {
overall_hash[u] = get_hash(subtree_hash[u] + get_hash(par_hash));
for (int v : adj[u]) {
dfs2(v, adj, overall_hash[u]);
}
}
int solve() {
// Set the root node as a giant square enclosing everything.
const LL LO = -5, HI = (int)1e9 + 5;
vector<vector<Point>> polygons{{{LO, LO}, {HI, LO}, {HI, HI}, {LO, HI}}};
int N, Q;
// Input polygons.
cin >> N;
for (int i = 0, M; i < N; i++) {
cin >> M;
vector<Point> points;
for (int j = 0, x, y; j < M; j++) {
cin >> x >> y;
points.push_back(Point(x, y));
}
polygons.push_back(points);
}
EnclosedPolygons EP(polygons);
// Build graph.
N++;
vector<vector<int>> adj(N);
for (int i = 1; i < N; i++) {
adj[EP.parent[i]].push_back(i);
}
subtree_hash.resize(N);
overall_hash.resize(N);
dfs1(0, adj);
dfs2(0, adj, 0);
// Process queries.
cin >> Q;
int ans = 0, E = 0;
for (int i = 0, a, b, c, d, e; i < Q; i++) {
cin >> a >> b >> c >> d >> e;
a ^= E;
b ^= E;
c ^= E;
d ^= E;
int u = EP.get_containing_polygon(Point(a, b));
int v = EP.get_containing_polygon(Point(c, d));
if (overall_hash[u] == overall_hash[v]) {
ans++;
E ^= e;
}
}
return ans;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
for (int t = 1; t <= T; t++) {
cout << "Case #" << t << ": " << solve() << endl;
}
return 0;
} |