Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 5,777 Bytes
e329daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Ladders and Snakes
// Solution by Jacob Plachta
 
#define DEBUG 0
 
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
 
#define LL long long
#define LD long double
#define PR pair<int,int>
 
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
 
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x*x); }
string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); }
 
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
 
#if DEBUG
#define GETCHAR getchar
#else
#define GETCHAR getchar_unlocked
#endif
 
bool Read(int &x)

{
    char c,r=0,n=0;
    x=0;
        for(;;)
        {
            c=GETCHAR();
                if ((c<0) && (!r))
                    return(0);
                if ((c=='-') && (!r))
                    n=1;
                else
                if ((c>='0') && (c<='9'))
                    x=x*10+c-'0',r=1;
                else
                if (r)
                    break;
        }
        if (n)
            x=-x;
    return(1);
}
 
#define LIM 50
 
struct Dinic {
	struct Edge {
		int to, rev, c, f;
		Edge(int to, int rev, int c, int f) : to(to), rev(rev), c(c), f(f) {}
	};
	vector<int> lvl, ptr, q;
	vector< vector<Edge> > adj;
	
	Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
	
	void addEdge(int a, int b, int c) {
		adj[a].pb(Edge(b, Sz(adj[b]), c, 0));
		adj[b].pb(Edge(a, Sz(adj[a]) - 1, 0, 0));
	}
	
	int dfs(int v, int t, int f) {
		if (v == t || !f) return f;
		for (int& i = ptr[v]; i < Sz(adj[v]); i++) {
			Edge& e = adj[v][i];
			if (lvl[e.to] == lvl[v] + 1) {
				if (int p = dfs(e.to, t, min(f, e.c - e.f))) {
					e.f += p, adj[e.to][e.rev].f -= p;
					return p;
				}
			}
		}
		return 0;
	}
	
	int calc(int s, int t) {
		int L, flow = 0; q[0] = s;
		Fox(L,31) {
			do {
				lvl = ptr = vector<int>(Sz(q));
				int qi = 0, qe = lvl[s] = 1;
				while (qi < qe && !lvl[t]) {
					int i, v = q[qi++];
					Fox(i,Sz(adj[v])) {
						Edge e=adj[v][i];
						if (!lvl[e.to] && (e.c - e.f) >> (30 - L)) {
							q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
						}
					}
				}
				while (int p = dfs(s, t, INF)) flow += p;
			} while (lvl[t]);
		}
		return flow;
	}
};
 
int main()

{
        if (DEBUG)
            freopen("in.txt","r",stdin);
    // vars
    int T,t;
    int N,H;
    int i,j,k;
    int X[LIM],A[LIM],B[LIM];
    // testcase loop
    Read(T);
        Fox1(t,T)
        {
            // input
            Read(N),Read(H);
                Fox(i,N)
                    Read(X[i]),Read(A[i]),Read(B[i]);
            // construct flow graph
            Dinic D(N+2);
                Fox(i,N)
                {
                    // connected to bottom?
                        if (A[i]==0)
                            D.addEdge(N,i,1e7);
                    // connected to top?
                        if (B[i]==H)
                            D.addEdge(i,N+1,1e7);
                    // consider connections to other ladders
                        Fox(j,N)
                            if (X[i]<X[j])
                            {
                                // compute combined length of connecting, unobstructed y-coordinate intervals
                                vector<pair<int,PR> > E;
                                    Fox(k,N)
                                        if ((X[i]<=X[k]) && (X[k]<=X[j]))
                                        {
                                            E.pb(mp(A[k],mp(1,k)));
                                            E.pb(mp(B[k],mp(0,k)));
                                        }
                                int s=0;
                                set<int> S;
                                sort(All(E));
                                    Fox(k,Sz(E))
                                    {
                                        if (E[k].y.x)
                                            S.insert(E[k].y.y);
                                        else
                                            S.erase(E[k].y.y);
                                        if ((Sz(S)==2) && (S.count(i)) && (S.count(j)))
                                            s+=E[k+1].x-E[k].x;
                                    }
                                    if (s)
                                    {
                                        D.addEdge(i,j,s);
                                        D.addEdge(j,i,s);
                                    }
                            }
                }
            // compute min cut
            int ans=D.calc(N,N+1);
                if (ans>=1e7)
                    ans=-1;
            // output
            printf("Case #%d: %d\n",t,ans);
        }
    return(0);
}