File size: 9,584 Bytes
f7ba5f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
#include <algorithm>
#include <chrono>
#include <iostream>
#include <random>
#include <vector>
using namespace std;
struct segment {
int l, r, rep, gcd;
segment(int _l = 0, int _r = 0, int _rep = -1, int _gcd = 0)
: l(_l), r(_r), rep(_rep), gcd(_gcd ? _gcd : (r - l + 1)) {}
int length() const { return r - l + 1; }
};
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
template <class T>
class implicit_treap {
static T join_values(const T &a, const T &b) {
// Really, only the GCD matters for non-leaf nodes.
return segment(min(a.l, b.l), max(a.r, b.r), 0,
__gcd((unsigned)a.gcd, (unsigned)b.gcd));
}
static T join_deltas(const T &d1, const T &d2) { return d2; }
static T join_value_with_delta(const T &v, const T &d, int len) { return d; }
struct node_t {
T value, subtree_value, delta;
bool pending;
int size, priority;
node_t *left, *right;
node_t(const T &v)
: value(v),
subtree_value(v),
pending(false),
size(1),
priority(rng()),
left(nullptr),
right(nullptr) {}
} * root;
static int size(node_t *n) { return (n == nullptr) ? 0 : n->size; }
static void update_value(node_t *n) {
if (n == nullptr) {
return;
}
n->subtree_value = n->value;
if (n->left != nullptr) {
n->subtree_value = join_values(n->subtree_value, n->left->subtree_value);
}
if (n->right != nullptr) {
n->subtree_value = join_values(n->subtree_value, n->right->subtree_value);
}
n->size = 1 + size(n->left) + size(n->right);
}
static void update_delta(node_t *n, const T &d) {
if (n != nullptr) {
n->delta = n->pending ? join_deltas(n->delta, d) : d;
n->pending = true;
}
}
static void push_delta(node_t *n) {
if (n == nullptr || !n->pending) {
return;
}
n->value = join_value_with_delta(n->value, n->delta, 1);
n->subtree_value =
join_value_with_delta(n->subtree_value, n->delta, n->size);
if (n->size > 1) {
update_delta(n->left, n->delta);
update_delta(n->right, n->delta);
}
n->pending = false;
}
static void merge(node_t *&n, node_t *left, node_t *right) {
push_delta(left);
push_delta(right);
if (left == nullptr) {
n = right;
} else if (right == nullptr) {
n = left;
} else if (left->priority < right->priority) {
merge(left->right, left->right, right);
n = left;
} else {
merge(right->left, left, right->left);
n = right;
}
update_value(n);
}
static void split(node_t *n, node_t *&left, node_t *&right, int i) {
push_delta(n);
if (n == nullptr) {
left = right = nullptr;
} else if (i <= size(n->left)) {
split(n->left, left, n->left, i);
right = n;
} else {
split(n->right, n->right, right, i - size(n->left) - 1);
left = n;
}
update_value(n);
}
static void insert(node_t *&n, node_t *new_node, int i) {
push_delta(n);
if (n == nullptr) {
n = new_node;
} else if (new_node->priority < n->priority) {
split(n, new_node->left, new_node->right, i);
n = new_node;
} else if (i <= size(n->left)) {
insert(n->left, new_node, i);
} else {
insert(n->right, new_node, i - size(n->left) - 1);
}
update_value(n);
}
static void erase(node_t *&n, int i) {
push_delta(n);
if (i == size(n->left)) {
delete n;
merge(n, n->left, n->right);
} else if (i < size(n->left)) {
erase(n->left, i);
} else {
erase(n->right, i - size(n->left) - 1);
}
update_value(n);
}
static node_t *select(node_t *n, int i) {
push_delta(n);
if (i < size(n->left)) {
return select(n->left, i);
}
if (i > size(n->left)) {
return select(n->right, i - size(n->left) - 1);
}
return n;
}
template <typename TComp>
static int rank(node_t *n, const TComp &cmp) {
// assert(n != nullptr);
push_delta(n);
int r = size(n->left), cmp_res = cmp(n->value);
if (cmp_res < 0) {
return rank(n->left, cmp);
}
if (cmp_res > 0) {
return rank(n->right, cmp) + r + 1;
}
return r;
}
void clean_up(node_t *&n) {
if (n != nullptr) {
clean_up(n->left);
clean_up(n->right);
delete n;
}
}
public:
implicit_treap(int n = 0, const T &v = T()) : root(nullptr) {
for (int i = 0; i < n; i++) {
push_back(v);
}
}
template <class It>
implicit_treap(It lo, It hi) : root(nullptr) {
for (; lo != hi; ++lo) {
push_back(*lo);
}
}
~implicit_treap() { clean_up(root); }
int size() const { return size(root); }
bool empty() const { return root == nullptr; }
void insert(int i, const T &v) { insert(root, new node_t(v), i); }
void erase(int i) { erase(root, i); }
void push_back(const T &v) { insert(size(), v); }
void pop_back() { erase(size() - 1); }
T at(int i) const { return select(root, i)->value; }
void update(int i, const T &d) { update(i, i, d); }
void update(int lo, int hi, const T &d) {
node_t *l1, *r1, *l2, *r2, *t;
split(root, l1, r1, hi + 1);
split(l1, l2, r2, lo);
update_delta(r2, d);
merge(t, l2, r2);
merge(root, t, r1);
}
T query(int lo, int hi) {
node_t *l1, *r1, *l2, *r2, *t;
split(root, l1, r1, hi + 1);
split(l1, l2, r2, lo);
T res = r2->subtree_value;
merge(t, l2, r2);
merge(root, t, r1);
return res;
}
template <typename TComp>
int rank(const TComp &cmp) const {
return rank(root, cmp);
}
};
implicit_treap<segment> T;
void update_parent(int i, int p_new) {
// Find the rank j of the segment containing i.
int j = T.rank([&](const segment &s) {
return i < s.l ? -1 : (i > s.r ? 1 : 0);
});
segment curr = T.at(j);
if (curr.length() == 1) {
// Just update it.
curr.rep = p_new;
T.update(j, curr);
} else {
// Break up the segment.
segment lseg(curr.l, i - 1, curr.rep);
segment mseg(i, i, p_new);
segment rseg(i + 1, curr.r, curr.rep);
// Erase the old segment.
T.erase(j);
// Insert new segs, if non-zero length.
if (rseg.length() > 0) {
T.insert(j, rseg);
}
T.insert(j, mseg);
curr = mseg;
if (lseg.length() > 0) {
T.insert(j, lseg);
j++; // Make sure j still points to mseg.
}
// If j is broken up of 2 segments, then we might still need to merge it.
}
// If segment j - 1 has rep p_new, merge segment j left with j - 1.
if (j - 1 >= 0 && T.at(j - 1).rep == p_new) {
segment prev(T.at(j - 1).l, curr.r, p_new);
T.update(j - 1, prev);
T.erase(j);
curr = prev; // Set curr to the merged segment.
j--;
}
// If segment j + 1 has rep p_new, merge segment j right with j + 1.
if (j + 1 < T.size() && T.at(j + 1).rep == p_new) {
segment next(curr.l, T.at(j + 1).r, p_new);
T.update(j + 1, next);
T.erase(j);
}
}
struct disjoint_sets {
vector<vector<int>> values;
vector<int> parent, color_of_parent, parent_of_color;
public:
disjoint_sets(int N)
: values(N), parent(N), color_of_parent(N), parent_of_color(N) {
for (int i = 0; i < N; i++) {
values[i] = {i};
parent[i] = i;
color_of_parent[i] = i;
parent_of_color[i] = i;
}
}
// O(M + N log N) across M calls to unite(), not including update_parent().
void unite(int a, int b) {
a = parent[a];
b = parent[b];
if (a != b) {
if (values[a].size() < values[b].size()) {
swap(a, b);
}
while (!values[b].empty()) {
int v = values[b].back();
values[b].pop_back();
update_parent(v, a);
parent[v] = a;
color_of_parent[v] = color_of_parent[a];
values[a].push_back(v);
}
}
}
void repaint(int c1, int c2) {
int pa = parent_of_color[c1];
if (pa == -1) {
return;
}
color_of_parent[pa] = c2;
parent_of_color[c1] = -1;
int pb = parent_of_color[c2];
if (pb == -1) {
parent_of_color[c2] = pa;
return;
}
unite(pa, pb);
color_of_parent[pb] = c2;
parent_of_color[c2] = parent[pb];
}
};
long long solve() {
int N, M;
cin >> N >> M;
vector<int> A(M), B(M), ans(N + 1, -1);
disjoint_sets DS(N);
for (int i = 0; i < M; i++) {
cin >> A[i] >> B[i];
--A[i], --B[i];
}
ans[0] = ans[1] = 0;
// Initialize segments.
T = implicit_treap<segment>();
for (int i = 0; i < N; i++) {
T.push_back(segment(i, i, i));
}
for (int i = 0; i < M; i++) {
DS.repaint(A[i], B[i]);
if (T.size() == 1) {
// All segments are unified. All K_i's are possible now.
for (int k = 1; k <= N; k++) {
if (ans[k] == -1) {
ans[k] = i + 1;
}
}
break;
}
auto update_ans = [&](int k, int t) {
if (ans[k] == -1) {
ans[k] = t + 1;
}
};
for (int lastseg : {T.size() - 1, T.size() - 2}) {
int gcd = T.query(0, lastseg).gcd;
update_ans(gcd, i); // Directly update any K = gcd.
double lim = sqrt(gcd);
for (int d = 1; d <= lim; d++) {
if (gcd % d == 0) {
if (gcd / d != d) {
update_ans(d, i);
}
update_ans(gcd / d, i);
}
}
}
}
return accumulate(ans.begin(), ans.end(), 0LL);
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
for (int t = 1; t <= T; t++) {
cout << "Case #" << t << ": " << solve() << endl;
}
return 0;
}
|