Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 8,442 Bytes
f7ba5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#include <algorithm>
#include <cstring>
#include <iostream>
#include <stack>
#include <tuple>
#include <unordered_set>
#include <vector>
using namespace std;

const int LIM = 3005;
const int MAXN = LIM * LIM;

vector<int> adj[MAXN];
unordered_set<int> cutpoints;
vector<int> comp;
vector<vector<int>> bcc, bcc_adj;

void reset_edges() {
  for (int i = 0; i < MAXN; i++) {
    adj[i].clear();
  }
}

void add_edge(int u, int v) {
  adj[u].push_back(v);
  adj[v].push_back(u);
}

void tarjan(int N) {
  cutpoints.clear();
  bcc.clear();
  comp.assign(N, -1);
  vector<int> vis(N), parent(N, -1), children(N), tin(N), pushed(N), low(N);
  vector<bool> is_cut(N);
  int curr_root = 0;
  stack<tuple<int, int, int>> dfs;
  stack<int> st;
  for (int i = 0; i < N; i++) {
    if (vis[i]) {
      continue;
    }
    vis[i] = ++curr_root;
    tin[i] = 0;
    int timer = 1;
    dfs.push({i, 0, 0});
    while (!dfs.empty()) {
      auto [u, j, t] = dfs.top();
      low[u] = t;
      if (!pushed[u]) {
        st.push(u);
        pushed[u] = 1;
      }
      if (j == (int)adj[u].size()) {
        if ((parent[u] == -1 && children[u] >= 2) ||
            (parent[u] != -1 && is_cut[u])) {
          cutpoints.insert(u);
        }
        if (t >= tin[u]) {
          vector<int> component;
          do {
            int v = st.top();
            component.push_back(v);
            comp[v] = bcc.size();
            st.pop();
          } while (comp[u] == -1);
          bcc.push_back(component);
        }
        dfs.pop();
        continue;
      }
      int v = adj[u][j];
      if (parent[u] == v) {
        get<1>(dfs.top())++;
        continue;
      }
      if (vis[v] == 0) {
        vis[v] = curr_root;
        parent[v] = u;
        children[u]++;
        dfs.push({v, 0, timer});
        tin[v] = timer++;
        continue;
      }
      is_cut[u] = is_cut[u] || low[v] >= tin[u];
      if (vis[v] == curr_root && comp[v] == -1 && low[v] < t) {
        get<2>(dfs.top()) = low[v];
      }
      get<1>(dfs.top())++;
    }
  }
  bcc_adj.assign(bcc.size(), {});
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < (int)adj[i].size(); j++) {
      if (comp[i] != comp[adj[i][j]]) {
        bcc_adj[comp[i]].push_back(comp[adj[i][j]]);
      }
    }
  }
}

template <class Value>
class LinkCut {
  struct Node {
    int ch[2] = {0, 0}, p = 0;
    Value self = 0, path = 0;  // Path aggregates
    Value sub = 0, vir = 0;    // Subtree aggregates
    bool flip = 0;             // Lazy tags
  };

  vector<Node> T;

  void push(int x) {
    if (x == 0 || !T[x].flip) {
      return;
    }
    int l = T[x].ch[0], r = T[x].ch[1];
    T[l].flip ^= 1;
    T[r].flip ^= 1;
    swap(T[x].ch[0], T[x].ch[1]);
    T[x].flip = 0;
  }

  void pull(int x) {
    int l = T[x].ch[0], r = T[x].ch[1];
    push(l);
    push(r);
    T[x].path = T[l].path + T[x].self + T[r].path;
    T[x].sub = T[x].vir + T[l].sub + T[r].sub + T[x].self;
  }

  void set(int x, int d, int y) {
    T[x].ch[d] = y;
    T[y].p = x;
    pull(x);
  }

  void splay(int x) {
    auto dir = [&](int x) {
      int p = T[x].p;
      if (p == 0) {
        return -1;
      }
      return T[p].ch[0] == x ? 0 : T[p].ch[1] == x ? 1 : -1;
    };
    auto rotate = [&](int x) {
      int y = T[x].p, z = T[y].p, dx = dir(x), dy = dir(y);
      set(y, dx, T[x].ch[!dx]);
      set(x, !dx, y);
      if (~dy) {
        set(z, dy, x);
      }
      T[x].p = z;
    };
    for (push(x); ~dir(x);) {
      int y = T[x].p, z = T[y].p;
      push(z);
      push(y);
      push(x);
      int dx = dir(x), dy = dir(y);
      if (~dy) {
        rotate(dx != dy ? x : y);
      }
      rotate(x);
    }
  }

  int access(int x) {
    int v = 0;
    for (int u = x; u != 0; u = T[u].p) {
      splay(u);
      int &ov = T[u].ch[1];
      T[u].vir += T[ov].sub;
      T[u].vir -= T[v].sub;
      ov = v;
      pull(u);
      v = u;
    }
    splay(x);
    return v;
  }

  void reroot(int x) {
    access(x);
    T[x].flip ^= 1;
    push(x);
  }

 public:
  LinkCut(int n = 0) : T(n + 1) {}

  void Init(int u, Value v) {
    T[++u].self = v;
    pull(u);
  }

  void Reset(int n) {
    T.clear();
    T.resize(n + 1);
  }

  void Link(int u, int v) {
    if (u == v || LCA(u, v) != -1) {
      return;
    }
    reroot(++u);
    access(++v);
    T[v].vir += T[u].sub;
    T[u].p = v;
    pull(v);
  }

  void Cut(int u, int v) {
    if (u == v || LCA(u, v) == -1) {
      return;
    }
    reroot(++u);
    access(++v);
    T[v].ch[0] = T[u].p = 0;
    pull(v);
  }

  // Rooted tree LCA. Returns -1 if u and v aren't connected.
  int LCA(int u, int v) {
    if (++u == ++v) {
      return u;
    }
    access(u);
    int ret = access(v);
    return T[u].p ? ret : -1;
  }

  // Query subtree of u where v is outside the subtree.
  // Pass u = v to get the aggregate for the entire tree containing u.
  Value Subtree(int u, int v) {
    reroot(++v);
    access(++u);
    return T[u].vir + T[u].self;
  }

  Value Path(int u, int v) {
    reroot(++u);
    access(++v);
    return T[v].path;
  }

  void Update(int u, Value v) {
    access(++u);
    T[u].self = v;
    pull(u);
  }
};

// Main algorithm.

int R, C;
int G[LIM][LIM];
LinkCut<int> lcf;

inline int getn(int r, int c) { return r * C + c; }
inline int getr(int n) { return n / C; }
inline int getc(int n) { return n % C; }

// Size of group connected to (r2, c2) after swapping (r1, c1) to (r2, c2).
int num_cleared(int r1, int c1, int r2, int c2) {
  int res = 0;
  int u = getn(r1, c1), cu = comp[u];
  // If u is a cutpoint, disconnect it from all neighboring BCCs.
  if (cutpoints.count(u)) {
    for (int v : adj[u]) {
      int cv = comp[v];
      if (cu != cv) {
        lcf.Cut(cu, cv);
      }
    }
  }
  // Get a representative for each neighboring group of (r2, c2).
  unordered_set<int> seen_groups;
  bool seen_orig = false;  // Whether we've seen the original group of cu.
  for (auto [dr, dc] : {pair{-1, 0}, {0, 1}, {1, 0}, {0, -1}}) {
    int r3 = r2 + dr, c3 = c2 + dc;
    if (r3 < 0 || r3 >= R || c3 < 0 || c3 >= C) {
      continue;
    }
    if (!(r1 == r3 && c1 == c3) && G[r1][c1] == G[r3][c3]) {
      int cv = comp[getn(r3, c3)];
      bool seen = false;  // Have we seen the same group?
      for (int cmp : seen_groups) {
        if (lcf.LCA(cv, cmp) != -1) {
          seen = true;
          break;
        }
      }
      if (!seen) {
        if (lcf.LCA(cu, cv) != -1) {
          seen_orig = true;
        }
        res += lcf.Subtree(cv, cv);
        seen_groups.insert(cv);
      }
    }
  }
  // If we didn't encounter the original component, add 1 for the cell itself.
  if (!seen_orig) {
    res++;
  }
  // Undo disconnections.
  if (cutpoints.count(u)) {
    for (int v : adj[u]) {
      int cv = comp[v];
      if (cu != cv) {
        lcf.Link(cu, cv);
      }
    }
  }
  return res >= 3 ? res : 0;
}

long long solve() {
  reset_edges();
  // Build graph.
  for (int r = 0; r < R; r++) {
    for (int c = 0; c < C; c++) {
      for (auto [dr, dc] : {pair{0, 1}, {1, 0}}) {
        int r2 = r + dr, c2 = c + dc;
        if (r2 < 0 || r2 >= R || c2 < 0 || c2 >= C) {
          continue;
        }
        if (G[r][c] == G[r2][c2]) {
          add_edge(getn(r, c), getn(r2, c2));
        }
      }
    }
  }
  // Compute BCC and block forest.
  tarjan(R * C);
  int bcc_nodes = (int)bcc.size();
  // Create link-cut forest from BCC.
  lcf.Reset(bcc_nodes);
  for (int i = 0; i < bcc_nodes; i++) {
    lcf.Init(i, bcc[i].size());
  }
  for (int i = 0; i < bcc_nodes; i++) {
    for (int j : bcc_adj[i]) {
      lcf.Link(i, j);
    }
  }
  // Try swapping each neighbor.
  long long ans = 0;
  for (int r = 0; r < R; r++) {
    for (int c = 0; c < C; c++) {
      // Only check right and bottom for ordered pairs.
      for (auto [dr, dc] : {pair{0, 1}, {1, 0}}) {
        int r2 = r + dr, c2 = c + dc;
        if (r2 < 0 || r2 >= R || c2 < 0 || c2 >= C) {
          continue;
        }
        if (G[r][c] != G[r2][c2]) {
          ans += num_cleared(r, c, r2, c2) + num_cleared(r2, c2, r, c);
        }
      }
    }
  }
  return 2 * ans;
}

int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr);
  int T;
  cin >> T;
  for (int t = 1; t <= T; t++) {
    memset(G, 0, sizeof G);
    cin >> R >> C;
    for (int r = 0; r < R; r++) {
      for (int c = 0; c < C; c++) {
        cin >> G[r][c];
      }
    }
    cout << "Case #" << t << ": " << solve() << endl;
  }
  return 0;
}