Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 4,234 Bytes
f7ba5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
using namespace std;

const int MOD = 1000000007;
using LL = long long;

class mint {
  LL val;

  mint& normalize(LL x) {
    val = x % MOD;
    if (val < 0) {
      val += MOD;
    }
    return *this;
  }

  static LL inverse(LL a) {
    LL u = 0, v = 1, m = MOD;
    while (a != 0) {
      LL t = m / a;
      m -= t * a;
      swap(a, m);
      u -= t * v;
      swap(u, v);
    }
    assert(m == 1);
    return u;
  }

 public:
  mint(LL x = 0) { normalize(x); }

  LL operator()() const { return val; }

  template <typename U>
  explicit operator U() const { return static_cast<U>(val); }

  mint& operator=(LL x) { return normalize(x); }
  mint& operator=(const mint& x) { val = x.val; return *this; }

  mint& operator+=(const mint& x) { return normalize(val + x.val); }
  mint& operator-=(const mint& x) { return normalize(val - x.val); }
  mint& operator*=(const mint& x) { return normalize(val * x.val); }
  mint& operator/=(const mint& x) { return *this *= mint(inverse(x.val)); }

  mint& operator+=(LL x) { return *this += mint(x); }
  mint& operator-=(LL x) { return *this -= mint(x); }
  mint& operator*=(LL x) { return *this *= mint(x); }
  mint& operator/=(LL x) { return *this /= mint(x); }

  mint& operator++() { return *this += 1; }
  mint& operator--() { return *this -= 1; }
  mint operator++(int) { mint z(*this); ++*this; return z; }
  mint operator--(int) { mint z(*this); --*this; return z; }

  friend mint operator+(mint x, const mint& y) { return x += y; }
  friend mint operator*(mint x, const mint& y) { return x *= y; }
  friend mint operator-(mint x, const mint& y) { return x -= y; }
  friend mint operator/(mint x, const mint& y) { return x /= y; }

  friend mint operator+(mint x, LL y) { return x += y; }
  friend mint operator*(mint x, LL y) { return x *= y; }
  friend mint operator-(mint x, LL y) { return x -= y; }
  friend mint operator/(mint x, LL y) { return x /= y; }

  friend mint operator+(LL x, mint y) { return y += x; }
  friend mint operator*(LL x, mint y) { return y *= x; }
  friend mint operator-(LL x, const mint& y) { mint z(x); return z -= y; }
  friend mint operator/(LL x, const mint& y) { mint z(x); return z /= y; }

  bool operator <(const mint& x) const { return val < x.val; }
  bool operator==(const mint& x) const { return val == x.val; }
  bool operator >(const mint& x) const { return val > x.val; }
  bool operator!=(const mint& x) const { return val != x.val; }
  bool operator<=(const mint& x) const { return val <= x.val; }
  bool operator>=(const mint& x) const { return val >= x.val; }

  bool operator <(LL x) const { return val < x; }
  bool operator==(LL x) const { return val == x; }
  bool operator >(LL x) const { return val > x; }
  bool operator!=(LL x) const { return val != x; }
  bool operator<=(LL x) const { return val <= x; }
  bool operator>=(LL x) const { return val >= x; }
};

class factorial : vector<mint> {
  void lazy_eval(int n) {
    for (LL p = size(); n >= p; ++p) {
      push_back(back() * p);
    }
  }

 public:
  factorial() { push_back(1); }

  mint choose(LL n, LL k) {
    if (n < 0 || k < 0 || n < k) {
      return 0;
    }
    if (k == 0 || k == n) {
      return 1;
    }
    if (n >= MOD && n <= k + MOD - 1) {
      return 0;
    }
    lazy_eval(n);
    return at(n) / (at(k) * at(n - k));
  }

  mint operator[](LL n) {
    lazy_eval(n);
    return at(n);
  }
};

factorial F;

LL solve() {
  int N, K, c0, w0;
  cin >> N >> K >> c0 >> w0;
  LL lighter = 0, equal = 0, heavier = 0;
  for (int i = 1, c, w; i < N; i++) {
    cin >> c >> w;
    if (w < w0) {
      lighter += c;
    } else if (w == w0) {
      equal += c;
    } else {
      heavier += c;
    }
  }
  LL total = c0 + lighter + equal + heavier;
  LL not_heavier = total - heavier;
  K++;
  mint ways_some_equal = F.choose(not_heavier, K) - F.choose(lighter, K);
  mint prob_some_equal = ways_some_equal / F.choose(total, K);
  return LL(prob_some_equal * c0 / (c0 + equal));
}

int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr);
  int T;
  cin >> T;
  for (int t = 1; t <= T; t++) {
    cout << "Case #" << t << ": " << solve() << endl;
  }
  return 0;
}