parquet-converter commited on
Commit
de83baa
·
1 Parent(s): f73543f

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,41 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.npy filter=lfs diff=lfs merge=lfs -text
13
- *.npz filter=lfs diff=lfs merge=lfs -text
14
- *.onnx filter=lfs diff=lfs merge=lfs -text
15
- *.ot filter=lfs diff=lfs merge=lfs -text
16
- *.parquet filter=lfs diff=lfs merge=lfs -text
17
- *.pb filter=lfs diff=lfs merge=lfs -text
18
- *.pickle filter=lfs diff=lfs merge=lfs -text
19
- *.pkl filter=lfs diff=lfs merge=lfs -text
20
- *.pt filter=lfs diff=lfs merge=lfs -text
21
- *.pth filter=lfs diff=lfs merge=lfs -text
22
- *.rar filter=lfs diff=lfs merge=lfs -text
23
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
24
- *.tar.* filter=lfs diff=lfs merge=lfs -text
25
- *.tflite filter=lfs diff=lfs merge=lfs -text
26
- *.tgz filter=lfs diff=lfs merge=lfs -text
27
- *.wasm filter=lfs diff=lfs merge=lfs -text
28
- *.xz filter=lfs diff=lfs merge=lfs -text
29
- *.zip filter=lfs diff=lfs merge=lfs -text
30
- *.zstandard filter=lfs diff=lfs merge=lfs -text
31
- *tfevents* filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - uncompressed
33
- *.pcm filter=lfs diff=lfs merge=lfs -text
34
- *.sam filter=lfs diff=lfs merge=lfs -text
35
- *.raw filter=lfs diff=lfs merge=lfs -text
36
- # Audio files - compressed
37
- *.aac filter=lfs diff=lfs merge=lfs -text
38
- *.flac filter=lfs diff=lfs merge=lfs -text
39
- *.mp3 filter=lfs diff=lfs merge=lfs -text
40
- *.ogg filter=lfs diff=lfs merge=lfs -text
41
- *.wav filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,113 +0,0 @@
1
- ---
2
- license: unknown
3
- ---
4
-
5
- # Dataset Card for IMDB-BINARY (IMDb-B)
6
-
7
- ## Table of Contents
8
- - [Table of Contents](#table-of-contents)
9
- - [Dataset Description](#dataset-description)
10
- - [Dataset Summary](#dataset-summary)
11
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
12
- - [External Use](#external-use)
13
- - [PyGeometric](#pygeometric)
14
- - [Dataset Structure](#dataset-structure)
15
- - [Data Properties](#data-properties)
16
- - [Data Fields](#data-fields)
17
- - [Data Splits](#data-splits)
18
- - [Additional Information](#additional-information)
19
- - [Licensing Information](#licensing-information)
20
- - [Citation Information](#citation-information)
21
- - [Contributions](#contributions)
22
-
23
- ## Dataset Description
24
-
25
- - **[Homepage](https://dl.acm.org/doi/10.1145/2783258.2783417)**
26
- - **[Repository](https://www.chrsmrrs.com/graphkerneldatasets/IMDB-BINARY.zip):**:
27
- - **Paper:**: Deep Graph Kernels (see citation)
28
- - **Leaderboard:**: [Papers with code leaderboard](https://paperswithcode.com/sota/graph-classification-on-imdb-b)
29
-
30
- ### Dataset Summary
31
-
32
- The `IMDb-B` dataset is "a movie collaboration dataset that consists of the ego-networks of 1,000 actors/actresses who played roles in movies in IMDB. In each graph, nodes represent actors/actress, and there is an edge between them if they appear in the same movie. These graphs are derived from the Action and Romance genres".
33
-
34
- ### Supported Tasks and Leaderboards
35
-
36
- `IMDb-B` should be used for graph classification (aiming to predict whether a movie graph is an action or romance movie), a binary classification task. The score used is accuracy, using a 10-fold cross-validation.
37
-
38
-
39
- ## External Use
40
- ### PyGeometric
41
- To load in PyGeometric, do the following:
42
-
43
- ```python
44
- from datasets import load_dataset
45
-
46
- from torch_geometric.data import Data
47
- from torch_geometric.loader import DataLoader
48
-
49
- dataset_hf = load_dataset("graphs-datasets/<mydataset>")
50
- # For the train set (replace by valid or test as needed)
51
- dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
52
- dataset_pg = DataLoader(dataset_pg_list)
53
-
54
- ```
55
-
56
-
57
- ## Dataset Structure
58
-
59
- ### Data Properties
60
-
61
- | property | value |
62
- |---|---|
63
- | scale | medium |
64
- | #graphs | 1000 |
65
- | average #nodes | 19.79 |
66
- | average #edges | 193.25 |
67
-
68
- ### Data Fields
69
-
70
- Each row of a given file is a graph, with:
71
- - `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
72
- - `y` (list: 1 x #labels): contains the number of labels available to predict (here 1, equal to zero or one)
73
- - `num_nodes` (int): number of nodes of the graph
74
-
75
- ### Data Splits
76
-
77
- This data comes from the PyGeometric version of the dataset.
78
- This information can be found back using
79
- ```python
80
- from torch_geometric.datasets import TUDataset
81
- cur_dataset = TUDataset(root="../dataset/loaded/",
82
- name="IMDB-BINARY")
83
- ```
84
-
85
- ## Additional Information
86
-
87
- ### Licensing Information
88
- The dataset has been released under unknown license, please open an issue if you have this information.
89
-
90
- ### Citation Information
91
- ```
92
- @inproceedings{10.1145/2783258.2783417,
93
- author = {Yanardag, Pinar and Vishwanathan, S.V.N.},
94
- title = {Deep Graph Kernels},
95
- year = {2015},
96
- isbn = {9781450336642},
97
- publisher = {Association for Computing Machinery},
98
- address = {New York, NY, USA},
99
- url = {https://doi.org/10.1145/2783258.2783417},
100
- doi = {10.1145/2783258.2783417},
101
- abstract = {In this paper, we present Deep Graph Kernels, a unified framework to learn latent representations of sub-structures for graphs, inspired by latest advancements in language modeling and deep learning. Our framework leverages the dependency information between sub-structures by learning their latent representations. We demonstrate instances of our framework on three popular graph kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path graph kernels. Our experiments on several benchmark datasets show that Deep Graph Kernels achieve significant improvements in classification accuracy over state-of-the-art graph kernels.},
102
- booktitle = {Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
103
- pages = {1365–1374},
104
- numpages = {10},
105
- keywords = {collaboration networks, bioinformatics, r-convolution kernels, graph kernels, structured data, deep learning, social networks, string kernels},
106
- location = {Sydney, NSW, Australia},
107
- series = {KDD '15}
108
- }
109
- ```
110
-
111
- ### Contributions
112
-
113
- Thanks to [@clefourrier](https://github.com/clefourrier) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
full.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
graphs-datasets--IMDB-BINARY/json-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:581fb8f1beb45d436c1f77f4679761dd5c25f0bc62581935828089d4c527546b
3
+ size 148100