Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
slot-filling
Languages:
code
ArXiv:
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
6155b0f
·
1 Parent(s): c10c3e9

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,358 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - found
4
- language_creators:
5
- - found
6
- language:
7
- - code
8
- license:
9
- - c-uda
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 10K<n<100K
14
- - 1K<n<10K
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - text-generation
19
- - fill-mask
20
- task_ids:
21
- - slot-filling
22
- pretty_name: CodeXGlueCcClozeTestingMaxmin
23
- configs:
24
- - go
25
- - java
26
- - javascript
27
- - php
28
- - python
29
- - ruby
30
- dataset_info:
31
- - config_name: go
32
- features:
33
- - name: id
34
- dtype: int32
35
- - name: idx
36
- dtype: string
37
- - name: nl_tokens
38
- sequence: string
39
- - name: pl_tokens
40
- sequence: string
41
- splits:
42
- - name: train
43
- num_bytes: 204997
44
- num_examples: 152
45
- download_size: 298893
46
- dataset_size: 204997
47
- - config_name: java
48
- features:
49
- - name: id
50
- dtype: int32
51
- - name: idx
52
- dtype: string
53
- - name: nl_tokens
54
- sequence: string
55
- - name: pl_tokens
56
- sequence: string
57
- splits:
58
- - name: train
59
- num_bytes: 785754
60
- num_examples: 482
61
- download_size: 1097733
62
- dataset_size: 785754
63
- - config_name: javascript
64
- features:
65
- - name: id
66
- dtype: int32
67
- - name: idx
68
- dtype: string
69
- - name: nl_tokens
70
- sequence: string
71
- - name: pl_tokens
72
- sequence: string
73
- splits:
74
- - name: train
75
- num_bytes: 594347
76
- num_examples: 272
77
- download_size: 836112
78
- dataset_size: 594347
79
- - config_name: php
80
- features:
81
- - name: id
82
- dtype: int32
83
- - name: idx
84
- dtype: string
85
- - name: nl_tokens
86
- sequence: string
87
- - name: pl_tokens
88
- sequence: string
89
- splits:
90
- - name: train
91
- num_bytes: 705477
92
- num_examples: 407
93
- download_size: 1010305
94
- dataset_size: 705477
95
- - config_name: python
96
- features:
97
- - name: id
98
- dtype: int32
99
- - name: idx
100
- dtype: string
101
- - name: nl_tokens
102
- sequence: string
103
- - name: pl_tokens
104
- sequence: string
105
- splits:
106
- - name: train
107
- num_bytes: 2566353
108
- num_examples: 1264
109
- download_size: 3577929
110
- dataset_size: 2566353
111
- - config_name: ruby
112
- features:
113
- - name: id
114
- dtype: int32
115
- - name: idx
116
- dtype: string
117
- - name: nl_tokens
118
- sequence: string
119
- - name: pl_tokens
120
- sequence: string
121
- splits:
122
- - name: train
123
- num_bytes: 48946
124
- num_examples: 38
125
- download_size: 67675
126
- dataset_size: 48946
127
- ---
128
- # Dataset Card for "code_x_glue_cc_cloze_testing_maxmin"
129
-
130
- ## Table of Contents
131
- - [Dataset Description](#dataset-description)
132
- - [Dataset Summary](#dataset-summary)
133
- - [Supported Tasks and Leaderboards](#supported-tasks)
134
- - [Languages](#languages)
135
- - [Dataset Structure](#dataset-structure)
136
- - [Data Instances](#data-instances)
137
- - [Data Fields](#data-fields)
138
- - [Data Splits](#data-splits-sample-size)
139
- - [Dataset Creation](#dataset-creation)
140
- - [Curation Rationale](#curation-rationale)
141
- - [Source Data](#source-data)
142
- - [Annotations](#annotations)
143
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
144
- - [Considerations for Using the Data](#considerations-for-using-the-data)
145
- - [Social Impact of Dataset](#social-impact-of-dataset)
146
- - [Discussion of Biases](#discussion-of-biases)
147
- - [Other Known Limitations](#other-known-limitations)
148
- - [Additional Information](#additional-information)
149
- - [Dataset Curators](#dataset-curators)
150
- - [Licensing Information](#licensing-information)
151
- - [Citation Information](#citation-information)
152
- - [Contributions](#contributions)
153
-
154
- ## Dataset Description
155
-
156
- - **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin
157
-
158
- ### Dataset Summary
159
-
160
- CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin
161
-
162
- Cloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.
163
- Here we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.
164
- The only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.
165
-
166
- ### Supported Tasks and Leaderboards
167
-
168
- - `slot-filling`: The dataset can be used to train a model for predicting the missing token from a piece of code, similar to the Cloze test.
169
-
170
- ### Languages
171
-
172
- - Go **programming** language
173
- - Java **programming** language
174
- - Javascript **programming** language
175
- - PHP **programming** language
176
- - Python **programming** language
177
- - Ruby **programming** language
178
-
179
- ## Dataset Structure
180
-
181
- ### Data Instances
182
-
183
- #### go
184
-
185
- An example of 'train' looks as follows.
186
- ```
187
- {
188
- "id": 0,
189
- "idx": "maxmin-1",
190
- "nl_tokens": ["SetMaxStructPoolSize", "sets", "the", "struct", "pools", "max", "size", ".", "this", "may", "be", "usefull", "for", "fine", "grained", "performance", "tuning", "towards", "your", "application", "however", "the", "default", "should", "be", "fine", "for", "nearly", "all", "cases", ".", "only", "increase", "if", "you", "have", "a", "deeply", "nested", "struct", "structure", ".", "NOTE", ":", "this", "method", "is", "not", "thread", "-", "safe", "NOTE", ":", "this", "is", "only", "here", "to", "keep", "compatibility", "with", "v5", "in", "v6", "the", "method", "will", "be", "removed"],
191
- "pl_tokens": ["func", "(", "v", "*", "Validate", ")", "SetMaxStructPoolSize", "(", "<mask>", "int", ")", "{", "structPool", "=", "&", "sync", ".", "Pool", "{", "New", ":", "newStructErrors", "}", "\n", "}"]
192
- }
193
- ```
194
-
195
- #### java
196
-
197
- An example of 'train' looks as follows.
198
- ```
199
- {
200
- "id": 0,
201
- "idx": "maxmin-1",
202
- "nl_tokens": ["Test", "whether", "find", "can", "be", "found", "at", "position", "startPos", "in", "the", "string", "src", "."],
203
- "pl_tokens": ["public", "static", "boolean", "startsWith", "(", "char", "[", "]", "src", ",", "char", "[", "]", "find", ",", "int", "startAt", ")", "{", "int", "startPos", "=", "startAt", ";", "boolean", "result", "=", "true", ";", "// Check ranges", "if", "(", "src", ".", "length", "<", "startPos", "+", "find", ".", "length", ")", "{", "result", "=", "false", ";", "}", "else", "{", "final", "int", "<mask>", "=", "find", ".", "length", ";", "for", "(", "int", "a", "=", "0", ";", "a", "<", "max", "&&", "result", ";", "a", "++", ")", "{", "if", "(", "src", "[", "startPos", "]", "!=", "find", "[", "a", "]", ")", "{", "result", "=", "false", ";", "}", "startPos", "++", ";", "}", "}", "return", "result", ";", "}"]
204
- }
205
- ```
206
-
207
- #### javascript
208
-
209
- An example of 'train' looks as follows.
210
- ```
211
- {
212
- "id": 0,
213
- "idx": "maxmin-1",
214
- "nl_tokens": ["string", ".", "max", "Maximum", "length", "of", "the", "string"],
215
- "pl_tokens": ["function", "(", "string", ")", "{", "// string.check check sting type and size", "return", "(", "(", "typeof", "string", "===", "'string'", "||", "string", "instanceof", "String", ")", "&&", "string", ".", "length", ">=", "this", ".", "<mask>", "&&", "string", ".", "length", "<=", "this", ".", "max", "&&", "(", "!", "this", ".", "match", "||", "string", ".", "match", "(", "this", ".", "match", ")", ")", ")", ";", "}"]
216
- }
217
- ```
218
-
219
- #### php
220
-
221
- An example of 'train' looks as follows.
222
- ```
223
- {
224
- "id": 0,
225
- "idx": "maxmin-1",
226
- "nl_tokens": ["Read", "the", "next", "character", "from", "the", "supplied", "string", ".", "Return", "null", "when", "we", "have", "run", "out", "of", "characters", "."],
227
- "pl_tokens": ["public", "function", "readOne", "(", ")", "{", "if", "(", "$", "this", "->", "pos", "<=", "$", "this", "->", "<mask>", ")", "{", "$", "value", "=", "$", "this", "->", "string", "[", "$", "this", "->", "pos", "]", ";", "$", "this", "->", "pos", "+=", "1", ";", "}", "else", "{", "$", "value", "=", "null", ";", "}", "return", "$", "value", ";", "}"]
228
- }
229
- ```
230
-
231
- #### python
232
-
233
- An example of 'train' looks as follows.
234
- ```
235
- {
236
- "id": 0,
237
- "idx": "maxmin-1",
238
- "nl_tokens": ["Returns", "intermediary", "colors", "for", "given", "list", "of", "colors", "."],
239
- "pl_tokens": ["def", "_interpolate", "(", "self", ",", "colors", ",", "n", "=", "100", ")", ":", "gradient", "=", "[", "]", "for", "i", "in", "_range", "(", "n", ")", ":", "l", "=", "len", "(", "colors", ")", "-", "1", "x", "=", "int", "(", "1.0", "*", "i", "/", "n", "*", "l", ")", "x", "=", "<mask>", "(", "x", "+", "0", ",", "l", ")", "y", "=", "min", "(", "x", "+", "1", ",", "l", ")", "base", "=", "1.0", "*", "n", "/", "l", "*", "x", "d", "=", "(", "i", "-", "base", ")", "/", "(", "1.0", "*", "n", "/", "l", ")", "r", "=", "colors", "[", "x", "]", ".", "r", "*", "(", "1", "-", "d", ")", "+", "colors", "[", "y", "]", ".", "r", "*", "d", "g", "=", "colors", "[", "x", "]", ".", "g", "*", "(", "1", "-", "d", ")", "+", "colors", "[", "y", "]", ".", "g", "*", "d", "b", "=", "colors", "[", "x", "]", ".", "b", "*", "(", "1", "-", "d", ")", "+", "colors", "[", "y", "]", ".", "b", "*", "d", "a", "=", "colors", "[", "x", "]", ".", "a", "*", "(", "1", "-", "d", ")", "+", "colors", "[", "y", "]", ".", "a", "*", "d", "gradient", ".", "append", "(", "color", "(", "r", ",", "g", ",", "b", ",", "a", ",", "mode", "=", "\"rgb\"", ")", ")", "gradient", ".", "append", "(", "colors", "[", "-", "1", "]", ")", "return", "gradient"]
240
- }
241
- ```
242
-
243
- #### ruby
244
-
245
- An example of 'train' looks as follows.
246
- ```
247
- {
248
- "id": 0,
249
- "idx": "maxmin-1",
250
- "nl_tokens": ["Delete", "all", "copies", "that", "are", "older", "than", "the", "max", "age", "provided", "in", "seconds", "."],
251
- "pl_tokens": ["def", "clean", "(", "<mask>", ":", "24", "*", "60", "*", "60", ")", "Futex", ".", "new", "(", "file", ",", "log", ":", "@log", ")", ".", "open", "do", "list", "=", "load", "list", ".", "reject!", "do", "|", "s", "|", "if", "s", "[", ":time", "]", ">=", "Time", ".", "now", "-", "max", "false", "else", "@log", ".", "debug", "(", "\"Copy ##{s[:name]}/#{s[:host]}:#{s[:port]} is too old, over #{Age.new(s[:time])}\"", ")", "true", "end", "end", "save", "(", "list", ")", "deleted", "=", "0", "files", ".", "each", "do", "|", "f", "|", "next", "unless", "list", ".", "find", "{", "|", "s", "|", "s", "[", ":name", "]", "==", "File", ".", "basename", "(", "f", ",", "Copies", "::", "EXT", ")", "}", ".", "nil?", "file", "=", "File", ".", "join", "(", "@dir", ",", "f", ")", "size", "=", "File", ".", "size", "(", "file", ")", "File", ".", "delete", "(", "file", ")", "@log", ".", "debug", "(", "\"Copy at #{f} deleted: #{Size.new(size)}\"", ")", "deleted", "+=", "1", "end", "list", ".", "select!", "do", "|", "s", "|", "cp", "=", "File", ".", "join", "(", "@dir", ",", "\"#{s[:name]}#{Copies::EXT}\"", ")", "wallet", "=", "Wallet", ".", "new", "(", "cp", ")", "begin", "wallet", ".", "refurbish", "raise", "\"Invalid protocol #{wallet.protocol} in #{cp}\"", "unless", "wallet", ".", "protocol", "==", "Zold", "::", "PROTOCOL", "true", "rescue", "StandardError", "=>", "e", "FileUtils", ".", "rm_rf", "(", "cp", ")", "@log", ".", "debug", "(", "\"Copy at #{cp} deleted: #{Backtrace.new(e)}\"", ")", "deleted", "+=", "1", "false", "end", "end", "save", "(", "list", ")", "deleted", "end", "end"]
252
- }
253
- ```
254
-
255
- ### Data Fields
256
-
257
- In the following each data field in go is explained for each config. The data fields are the same among all splits.
258
-
259
- #### go, java, javascript, php, python, ruby
260
-
261
- |field name| type | description |
262
- |----------|----------------|------------------------------|
263
- |id |int32 | Index of the sample |
264
- |idx |string | Original index in the dataset|
265
- |nl_tokens |Sequence[string]| Natural language tokens |
266
- |pl_tokens |Sequence[string]| Programming language tokens |
267
-
268
- ### Data Splits
269
-
270
- | name |train|
271
- |----------|----:|
272
- |go | 152|
273
- |java | 482|
274
- |javascript| 272|
275
- |php | 407|
276
- |python | 1264|
277
- |ruby | 38|
278
-
279
- ## Dataset Creation
280
-
281
- ### Curation Rationale
282
-
283
- [More Information Needed]
284
-
285
- ### Source Data
286
-
287
- #### Initial Data Collection and Normalization
288
-
289
- Data from CodeSearchNet Challenge dataset.
290
- [More Information Needed]
291
-
292
- #### Who are the source language producers?
293
-
294
- Software Engineering developers.
295
-
296
- ### Annotations
297
-
298
- #### Annotation process
299
-
300
- [More Information Needed]
301
-
302
- #### Who are the annotators?
303
-
304
- [More Information Needed]
305
-
306
- ### Personal and Sensitive Information
307
-
308
- [More Information Needed]
309
-
310
- ## Considerations for Using the Data
311
-
312
- ### Social Impact of Dataset
313
-
314
- [More Information Needed]
315
-
316
- ### Discussion of Biases
317
-
318
- [More Information Needed]
319
-
320
- ### Other Known Limitations
321
-
322
- [More Information Needed]
323
-
324
- ## Additional Information
325
-
326
- ### Dataset Curators
327
-
328
- https://github.com/microsoft, https://github.com/madlag
329
-
330
- ### Licensing Information
331
-
332
- Computational Use of Data Agreement (C-UDA) License.
333
-
334
- ### Citation Information
335
-
336
- ```
337
- @article{CodeXGLUE,
338
- title={CodeXGLUE: An Open Challenge for Code Intelligence},
339
- journal={arXiv},
340
- year={2020},
341
- }
342
- @article{feng2020codebert,
343
- title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
344
- author={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},
345
- journal={arXiv preprint arXiv:2002.08155},
346
- year={2020}
347
- }
348
- @article{husain2019codesearchnet,
349
- title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},
350
- author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
351
- journal={arXiv preprint arXiv:1909.09436},
352
- year={2019}
353
- }
354
- ```
355
-
356
- ### Contributions
357
-
358
- Thanks to @madlag (and partly also @ncoop57) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code_x_glue_cc_cloze_testing_maxmin.py DELETED
@@ -1,83 +0,0 @@
1
- import json
2
- from typing import List
3
-
4
- import datasets
5
-
6
- from .common import Child
7
- from .generated_definitions import DEFINITIONS
8
-
9
-
10
- _DESCRIPTION = """Cloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.
11
- Here we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.
12
- The only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words."""
13
-
14
- _CITATION = """@article{CodeXGLUE,
15
- title={CodeXGLUE: An Open Challenge for Code Intelligence},
16
- journal={arXiv},
17
- year={2020},
18
- }
19
- @article{feng2020codebert,
20
- title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
21
- author={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},
22
- journal={arXiv preprint arXiv:2002.08155},
23
- year={2020}
24
- }
25
- @article{husain2019codesearchnet,
26
- title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},
27
- author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
28
- journal={arXiv preprint arXiv:1909.09436},
29
- year={2019}
30
- }"""
31
-
32
-
33
- class CodeXGlueCcClozeTestingImpl(Child):
34
- _DESCRIPTION = _DESCRIPTION
35
- _CITATION = _CITATION
36
-
37
- _FEATURES = {
38
- "id": datasets.Value("int32"), # Index of the sample
39
- "idx": datasets.Value("string"), # Original index in the dataset
40
- "nl_tokens": datasets.features.Sequence(datasets.Value("string")), # Natural language tokens
41
- "pl_tokens": datasets.features.Sequence(datasets.Value("string")), # Programming language tokens
42
- }
43
-
44
- def generate_urls(self, split_name):
45
- yield "data", "clozeTest.json"
46
-
47
- def _generate_examples(self, split_name, file_paths):
48
- with open(file_paths["data"], encoding="utf-8") as f:
49
- j = json.load(f)
50
- index = 0
51
- for entry in j:
52
- yield index, dict(
53
- id=index, idx=entry["idx"], nl_tokens=entry["nl_tokens"], pl_tokens=entry["pl_tokens"]
54
- )
55
- index += 1
56
-
57
-
58
- CLASS_MAPPING = {
59
- "CodeXGlueCcClozeTestingMaxmin": CodeXGlueCcClozeTestingImpl,
60
- }
61
-
62
-
63
- class CodeXGlueCcClozeTestingMaxmin(datasets.GeneratorBasedBuilder):
64
- BUILDER_CONFIG_CLASS = datasets.BuilderConfig
65
- BUILDER_CONFIGS = [
66
- datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
67
- ]
68
-
69
- def _info(self):
70
- name = self.config.name
71
- info = DEFINITIONS[name]
72
- if info["class_name"] in CLASS_MAPPING:
73
- self.child = CLASS_MAPPING[info["class_name"]](info)
74
- else:
75
- raise RuntimeError(f"Unknown python class for dataset configuration {name}")
76
- ret = self.child._info()
77
- return ret
78
-
79
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
80
- return self.child._split_generators(dl_manager=dl_manager)
81
-
82
- def _generate_examples(self, split_name, file_paths):
83
- return self.child._generate_examples(split_name, file_paths)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
common.py DELETED
@@ -1,75 +0,0 @@
1
- from typing import List
2
-
3
- import datasets
4
-
5
-
6
- # Citation, taken from https://github.com/microsoft/CodeXGLUE
7
- _DEFAULT_CITATION = """@article{CodeXGLUE,
8
- title={CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence},
9
- year={2020},}"""
10
-
11
-
12
- class Child:
13
- _DESCRIPTION = None
14
- _FEATURES = None
15
- _CITATION = None
16
- SPLITS = {"train": datasets.Split.TRAIN}
17
- _SUPERVISED_KEYS = None
18
-
19
- def __init__(self, info):
20
- self.info = info
21
-
22
- def homepage(self):
23
- return self.info["project_url"]
24
-
25
- def _info(self):
26
- # This is the description that will appear on the datasets page.
27
- return datasets.DatasetInfo(
28
- description=self.info["description"] + "\n\n" + self._DESCRIPTION,
29
- features=datasets.Features(self._FEATURES),
30
- homepage=self.homepage(),
31
- citation=self._CITATION or _DEFAULT_CITATION,
32
- supervised_keys=self._SUPERVISED_KEYS,
33
- )
34
-
35
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
36
- SPLITS = self.SPLITS
37
- _URL = self.info["raw_url"]
38
- urls_to_download = {}
39
- for split in SPLITS:
40
- if split not in urls_to_download:
41
- urls_to_download[split] = {}
42
-
43
- for key, url in self.generate_urls(split):
44
- if not url.startswith("http"):
45
- url = _URL + "/" + url
46
- urls_to_download[split][key] = url
47
-
48
- downloaded_files = {}
49
- for k, v in urls_to_download.items():
50
- downloaded_files[k] = dl_manager.download_and_extract(v)
51
-
52
- return [
53
- datasets.SplitGenerator(
54
- name=SPLITS[k],
55
- gen_kwargs={"split_name": k, "file_paths": downloaded_files[k]},
56
- )
57
- for k in SPLITS
58
- ]
59
-
60
- def check_empty(self, entries):
61
- all_empty = all([v == "" for v in entries.values()])
62
- all_non_empty = all([v != "" for v in entries.values()])
63
-
64
- if not all_non_empty and not all_empty:
65
- raise RuntimeError("Parallel data files should have the same number of lines.")
66
-
67
- return all_empty
68
-
69
-
70
- class TrainValidTestChild(Child):
71
- SPLITS = {
72
- "train": datasets.Split.TRAIN,
73
- "valid": datasets.Split.VALIDATION,
74
- "test": datasets.Split.TEST,
75
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"go": {"description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_maxmin", "config_name": "go", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 204997, "num_examples": 152, "dataset_name": "code_x_glue_cc_cloze_testing_maxmin"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/go/clozeTest.json": {"num_bytes": 298893, "checksum": "9b0ba35b614b7b93c537ed52c88d89ca02e186022086c9bb41323eb4342eecf9"}}, "download_size": 298893, "post_processing_size": null, "dataset_size": 204997, "size_in_bytes": 503890}, "java": {"description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_maxmin", "config_name": "java", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 785754, "num_examples": 482, "dataset_name": "code_x_glue_cc_cloze_testing_maxmin"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/java/clozeTest.json": {"num_bytes": 1097733, "checksum": "ee2e7b0ad7d75ecb5e53b668f04fb39bdcebbacda820220b9bbb093136dd4082"}}, "download_size": 1097733, "post_processing_size": null, "dataset_size": 785754, "size_in_bytes": 1883487}, "javascript": {"description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_maxmin", "config_name": "javascript", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 594347, "num_examples": 272, "dataset_name": "code_x_glue_cc_cloze_testing_maxmin"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/javascript/clozeTest.json": {"num_bytes": 836112, "checksum": "8517b7b0ecfcc59ccb19c3253a907e6b4f65549e4b68a8ac249807e50a001204"}}, "download_size": 836112, "post_processing_size": null, "dataset_size": 594347, "size_in_bytes": 1430459}, "php": {"description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_maxmin", "config_name": "php", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 705477, "num_examples": 407, "dataset_name": "code_x_glue_cc_cloze_testing_maxmin"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/php/clozeTest.json": {"num_bytes": 1010305, "checksum": "37a7dd759eca7fa8076d2b9a2ab3991774728555dd7568a3e54b0a152d2c10b8"}}, "download_size": 1010305, "post_processing_size": null, "dataset_size": 705477, "size_in_bytes": 1715782}, "python": {"description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_maxmin", "config_name": "python", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2566353, "num_examples": 1264, "dataset_name": "code_x_glue_cc_cloze_testing_maxmin"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/python/clozeTest.json": {"num_bytes": 3577929, "checksum": "98cbdaf5900a343d2017aa1b7144a8ee75eac3d0c3ad40812abd7b72fd892e72"}}, "download_size": 3577929, "post_processing_size": null, "dataset_size": 2566353, "size_in_bytes": 6144282}, "ruby": {"description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_maxmin", "config_name": "ruby", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 48946, "num_examples": 38, "dataset_name": "code_x_glue_cc_cloze_testing_maxmin"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/ruby/clozeTest.json": {"num_bytes": 67675, "checksum": "d3c71ae0127b653ee551da3e6a5eea17434c38cc4b2d6349d529e8e37ae4f9d2"}}, "download_size": 67675, "post_processing_size": null, "dataset_size": 48946, "size_in_bytes": 116621}}
 
 
generated_definitions.py DELETED
@@ -1,68 +0,0 @@
1
- DEFINITIONS = {
2
- "go": {
3
- "class_name": "CodeXGlueCcClozeTestingMaxmin",
4
- "dataset_type": "Code-Code",
5
- "description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
6
- "dir_name": "ClozeTesting-maxmin",
7
- "name": "go",
8
- "parameters": {"language": "go"},
9
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
10
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/go",
11
- "sizes": {"train": 152},
12
- },
13
- "java": {
14
- "class_name": "CodeXGlueCcClozeTestingMaxmin",
15
- "dataset_type": "Code-Code",
16
- "description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
17
- "dir_name": "ClozeTesting-maxmin",
18
- "name": "java",
19
- "parameters": {"language": "java"},
20
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
21
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/java",
22
- "sizes": {"train": 482},
23
- },
24
- "javascript": {
25
- "class_name": "CodeXGlueCcClozeTestingMaxmin",
26
- "dataset_type": "Code-Code",
27
- "description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
28
- "dir_name": "ClozeTesting-maxmin",
29
- "name": "javascript",
30
- "parameters": {"language": "javascript"},
31
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
32
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/javascript",
33
- "sizes": {"train": 272},
34
- },
35
- "php": {
36
- "class_name": "CodeXGlueCcClozeTestingMaxmin",
37
- "dataset_type": "Code-Code",
38
- "description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
39
- "dir_name": "ClozeTesting-maxmin",
40
- "name": "php",
41
- "parameters": {"language": "php"},
42
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
43
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/php",
44
- "sizes": {"train": 407},
45
- },
46
- "python": {
47
- "class_name": "CodeXGlueCcClozeTestingMaxmin",
48
- "dataset_type": "Code-Code",
49
- "description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
50
- "dir_name": "ClozeTesting-maxmin",
51
- "name": "python",
52
- "parameters": {"language": "python"},
53
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
54
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/python",
55
- "sizes": {"train": 1264},
56
- },
57
- "ruby": {
58
- "class_name": "CodeXGlueCcClozeTestingMaxmin",
59
- "dataset_type": "Code-Code",
60
- "description": "CodeXGLUE ClozeTesting-maxmin dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
61
- "dir_name": "ClozeTesting-maxmin",
62
- "name": "ruby",
63
- "parameters": {"language": "ruby"},
64
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-maxmin",
65
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-maxmin/data/cloze-maxmin/ruby",
66
- "sizes": {"train": 38},
67
- },
68
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
go/code_x_glue_cc_cloze_testing_maxmin-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1ae768027dcbb39290db7c44a846f48c14e1a01d65e0e1cc3ea50a16c4cea2
3
+ size 68964
java/code_x_glue_cc_cloze_testing_maxmin-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0697effe002d0afdd4e55f0fc7b255ac01bfa1dc14a7f79195bde4758be5d9bb
3
+ size 250671
javascript/code_x_glue_cc_cloze_testing_maxmin-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c045100b94d1315cd88c6821be48eaffaba8fce05fa9211b18a7dc993b1662ae
3
+ size 188270
php/code_x_glue_cc_cloze_testing_maxmin-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e68b6971f00cd7247e1501002edff1d647f0faefce749042ab68a09c3ec8ec
3
+ size 211106
python/code_x_glue_cc_cloze_testing_maxmin-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a5433894ef62aaf651fb897d15ebd1aad19b2012945a7c118b52cdac8bc57c4
3
+ size 885487
ruby/code_x_glue_cc_cloze_testing_maxmin-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ab2d5515b6086342705a773ac75ddec8b99232aac6604bf64fe771a326b86bd
3
+ size 22527