parquet-converter commited on
Commit
999e308
·
1 Parent(s): c2c03a2

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,358 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - found
4
- language_creators:
5
- - found
6
- language:
7
- - code
8
- license:
9
- - c-uda
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 10K<n<100K
14
- - 1K<n<10K
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - text-generation
19
- - fill-mask
20
- task_ids:
21
- - slot-filling
22
- pretty_name: CodeXGlueCcClozeTestingAll
23
- configs:
24
- - go
25
- - java
26
- - javascript
27
- - php
28
- - python
29
- - ruby
30
- dataset_info:
31
- - config_name: go
32
- features:
33
- - name: id
34
- dtype: int32
35
- - name: idx
36
- dtype: string
37
- - name: nl_tokens
38
- sequence: string
39
- - name: pl_tokens
40
- sequence: string
41
- splits:
42
- - name: train
43
- num_bytes: 22409765
44
- num_examples: 25282
45
- download_size: 32578836
46
- dataset_size: 22409765
47
- - config_name: java
48
- features:
49
- - name: id
50
- dtype: int32
51
- - name: idx
52
- dtype: string
53
- - name: nl_tokens
54
- sequence: string
55
- - name: pl_tokens
56
- sequence: string
57
- splits:
58
- - name: train
59
- num_bytes: 40392965
60
- num_examples: 40492
61
- download_size: 56468936
62
- dataset_size: 40392965
63
- - config_name: javascript
64
- features:
65
- - name: id
66
- dtype: int32
67
- - name: idx
68
- dtype: string
69
- - name: nl_tokens
70
- sequence: string
71
- - name: pl_tokens
72
- sequence: string
73
- splits:
74
- - name: train
75
- num_bytes: 16090182
76
- num_examples: 13837
77
- download_size: 22665666
78
- dataset_size: 16090182
79
- - config_name: php
80
- features:
81
- - name: id
82
- dtype: int32
83
- - name: idx
84
- dtype: string
85
- - name: nl_tokens
86
- sequence: string
87
- - name: pl_tokens
88
- sequence: string
89
- splits:
90
- - name: train
91
- num_bytes: 51328988
92
- num_examples: 51930
93
- download_size: 73115225
94
- dataset_size: 51328988
95
- - config_name: python
96
- features:
97
- - name: id
98
- dtype: int32
99
- - name: idx
100
- dtype: string
101
- - name: nl_tokens
102
- sequence: string
103
- - name: pl_tokens
104
- sequence: string
105
- splits:
106
- - name: train
107
- num_bytes: 40631213
108
- num_examples: 40137
109
- download_size: 56766288
110
- dataset_size: 40631213
111
- - config_name: ruby
112
- features:
113
- - name: id
114
- dtype: int32
115
- - name: idx
116
- dtype: string
117
- - name: nl_tokens
118
- sequence: string
119
- - name: pl_tokens
120
- sequence: string
121
- splits:
122
- - name: train
123
- num_bytes: 3454904
124
- num_examples: 4437
125
- download_size: 4825752
126
- dataset_size: 3454904
127
- ---
128
- # Dataset Card for "code_x_glue_cc_cloze_testing_all"
129
-
130
- ## Table of Contents
131
- - [Dataset Description](#dataset-description)
132
- - [Dataset Summary](#dataset-summary)
133
- - [Supported Tasks and Leaderboards](#supported-tasks)
134
- - [Languages](#languages)
135
- - [Dataset Structure](#dataset-structure)
136
- - [Data Instances](#data-instances)
137
- - [Data Fields](#data-fields)
138
- - [Data Splits](#data-splits-sample-size)
139
- - [Dataset Creation](#dataset-creation)
140
- - [Curation Rationale](#curation-rationale)
141
- - [Source Data](#source-data)
142
- - [Annotations](#annotations)
143
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
144
- - [Considerations for Using the Data](#considerations-for-using-the-data)
145
- - [Social Impact of Dataset](#social-impact-of-dataset)
146
- - [Discussion of Biases](#discussion-of-biases)
147
- - [Other Known Limitations](#other-known-limitations)
148
- - [Additional Information](#additional-information)
149
- - [Dataset Curators](#dataset-curators)
150
- - [Licensing Information](#licensing-information)
151
- - [Citation Information](#citation-information)
152
- - [Contributions](#contributions)
153
-
154
- ## Dataset Description
155
-
156
- - **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all
157
-
158
- ### Dataset Summary
159
-
160
- CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all
161
-
162
- Cloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.
163
- Here we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.
164
- The only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.
165
-
166
- ### Supported Tasks and Leaderboards
167
-
168
- - `slot-filling`: The dataset can be used to train a model for predicting the missing token from a piece of code, similar to the Cloze test.
169
-
170
- ### Languages
171
-
172
- - Go **programming** language
173
- - Java **programming** language
174
- - Javascript **programming** language
175
- - PHP **programming** language
176
- - Python **programming** language
177
- - Ruby **programming** language
178
-
179
- ## Dataset Structure
180
-
181
- ### Data Instances
182
-
183
- #### go
184
-
185
- An example of 'train' looks as follows.
186
- ```
187
- {
188
- "id": 0,
189
- "idx": "all-1",
190
- "nl_tokens": ["MarshalJSON", "supports", "json", ".", "Marshaler", "interface"],
191
- "pl_tokens": ["func", "(", "v", "ContextRealtimeData", ")", "MarshalJSON", "(", ")", "(", "[", "]", "byte", ",", "error", ")", "{", "w", ":=", "jwriter", ".", "<mask>", "{", "}", "\n", "easyjsonC5a4559bEncodeGithubComChromedpCdprotoWebaudio7", "(", "&", "w", ",", "v", ")", "\n", "return", "w", ".", "Buffer", ".", "BuildBytes", "(", ")", ",", "w", ".", "Error", "\n", "}"]
192
- }
193
- ```
194
-
195
- #### java
196
-
197
- An example of 'train' looks as follows.
198
- ```
199
- {
200
- "id": 0,
201
- "idx": "all-1",
202
- "nl_tokens": ["/", "*", "(", "non", "-", "Javadoc", ")"],
203
- "pl_tokens": ["@", "Override", "public", "int", "peekBit", "(", ")", "throws", "AACException", "{", "int", "ret", ";", "if", "(", "bitsCached", ">", "0", ")", "{", "ret", "=", "(", "cache", ">>", "(", "bitsCached", "-", "1", ")", ")", "&", "1", ";", "}", "else", "{", "final", "int", "word", "=", "readCache", "(", "true", ")", ";", "ret", "=", "(", "<mask>", ">>", "WORD_BITS", "-", "1", ")", "&", "1", ";", "}", "return", "ret", ";", "}"]
204
- }
205
- ```
206
-
207
- #### javascript
208
-
209
- An example of 'train' looks as follows.
210
- ```
211
- {
212
- "id": 0,
213
- "idx": "all-1",
214
- "nl_tokens": ["Cast", "query", "params", "according", "to", "type"],
215
- "pl_tokens": ["function", "castQueryParams", "(", "relId", ",", "data", ",", "{", "relationships", "}", ")", "{", "const", "relationship", "=", "relationships", "[", "relId", "]", "if", "(", "!", "relationship", ".", "query", ")", "{", "return", "{", "}", "}", "return", "Object", ".", "keys", "(", "relationship", ".", "query", ")", ".", "reduce", "(", "(", "params", ",", "<mask>", ")", "=>", "{", "const", "value", "=", "getField", "(", "data", ",", "relationship", ".", "query", "[", "key", "]", ")", "if", "(", "value", "===", "undefined", ")", "{", "throw", "new", "TypeError", "(", "'Missing value for query param'", ")", "}", "return", "{", "...", "params", ",", "[", "key", "]", ":", "value", "}", "}", ",", "{", "}", ")", "}"]
216
- }
217
- ```
218
-
219
- #### php
220
-
221
- An example of 'train' looks as follows.
222
- ```
223
- {
224
- "id": 0,
225
- "idx": "all-1",
226
- "nl_tokens": ["Get", "choices", "."],
227
- "pl_tokens": ["protected", "<mask>", "getChoices", "(", "FormFieldTranslation", "$", "translation", ")", "{", "$", "choices", "=", "preg_split", "(", "'/\\r\\n|\\r|\\n/'", ",", "$", "translation", "->", "getOption", "(", "'choices'", ")", ",", "-", "1", ",", "PREG_SPLIT_NO_EMPTY", ")", ";", "return", "array_combine", "(", "$", "choices", ",", "$", "choices", ")", ";", "}"]
228
- }
229
- ```
230
-
231
- #### python
232
-
233
- An example of 'train' looks as follows.
234
- ```
235
- {
236
- "id": 0,
237
- "idx": "all-1",
238
- "nl_tokens": ["Post", "a", "review"],
239
- "pl_tokens": ["def", "post_review", "(", "session", ",", "review", ")", ":", "# POST /api/projects/0.1/reviews/", "<mask>", "=", "make_post_request", "(", "session", ",", "'reviews'", ",", "json_data", "=", "review", ")", "json_data", "=", "response", ".", "json", "(", ")", "if", "response", ".", "status_code", "==", "200", ":", "return", "json_data", "[", "'status'", "]", "else", ":", "raise", "ReviewNotPostedException", "(", "message", "=", "json_data", "[", "'message'", "]", ",", "error_code", "=", "json_data", "[", "'error_code'", "]", ",", "request_id", "=", "json_data", "[", "'request_id'", "]", ")"]
240
- }
241
- ```
242
-
243
- #### ruby
244
-
245
- An example of 'train' looks as follows.
246
- ```
247
- {
248
- "id": 0,
249
- "idx": "all-1",
250
- "nl_tokens": ["By", "default", "taskers", "don", "t", "see", "the", "flor", "variables", "in", "the", "execution", ".", "If", "include_vars", "or", "exclude_vars", "is", "present", "in", "the", "configuration", "of", "the", "tasker", "some", "or", "all", "of", "the", "variables", "are", "passed", "."],
251
- "pl_tokens": ["def", "gather_vars", "(", "executor", ",", "tconf", ",", "message", ")", "# try to return before a potentially costly call to executor.vars(nid)", "return", "nil", "if", "(", "tconf", ".", "keys", "&", "%w[", "include_vars", "exclude_vars", "]", ")", ".", "empty?", "# default behaviour, don't pass variables to taskers", "iv", "=", "expand_filter", "(", "tconf", "[", "'include_vars'", "]", ")", "return", "nil", "if", "iv", "==", "false", "ev", "=", "expand_filter", "(", "tconf", "[", "'exclude_vars'", "]", ")", "return", "{", "}", "if", "ev", "==", "true", "vars", "=", "executor", ".", "vars", "(", "message", "[", "'nid'", "]", ")", "return", "vars", "if", "iv", "==", "true", "vars", "=", "vars", ".", "select", "{", "|", "k", ",", "v", "|", "var_match", "(", "k", ",", "iv", ")", "}", "if", "<mask>", "vars", "=", "vars", ".", "reject", "{", "|", "k", ",", "v", "|", "var_match", "(", "k", ",", "ev", ")", "}", "if", "ev", "vars", "end"]
252
- }
253
- ```
254
-
255
- ### Data Fields
256
-
257
- In the following each data field in go is explained for each config. The data fields are the same among all splits.
258
-
259
- #### go, java, javascript, php, python, ruby
260
-
261
- |field name| type | description |
262
- |----------|----------------|------------------------------|
263
- |id |int32 | Index of the sample |
264
- |idx |string | Original index in the dataset|
265
- |nl_tokens |Sequence[string]| Natural language tokens |
266
- |pl_tokens |Sequence[string]| Programming language tokens |
267
-
268
- ### Data Splits
269
-
270
- | name |train|
271
- |----------|----:|
272
- |go |25282|
273
- |java |40492|
274
- |javascript|13837|
275
- |php |51930|
276
- |python |40137|
277
- |ruby | 4437|
278
-
279
- ## Dataset Creation
280
-
281
- ### Curation Rationale
282
-
283
- [More Information Needed]
284
-
285
- ### Source Data
286
-
287
- #### Initial Data Collection and Normalization
288
-
289
- Data from CodeSearchNet Challenge dataset.
290
- [More Information Needed]
291
-
292
- #### Who are the source language producers?
293
-
294
- Software Engineering developers.
295
-
296
- ### Annotations
297
-
298
- #### Annotation process
299
-
300
- [More Information Needed]
301
-
302
- #### Who are the annotators?
303
-
304
- [More Information Needed]
305
-
306
- ### Personal and Sensitive Information
307
-
308
- [More Information Needed]
309
-
310
- ## Considerations for Using the Data
311
-
312
- ### Social Impact of Dataset
313
-
314
- [More Information Needed]
315
-
316
- ### Discussion of Biases
317
-
318
- [More Information Needed]
319
-
320
- ### Other Known Limitations
321
-
322
- [More Information Needed]
323
-
324
- ## Additional Information
325
-
326
- ### Dataset Curators
327
-
328
- https://github.com/microsoft, https://github.com/madlag
329
-
330
- ### Licensing Information
331
-
332
- Computational Use of Data Agreement (C-UDA) License.
333
-
334
- ### Citation Information
335
-
336
- ```
337
- @article{CodeXGLUE,
338
- title={CodeXGLUE: An Open Challenge for Code Intelligence},
339
- journal={arXiv},
340
- year={2020},
341
- }
342
- @article{feng2020codebert,
343
- title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
344
- author={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},
345
- journal={arXiv preprint arXiv:2002.08155},
346
- year={2020}
347
- }
348
- @article{husain2019codesearchnet,
349
- title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},
350
- author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
351
- journal={arXiv preprint arXiv:1909.09436},
352
- year={2019}
353
- }
354
- ```
355
-
356
- ### Contributions
357
-
358
- Thanks to @madlag (and partly also @ncoop57) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code_x_glue_cc_cloze_testing_all.py DELETED
@@ -1,83 +0,0 @@
1
- import json
2
- from typing import List
3
-
4
- import datasets
5
-
6
- from .common import Child
7
- from .generated_definitions import DEFINITIONS
8
-
9
-
10
- _DESCRIPTION = """Cloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.
11
- Here we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.
12
- The only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words."""
13
-
14
- _CITATION = """@article{CodeXGLUE,
15
- title={CodeXGLUE: An Open Challenge for Code Intelligence},
16
- journal={arXiv},
17
- year={2020},
18
- }
19
- @article{feng2020codebert,
20
- title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
21
- author={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},
22
- journal={arXiv preprint arXiv:2002.08155},
23
- year={2020}
24
- }
25
- @article{husain2019codesearchnet,
26
- title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},
27
- author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
28
- journal={arXiv preprint arXiv:1909.09436},
29
- year={2019}
30
- }"""
31
-
32
-
33
- class CodeXGlueCcClozeTestingImpl(Child):
34
- _DESCRIPTION = _DESCRIPTION
35
- _CITATION = _CITATION
36
-
37
- _FEATURES = {
38
- "id": datasets.Value("int32"), # Index of the sample
39
- "idx": datasets.Value("string"), # Original index in the dataset
40
- "nl_tokens": datasets.features.Sequence(datasets.Value("string")), # Natural language tokens
41
- "pl_tokens": datasets.features.Sequence(datasets.Value("string")), # Programming language tokens
42
- }
43
-
44
- def generate_urls(self, split_name):
45
- yield "data", "clozeTest.json"
46
-
47
- def _generate_examples(self, split_name, file_paths):
48
- with open(file_paths["data"], encoding="utf-8") as f:
49
- j = json.load(f)
50
- index = 0
51
- for entry in j:
52
- yield index, dict(
53
- id=index, idx=entry["idx"], nl_tokens=entry["nl_tokens"], pl_tokens=entry["pl_tokens"]
54
- )
55
- index += 1
56
-
57
-
58
- CLASS_MAPPING = {
59
- "CodeXGlueCcClozeTestingAll": CodeXGlueCcClozeTestingImpl,
60
- }
61
-
62
-
63
- class CodeXGlueCcClozeTestingAll(datasets.GeneratorBasedBuilder):
64
- BUILDER_CONFIG_CLASS = datasets.BuilderConfig
65
- BUILDER_CONFIGS = [
66
- datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
67
- ]
68
-
69
- def _info(self):
70
- name = self.config.name
71
- info = DEFINITIONS[name]
72
- if info["class_name"] in CLASS_MAPPING:
73
- self.child = CLASS_MAPPING[info["class_name"]](info)
74
- else:
75
- raise RuntimeError(f"Unknown python class for dataset configuration {name}")
76
- ret = self.child._info()
77
- return ret
78
-
79
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
80
- return self.child._split_generators(dl_manager=dl_manager)
81
-
82
- def _generate_examples(self, split_name, file_paths):
83
- return self.child._generate_examples(split_name, file_paths)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
common.py DELETED
@@ -1,75 +0,0 @@
1
- from typing import List
2
-
3
- import datasets
4
-
5
-
6
- # Citation, taken from https://github.com/microsoft/CodeXGLUE
7
- _DEFAULT_CITATION = """@article{CodeXGLUE,
8
- title={CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence},
9
- year={2020},}"""
10
-
11
-
12
- class Child:
13
- _DESCRIPTION = None
14
- _FEATURES = None
15
- _CITATION = None
16
- SPLITS = {"train": datasets.Split.TRAIN}
17
- _SUPERVISED_KEYS = None
18
-
19
- def __init__(self, info):
20
- self.info = info
21
-
22
- def homepage(self):
23
- return self.info["project_url"]
24
-
25
- def _info(self):
26
- # This is the description that will appear on the datasets page.
27
- return datasets.DatasetInfo(
28
- description=self.info["description"] + "\n\n" + self._DESCRIPTION,
29
- features=datasets.Features(self._FEATURES),
30
- homepage=self.homepage(),
31
- citation=self._CITATION or _DEFAULT_CITATION,
32
- supervised_keys=self._SUPERVISED_KEYS,
33
- )
34
-
35
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
36
- SPLITS = self.SPLITS
37
- _URL = self.info["raw_url"]
38
- urls_to_download = {}
39
- for split in SPLITS:
40
- if split not in urls_to_download:
41
- urls_to_download[split] = {}
42
-
43
- for key, url in self.generate_urls(split):
44
- if not url.startswith("http"):
45
- url = _URL + "/" + url
46
- urls_to_download[split][key] = url
47
-
48
- downloaded_files = {}
49
- for k, v in urls_to_download.items():
50
- downloaded_files[k] = dl_manager.download_and_extract(v)
51
-
52
- return [
53
- datasets.SplitGenerator(
54
- name=SPLITS[k],
55
- gen_kwargs={"split_name": k, "file_paths": downloaded_files[k]},
56
- )
57
- for k in SPLITS
58
- ]
59
-
60
- def check_empty(self, entries):
61
- all_empty = all([v == "" for v in entries.values()])
62
- all_non_empty = all([v != "" for v in entries.values()])
63
-
64
- if not all_non_empty and not all_empty:
65
- raise RuntimeError("Parallel data files should have the same number of lines.")
66
-
67
- return all_empty
68
-
69
-
70
- class TrainValidTestChild(Child):
71
- SPLITS = {
72
- "train": datasets.Split.TRAIN,
73
- "valid": datasets.Split.VALIDATION,
74
- "test": datasets.Split.TEST,
75
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"go": {"description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_all", "config_name": "go", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 22409765, "num_examples": 25282, "dataset_name": "code_x_glue_cc_cloze_testing_all"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/go/clozeTest.json": {"num_bytes": 32578836, "checksum": "4a2d2adf8866f89792fed4faae5d6cdee6ccf03e354d42ab9d2f970d7a3f1436"}}, "download_size": 32578836, "post_processing_size": null, "dataset_size": 22409765, "size_in_bytes": 54988601}, "java": {"description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_all", "config_name": "java", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 40392965, "num_examples": 40492, "dataset_name": "code_x_glue_cc_cloze_testing_all"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/java/clozeTest.json": {"num_bytes": 56468936, "checksum": "c31af7ef2b40f601cabe0ec418c6316cd5ecba7871d1fbbd151e95f736edd26e"}}, "download_size": 56468936, "post_processing_size": null, "dataset_size": 40392965, "size_in_bytes": 96861901}, "javascript": {"description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_all", "config_name": "javascript", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 16090182, "num_examples": 13837, "dataset_name": "code_x_glue_cc_cloze_testing_all"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/javascript/clozeTest.json": {"num_bytes": 22665666, "checksum": "a4601da27ffceeb5a82961e06c2caaa70441351fed63dda5731343a0d7a50eab"}}, "download_size": 22665666, "post_processing_size": null, "dataset_size": 16090182, "size_in_bytes": 38755848}, "php": {"description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_all", "config_name": "php", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 51328988, "num_examples": 51930, "dataset_name": "code_x_glue_cc_cloze_testing_all"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/php/clozeTest.json": {"num_bytes": 73115225, "checksum": "62c0461ca13ac3c2cc2fcb734691007524aef2afd54293ab28548c2acef5e6b7"}}, "download_size": 73115225, "post_processing_size": null, "dataset_size": 51328988, "size_in_bytes": 124444213}, "python": {"description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_all", "config_name": "python", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 40631213, "num_examples": 40137, "dataset_name": "code_x_glue_cc_cloze_testing_all"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/python/clozeTest.json": {"num_bytes": 56766288, "checksum": "5fb71df234ddeaafba7f865fcf9152e9e72c5f4301528c3f3603396c6a6cf4db"}}, "download_size": 56766288, "post_processing_size": null, "dataset_size": 40631213, "size_in_bytes": 97397501}, "ruby": {"description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all\n\nCloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.\nHere we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.\nThe only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.", "citation": "@article{CodeXGLUE,\ntitle={CodeXGLUE: An Open Challenge for Code Intelligence},\njournal={arXiv},\nyear={2020},\n}\n@article{feng2020codebert,\ntitle={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},\nauthor={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},\njournal={arXiv preprint arXiv:2002.08155},\nyear={2020}\n}\n@article{husain2019codesearchnet,\ntitle={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},\nauthor={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},\njournal={arXiv preprint arXiv:1909.09436},\nyear={2019}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "string", "id": null, "_type": "Value"}, "nl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pl_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_cloze_testing_all", "config_name": "ruby", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3454904, "num_examples": 4437, "dataset_name": "code_x_glue_cc_cloze_testing_all"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/ruby/clozeTest.json": {"num_bytes": 4825752, "checksum": "0fd1469d649abc251865710cd01008c199f521d6c836142463e2c10e64d486a3"}}, "download_size": 4825752, "post_processing_size": null, "dataset_size": 3454904, "size_in_bytes": 8280656}}
 
 
generated_definitions.py DELETED
@@ -1,68 +0,0 @@
1
- DEFINITIONS = {
2
- "go": {
3
- "class_name": "CodeXGlueCcClozeTestingAll",
4
- "dataset_type": "Code-Code",
5
- "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
6
- "dir_name": "ClozeTesting-all",
7
- "name": "go",
8
- "parameters": {"language": "go"},
9
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
10
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/go",
11
- "sizes": {"train": 25282},
12
- },
13
- "java": {
14
- "class_name": "CodeXGlueCcClozeTestingAll",
15
- "dataset_type": "Code-Code",
16
- "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
17
- "dir_name": "ClozeTesting-all",
18
- "name": "java",
19
- "parameters": {"language": "java"},
20
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
21
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/java",
22
- "sizes": {"train": 40492},
23
- },
24
- "javascript": {
25
- "class_name": "CodeXGlueCcClozeTestingAll",
26
- "dataset_type": "Code-Code",
27
- "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
28
- "dir_name": "ClozeTesting-all",
29
- "name": "javascript",
30
- "parameters": {"language": "javascript"},
31
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
32
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/javascript",
33
- "sizes": {"train": 13837},
34
- },
35
- "php": {
36
- "class_name": "CodeXGlueCcClozeTestingAll",
37
- "dataset_type": "Code-Code",
38
- "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
39
- "dir_name": "ClozeTesting-all",
40
- "name": "php",
41
- "parameters": {"language": "php"},
42
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
43
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/php",
44
- "sizes": {"train": 51930},
45
- },
46
- "python": {
47
- "class_name": "CodeXGlueCcClozeTestingAll",
48
- "dataset_type": "Code-Code",
49
- "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
50
- "dir_name": "ClozeTesting-all",
51
- "name": "python",
52
- "parameters": {"language": "python"},
53
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
54
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/python",
55
- "sizes": {"train": 40137},
56
- },
57
- "ruby": {
58
- "class_name": "CodeXGlueCcClozeTestingAll",
59
- "dataset_type": "Code-Code",
60
- "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
61
- "dir_name": "ClozeTesting-all",
62
- "name": "ruby",
63
- "parameters": {"language": "ruby"},
64
- "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all",
65
- "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/ruby",
66
- "sizes": {"train": 4437},
67
- },
68
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
go/code_x_glue_cc_cloze_testing_all-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c435df85c61f45b44aa232eb498d4f6b6144700b5877ce8f6b1887123bec3782
3
+ size 7317577
java/code_x_glue_cc_cloze_testing_all-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa5ee443c33b760ec214b7b7d850c8df302156ad032348826c5a104dbf84bf47
3
+ size 13540080
javascript/code_x_glue_cc_cloze_testing_all-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2d9b36d0b4d18f9481dda3ffdf8f04665af0ffb0fc1feb45a99ff357f9627d3
3
+ size 5380630
php/code_x_glue_cc_cloze_testing_all-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f76b4a2b6b142b9e6b901e18cd9820d49367cc55c155218351f3979e74ba7652
3
+ size 16553881
python/code_x_glue_cc_cloze_testing_all-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a00a9477fdb07433adeaedb73fdaa63c1dc9f5c4c0394b57e3f8860cd3a376d
3
+ size 15081308
ruby/code_x_glue_cc_cloze_testing_all-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0f0b03e8736f8fe84d38814d2ff583082fb31fa1bc002f562ed417ee8afeec9
3
+ size 1301454