Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
code
Size:
10K - 100K
License:
Commit
·
7cd6b2c
1
Parent(s):
b6c4585
Update parquet files
Browse files- README.md +0 -186
- code_x_glue_cc_clone_detection_poj104.py +0 -93
- common.py +0 -75
- dataset_infos.json +0 -1
- default/code_x_glue_cc_clone_detection_poj104-test.parquet +3 -0
- default/code_x_glue_cc_clone_detection_poj104-train.parquet +3 -0
- default/code_x_glue_cc_clone_detection_poj104-validation.parquet +3 -0
- generated_definitions.py +0 -12
README.md
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
---
|
2 |
-
pretty_name: CodeXGlueCcCloneDetectionPoj104
|
3 |
-
annotations_creators:
|
4 |
-
- found
|
5 |
-
language_creators:
|
6 |
-
- found
|
7 |
-
language:
|
8 |
-
- code
|
9 |
-
license:
|
10 |
-
- c-uda
|
11 |
-
multilinguality:
|
12 |
-
- monolingual
|
13 |
-
size_categories:
|
14 |
-
- 10K<n<100K
|
15 |
-
source_datasets:
|
16 |
-
- original
|
17 |
-
task_categories:
|
18 |
-
- text-retrieval
|
19 |
-
task_ids:
|
20 |
-
- document-retrieval
|
21 |
-
dataset_info:
|
22 |
-
features:
|
23 |
-
- name: id
|
24 |
-
dtype: int32
|
25 |
-
- name: code
|
26 |
-
dtype: string
|
27 |
-
- name: label
|
28 |
-
dtype: string
|
29 |
-
splits:
|
30 |
-
- name: train
|
31 |
-
num_bytes: 18878686
|
32 |
-
num_examples: 32000
|
33 |
-
- name: validation
|
34 |
-
num_bytes: 5765303
|
35 |
-
num_examples: 8000
|
36 |
-
- name: test
|
37 |
-
num_bytes: 6852864
|
38 |
-
num_examples: 12000
|
39 |
-
download_size: 8658581
|
40 |
-
dataset_size: 31496853
|
41 |
-
---
|
42 |
-
# Dataset Card for "code_x_glue_cc_clone_detection_poj_104"
|
43 |
-
|
44 |
-
## Table of Contents
|
45 |
-
- [Dataset Description](#dataset-description)
|
46 |
-
- [Dataset Summary](#dataset-summary)
|
47 |
-
- [Supported Tasks and Leaderboards](#supported-tasks)
|
48 |
-
- [Languages](#languages)
|
49 |
-
- [Dataset Structure](#dataset-structure)
|
50 |
-
- [Data Instances](#data-instances)
|
51 |
-
- [Data Fields](#data-fields)
|
52 |
-
- [Data Splits](#data-splits-sample-size)
|
53 |
-
- [Dataset Creation](#dataset-creation)
|
54 |
-
- [Curation Rationale](#curation-rationale)
|
55 |
-
- [Source Data](#source-data)
|
56 |
-
- [Annotations](#annotations)
|
57 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
58 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
59 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
60 |
-
- [Discussion of Biases](#discussion-of-biases)
|
61 |
-
- [Other Known Limitations](#other-known-limitations)
|
62 |
-
- [Additional Information](#additional-information)
|
63 |
-
- [Dataset Curators](#dataset-curators)
|
64 |
-
- [Licensing Information](#licensing-information)
|
65 |
-
- [Citation Information](#citation-information)
|
66 |
-
- [Contributions](#contributions)
|
67 |
-
|
68 |
-
## Dataset Description
|
69 |
-
|
70 |
-
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
|
71 |
-
|
72 |
-
### Dataset Summary
|
73 |
-
|
74 |
-
CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
|
75 |
-
|
76 |
-
Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.
|
77 |
-
We use POJ-104 dataset on this task.
|
78 |
-
|
79 |
-
### Supported Tasks and Leaderboards
|
80 |
-
|
81 |
-
- `document-retrieval`: The dataset can be used to train a model for retrieving top-k codes with the same semantics.
|
82 |
-
|
83 |
-
### Languages
|
84 |
-
|
85 |
-
- C++ **programming** language
|
86 |
-
|
87 |
-
## Dataset Structure
|
88 |
-
|
89 |
-
### Data Instances
|
90 |
-
|
91 |
-
An example of 'train' looks as follows.
|
92 |
-
```
|
93 |
-
{
|
94 |
-
"code": "\nint f(int shu,int min)\n{ \n int k=1;\n if(shu < min)\n { \n k= 0; \n return k;\n } \n else\n {\n for(int i = min;i<shu;i++)\n { \n if(shu%i == 0)\n { \n k=k+ f(shu/i,i); \n } \n \n \n } \n return k; \n}\n} \n\nmain()\n{\n int n,i,a;\n scanf(\"%d\",&n);\n \n for(i=0;i<n;i++)\n {\n scanf(\"%d\",&a);\n \n if(i!=n-1) \n printf(\"%d\\n\",f(a,2));\n else\n printf(\"%d\",f(a,2)); \n \n \n \n } \n \n \n }",
|
95 |
-
"id": 0,
|
96 |
-
"label": "home"
|
97 |
-
}
|
98 |
-
```
|
99 |
-
|
100 |
-
### Data Fields
|
101 |
-
|
102 |
-
In the following each data field in go is explained for each config. The data fields are the same among all splits.
|
103 |
-
|
104 |
-
#### default
|
105 |
-
|
106 |
-
|field name| type | description |
|
107 |
-
|----------|------|----------------------------------------------|
|
108 |
-
|id |int32 | Index of the sample |
|
109 |
-
|code |string| The full text of the function |
|
110 |
-
|label |string| The id of problem that the source code solves|
|
111 |
-
|
112 |
-
### Data Splits
|
113 |
-
|
114 |
-
| name |train|validation|test |
|
115 |
-
|-------|----:|---------:|----:|
|
116 |
-
|default|32000| 8000|12000|
|
117 |
-
|
118 |
-
## Dataset Creation
|
119 |
-
|
120 |
-
### Curation Rationale
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
### Source Data
|
125 |
-
|
126 |
-
#### Initial Data Collection and Normalization
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Who are the source language producers?
|
131 |
-
|
132 |
-
[More Information Needed]
|
133 |
-
|
134 |
-
### Annotations
|
135 |
-
|
136 |
-
#### Annotation process
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
-
|
140 |
-
#### Who are the annotators?
|
141 |
-
|
142 |
-
[More Information Needed]
|
143 |
-
|
144 |
-
### Personal and Sensitive Information
|
145 |
-
|
146 |
-
[More Information Needed]
|
147 |
-
|
148 |
-
## Considerations for Using the Data
|
149 |
-
|
150 |
-
### Social Impact of Dataset
|
151 |
-
|
152 |
-
[More Information Needed]
|
153 |
-
|
154 |
-
### Discussion of Biases
|
155 |
-
|
156 |
-
[More Information Needed]
|
157 |
-
|
158 |
-
### Other Known Limitations
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
## Additional Information
|
163 |
-
|
164 |
-
### Dataset Curators
|
165 |
-
|
166 |
-
https://github.com/microsoft, https://github.com/madlag
|
167 |
-
|
168 |
-
### Licensing Information
|
169 |
-
|
170 |
-
Computational Use of Data Agreement (C-UDA) License.
|
171 |
-
|
172 |
-
### Citation Information
|
173 |
-
|
174 |
-
```
|
175 |
-
@inproceedings{mou2016convolutional,
|
176 |
-
title={Convolutional neural networks over tree structures for programming language processing},
|
177 |
-
author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},
|
178 |
-
booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
|
179 |
-
pages={1287--1293},
|
180 |
-
year={2016}
|
181 |
-
}
|
182 |
-
```
|
183 |
-
|
184 |
-
### Contributions
|
185 |
-
|
186 |
-
Thanks to @madlag (and partly also @ncoop57) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
code_x_glue_cc_clone_detection_poj104.py
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
from .common import TrainValidTestChild
|
6 |
-
from .generated_definitions import DEFINITIONS
|
7 |
-
|
8 |
-
|
9 |
-
_DESCRIPTION = """Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.
|
10 |
-
We use POJ-104 dataset on this task."""
|
11 |
-
|
12 |
-
_CITATION = """@inproceedings{mou2016convolutional,
|
13 |
-
title={Convolutional neural networks over tree structures for programming language processing},
|
14 |
-
author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},
|
15 |
-
booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
|
16 |
-
pages={1287--1293},
|
17 |
-
year={2016}
|
18 |
-
}"""
|
19 |
-
|
20 |
-
|
21 |
-
class CodeXGlueCcCloneDetectionPoj104Impl(TrainValidTestChild):
|
22 |
-
_DESCRIPTION = _DESCRIPTION
|
23 |
-
_CITATION = _CITATION
|
24 |
-
|
25 |
-
_FEATURES = {
|
26 |
-
"id": datasets.Value("int32"), # Index of the sample
|
27 |
-
"code": datasets.Value("string"), # The full text of the function
|
28 |
-
"label": datasets.Value("string"), # The id of problem that the source code solves
|
29 |
-
}
|
30 |
-
|
31 |
-
_SUPERVISED_KEYS = ["label"]
|
32 |
-
|
33 |
-
SPLIT_RANGES = {"train": (1, 65), "valid": (65, 81), "test": (81, 195)}
|
34 |
-
|
35 |
-
def _generate_examples(self, files, split_name):
|
36 |
-
cont = 0
|
37 |
-
for path, f in files:
|
38 |
-
# path are in the format ProgramData/{index}/{filename}
|
39 |
-
label = int(path.split("/")[1])
|
40 |
-
if self.SPLIT_RANGES[split_name][0] <= label <= self.SPLIT_RANGES[split_name][1]:
|
41 |
-
js = {}
|
42 |
-
js["label"] = str(label)
|
43 |
-
js["id"] = cont
|
44 |
-
js["code"] = f.read().decode("latin-1")
|
45 |
-
yield cont, js
|
46 |
-
cont += 1
|
47 |
-
|
48 |
-
|
49 |
-
CLASS_MAPPING = {
|
50 |
-
"CodeXGlueCcCloneDetectionPoj104": CodeXGlueCcCloneDetectionPoj104Impl,
|
51 |
-
}
|
52 |
-
|
53 |
-
|
54 |
-
class CodeXGlueCcCloneDetectionPoj104(datasets.GeneratorBasedBuilder):
|
55 |
-
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
|
56 |
-
BUILDER_CONFIGS = [
|
57 |
-
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
|
58 |
-
]
|
59 |
-
|
60 |
-
def _info(self):
|
61 |
-
name = self.config.name
|
62 |
-
info = DEFINITIONS[name]
|
63 |
-
if info["class_name"] in CLASS_MAPPING:
|
64 |
-
self.child = CLASS_MAPPING[info["class_name"]](info)
|
65 |
-
else:
|
66 |
-
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
|
67 |
-
ret = self.child._info()
|
68 |
-
return ret
|
69 |
-
|
70 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
71 |
-
name = self.config.name
|
72 |
-
info = DEFINITIONS[name]
|
73 |
-
archive = dl_manager.download(info["raw_url"] + "/programs.tar.gz")
|
74 |
-
return [
|
75 |
-
datasets.SplitGenerator(
|
76 |
-
name=datasets.Split.TRAIN,
|
77 |
-
# These kwargs will be passed to _generate_examples
|
78 |
-
gen_kwargs={"files": dl_manager.iter_archive(archive), "split_name": "train"},
|
79 |
-
),
|
80 |
-
datasets.SplitGenerator(
|
81 |
-
name=datasets.Split.VALIDATION,
|
82 |
-
# These kwargs will be passed to _generate_examples
|
83 |
-
gen_kwargs={"files": dl_manager.iter_archive(archive), "split_name": "valid"},
|
84 |
-
),
|
85 |
-
datasets.SplitGenerator(
|
86 |
-
name=datasets.Split.TEST,
|
87 |
-
# These kwargs will be passed to _generate_examples
|
88 |
-
gen_kwargs={"files": dl_manager.iter_archive(archive), "split_name": "test"},
|
89 |
-
),
|
90 |
-
]
|
91 |
-
|
92 |
-
def _generate_examples(self, files, split_name):
|
93 |
-
return self.child._generate_examples(files, split_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
common.py
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
|
6 |
-
# Citation, taken from https://github.com/microsoft/CodeXGLUE
|
7 |
-
_DEFAULT_CITATION = """@article{CodeXGLUE,
|
8 |
-
title={CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence},
|
9 |
-
year={2020},}"""
|
10 |
-
|
11 |
-
|
12 |
-
class Child:
|
13 |
-
_DESCRIPTION = None
|
14 |
-
_FEATURES = None
|
15 |
-
_CITATION = None
|
16 |
-
SPLITS = {"train": datasets.Split.TRAIN}
|
17 |
-
_SUPERVISED_KEYS = None
|
18 |
-
|
19 |
-
def __init__(self, info):
|
20 |
-
self.info = info
|
21 |
-
|
22 |
-
def homepage(self):
|
23 |
-
return self.info["project_url"]
|
24 |
-
|
25 |
-
def _info(self):
|
26 |
-
# This is the description that will appear on the datasets page.
|
27 |
-
return datasets.DatasetInfo(
|
28 |
-
description=self.info["description"] + "\n\n" + self._DESCRIPTION,
|
29 |
-
features=datasets.Features(self._FEATURES),
|
30 |
-
homepage=self.homepage(),
|
31 |
-
citation=self._CITATION or _DEFAULT_CITATION,
|
32 |
-
supervised_keys=self._SUPERVISED_KEYS,
|
33 |
-
)
|
34 |
-
|
35 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
36 |
-
SPLITS = self.SPLITS
|
37 |
-
_URL = self.info["raw_url"]
|
38 |
-
urls_to_download = {}
|
39 |
-
for split in SPLITS:
|
40 |
-
if split not in urls_to_download:
|
41 |
-
urls_to_download[split] = {}
|
42 |
-
|
43 |
-
for key, url in self.generate_urls(split):
|
44 |
-
if not url.startswith("http"):
|
45 |
-
url = _URL + "/" + url
|
46 |
-
urls_to_download[split][key] = url
|
47 |
-
|
48 |
-
downloaded_files = {}
|
49 |
-
for k, v in urls_to_download.items():
|
50 |
-
downloaded_files[k] = dl_manager.download_and_extract(v)
|
51 |
-
|
52 |
-
return [
|
53 |
-
datasets.SplitGenerator(
|
54 |
-
name=SPLITS[k],
|
55 |
-
gen_kwargs={"split_name": k, "file_paths": downloaded_files[k]},
|
56 |
-
)
|
57 |
-
for k in SPLITS
|
58 |
-
]
|
59 |
-
|
60 |
-
def check_empty(self, entries):
|
61 |
-
all_empty = all([v == "" for v in entries.values()])
|
62 |
-
all_non_empty = all([v != "" for v in entries.values()])
|
63 |
-
|
64 |
-
if not all_non_empty and not all_empty:
|
65 |
-
raise RuntimeError("Parallel data files should have the same number of lines.")
|
66 |
-
|
67 |
-
return all_empty
|
68 |
-
|
69 |
-
|
70 |
-
class TrainValidTestChild(Child):
|
71 |
-
SPLITS = {
|
72 |
-
"train": datasets.Split.TRAIN,
|
73 |
-
"valid": datasets.Split.VALIDATION,
|
74 |
-
"test": datasets.Split.TEST,
|
75 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104\n\nGiven a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.\nWe use POJ-104 dataset on this task.", "citation": "@inproceedings{mou2016convolutional,\ntitle={Convolutional neural networks over tree structures for programming language processing},\nauthor={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},\nbooktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},\npages={1287--1293},\nyear={2016}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "code": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "label", "output": ""}, "task_templates": null, "builder_name": "code_x_glue_cc_clone_detection_poj104", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 18878686, "num_examples": 32000, "dataset_name": "code_x_glue_cc_clone_detection_poj104"}, "validation": {"name": "validation", "num_bytes": 5765303, "num_examples": 8000, "dataset_name": "code_x_glue_cc_clone_detection_poj104"}, "test": {"name": "test", "num_bytes": 6852864, "num_examples": 12000, "dataset_name": "code_x_glue_cc_clone_detection_poj104"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-POJ-104/dataset/programs.tar.gz": {"num_bytes": 8658581, "checksum": "c0b8ef3ee9c9159c882dc9337cb46da0e612a28e24852a83f8a1cd68c838f390"}}, "download_size": 8658581, "post_processing_size": null, "dataset_size": 31496853, "size_in_bytes": 40155434}}
|
|
|
|
default/code_x_glue_cc_clone_detection_poj104-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93065b3019c0d4e82fc1765f819e9dfdb70e0edd9ba394ade9650f0f67242509
|
3 |
+
size 2853417
|
default/code_x_glue_cc_clone_detection_poj104-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fc953731a77d9a0c3ed58e9fabc41843b24f22a391d284f0fd717b86d3a0818
|
3 |
+
size 8031542
|
default/code_x_glue_cc_clone_detection_poj104-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63b0e0d702b7b93c1afe59f53c7a5545b36e334cd07046e739a4b5bbf60def20
|
3 |
+
size 2463775
|
generated_definitions.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
DEFINITIONS = {
|
2 |
-
"default": {
|
3 |
-
"class_name": "CodeXGlueCcCloneDetectionPoj104",
|
4 |
-
"dataset_type": "Code-Code",
|
5 |
-
"description": "CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104",
|
6 |
-
"dir_name": "Clone-detection-POJ-104",
|
7 |
-
"name": "default",
|
8 |
-
"project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104",
|
9 |
-
"raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-POJ-104/dataset",
|
10 |
-
"sizes": {"test": 12000, "train": 32000, "validation": 8000},
|
11 |
-
}
|
12 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|