Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
code
Size:
10K - 100K
License:
File size: 5,244 Bytes
66946af f475d34 66946af cc3e0e7 66946af cc3e0e7 66946af ec35d50 e413440 ec35d50 e413440 b6c4585 e413440 b6c4585 ec35d50 e413440 66946af ec35d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
pretty_name: CodeXGlueCcCloneDetectionPoj104
annotations_creators:
- found
language_creators:
- found
language:
- code
license:
- c-uda
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-retrieval
task_ids:
- document-retrieval
dataset_info:
features:
- name: id
dtype: int32
- name: code
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 20179075
num_examples: 32500
- name: validation
num_bytes: 6382433
num_examples: 8500
- name: test
num_bytes: 7227506
num_examples: 12000
download_size: 8658581
dataset_size: 33789014
---
# Dataset Card for "code_x_glue_cc_clone_detection_poj_104"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits-sample-size)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
### Dataset Summary
CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.
We use POJ-104 dataset on this task.
### Supported Tasks and Leaderboards
- `document-retrieval`: The dataset can be used to train a model for retrieving top-k codes with the same semantics.
### Languages
- C++ **programming** language
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{
"code": "\nint f(int shu,int min)\n{ \n int k=1;\n if(shu < min)\n { \n k= 0; \n return k;\n } \n else\n {\n for(int i = min;i<shu;i++)\n { \n if(shu%i == 0)\n { \n k=k+ f(shu/i,i); \n } \n \n \n } \n return k; \n}\n} \n\nmain()\n{\n int n,i,a;\n scanf(\"%d\",&n);\n \n for(i=0;i<n;i++)\n {\n scanf(\"%d\",&a);\n \n if(i!=n-1) \n printf(\"%d\\n\",f(a,2));\n else\n printf(\"%d\",f(a,2)); \n \n \n \n } \n \n \n }",
"id": 0,
"label": "home"
}
```
### Data Fields
In the following each data field in go is explained for each config. The data fields are the same among all splits.
#### default
|field name| type | description |
|----------|------|----------------------------------------------|
|id |int32 | Index of the sample |
|code |string| The full text of the function |
|label |string| The id of problem that the source code solves|
### Data Splits
| name |train|validation|test |
|-------|----:|---------:|----:|
|default|32000| 8000|12000|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
https://github.com/microsoft, https://github.com/madlag
### Licensing Information
Computational Use of Data Agreement (C-UDA) License.
### Citation Information
```
@inproceedings{mou2016convolutional,
title={Convolutional neural networks over tree structures for programming language processing},
author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},
booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
pages={1287--1293},
year={2016}
}
```
### Contributions
Thanks to @madlag (and partly also @ncoop57) for adding this dataset. |