Datasets:
File size: 8,672 Bytes
b03e08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
#!/usr/bin/env python
import numpy as np
# https://github.com/librosa/librosa
import librosa
import librosa.display
import argparse
import os
from PIL import Image
from PIL import PngImagePlugin
import json
import scipy
FLAGS = None
# ------------------------------------------------------
# get any args provided on the command line
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--conversion', type=str, choices=['spec2cqt','cqt2spec'], help='direction of conversion', default='spec2cqt')
parser.add_argument('--filename', type=str, help='For single mode, enter filename', default=None)
parser.add_argument('--rootdir', type=str, help='Roots folder where class folders containing audio files are kept', default='./')
parser.add_argument('--outdir', type=str, help='Output directory', default='./output')
#parser.add_argument('--sr', type=int, help='Samplerate', default=None)
parser.add_argument('--fftsize', type=int, help='Size of fft window in samples', default=1024)
#parser.add_argument('--hopsize', type=int, help='Size of frame hop through sample file', default=256)
FLAGS, unparsed = parser.parse_known_args()
print('\n FLAGS parsed : {0}'.format(FLAGS))
#filetypes = ['.wav','.mp3'] not yet implimented. manually change fileExtList in listDirectory
def get_subdirs(a_dir):
""" Returns a list of sub directory names in a_dir """
return [name for name in os.listdir(a_dir)
if (os.path.isdir(os.path.join(a_dir, name)) and not (name.startswith('.')))]
def listDirectory(directory, fileExtList):
"""Returns a list of file info objects in directory that extension in the list fileExtList - include the . in your extension string"""
fnameList = [os.path.normcase(f)
for f in os.listdir(directory)
if (not(f.startswith('.')))]
fileList = [os.path.join(directory, f)
for f in fnameList
if os.path.splitext(f)[1] in fileExtList]
return fileList , fnameList
def logSpect2PNG(outimg, fname, lwinfo=None) :
info = PngImagePlugin.PngInfo()
lwinfo = lwinfo or {}
lwinfo['fileMin'] = str(np.amin(outimg))
lwinfo['fileMax'] = str(np.amax(outimg))
info.add_text('meta',json.dumps(lwinfo)) #info required to reverse scaling
shift = int(lwinfo['scaleMax']) - int(lwinfo['scaleMin'])
SC2 = 255*(outimg-int(lwinfo['scaleMin']))/shift
savimg = Image.fromarray(np.flipud(SC2))
pngimg = savimg.convert('L')
pngimg.save(fname,pnginfo=info)
def PNG2LogSpect(fname,scalemin,scalemax):
"""
Read png spectrograms, expand to original scale and return numpy array.
If not stored in one of png metadata, the values needed to undo previous scaling are required to be specified.
"""
img = Image.open(fname)
#info = PngImagePlugin.PngInfo()
try:
img.text = img.text
lwinfo = json.loads(img.text['meta'])
except:
print('PNG2LogSpect: no img.text, using user specified values!')
lwinfo = {}
lwinfo['scaleMin'] = scalemin #require to pass in
lwinfo['scaleMax'] = scalemax
#info.add_text('meta',json.dumps(lwinfo))
minx, maxx = float(lwinfo['scaleMin']), float(lwinfo['scaleMax'])
#minx, maxx = float(lwinfo['oldmin']), float(lwinfo['oldmax'])
img = img.convert('L')
outimg = np.asarray(img, dtype=np.float32)
outimg = (outimg - 0)/(255-0)*(maxx-minx) + minx
return np.flipud(outimg), lwinfo
def logfmap(I, L, H) :
"""
% [M,N] = logfmap(I,L,H)
I - number of rows in the original spectrogram
L - low bin to preserve
H - high bin to preserve
% Return a maxtrix for premultiplying spectrograms to map
% the rows into a log frequency space.
% Output map covers bins L to H of input
% L must be larger than 1, since the lowest bin of the FFT
% (corresponding to 0 Hz) cannot be represented on a
% log frequency axis. Including bins close to 1 makes
% the number of output rows exponentially larger.
% N returns the recovery matrix such that N*M is approximately I
% (for dimensions L to H).
%
% Ported from MATLAB code written by Dan Ellis:
% 2004-05-21 [email protected]
"""
ratio = (H-1)/H;
opr = np.int(np.round(np.log(L/H)/np.log(ratio))) #number of frequency bins in log rep + 1
print('opr is ' + str(opr))
ibin = L*np.exp(list(range(0,opr)*-np.log(ratio))) #fractional bin numbers (len(ibin) = opr-1)
M = np.zeros((opr,I))
eps=np.finfo(float).eps
for i in range(0, opr) :
# Where do we sample this output bin?
# Idea is to make them 1:1 at top, and progressively denser below
# i.e. i = max -> bin = topbin, i = max-1 -> bin = topbin-1,
# but general form is bin = A exp (i/B)
tt = np.multiply(np.pi, (list(range(0,I))-ibin[i]))
M[i,:] = np.divide((np.sin(tt)+eps) , (tt+eps));
# Normalize rows, but only if they are boosted by the operation
G = np.ones((I));
print ('H is ' + str(H))
G[0:H] = np.divide(list(range(0,H)), H)
N = np.transpose(np.multiply(M,np.matlib.repmat(G,opr,1)))
return M,N
def spect2CQT(topdir, outdir, fftSize, lowRow=1):
"""
Creates psuedo constant-Q spectrograms from linear frequency spectrograms.
Creates class folders in outdir with the same structure found in topdir.
Parameters
topdir - the dir containing class folders containing png (log magnitude) spectrogram files.
outdir - the top level directory to write psuedo constantQ files to (written in to class subfolders)
lowRow is the lowest row in the FFT that you want to include in the psuedo constant Q spectrogram
"""
# First lets get the logf map we want
LIN_FREQ_BINS = int(fftSize/2+1) #number of bins in original linear frequency mag spectrogram
LOW_ROW = lowRow
LOG_FREQ_BINS = int(fftSize/2+1) #resample the lgfmapped psuedo consantQ matrix to have this many frequency bins
M,N = logfmap(LIN_FREQ_BINS,LOW_ROW,LOG_FREQ_BINS)
subdirs = get_subdirs(topdir)
count = 0
for subdir in subdirs:
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.png')
for idx in range(len(fullpaths)) :
fname = os.path.basename(fullpaths[idx])
D, pnginfo = PNG2LogSpect(fullpaths[idx],None,None)
# Here's the beef
MD = np.dot(M,D)
MD = scipy.signal.resample(MD, LIN_FREQ_BINS) #downsample to something reasonable
#save
#info={}
pnginfo["linFreqBins"] = LIN_FREQ_BINS
pnginfo["lowRow"] = LOW_ROW
pnginfo["logFreqBins"] = LOG_FREQ_BINS
try:
os.stat(outdir + '/' + subdir) # test for existence
except:
os.makedirs(outdir + '/' + subdir) # create if necessary
print(str(count) + ': ' + subdir + '/' + os.path.splitext(fname)[0])
logSpect2PNG(MD, outdir+'/'+subdir+'/'+os.path.splitext(fname)[0]+'.png',lwinfo=pnginfo)
count +=1
print("COMPLETE")
def CQT2spec(topdir,outdir):
subdirs = get_subdirs(topdir)
count = 0
for subdir in subdirs:
fullpaths, _ = listDirectory(topdir + '/' + subdir, '.png')
for idx in range(len(fullpaths)) :
fname = os.path.basename(fullpaths[idx])
D, pnginfo = PNG2LogSpect(fullpaths[idx],None,None)
M,N = logfmap(pnginfo["linFreqBins"],pnginfo["lowRow"],pnginfo["logFreqBins"])
resampledD = scipy.signal.resample(D, M.shape[0]) #upsample
# Here's the beef
ND = np.dot(N,resampledD)
try:
os.stat(outdir + '/' + subdir) # test for existence
except:
os.makedirs(outdir + '/' + subdir) # create if necessary
print(str(count) + ': ' + subdir + '/' + os.path.splitext(fname)[0])
logSpect2PNG(ND, outdir+'/'+subdir+'/'+os.path.splitext(fname)[0]+'.png',lwinfo=pnginfo)
count +=1
print("COMPLETE")
if FLAGS.conversion == 'spec2cqt':
spect2CQT(FLAGS.rootdir,FLAGS.outdir,FLAGS.fftsize,lowRow=10)
elif FLAGS.conversion == 'cqt2spec':
CQT2spec(FLAGS.rootdir,FLAGS.outdir) |