Gaëtan Caillaut
commited on
Commit
·
a84d606
1
Parent(s):
6d66813
Initial commit with data
Browse files- .gitattributes +1 -0
- README.md +52 -0
- data.tar.gz +3 -0
- enwiki_el_dataset.py +286 -0
.gitattributes
CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
36 |
*.ogg filter=lfs diff=lfs merge=lfs -text
|
37 |
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
35 |
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
36 |
*.ogg filter=lfs diff=lfs merge=lfs -text
|
37 |
*.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
data.tar.gz filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- machine-generated
|
4 |
+
language_creators: []
|
5 |
+
languages:
|
6 |
+
- en-EN
|
7 |
+
licenses:
|
8 |
+
- wtfpl
|
9 |
+
multilinguality:
|
10 |
+
- monolingual
|
11 |
+
pretty_name: test
|
12 |
+
size_categories:
|
13 |
+
- unknown
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- other
|
18 |
+
task_ids: []
|
19 |
+
---
|
20 |
+
|
21 |
+
# Dataset Card for frwiki_good_pages_el
|
22 |
+
|
23 |
+
## Dataset Description
|
24 |
+
|
25 |
+
- Repository: [enwiki_el](https://github.com/GaaH/enwiki_el)
|
26 |
+
- Point of Contact: [Gaëtan Caillaut](mailto://[email protected])
|
27 |
+
|
28 |
+
### Dataset Summary
|
29 |
+
|
30 |
+
It is intended to be used to train Entity Linking (EL) systems. Links in Wikipedia articles are used to detect named entities.
|
31 |
+
|
32 |
+
### Languages
|
33 |
+
|
34 |
+
- English
|
35 |
+
|
36 |
+
## Dataset Structure
|
37 |
+
|
38 |
+
```
|
39 |
+
{
|
40 |
+
"title": "Title of the page",
|
41 |
+
"qid": "QID of the corresponding Wikidata entity",
|
42 |
+
"words": ["tokens"],
|
43 |
+
"wikipedia": ["Wikipedia description of each entity"],
|
44 |
+
"labels": ["NER labels"],
|
45 |
+
"titles": ["Wikipedia title of each entity"],
|
46 |
+
"qids": ["QID of each entity"],
|
47 |
+
}
|
48 |
+
```
|
49 |
+
|
50 |
+
The `words` field contains the article’s text splitted on white-spaces. The other fields are list with same length as `words` and contains data only when the respective token in `words` is the __start of an entity__. For instance, if the _i-th_ token in `words` is an entity, then the _i-th_ element of `wikipedia` contains a description, extracted from Wikipedia, of this entity. The same applies for the other fields. If the entity spans multiple words, then only the index of the first words contains data.
|
51 |
+
|
52 |
+
The only exception is the `labels` field, which is used to delimit entities. It uses the IOB encoding: if the token is not part of an entity, the label is `"O"`; if it is the first word of a multi-word entity, the label is `"B"`; otherwise the label is `"I"`.
|
data.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9a687a7120f6c5993a8f24471cae5e4f9c4f60d597d941fb7d6f699778b54e6
|
3 |
+
size 7320271946
|
enwiki_el_dataset.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
import re
|
20 |
+
import gzip
|
21 |
+
import json
|
22 |
+
import datasets
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
|
26 |
+
def get_open_method(path):
|
27 |
+
path = Path(path)
|
28 |
+
ext = path.suffix
|
29 |
+
|
30 |
+
if ext == ".gz":
|
31 |
+
import gzip
|
32 |
+
open_func = gzip.open
|
33 |
+
elif ext == ".bz2":
|
34 |
+
import bz2
|
35 |
+
open_func = bz2.open
|
36 |
+
else:
|
37 |
+
open_func = open
|
38 |
+
return open_func
|
39 |
+
|
40 |
+
|
41 |
+
def read_file(path):
|
42 |
+
open_func = get_open_method(path)
|
43 |
+
with open_func(path, "rt", encoding="UTF-8") as f:
|
44 |
+
return f.read()
|
45 |
+
|
46 |
+
|
47 |
+
# TODO: Add BibTeX citation
|
48 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
49 |
+
_CITATION = ""
|
50 |
+
|
51 |
+
_DESCRIPTION = """\
|
52 |
+
English Wikipedia dataset for Entity Linking
|
53 |
+
"""
|
54 |
+
|
55 |
+
_HOMEPAGE = "https://github.com/GaaH/enwiki_el"
|
56 |
+
|
57 |
+
_LICENSE = ""
|
58 |
+
|
59 |
+
_URLs = {
|
60 |
+
"enwiki": "data.tar.gz",
|
61 |
+
"entities": "data.tar.gz",
|
62 |
+
}
|
63 |
+
|
64 |
+
_NER_CLASS_LABELS = [
|
65 |
+
"B",
|
66 |
+
"I",
|
67 |
+
"O",
|
68 |
+
]
|
69 |
+
|
70 |
+
|
71 |
+
def text_to_el_features(doc_qid, doc_title, text, title2qid, title2wikipedia):
|
72 |
+
res = {
|
73 |
+
"title": doc_title.replace("_", " "),
|
74 |
+
"qid": doc_qid,
|
75 |
+
}
|
76 |
+
text_dict = {
|
77 |
+
"words": [],
|
78 |
+
"labels": [],
|
79 |
+
"qids": [],
|
80 |
+
"titles": [],
|
81 |
+
"wikipedia": [],
|
82 |
+
}
|
83 |
+
entity_pattern = r"\[E=(.+?)\](.+?)\[/E\]"
|
84 |
+
|
85 |
+
# start index of the previous text
|
86 |
+
i = 0
|
87 |
+
for m in re.finditer(entity_pattern, text):
|
88 |
+
mention_title = m.group(1)
|
89 |
+
mention = m.group(2)
|
90 |
+
|
91 |
+
mention_qid = title2qid.get(mention_title, "").replace("_", " ")
|
92 |
+
mention_wikipedia = title2wikipedia.get(mention_title, "")
|
93 |
+
|
94 |
+
# Removes entity tags in descriptions
|
95 |
+
mention_wikipedia = re.sub(entity_pattern, r"\2", mention_wikipedia)
|
96 |
+
|
97 |
+
# mention_qid = title2qid.get(mention_title, "YARIEN")
|
98 |
+
# mention_wikipedia = title2wikipedia.get(mention_title, "YARIEN")
|
99 |
+
# mention_wikidata = title2wikidata.get(mention_title, "YARIEN")
|
100 |
+
|
101 |
+
mention_words = mention.split()
|
102 |
+
|
103 |
+
j = m.start(0)
|
104 |
+
prev_text = text[i:j].split()
|
105 |
+
len_prev_text = len(prev_text)
|
106 |
+
text_dict["words"].extend(prev_text)
|
107 |
+
text_dict["labels"].extend(["O"] * len_prev_text)
|
108 |
+
text_dict["qids"].extend([None] * len_prev_text)
|
109 |
+
text_dict["titles"].extend([None] * len_prev_text)
|
110 |
+
text_dict["wikipedia"].extend([None] * len_prev_text)
|
111 |
+
|
112 |
+
text_dict["words"].extend(mention_words)
|
113 |
+
|
114 |
+
# If there is no description, learning can’t be done so we treat the mention as not en entity
|
115 |
+
if mention_wikipedia == "":
|
116 |
+
len_mention = len(mention_words)
|
117 |
+
text_dict["labels"].extend(["O"] * len_mention)
|
118 |
+
text_dict["qids"].extend([None] * len_mention)
|
119 |
+
text_dict["titles"].extend([None] * len_mention)
|
120 |
+
text_dict["wikipedia"].extend([None] * len_mention)
|
121 |
+
else:
|
122 |
+
len_mention_tail = len(mention_words) - 1
|
123 |
+
# wikipedia_words = mention_wikipedia.split()
|
124 |
+
# wikidata_words = mention_wikidata.split()
|
125 |
+
# title_words = mention_title.replace("_", " ").split()
|
126 |
+
|
127 |
+
text_dict["labels"].extend(["B"] + ["I"] * len_mention_tail)
|
128 |
+
text_dict["qids"].extend([mention_qid] + [None] * len_mention_tail)
|
129 |
+
text_dict["titles"].extend(
|
130 |
+
[mention_title] + [None] * len_mention_tail)
|
131 |
+
text_dict["wikipedia"].extend(
|
132 |
+
[mention_wikipedia] + [None] * len_mention_tail)
|
133 |
+
|
134 |
+
i = m.end(0)
|
135 |
+
|
136 |
+
tail = text[i:].split()
|
137 |
+
len_tail = len(tail)
|
138 |
+
text_dict["words"].extend(tail)
|
139 |
+
text_dict["labels"].extend(["O"] * len_tail)
|
140 |
+
text_dict["qids"].extend([None] * len_tail)
|
141 |
+
text_dict["titles"].extend([None] * len_tail)
|
142 |
+
text_dict["wikipedia"].extend([None] * len_tail)
|
143 |
+
res.update(text_dict)
|
144 |
+
return res
|
145 |
+
|
146 |
+
|
147 |
+
class EnWikiELDataset(datasets.GeneratorBasedBuilder):
|
148 |
+
"""
|
149 |
+
"""
|
150 |
+
|
151 |
+
VERSION = datasets.Version("0.1.0")
|
152 |
+
|
153 |
+
# This is an example of a dataset with multiple configurations.
|
154 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
155 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
156 |
+
|
157 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
158 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
159 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
160 |
+
|
161 |
+
# You will be able to load one or the other configurations in the following list with
|
162 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
163 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
164 |
+
BUILDER_CONFIGS = [
|
165 |
+
datasets.BuilderConfig(name="enwiki", version=VERSION,
|
166 |
+
description="The enwiki dataset for Entity Linking"),
|
167 |
+
datasets.BuilderConfig(name="entities", version=VERSION,
|
168 |
+
description="Entities and their descriptions"),
|
169 |
+
]
|
170 |
+
|
171 |
+
# It's not mandatory to have a default configuration. Just use one if it make sense.
|
172 |
+
DEFAULT_CONFIG_NAME = "enwiki"
|
173 |
+
|
174 |
+
def _info(self):
|
175 |
+
if self.config.name == "enwiki":
|
176 |
+
features = datasets.Features({
|
177 |
+
"title": datasets.Value("string"),
|
178 |
+
"qid": datasets.Value("string"),
|
179 |
+
"words": [datasets.Value("string")],
|
180 |
+
"wikipedia": [datasets.Value("string")],
|
181 |
+
"labels": [datasets.ClassLabel(names=_NER_CLASS_LABELS)],
|
182 |
+
"titles": [datasets.Value("string")],
|
183 |
+
"qids": [datasets.Value("string")],
|
184 |
+
})
|
185 |
+
elif self.config.name == "entities":
|
186 |
+
features = datasets.Features({
|
187 |
+
"qid": datasets.Value("string"),
|
188 |
+
"title": datasets.Value("string"),
|
189 |
+
"wikipedia": datasets.Value("string"),
|
190 |
+
})
|
191 |
+
|
192 |
+
return datasets.DatasetInfo(
|
193 |
+
# This is the description that will appear on the datasets page.
|
194 |
+
description=_DESCRIPTION,
|
195 |
+
# This defines the different columns of the dataset and their types
|
196 |
+
# Here we define them above because they are different between the two configurations
|
197 |
+
features=features,
|
198 |
+
# If there's a common (input, target) tuple from the features,
|
199 |
+
# specify them here. They'll be used if as_supervised=True in
|
200 |
+
# builder.as_dataset.
|
201 |
+
supervised_keys=None,
|
202 |
+
# Homepage of the dataset for documentation
|
203 |
+
homepage=_HOMEPAGE,
|
204 |
+
# License for the dataset if available
|
205 |
+
license=_LICENSE,
|
206 |
+
# Citation for the dataset
|
207 |
+
citation=_CITATION,
|
208 |
+
)
|
209 |
+
|
210 |
+
def _split_generators(self, dl_manager):
|
211 |
+
"""Returns SplitGenerators."""
|
212 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
213 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
214 |
+
|
215 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
216 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
217 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
218 |
+
my_urls = _URLs[self.config.name]
|
219 |
+
data_dir = dl_manager.download_and_extract(my_urls)
|
220 |
+
return [
|
221 |
+
datasets.SplitGenerator(
|
222 |
+
name=datasets.Split.TRAIN,
|
223 |
+
# These kwargs will be passed to _generate_examples
|
224 |
+
gen_kwargs={
|
225 |
+
"data_dir": Path(data_dir, "data"),
|
226 |
+
"split": "train"
|
227 |
+
}
|
228 |
+
)
|
229 |
+
]
|
230 |
+
|
231 |
+
def _generate_examples(
|
232 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
233 |
+
self, data_dir, split
|
234 |
+
):
|
235 |
+
""" Yields examples as (key, example) tuples. """
|
236 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
237 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
238 |
+
|
239 |
+
entities_path = Path(data_dir, "entities.jsonl.gz")
|
240 |
+
corpus_path = Path(data_dir, "corpus.jsonl.gz")
|
241 |
+
|
242 |
+
def _identiy(x):
|
243 |
+
return x
|
244 |
+
|
245 |
+
if self.config.name == "enwiki":
|
246 |
+
title2wikipedia = {}
|
247 |
+
title2qid = {}
|
248 |
+
with gzip.open(entities_path, "rt", encoding="UTF-8") as ent_file:
|
249 |
+
for line in ent_file:
|
250 |
+
item = json.loads(
|
251 |
+
line, parse_int=_identiy, parse_float=_identiy, parse_constant=_identiy)
|
252 |
+
title = item["title"]
|
253 |
+
title2wikipedia[title] = item["wikipedia_description"]
|
254 |
+
title2qid[title] = item["qid"]
|
255 |
+
|
256 |
+
with gzip.open(corpus_path, "rt", encoding="UTF-8") as crps_file:
|
257 |
+
for id, line in enumerate(crps_file):
|
258 |
+
item = json.loads(line, parse_int=lambda x: x,
|
259 |
+
parse_float=lambda x: x, parse_constant=lambda x: x)
|
260 |
+
qid = item["qid"]
|
261 |
+
title = item["title"]
|
262 |
+
text = item["text"]
|
263 |
+
|
264 |
+
features = text_to_el_features(
|
265 |
+
qid, title, text, title2qid, title2wikipedia)
|
266 |
+
yield id, features
|
267 |
+
elif self.config.name == "entities":
|
268 |
+
entity_pattern = r"\[E=(.+?)\](.+?)\[/E\]"
|
269 |
+
with gzip.open(entities_path, "rt", encoding="UTF-8") as ent_file:
|
270 |
+
for id, line in enumerate(ent_file):
|
271 |
+
item = json.loads(
|
272 |
+
line, parse_int=_identiy, parse_float=_identiy, parse_constant=_identiy)
|
273 |
+
try:
|
274 |
+
qid = item["qid"]
|
275 |
+
item["wikipedia"] = re.sub(
|
276 |
+
entity_pattern,
|
277 |
+
r"\2",
|
278 |
+
item.pop("wikipedia_description")
|
279 |
+
)
|
280 |
+
if qid is None or qid == "":
|
281 |
+
item["qid"] = ""
|
282 |
+
yield id, item
|
283 |
+
except:
|
284 |
+
import sys
|
285 |
+
print(item, file=sys.stderr)
|
286 |
+
return
|