Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
null | transformers |
# Uploaded model
- **Developed by:** jimdaro
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | jimdaro/llama3_lora_model | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T17:57:32+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | jimdaro/llama3lora_model | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T17:57:42+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Bachhoang/peft-continual-pretraining-bkai | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T17:57:44+00:00 |
null | transformers |
# Uploaded model
- **Developed by:** tingting
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"} | tingting/mistral7b_lora_model_balanced_Data_80 | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T17:58:05+00:00 |
null | null | {} | dennisheraldi/b-ise-22-7b | null | [
"safetensors",
"region:us"
] | null | 2024-05-01T17:58:11+00:00 |
|
null | null | {} | AnanyaA/therapease | null | [
"region:us"
] | null | 2024-05-01T17:58:16+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** tingting
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"} | tingting/mistral7b_lora_model_balanced_Data_100 | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T17:58:24+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | terry69/llama3-poison-20p-full | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T17:58:27+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-1 - bnb 4bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-1/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-1-4bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-05-01T17:58:35+00:00 |
null | transformers | {} | baseten/medusa-vicuna-0.10.0.dev2024043000 | null | [
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T17:59:26+00:00 |
|
null | null | {} | EClymk/distilhubert-finetuned-contact-audio | null | [
"region:us"
] | null | 2024-05-01T18:00:39+00:00 |
|
text2text-generation | transformers | {} | samzirbo/mT5.baseline.test | null | [
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:00:47+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-1 - bnb 8bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-1/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-1-8bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"region:us"
] | null | 2024-05-01T18:00:47+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-2 - bnb 4bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-2/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-2-4bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-05-01T18:02:44+00:00 |
null | null | {} | dennisheraldi/b-ise-22-13b | null | [
"safetensors",
"region:us"
] | null | 2024-05-01T18:04:08+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** tingting
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"} | tingting/mistral7b_lora_model_balanced_Data_160 | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:04:30+00:00 |
text-classification | transformers | {} | muzammil-eds/xlm-roberta-base-slovak-v2 | null | [
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:04:36+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-2 - bnb 8bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-2/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-2-8bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"region:us"
] | null | 2024-05-01T18:04:53+00:00 |
null | transformers |
# Uploaded model
- **Developed by:** tingting
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"} | tingting/mistral7b_lora_model_balanced_Data_200 | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:05:29+00:00 |
text-generation | transformers | Model Card for Model ID Model Details Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
Developed by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Model type: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed] Finetuned from model [optional]: [More Information Needed] Model Sources [optional] Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed] Uses Direct Use [More Information Needed]
Downstream Use [optional] [More Information Needed]
Out-of-Scope Use [More Information Needed]
Bias, Risks, and Limitations [More Information Needed]
Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model Use the code below to get started with the model.
[More Information Needed]
Training Details Training Data [More Information Needed]
Training Procedure Preprocessing [optional] [More Information Needed]
Training Hyperparameters Training regime: [More Information Needed] Speeds, Sizes, Times [optional] [More Information Needed]
Evaluation Testing Data, Factors & Metrics Testing Data [More Information Needed]
Factors [More Information Needed]
Metrics [More Information Needed]
Results [More Information Needed]
Summary Model Examination [optional] [More Information Needed]
Environmental Impact | {"license": "apache-2.0"} | Jayant9928/orpo_med_v3 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:05:57+00:00 |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-large-brain-xray
This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the sartajbhuvaji/Brain-Tumor-Classification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9050
- Accuracy: 0.7741
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.352 | 0.5556 | 100 | 1.2267 | 0.6294 |
| 0.1612 | 1.1111 | 200 | 1.0895 | 0.7538 |
| 0.0473 | 1.6667 | 300 | 0.9050 | 0.7741 |
| 0.0525 | 2.2222 | 400 | 1.0663 | 0.7690 |
| 0.0123 | 2.7778 | 500 | 1.2450 | 0.7462 |
| 0.0066 | 3.3333 | 600 | 1.1283 | 0.7817 |
| 0.0126 | 3.8889 | 700 | 1.1717 | 0.7843 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "google/vit-large-patch32-224-in21k", "model-index": [{"name": "vit-large-brain-xray", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "sartajbhuvaji/Brain-Tumor-Classification", "type": "imagefolder", "config": "default", "split": "Testing", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.7741116751269036, "name": "Accuracy"}]}]}]} | abdulelahagr/vit-large-brain-xray | null | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-large-patch32-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:06:07+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-3 - bnb 4bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-3/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-3-4bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-05-01T18:06:11+00:00 |
text2text-generation | transformers | {} | StevenSteel7/bart-base-finetuned-xsum | null | [
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:06:12+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** jimdaro
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | jimdaro/llama3 | null | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:06:49+00:00 |
null | null | {} | ThuyNT/CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h2 | null | [
"region:us"
] | null | 2024-05-01T18:06:55+00:00 |
|
text2text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h0
This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h0", "results": []}]} | ThuyNT/CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h0 | null | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:VietAI/vit5-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:07:16+00:00 |
null | transformers |
# Uploaded model
- **Developed by:** HadjYahia
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "unsloth/gemma-7b-bnb-4bit"} | HadjYahia/lora_model | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma",
"trl",
"en",
"base_model:unsloth/gemma-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:07:37+00:00 |
null | null | {} | ttc0000/mistral_Progressive_Home_text_lora_r64_a128_info_extract_1200 | null | [
"safetensors",
"region:us"
] | null | 2024-05-01T18:07:53+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** chillies
- **License:** apache-2.0
- **Finetuned from model :** unsloth/OpenHermes-2.5-Mistral-7B-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/OpenHermes-2.5-Mistral-7B-bnb-4bit"} | chillies/mistral-7b-vn-vi-alpaca | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/OpenHermes-2.5-Mistral-7B-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:08:10+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-3 - bnb 8bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-3/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-3-8bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"region:us"
] | null | 2024-05-01T18:08:21+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# final_model-3
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0656
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4774 | 0.0 | 1 | 2.3519 |
| 2.3907 | 0.01 | 2 | 2.2619 |
| 2.2831 | 0.01 | 3 | 2.1934 |
| 2.3523 | 0.02 | 4 | 2.1535 |
| 2.2008 | 0.02 | 5 | 2.1415 |
| 2.398 | 0.02 | 6 | 2.1336 |
| 2.0323 | 0.03 | 7 | 2.1223 |
| 1.9787 | 0.03 | 8 | 2.1102 |
| 2.2163 | 0.04 | 9 | 2.1011 |
| 2.4075 | 0.04 | 10 | 2.0942 |
| 2.0822 | 0.04 | 11 | 2.0878 |
| 2.3128 | 0.05 | 12 | 2.0823 |
| 1.9674 | 0.05 | 13 | 2.0775 |
| 2.0991 | 0.06 | 14 | 2.0739 |
| 2.1918 | 0.06 | 15 | 2.0707 |
| 2.0037 | 0.06 | 16 | 2.0684 |
| 2.0398 | 0.07 | 17 | 2.0669 |
| 2.1113 | 0.07 | 18 | 2.0661 |
| 1.9206 | 0.08 | 19 | 2.0657 |
| 1.6649 | 0.08 | 20 | 2.0656 |
### Framework versions
- PEFT 0.4.0
- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "final_model-3", "results": []}]} | hussamsal/final_model-3 | null | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T18:08:27+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | hideax/OrpoLlama-3-8B | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:09:12+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-0 - bnb 4bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-0/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-0-4bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-05-01T18:10:17+00:00 |
text2text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h0
This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h0", "results": []}]} | ThuyNT/CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h0 | null | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:VietAI/vit5-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:10:55+00:00 |
sentence-similarity | sentence-transformers |
# pjbhaumik/biencoder-finetune-model-v3
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('pjbhaumik/biencoder-finetune-model-v3')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('pjbhaumik/biencoder-finetune-model-v3')
model = AutoModel.from_pretrained('pjbhaumik/biencoder-finetune-model-v3')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=pjbhaumik/biencoder-finetune-model-v3)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 469 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesSymmetricRankingLoss.MultipleNegativesSymmetricRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 12,
"evaluation_steps": 100,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"} | pjbhaumik/biencoder-finetune-model-v3 | null | [
"sentence-transformers",
"safetensors",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:11:06+00:00 |
null | null | {"license": "mit"} | messlab/llm_ctf_assets | null | [
"license:mit",
"region:us"
] | null | 2024-05-01T18:11:41+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
nous-0 - bnb 8bits
- Model creator: https://huggingface.co/kalytm/
- Original model: https://huggingface.co/kalytm/nous-0/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/kalytm_-_nous-0-8bits | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"region:us"
] | null | 2024-05-01T18:12:27+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | lunarsylph/mooncell_v44 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:13:05+00:00 |
null | null | {} | ttc0000/mistral_Progressive_Homesite_text_lora_r64_a128_info_extract_1200 | null | [
"safetensors",
"region:us"
] | null | 2024-05-01T18:14:05+00:00 |
|
null | null | {} | AmalNlal/BERT-MLM | null | [
"region:us"
] | null | 2024-05-01T18:16:28+00:00 |
|
null | null | {} | Bobermikola/sn25-2-1 | null | [
"region:us"
] | null | 2024-05-01T18:18:06+00:00 |
|
null | null | {} | minhquy1624/model-incontext-learning-v1 | null | [
"safetensors",
"region:us"
] | null | 2024-05-01T18:18:06+00:00 |
|
text-generation | mlx |
# ahmetkca/Phi-3-mini-4k-instruct-mlx
This model was converted to MLX format from [`microsoft/Phi-3-mini-4k-instruct`]() using mlx-lm version **0.12.1**.
Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("ahmetkca/Phi-3-mini-4k-instruct-mlx")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
| {"language": ["en"], "license": "mit", "tags": ["nlp", "code", "mlx"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]} | ahmetkca/Phi-3-mini-4k-instruct-mlx | null | [
"mlx",
"safetensors",
"phi3",
"nlp",
"code",
"text-generation",
"conversational",
"custom_code",
"en",
"license:mit",
"region:us"
] | null | 2024-05-01T18:18:31+00:00 |
null | null |
# int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF
This model was converted to GGUF format from [`mzbac/llama-3-8B-Instruct-function-calling-v0.2`](https://huggingface.co/mzbac/llama-3-8B-Instruct-function-calling-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/mzbac/llama-3-8B-Instruct-function-calling-v0.2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF --model llama-3-8b-instruct-function-calling-v0.2.Q6_K.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF --model llama-3-8b-instruct-function-calling-v0.2.Q6_K.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-8b-instruct-function-calling-v0.2.Q6_K.gguf -n 128
```
| {"language": ["en"], "license": "llama3", "tags": ["llama-cpp", "gguf-my-repo"], "datasets": ["mzbac/function-calling-llama-3-format-v1.1"]} | int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"en",
"dataset:mzbac/function-calling-llama-3-format-v1.1",
"license:llama3",
"region:us"
] | null | 2024-05-01T18:18:31+00:00 |
null | null | {"license": "mit"} | monjoychoudhury29/gpt2PPO | null | [
"safetensors",
"license:mit",
"region:us"
] | null | 2024-05-01T18:19:10+00:00 |
|
text-generation | transformers | # flammenai/flammen22X-mistral-7B AWQ
- Model creator: [flammenai](https://huggingface.co/flammenai)
- Original model: [flammen22X-mistral-7B](https://huggingface.co/flammenai/flammen22X-mistral-7B)

## Model Summary
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [nbeerbower/flammen22C-mistral-7B](https://huggingface.co/nbeerbower/flammen22C-mistral-7B) as a base.
### Models Merged
The following models were included in the merge:
* [KatyTheCutie/LemonadeRP-4.5.3](https://huggingface.co/KatyTheCutie/LemonadeRP-4.5.3)
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2](https://huggingface.co/ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2)
* [flammenai/flammen18X-mistral-7B](https://huggingface.co/flammenai/flammen18X-mistral-7B)
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/flammen22X-mistral-7B-AWQ"
system_message = "You are flammen22X-mistral-7B, incarnated as a powerful AI. You were created by flammenai."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
| {"license": "apache-2.0", "library_name": "transformers", "tags": ["mergekit", "merge", "4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible"], "base_model": ["nbeerbower/flammen22C-mistral-7B", "KatyTheCutie/LemonadeRP-4.5.3", "SanjiWatsuki/Kunoichi-DPO-v2-7B", "ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2", "flammenai/flammen18X-mistral-7B"], "pipeline_tag": "text-generation", "inference": false, "quantized_by": "Suparious"} | solidrust/flammen22X-mistral-7B-AWQ | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"4-bit",
"AWQ",
"autotrain_compatible",
"endpoints_compatible",
"arxiv:2403.19522",
"base_model:nbeerbower/flammen22C-mistral-7B",
"base_model:KatyTheCutie/LemonadeRP-4.5.3",
"base_model:SanjiWatsuki/Kunoichi-DPO-v2-7B",
"base_model:ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2",
"base_model:flammenai/flammen18X-mistral-7B",
"license:apache-2.0",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:20:05+00:00 |
fill-mask | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | AmalNlal/Aryman_test | null | [
"transformers",
"roberta",
"fill-mask",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:20:44+00:00 |
text-to-audio | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zlm-ceb_b64_le5_s8000
This model is a fine-tuned version of [mikhail-panzo/zlm_b64_le4_s12000](https://huggingface.co/mikhail-panzo/zlm_b64_le4_s12000) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4051
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.4626 | 19.6078 | 500 | 0.4263 |
| 0.4288 | 39.2157 | 1000 | 0.4077 |
| 0.4109 | 58.8235 | 1500 | 0.4013 |
| 0.3978 | 78.4314 | 2000 | 0.4035 |
| 0.3898 | 98.0392 | 2500 | 0.4013 |
| 0.373 | 117.6471 | 3000 | 0.4010 |
| 0.3644 | 137.2549 | 3500 | 0.4005 |
| 0.3569 | 156.8627 | 4000 | 0.4029 |
| 0.3515 | 176.4706 | 4500 | 0.4039 |
| 0.3443 | 196.0784 | 5000 | 0.4005 |
| 0.3469 | 215.6863 | 5500 | 0.4018 |
| 0.3427 | 235.2941 | 6000 | 0.4001 |
| 0.3401 | 254.9020 | 6500 | 0.4042 |
| 0.3419 | 274.5098 | 7000 | 0.4054 |
| 0.3318 | 294.1176 | 7500 | 0.4057 |
| 0.3312 | 313.7255 | 8000 | 0.4051 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "mikhail-panzo/zlm_b64_le4_s12000", "model-index": [{"name": "zlm-ceb_b64_le5_s8000", "results": []}]} | mikhail-panzo/zlm-ceb_b64_le4_s8000 | null | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"base_model:mikhail-panzo/zlm_b64_le4_s12000",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:21:52+00:00 |
null | transformers | {} | Rasi1610/Deathce502_series1_n3 | null | [
"transformers",
"pytorch",
"vision-encoder-decoder",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:21:59+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Vikhr-7B-instruct_0.4 - bnb 4bits
- Model creator: https://huggingface.co/Vikhrmodels/
- Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/
Original model description:
---
library_name: transformers
tags: []
---
# Релиз вихря 0.3-0.4
Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели
[collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it",
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it")
from transformers import AutoTokenizer, pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompts = [
"В чем разница между фруктом и овощем?",
"Годы жизни колмагорова?"]
def test_inference(prompt):
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
print(prompt)
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097)
return outputs[0]['generated_text'][len(prompt):].strip()
for prompt in prompts:
print(f" prompt:\n{prompt}")
print(f" response:\n{test_inference(prompt)}")
print("-"*50)
```
| {} | RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-4bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T18:22:13+00:00 |
null | null | {} | SuratanBoonpong/openthai-llama-pretrained-7B | null | [
"region:us"
] | null | 2024-05-01T18:22:17+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | monjoychoudhury29/gpt2PPO200 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:22:32+00:00 |
text-generation | transformers | {} | nelson-pawait/checkpoints | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:22:54+00:00 |
|
sentence-similarity | sentence-transformers | # Kyurem
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [TaylorAI/bge-micro](https://huggingface.co/TaylorAI/bge-micro) as a base.
### Models Merged
The following models were included in the merge:
* [Mihaiii/Wartortle](https://huggingface.co/Mihaiii/Wartortle)
* [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Mihaiii/Wartortle
- model: TaylorAI/bge-micro-v2
- model: TaylorAI/bge-micro
merge_method: model_stock
base_model: TaylorAI/bge-micro
```
| {"license": "mit", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "bge", "mteb", "mergekit", "merge"], "pipeline_tag": "sentence-similarity", "base_model": ["Mihaiii/Wartortle", "TaylorAI/bge-micro-v2", "TaylorAI/bge-micro"], "model-index": [{"name": "Kyurem", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 66.83582089552239}, {"type": "ap", "value": 29.376874523513568}, {"type": "f1", "value": 60.66923695285069}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 70.484925}, {"type": "ap", "value": 64.8627321394567}, {"type": "f1", "value": 70.2682474297364}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 33.652}, {"type": "f1", "value": 33.48200260424572}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 22.404}, {"type": "map_at_10", "value": 36.144999999999996}, {"type": "map_at_100", "value": 37.309}, {"type": "map_at_1000", "value": 37.333}, {"type": "map_at_20", "value": 37.0}, {"type": "map_at_3", "value": 31.105}, {"type": "map_at_5", "value": 34.149}, {"type": "mrr_at_1", "value": 23.186}, {"type": "mrr_at_10", "value": 36.439}, {"type": "mrr_at_100", "value": 37.617}, {"type": "mrr_at_1000", "value": 37.641000000000005}, {"type": "mrr_at_20", "value": 37.308}, {"type": "mrr_at_3", "value": 31.52}, {"type": "mrr_at_5", "value": 34.486}, {"type": "ndcg_at_1", "value": 22.404}, {"type": "ndcg_at_10", "value": 44.346000000000004}, {"type": "ndcg_at_100", "value": 49.594}, {"type": "ndcg_at_1000", "value": 50.183}, {"type": "ndcg_at_20", "value": 47.435}, {"type": "ndcg_at_3", "value": 34.032000000000004}, {"type": "ndcg_at_5", "value": 39.513999999999996}, {"type": "precision_at_1", "value": 22.404}, {"type": "precision_at_10", "value": 7.077}, {"type": "precision_at_100", "value": 0.9440000000000001}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_20", "value": 4.147}, {"type": "precision_at_3", "value": 14.177000000000001}, {"type": "precision_at_5", "value": 11.166}, {"type": "recall_at_1", "value": 22.404}, {"type": "recall_at_10", "value": 70.768}, {"type": "recall_at_100", "value": 94.381}, {"type": "recall_at_1000", "value": 98.933}, {"type": "recall_at_20", "value": 82.93}, {"type": "recall_at_3", "value": 42.532}, {"type": "recall_at_5", "value": 55.832}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 41.21099868792524}, {"type": "v_measures", "value": [0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 30.197465353915163}, {"type": "v_measures", "value": [0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 56.482918023354756}, {"type": "mrr", "value": 71.40625687024578}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.45457865102485}, {"type": "cos_sim_spearman", "value": 80.93979607539022}, {"type": "euclidean_pearson", "value": 80.32159015984955}, {"type": "euclidean_spearman", "value": 80.43857983556106}, {"type": "manhattan_pearson", "value": 79.92848954545586}, {"type": "manhattan_spearman", "value": 80.13375361278035}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 78.03896103896105}, {"type": "f1", "value": 77.95281857082068}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 35.6206528975171}, {"type": "v_measures", "value": [0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 25.403397653930277}, {"type": "v_measures", "value": [0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105]}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 21.698999999999998}, {"type": "map_at_10", "value": 28.98}, {"type": "map_at_100", "value": 30.364}, {"type": "map_at_1000", "value": 30.516}, {"type": "map_at_20", "value": 29.681}, {"type": "map_at_3", "value": 26.418000000000003}, {"type": "map_at_5", "value": 27.590999999999998}, {"type": "mrr_at_1", "value": 27.325}, {"type": "mrr_at_10", "value": 34.595}, {"type": "mrr_at_100", "value": 35.63}, {"type": "mrr_at_1000", "value": 35.705}, {"type": "mrr_at_20", "value": 35.199000000000005}, {"type": "mrr_at_3", "value": 32.403}, {"type": "mrr_at_5", "value": 33.605000000000004}, {"type": "ndcg_at_1", "value": 27.325}, {"type": "ndcg_at_10", "value": 34.005}, {"type": "ndcg_at_100", "value": 40.031}, {"type": "ndcg_at_1000", "value": 42.962}, {"type": "ndcg_at_20", "value": 36.095}, {"type": "ndcg_at_3", "value": 30.081999999999997}, {"type": "ndcg_at_5", "value": 31.447999999999997}, {"type": "precision_at_1", "value": 27.325}, {"type": "precision_at_10", "value": 6.552}, {"type": "precision_at_100", "value": 1.22}, {"type": "precision_at_1000", "value": 0.17500000000000002}, {"type": "precision_at_20", "value": 4.041}, {"type": "precision_at_3", "value": 14.496999999999998}, {"type": "precision_at_5", "value": 10.242999999999999}, {"type": "recall_at_1", "value": 21.698999999999998}, {"type": "recall_at_10", "value": 43.295}, {"type": "recall_at_100", "value": 69.304}, {"type": "recall_at_1000", "value": 89.241}, {"type": "recall_at_20", "value": 50.856}, {"type": "recall_at_3", "value": 31.230000000000004}, {"type": "recall_at_5", "value": 35.587999999999994}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 14.81}, {"type": "map_at_10", "value": 19.692999999999998}, {"type": "map_at_100", "value": 20.535}, {"type": "map_at_1000", "value": 20.643}, {"type": "map_at_20", "value": 20.097}, {"type": "map_at_3", "value": 18.157}, {"type": "map_at_5", "value": 19.006999999999998}, {"type": "mrr_at_1", "value": 17.898}, {"type": "mrr_at_10", "value": 22.719}, {"type": "mrr_at_100", "value": 23.473}, {"type": "mrr_at_1000", "value": 23.547}, {"type": "mrr_at_20", "value": 23.111}, {"type": "mrr_at_3", "value": 21.189}, {"type": "mrr_at_5", "value": 21.934}, {"type": "ndcg_at_1", "value": 17.898}, {"type": "ndcg_at_10", "value": 22.817999999999998}, {"type": "ndcg_at_100", "value": 26.998}, {"type": "ndcg_at_1000", "value": 29.698}, {"type": "ndcg_at_20", "value": 24.123}, {"type": "ndcg_at_3", "value": 20.115}, {"type": "ndcg_at_5", "value": 21.288999999999998}, {"type": "precision_at_1", "value": 17.898}, {"type": "precision_at_10", "value": 4.159}, {"type": "precision_at_100", "value": 0.769}, {"type": "precision_at_1000", "value": 0.123}, {"type": "precision_at_20", "value": 2.506}, {"type": "precision_at_3", "value": 9.406}, {"type": "precision_at_5", "value": 6.688}, {"type": "recall_at_1", "value": 14.81}, {"type": "recall_at_10", "value": 29.049000000000003}, {"type": "recall_at_100", "value": 47.699999999999996}, {"type": "recall_at_1000", "value": 66.43599999999999}, {"type": "recall_at_20", "value": 33.812}, {"type": "recall_at_3", "value": 21.435000000000002}, {"type": "recall_at_5", "value": 24.573999999999998}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 25.629}, {"type": "map_at_10", "value": 35.592}, {"type": "map_at_100", "value": 36.663000000000004}, {"type": "map_at_1000", "value": 36.746}, {"type": "map_at_20", "value": 36.15}, {"type": "map_at_3", "value": 32.903}, {"type": "map_at_5", "value": 34.448}, {"type": "mrr_at_1", "value": 29.404000000000003}, {"type": "mrr_at_10", "value": 38.423}, {"type": "mrr_at_100", "value": 39.283}, {"type": "mrr_at_1000", "value": 39.334}, {"type": "mrr_at_20", "value": 38.895}, {"type": "mrr_at_3", "value": 36.134}, {"type": "mrr_at_5", "value": 37.441}, {"type": "ndcg_at_1", "value": 29.404000000000003}, {"type": "ndcg_at_10", "value": 40.814}, {"type": "ndcg_at_100", "value": 45.800999999999995}, {"type": "ndcg_at_1000", "value": 47.721999999999994}, {"type": "ndcg_at_20", "value": 42.576}, {"type": "ndcg_at_3", "value": 35.931999999999995}, {"type": "ndcg_at_5", "value": 38.305}, {"type": "precision_at_1", "value": 29.404000000000003}, {"type": "precision_at_10", "value": 6.802999999999999}, {"type": "precision_at_100", "value": 1.023}, {"type": "precision_at_1000", "value": 0.125}, {"type": "precision_at_20", "value": 3.9059999999999997}, {"type": "precision_at_3", "value": 16.343}, {"type": "precision_at_5", "value": 11.472999999999999}, {"type": "recall_at_1", "value": 25.629}, {"type": "recall_at_10", "value": 53.672}, {"type": "recall_at_100", "value": 76.322}, {"type": "recall_at_1000", "value": 90.231}, {"type": "recall_at_20", "value": 60.19}, {"type": "recall_at_3", "value": 40.454}, {"type": "recall_at_5", "value": 46.237}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 15.157000000000002}, {"type": "map_at_10", "value": 21.04}, {"type": "map_at_100", "value": 21.94}, {"type": "map_at_1000", "value": 22.048000000000002}, {"type": "map_at_20", "value": 21.497}, {"type": "map_at_3", "value": 19.082}, {"type": "map_at_5", "value": 20.252}, {"type": "mrr_at_1", "value": 16.723}, {"type": "mrr_at_10", "value": 22.637999999999998}, {"type": "mrr_at_100", "value": 23.51}, {"type": "mrr_at_1000", "value": 23.602}, {"type": "mrr_at_20", "value": 23.086000000000002}, {"type": "mrr_at_3", "value": 20.716}, {"type": "mrr_at_5", "value": 21.863}, {"type": "ndcg_at_1", "value": 16.723}, {"type": "ndcg_at_10", "value": 24.684}, {"type": "ndcg_at_100", "value": 29.397000000000002}, {"type": "ndcg_at_1000", "value": 32.545}, {"type": "ndcg_at_20", "value": 26.299}, {"type": "ndcg_at_3", "value": 20.809}, {"type": "ndcg_at_5", "value": 22.830000000000002}, {"type": "precision_at_1", "value": 16.723}, {"type": "precision_at_10", "value": 3.932}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_20", "value": 2.339}, {"type": "precision_at_3", "value": 8.964}, {"type": "precision_at_5", "value": 6.531000000000001}, {"type": "recall_at_1", "value": 15.157000000000002}, {"type": "recall_at_10", "value": 34.552}, {"type": "recall_at_100", "value": 56.629}, {"type": "recall_at_1000", "value": 80.962}, {"type": "recall_at_20", "value": 40.626}, {"type": "recall_at_3", "value": 24.012}, {"type": "recall_at_5", "value": 28.888}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 10.983}, {"type": "map_at_10", "value": 16.149}, {"type": "map_at_100", "value": 17.321}, {"type": "map_at_1000", "value": 17.432}, {"type": "map_at_20", "value": 16.742}, {"type": "map_at_3", "value": 14.524999999999999}, {"type": "map_at_5", "value": 15.357000000000001}, {"type": "mrr_at_1", "value": 13.433}, {"type": "mrr_at_10", "value": 19.508}, {"type": "mrr_at_100", "value": 20.559}, {"type": "mrr_at_1000", "value": 20.64}, {"type": "mrr_at_20", "value": 20.078}, {"type": "mrr_at_3", "value": 17.848}, {"type": "mrr_at_5", "value": 18.657}, {"type": "ndcg_at_1", "value": 13.433}, {"type": "ndcg_at_10", "value": 19.719}, {"type": "ndcg_at_100", "value": 25.689}, {"type": "ndcg_at_1000", "value": 28.907}, {"type": "ndcg_at_20", "value": 21.816}, {"type": "ndcg_at_3", "value": 16.659}, {"type": "ndcg_at_5", "value": 17.877000000000002}, {"type": "precision_at_1", "value": 13.433}, {"type": "precision_at_10", "value": 3.794}, {"type": "precision_at_100", "value": 0.7849999999999999}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_20", "value": 2.456}, {"type": "precision_at_3", "value": 8.126}, {"type": "precision_at_5", "value": 5.821}, {"type": "recall_at_1", "value": 10.983}, {"type": "recall_at_10", "value": 27.284000000000002}, {"type": "recall_at_100", "value": 54.167}, {"type": "recall_at_1000", "value": 78.131}, {"type": "recall_at_20", "value": 35.012}, {"type": "recall_at_3", "value": 18.557000000000002}, {"type": "recall_at_5", "value": 21.753}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 19.062}, {"type": "map_at_10", "value": 26.586}, {"type": "map_at_100", "value": 27.767999999999997}, {"type": "map_at_1000", "value": 27.904}, {"type": "map_at_20", "value": 27.162999999999997}, {"type": "map_at_3", "value": 23.751}, {"type": "map_at_5", "value": 25.320999999999998}, {"type": "mrr_at_1", "value": 23.388}, {"type": "mrr_at_10", "value": 31.291999999999998}, {"type": "mrr_at_100", "value": 32.196000000000005}, {"type": "mrr_at_1000", "value": 32.269999999999996}, {"type": "mrr_at_20", "value": 31.752000000000002}, {"type": "mrr_at_3", "value": 28.681}, {"type": "mrr_at_5", "value": 30.168}, {"type": "ndcg_at_1", "value": 23.388}, {"type": "ndcg_at_10", "value": 31.741999999999997}, {"type": "ndcg_at_100", "value": 37.279}, {"type": "ndcg_at_1000", "value": 40.199}, {"type": "ndcg_at_20", "value": 33.566}, {"type": "ndcg_at_3", "value": 26.858999999999998}, {"type": "ndcg_at_5", "value": 29.165000000000003}, {"type": "precision_at_1", "value": 23.388}, {"type": "precision_at_10", "value": 6.0249999999999995}, {"type": "precision_at_100", "value": 1.056}, {"type": "precision_at_1000", "value": 0.151}, {"type": "precision_at_20", "value": 3.614}, {"type": "precision_at_3", "value": 12.737000000000002}, {"type": "precision_at_5", "value": 9.471}, {"type": "recall_at_1", "value": 19.062}, {"type": "recall_at_10", "value": 42.549}, {"type": "recall_at_100", "value": 66.708}, {"type": "recall_at_1000", "value": 86.7}, {"type": "recall_at_20", "value": 48.991}, {"type": "recall_at_3", "value": 29.024}, {"type": "recall_at_5", "value": 34.885}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 13.578000000000001}, {"type": "map_at_10", "value": 19.436}, {"type": "map_at_100", "value": 20.51}, {"type": "map_at_1000", "value": 20.654}, {"type": "map_at_20", "value": 19.948}, {"type": "map_at_3", "value": 17.293}, {"type": "map_at_5", "value": 18.166}, {"type": "mrr_at_1", "value": 16.21}, {"type": "mrr_at_10", "value": 22.668}, {"type": "mrr_at_100", "value": 23.572000000000003}, {"type": "mrr_at_1000", "value": 23.666}, {"type": "mrr_at_20", "value": 23.095}, {"type": "mrr_at_3", "value": 20.491}, {"type": "mrr_at_5", "value": 21.444}, {"type": "ndcg_at_1", "value": 16.21}, {"type": "ndcg_at_10", "value": 23.648}, {"type": "ndcg_at_100", "value": 29.029}, {"type": "ndcg_at_1000", "value": 32.550000000000004}, {"type": "ndcg_at_20", "value": 25.28}, {"type": "ndcg_at_3", "value": 19.515}, {"type": "ndcg_at_5", "value": 20.821}, {"type": "precision_at_1", "value": 16.21}, {"type": "precision_at_10", "value": 4.566}, {"type": "precision_at_100", "value": 0.873}, {"type": "precision_at_1000", "value": 0.135}, {"type": "precision_at_20", "value": 2.791}, {"type": "precision_at_3", "value": 9.399000000000001}, {"type": "precision_at_5", "value": 6.758}, {"type": "recall_at_1", "value": 13.578000000000001}, {"type": "recall_at_10", "value": 33.276}, {"type": "recall_at_100", "value": 57.316}, {"type": "recall_at_1000", "value": 82.33500000000001}, {"type": "recall_at_20", "value": 38.95}, {"type": "recall_at_3", "value": 21.467}, {"type": "recall_at_5", "value": 24.939}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 15.536166666666668}, {"type": "map_at_10", "value": 21.584333333333337}, {"type": "map_at_100", "value": 22.610750000000003}, {"type": "map_at_1000", "value": 22.732083333333335}, {"type": "map_at_20", "value": 22.088166666666666}, {"type": "map_at_3", "value": 19.561583333333328}, {"type": "map_at_5", "value": 20.634666666666668}, {"type": "mrr_at_1", "value": 18.388583333333333}, {"type": "mrr_at_10", "value": 24.63783333333333}, {"type": "mrr_at_100", "value": 25.53608333333333}, {"type": "mrr_at_1000", "value": 25.61658333333333}, {"type": "mrr_at_20", "value": 25.101000000000003}, {"type": "mrr_at_3", "value": 22.641583333333333}, {"type": "mrr_at_5", "value": 23.715083333333336}, {"type": "ndcg_at_1", "value": 18.388583333333333}, {"type": "ndcg_at_10", "value": 25.564000000000004}, {"type": "ndcg_at_100", "value": 30.654500000000002}, {"type": "ndcg_at_1000", "value": 33.64308333333334}, {"type": "ndcg_at_20", "value": 27.234}, {"type": "ndcg_at_3", "value": 21.81491666666667}, {"type": "ndcg_at_5", "value": 23.46691666666667}, {"type": "precision_at_1", "value": 18.388583333333333}, {"type": "precision_at_10", "value": 4.581499999999999}, {"type": "precision_at_100", "value": 0.8400833333333335}, {"type": "precision_at_1000", "value": 0.12791666666666665}, {"type": "precision_at_20", "value": 2.7849166666666663}, {"type": "precision_at_3", "value": 10.077333333333334}, {"type": "precision_at_5", "value": 7.273250000000001}, {"type": "recall_at_1", "value": 15.536166666666668}, {"type": "recall_at_10", "value": 34.61533333333334}, {"type": "recall_at_100", "value": 57.71308333333332}, {"type": "recall_at_1000", "value": 79.32074999999999}, {"type": "recall_at_20", "value": 40.750416666666666}, {"type": "recall_at_3", "value": 24.079333333333334}, {"type": "recall_at_5", "value": 28.31308333333333}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 14.603}, {"type": "map_at_10", "value": 20.063}, {"type": "map_at_100", "value": 20.966}, {"type": "map_at_1000", "value": 21.060000000000002}, {"type": "map_at_20", "value": 20.531}, {"type": "map_at_3", "value": 18.448}, {"type": "map_at_5", "value": 19.484}, {"type": "mrr_at_1", "value": 16.258}, {"type": "mrr_at_10", "value": 22.21}, {"type": "mrr_at_100", "value": 23.066}, {"type": "mrr_at_1000", "value": 23.142}, {"type": "mrr_at_20", "value": 22.631999999999998}, {"type": "mrr_at_3", "value": 20.602999999999998}, {"type": "mrr_at_5", "value": 21.593}, {"type": "ndcg_at_1", "value": 16.258}, {"type": "ndcg_at_10", "value": 23.396}, {"type": "ndcg_at_100", "value": 28.023999999999997}, {"type": "ndcg_at_1000", "value": 30.681000000000004}, {"type": "ndcg_at_20", "value": 24.971}, {"type": "ndcg_at_3", "value": 20.352}, {"type": "ndcg_at_5", "value": 22.036}, {"type": "precision_at_1", "value": 16.258}, {"type": "precision_at_10", "value": 3.758}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.096}, {"type": "precision_at_20", "value": 2.247}, {"type": "precision_at_3", "value": 9.1}, {"type": "precision_at_5", "value": 6.503}, {"type": "recall_at_1", "value": 14.603}, {"type": "recall_at_10", "value": 31.578}, {"type": "recall_at_100", "value": 52.87500000000001}, {"type": "recall_at_1000", "value": 72.993}, {"type": "recall_at_20", "value": 37.464}, {"type": "recall_at_3", "value": 23.089000000000002}, {"type": "recall_at_5", "value": 27.272000000000002}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 9.844999999999999}, {"type": "map_at_10", "value": 14.209}, {"type": "map_at_100", "value": 15.094}, {"type": "map_at_1000", "value": 15.215}, {"type": "map_at_20", "value": 14.646}, {"type": "map_at_3", "value": 12.802}, {"type": "map_at_5", "value": 13.543}, {"type": "mrr_at_1", "value": 12.113}, {"type": "mrr_at_10", "value": 16.875}, {"type": "mrr_at_100", "value": 17.73}, {"type": "mrr_at_1000", "value": 17.824}, {"type": "mrr_at_20", "value": 17.318}, {"type": "mrr_at_3", "value": 15.273}, {"type": "mrr_at_5", "value": 16.164}, {"type": "ndcg_at_1", "value": 12.113}, {"type": "ndcg_at_10", "value": 17.28}, {"type": "ndcg_at_100", "value": 21.939}, {"type": "ndcg_at_1000", "value": 25.262}, {"type": "ndcg_at_20", "value": 18.822}, {"type": "ndcg_at_3", "value": 14.485999999999999}, {"type": "ndcg_at_5", "value": 15.731}, {"type": "precision_at_1", "value": 12.113}, {"type": "precision_at_10", "value": 3.19}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_20", "value": 2.046}, {"type": "precision_at_3", "value": 6.825}, {"type": "precision_at_5", "value": 5.003}, {"type": "recall_at_1", "value": 9.844999999999999}, {"type": "recall_at_10", "value": 24.005000000000003}, {"type": "recall_at_100", "value": 45.385}, {"type": "recall_at_1000", "value": 69.99499999999999}, {"type": "recall_at_20", "value": 29.704000000000004}, {"type": "recall_at_3", "value": 16.295}, {"type": "recall_at_5", "value": 19.444}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 14.875}, {"type": "map_at_10", "value": 20.305999999999997}, {"type": "map_at_100", "value": 21.23}, {"type": "map_at_1000", "value": 21.342}, {"type": "map_at_20", "value": 20.709}, {"type": "map_at_3", "value": 18.199}, {"type": "map_at_5", "value": 19.268}, {"type": "mrr_at_1", "value": 17.071}, {"type": "mrr_at_10", "value": 23.003}, {"type": "mrr_at_100", "value": 23.857999999999997}, {"type": "mrr_at_1000", "value": 23.939}, {"type": "mrr_at_20", "value": 23.398}, {"type": "mrr_at_3", "value": 20.569000000000003}, {"type": "mrr_at_5", "value": 21.776999999999997}, {"type": "ndcg_at_1", "value": 17.071}, {"type": "ndcg_at_10", "value": 24.262}, {"type": "ndcg_at_100", "value": 29.217}, {"type": "ndcg_at_1000", "value": 32.133}, {"type": "ndcg_at_20", "value": 25.679000000000002}, {"type": "ndcg_at_3", "value": 19.844}, {"type": "ndcg_at_5", "value": 21.712}, {"type": "precision_at_1", "value": 17.071}, {"type": "precision_at_10", "value": 4.198}, {"type": "precision_at_100", "value": 0.765}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_20", "value": 2.481}, {"type": "precision_at_3", "value": 8.613}, {"type": "precision_at_5", "value": 6.287}, {"type": "recall_at_1", "value": 14.875}, {"type": "recall_at_10", "value": 33.915}, {"type": "recall_at_100", "value": 56.513000000000005}, {"type": "recall_at_1000", "value": 77.737}, {"type": "recall_at_20", "value": 39.047}, {"type": "recall_at_3", "value": 22.017999999999997}, {"type": "recall_at_5", "value": 26.514}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 16.02}, {"type": "map_at_10", "value": 21.43}, {"type": "map_at_100", "value": 22.468}, {"type": "map_at_1000", "value": 22.659000000000002}, {"type": "map_at_20", "value": 21.926000000000002}, {"type": "map_at_3", "value": 19.258}, {"type": "map_at_5", "value": 20.405}, {"type": "mrr_at_1", "value": 19.564999999999998}, {"type": "mrr_at_10", "value": 25.063999999999997}, {"type": "mrr_at_100", "value": 25.918999999999997}, {"type": "mrr_at_1000", "value": 26.007}, {"type": "mrr_at_20", "value": 25.490000000000002}, {"type": "mrr_at_3", "value": 22.727}, {"type": "mrr_at_5", "value": 23.992}, {"type": "ndcg_at_1", "value": 19.564999999999998}, {"type": "ndcg_at_10", "value": 25.575}, {"type": "ndcg_at_100", "value": 30.464999999999996}, {"type": "ndcg_at_1000", "value": 34.131}, {"type": "ndcg_at_20", "value": 27.119}, {"type": "ndcg_at_3", "value": 21.607000000000003}, {"type": "ndcg_at_5", "value": 23.331}, {"type": "precision_at_1", "value": 19.564999999999998}, {"type": "precision_at_10", "value": 4.822}, {"type": "precision_at_100", "value": 0.98}, {"type": "precision_at_1000", "value": 0.196}, {"type": "precision_at_20", "value": 3.0140000000000002}, {"type": "precision_at_3", "value": 10.079}, {"type": "precision_at_5", "value": 7.51}, {"type": "recall_at_1", "value": 16.02}, {"type": "recall_at_10", "value": 34.215}, {"type": "recall_at_100", "value": 57.220000000000006}, {"type": "recall_at_1000", "value": 81.721}, {"type": "recall_at_20", "value": 40.169}, {"type": "recall_at_3", "value": 22.289}, {"type": "recall_at_5", "value": 26.856}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 10.173}, {"type": "map_at_10", "value": 15.528}, {"type": "map_at_100", "value": 16.470000000000002}, {"type": "map_at_1000", "value": 16.566}, {"type": "map_at_20", "value": 15.967999999999998}, {"type": "map_at_3", "value": 13.902999999999999}, {"type": "map_at_5", "value": 14.774000000000001}, {"type": "mrr_at_1", "value": 11.275}, {"type": "mrr_at_10", "value": 16.659}, {"type": "mrr_at_100", "value": 17.637}, {"type": "mrr_at_1000", "value": 17.723}, {"type": "mrr_at_20", "value": 17.158}, {"type": "mrr_at_3", "value": 15.065000000000001}, {"type": "mrr_at_5", "value": 15.943}, {"type": "ndcg_at_1", "value": 11.275}, {"type": "ndcg_at_10", "value": 18.825}, {"type": "ndcg_at_100", "value": 23.985}, {"type": "ndcg_at_1000", "value": 26.927}, {"type": "ndcg_at_20", "value": 20.462}, {"type": "ndcg_at_3", "value": 15.519}, {"type": "ndcg_at_5", "value": 17.058}, {"type": "precision_at_1", "value": 11.275}, {"type": "precision_at_10", "value": 3.179}, {"type": "precision_at_100", "value": 0.627}, {"type": "precision_at_1000", "value": 0.094}, {"type": "precision_at_20", "value": 1.978}, {"type": "precision_at_3", "value": 6.839}, {"type": "precision_at_5", "value": 4.9910000000000005}, {"type": "recall_at_1", "value": 10.173}, {"type": "recall_at_10", "value": 27.994000000000003}, {"type": "recall_at_100", "value": 52.418}, {"type": "recall_at_1000", "value": 75.36699999999999}, {"type": "recall_at_20", "value": 34.184}, {"type": "recall_at_3", "value": 19.082}, {"type": "recall_at_5", "value": 22.807}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 7.394}, {"type": "map_at_10", "value": 12.179}, {"type": "map_at_100", "value": 13.644}, {"type": "map_at_1000", "value": 13.821}, {"type": "map_at_20", "value": 12.969}, {"type": "map_at_3", "value": 10.177}, {"type": "map_at_5", "value": 11.155}, {"type": "mrr_at_1", "value": 15.961}, {"type": "mrr_at_10", "value": 24.118000000000002}, {"type": "mrr_at_100", "value": 25.318}, {"type": "mrr_at_1000", "value": 25.384}, {"type": "mrr_at_20", "value": 24.911}, {"type": "mrr_at_3", "value": 21.151}, {"type": "mrr_at_5", "value": 22.731}, {"type": "ndcg_at_1", "value": 15.961}, {"type": "ndcg_at_10", "value": 17.77}, {"type": "ndcg_at_100", "value": 24.282}, {"type": "ndcg_at_1000", "value": 27.788}, {"type": "ndcg_at_20", "value": 20.345}, {"type": "ndcg_at_3", "value": 13.996}, {"type": "ndcg_at_5", "value": 15.277}, {"type": "precision_at_1", "value": 15.961}, {"type": "precision_at_10", "value": 5.629}, {"type": "precision_at_100", "value": 1.243}, {"type": "precision_at_1000", "value": 0.188}, {"type": "precision_at_20", "value": 3.8830000000000005}, {"type": "precision_at_3", "value": 10.228}, {"type": "precision_at_5", "value": 8.065}, {"type": "recall_at_1", "value": 7.394}, {"type": "recall_at_10", "value": 22.037000000000003}, {"type": "recall_at_100", "value": 44.823}, {"type": "recall_at_1000", "value": 64.782}, {"type": "recall_at_20", "value": 29.416999999999998}, {"type": "recall_at_3", "value": 12.931999999999999}, {"type": "recall_at_5", "value": 16.392}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 4.22}, {"type": "map_at_10", "value": 9.109}, {"type": "map_at_100", "value": 12.520999999999999}, {"type": "map_at_1000", "value": 13.461}, {"type": "map_at_20", "value": 10.374}, {"type": "map_at_3", "value": 6.524000000000001}, {"type": "map_at_5", "value": 7.664999999999999}, {"type": "mrr_at_1", "value": 34.75}, {"type": "mrr_at_10", "value": 46.822}, {"type": "mrr_at_100", "value": 47.501}, {"type": "mrr_at_1000", "value": 47.546}, {"type": "mrr_at_20", "value": 47.246}, {"type": "mrr_at_3", "value": 43.875}, {"type": "mrr_at_5", "value": 45.637}, {"type": "ndcg_at_1", "value": 25.874999999999996}, {"type": "ndcg_at_10", "value": 21.938}, {"type": "ndcg_at_100", "value": 24.924}, {"type": "ndcg_at_1000", "value": 31.627}, {"type": "ndcg_at_20", "value": 21.627}, {"type": "ndcg_at_3", "value": 23.132}, {"type": "ndcg_at_5", "value": 22.553}, {"type": "precision_at_1", "value": 34.75}, {"type": "precision_at_10", "value": 18.65}, {"type": "precision_at_100", "value": 5.862}, {"type": "precision_at_1000", "value": 1.348}, {"type": "precision_at_20", "value": 13.750000000000002}, {"type": "precision_at_3", "value": 27.333000000000002}, {"type": "precision_at_5", "value": 24.05}, {"type": "recall_at_1", "value": 4.22}, {"type": "recall_at_10", "value": 14.191}, {"type": "recall_at_100", "value": 31.192999999999998}, {"type": "recall_at_1000", "value": 53.517}, {"type": "recall_at_20", "value": 18.516}, {"type": "recall_at_3", "value": 8.036}, {"type": "recall_at_5", "value": 10.329}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 39.184999999999995}, {"type": "f1", "value": 35.27301038035798}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 65.1424}, {"type": "ap", "value": 60.060650493494705}, {"type": "f1", "value": 64.97836345253516}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 89.27496580027359}, {"type": "f1", "value": 88.46317641931785}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 65.35567715458276}, {"type": "f1", "value": 46.496133882315355}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 65.31943510423672}, {"type": "f1", "value": 63.99472103750694}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 70.51445864156018}, {"type": "f1", "value": 69.5241099650794}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 31.419094146071636}, {"type": "v_measures", "value": [0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 27.139470452055658}, {"type": "v_measures", "value": [0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 29.568052227516432}, {"type": "mrr", "value": 30.428712172981818}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 39.24416138727274}, {"type": "v_measures", "value": [0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 52.2014890689022}, {"type": "v_measures", "value": [0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125]}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.49732285023127}, {"type": "cos_sim_spearman", "value": 69.06853511870162}, {"type": "euclidean_pearson", "value": 73.63802461551214}, {"type": "euclidean_spearman", "value": 68.89675389831514}, {"type": "manhattan_pearson", "value": 73.31463476887929}, {"type": "manhattan_spearman", "value": 68.62065836256522}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.30725406004984}, {"type": "cos_sim_spearman", "value": 71.77933625004815}, {"type": "euclidean_pearson", "value": 75.6716433687837}, {"type": "euclidean_spearman", "value": 71.29004792199038}, {"type": "manhattan_pearson", "value": 75.71992020594199}, {"type": "manhattan_spearman", "value": 71.32910104106817}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 76.48949837438562}, {"type": "cos_sim_spearman", "value": 77.70387570173884}, {"type": "euclidean_pearson", "value": 77.31697136821097}, {"type": "euclidean_spearman", "value": 77.7725127232427}, {"type": "manhattan_pearson", "value": 77.2104513638156}, {"type": "manhattan_spearman", "value": 77.6662508639199}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.92186146745203}, {"type": "cos_sim_spearman", "value": 74.03500111217282}, {"type": "euclidean_pearson", "value": 76.92245132110358}, {"type": "euclidean_spearman", "value": 74.1163537497533}, {"type": "manhattan_pearson", "value": 76.7405912634287}, {"type": "manhattan_spearman", "value": 74.00559912577475}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.41755953814916}, {"type": "cos_sim_spearman", "value": 83.12590620595532}, {"type": "euclidean_pearson", "value": 82.81061023887204}, {"type": "euclidean_spearman", "value": 83.22204855595223}, {"type": "manhattan_pearson", "value": 82.69802515552313}, {"type": "manhattan_spearman", "value": 83.09996325139677}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.75524761527194}, {"type": "cos_sim_spearman", "value": 78.87593181990188}, {"type": "euclidean_pearson", "value": 78.55191677073188}, {"type": "euclidean_spearman", "value": 78.92172836212852}, {"type": "manhattan_pearson", "value": 78.36496155482094}, {"type": "manhattan_spearman", "value": 78.67446213683105}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.7638229493128}, {"type": "cos_sim_spearman", "value": 85.55048917425349}, {"type": "euclidean_pearson", "value": 84.8901462981343}, {"type": "euclidean_spearman", "value": 85.10066833018679}, {"type": "manhattan_pearson", "value": 84.74064489630906}, {"type": "manhattan_spearman", "value": 85.03532091650423}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 63.74800563207841}, {"type": "cos_sim_spearman", "value": 65.54768610942277}, {"type": "euclidean_pearson", "value": 65.832924763177}, {"type": "euclidean_spearman", "value": 65.67977634984801}, {"type": "manhattan_pearson", "value": 66.04809976105817}, {"type": "manhattan_spearman", "value": 65.8551641921871}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.42910915029356}, {"type": "cos_sim_spearman", "value": 78.93487000382834}, {"type": "euclidean_pearson", "value": 79.97058072370304}, {"type": "euclidean_spearman", "value": 79.02999975191632}, {"type": "manhattan_pearson", "value": 79.75656714948262}, {"type": "manhattan_spearman", "value": 78.82176824285669}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 74.6588967461659}, {"type": "mrr", "value": 91.90398381574852}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.7960396039604}, {"type": "cos_sim_ap", "value": 94.40352134094806}, {"type": "cos_sim_f1", "value": 89.42505133470226}, {"type": "cos_sim_precision", "value": 91.87763713080169}, {"type": "cos_sim_recall", "value": 87.1}, {"type": "dot_accuracy", "value": 99.61980198019802}, {"type": "dot_ap", "value": 86.92800137802539}, {"type": "dot_f1", "value": 80.60606060606061}, {"type": "dot_precision", "value": 81.42857142857143}, {"type": "dot_recall", "value": 79.80000000000001}, {"type": "euclidean_accuracy", "value": 99.7910891089109}, {"type": "euclidean_ap", "value": 94.1534710913129}, {"type": "euclidean_f1", "value": 89.18232605383443}, {"type": "euclidean_precision", "value": 90.60887512899896}, {"type": "euclidean_recall", "value": 87.8}, {"type": "manhattan_accuracy", "value": 99.79207920792079}, {"type": "manhattan_ap", "value": 94.24718696087999}, {"type": "manhattan_f1", "value": 89.0852390852391}, {"type": "manhattan_precision", "value": 92.74891774891775}, {"type": "manhattan_recall", "value": 85.7}, {"type": "max_accuracy", "value": 99.7960396039604}, {"type": "max_ap", "value": 94.40352134094806}, {"type": "max_f1", "value": 89.42505133470226}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 46.43052365225014}, {"type": "v_measures", "value": [0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 34.30506603469398}, {"type": "v_measures", "value": [0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 45.986302830652576}, {"type": "mrr", "value": 46.73859126984127}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 31.681504542251222}, {"type": "cos_sim_spearman", "value": 30.52300975318605}, {"type": "dot_pearson", "value": 30.89258938963458}, {"type": "dot_spearman", "value": 30.789407411509075}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 63.916015625}, {"type": "ap", "value": 11.079823797650405}, {"type": "f1", "value": 48.9073889627104}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 54.80192416525185}, {"type": "f1", "value": 55.06729742763208}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 30.428269625267067}, {"type": "v_measures", "value": [0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833]}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.04226023722954}, {"type": "cos_sim_ap", "value": 63.85841588156352}, {"type": "cos_sim_f1", "value": 60.82009954965631}, {"type": "cos_sim_precision", "value": 55.2065404475043}, {"type": "cos_sim_recall", "value": 67.70448548812665}, {"type": "dot_accuracy", "value": 78.91756571496693}, {"type": "dot_ap", "value": 46.39288120938224}, {"type": "dot_f1", "value": 49.36296847391426}, {"type": "dot_precision", "value": 38.11575470343243}, {"type": "dot_recall", "value": 70.0263852242744}, {"type": "euclidean_accuracy", "value": 83.18531322644095}, {"type": "euclidean_ap", "value": 64.47939517179049}, {"type": "euclidean_f1", "value": 61.326567596955414}, {"type": "euclidean_precision", "value": 56.56340539335859}, {"type": "euclidean_recall", "value": 66.96569920844327}, {"type": "manhattan_accuracy", "value": 82.9826548250581}, {"type": "manhattan_ap", "value": 64.01165035368786}, {"type": "manhattan_f1", "value": 60.99290780141844}, {"type": "manhattan_precision", "value": 54.52088962793597}, {"type": "manhattan_recall", "value": 69.2084432717678}, {"type": "max_accuracy", "value": 83.18531322644095}, {"type": "max_ap", "value": 64.47939517179049}, {"type": "max_f1", "value": 61.326567596955414}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 87.53832421314084}, {"type": "cos_sim_ap", "value": 82.94679942153577}, {"type": "cos_sim_f1", "value": 74.90408975750995}, {"type": "cos_sim_precision", "value": 70.67340527250376}, {"type": "cos_sim_recall", "value": 79.6735448105944}, {"type": "dot_accuracy", "value": 85.2214072262972}, {"type": "dot_ap", "value": 76.39891716014382}, {"type": "dot_f1", "value": 70.62225554246545}, {"type": "dot_precision", "value": 65.83904679491447}, {"type": "dot_recall", "value": 76.15491222667077}, {"type": "euclidean_accuracy", "value": 87.55190747855785}, {"type": "euclidean_ap", "value": 82.9537174035843}, {"type": "euclidean_f1", "value": 75.01588844442783}, {"type": "euclidean_precision", "value": 72.90894557081607}, {"type": "euclidean_recall", "value": 77.24822913458577}, {"type": "manhattan_accuracy", "value": 87.5499670120697}, {"type": "manhattan_ap", "value": 82.85971137826064}, {"type": "manhattan_f1", "value": 74.86758672137262}, {"type": "manhattan_precision", "value": 72.60888438720879}, {"type": "manhattan_recall", "value": 77.27132737911919}, {"type": "max_accuracy", "value": 87.55190747855785}, {"type": "max_ap", "value": 82.9537174035843}, {"type": "max_f1", "value": 75.01588844442783}]}]}]} | Mihaiii/test24 | null | [
"sentence-transformers",
"onnx",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"bge",
"mteb",
"mergekit",
"merge",
"arxiv:2403.19522",
"base_model:Mihaiii/Wartortle",
"base_model:TaylorAI/bge-micro-v2",
"base_model:TaylorAI/bge-micro",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:23:14+00:00 |
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "library_name": "transformers", "tags": [], "base_model": "jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2", "quantized_by": "mradermacher"} | mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF | null | [
"transformers",
"gguf",
"en",
"base_model:jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:24:04+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | nobody12321/poker-tokenizer | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:25:27+00:00 |
text-to-image | diffusers |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - embracellm/sushi21_LoRA
<Gallery />
## Model description
These are embracellm/sushi21_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of Tiger Roll to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](embracellm/sushi21_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] | {"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Tiger Roll", "widget": []} | embracellm/sushi21_LoRA | null | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"dora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | null | 2024-05-01T18:25:33+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/orzqomb | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:26:35+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/2nt0eqt | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:26:40+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Vikhr-7B-instruct_0.4 - bnb 8bits
- Model creator: https://huggingface.co/Vikhrmodels/
- Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/
Original model description:
---
library_name: transformers
tags: []
---
# Релиз вихря 0.3-0.4
Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели
[collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it",
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it")
from transformers import AutoTokenizer, pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompts = [
"В чем разница между фруктом и овощем?",
"Годы жизни колмагорова?"]
def test_inference(prompt):
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
print(prompt)
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097)
return outputs[0]['generated_text'][len(prompt):].strip()
for prompt in prompts:
print(f" prompt:\n{prompt}")
print(f" response:\n{test_inference(prompt)}")
print("-"*50)
```
| {} | RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-8bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T18:27:04+00:00 |
text-generation | transformers | {} | isaaclee/mistral_train_run1_merged | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:27:18+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama10 - bnb 4bits
- Model creator: https://huggingface.co/Aspik101/
- Original model: https://huggingface.co/Aspik101/llama10/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/Aspik101_-_llama10-4bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T18:27:58+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llm-jp-1b-sft-100k-LoRA - bnb 4bits
- Model creator: https://huggingface.co/ryota39/
- Original model: https://huggingface.co/ryota39/llm-jp-1b-sft-100k-LoRA/
Original model description:
---
library_name: transformers
tags: []
---
## モデル
- ベースモデル:[llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0)
- 学習データセット:[cl-nagoya/auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) (`seed=42`でシャッフルした後、先頭の10万件を学習データに使用)
- 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"])
## サンプル
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(
"ryota39/llm-jp-1b-sft-100k-LoRA"
)
pad_token_id = tokenizer.pad_token_id
model = AutoModelForCausalLM.from_pretrained(
"ryota39/llm-jp-1b-sft-100k-LoRA",
device_map="auto",
torch_dtype=torch.float16,
)
text = "###Input: 東京の観光名所を教えてください。\n###Output: "
tokenized_input = tokenizer.encode(
text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
attention_mask = torch.ones_like(tokenized_input)
attention_mask[tokenized_input == pad_token_id] = 0
with torch.no_grad():
output = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=128,
do_sample=True,
# top_p=0.95,
temperature=0.8,
repetition_penalty=1.0
)[0]
print(tokenizer.decode(output))
```
## 出力例
```
###Input: 東京の観光名所を教えてください。
###Output: お台場のヴィーナスフォート。世界各国の観光客で賑わう。世界からの観光客を呼び込むために、ここのフードコートでは各国の料理を提供しています。
各国の料理を提供するフードコートもあるが、イタリアンやフレンチなどのファストフードの店もある。
東京の観光名所を紹介するサイトがたくさんあり、そのサイトに自分のオススメするスポットを掲載しています。
東京の観光名所を教えてください。
###Output: お台場のヴィーナスフォートの中にあるアクアシティというショッピングセンターの中にあるお台場
```
## 謝辞
本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。
運営の方々に深く御礼申し上げます。
- 【メタデータラボ株式会社】様
- 【AI声づくり技術研究会】
- サーバー主:やなぎ(Yanagi)様
- 【ローカルLLMに向き合う会】
- サーバー主:saldra(サルドラ)様
[メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始](https://prtimes.jp/main/html/rd/p/000000008.000056944.html)
| {} | RichardErkhov/ryota39_-_llm-jp-1b-sft-100k-LoRA-4bits | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T18:29:10+00:00 |
text-generation | transformers | {} | w32zhong/s3d-EAGLE-retrain-20K | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:29:12+00:00 |
|
null | transformers | {} | baseten/mistral-7b-v0.2-i10000-o1000-bs-12-tp1-H100 | null | [
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:29:17+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llm-jp-1b-sft-100k-LoRA - bnb 8bits
- Model creator: https://huggingface.co/ryota39/
- Original model: https://huggingface.co/ryota39/llm-jp-1b-sft-100k-LoRA/
Original model description:
---
library_name: transformers
tags: []
---
## モデル
- ベースモデル:[llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0)
- 学習データセット:[cl-nagoya/auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) (`seed=42`でシャッフルした後、先頭の10万件を学習データに使用)
- 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"])
## サンプル
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(
"ryota39/llm-jp-1b-sft-100k-LoRA"
)
pad_token_id = tokenizer.pad_token_id
model = AutoModelForCausalLM.from_pretrained(
"ryota39/llm-jp-1b-sft-100k-LoRA",
device_map="auto",
torch_dtype=torch.float16,
)
text = "###Input: 東京の観光名所を教えてください。\n###Output: "
tokenized_input = tokenizer.encode(
text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
attention_mask = torch.ones_like(tokenized_input)
attention_mask[tokenized_input == pad_token_id] = 0
with torch.no_grad():
output = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=128,
do_sample=True,
# top_p=0.95,
temperature=0.8,
repetition_penalty=1.0
)[0]
print(tokenizer.decode(output))
```
## 出力例
```
###Input: 東京の観光名所を教えてください。
###Output: お台場のヴィーナスフォート。世界各国の観光客で賑わう。世界からの観光客を呼び込むために、ここのフードコートでは各国の料理を提供しています。
各国の料理を提供するフードコートもあるが、イタリアンやフレンチなどのファストフードの店もある。
東京の観光名所を紹介するサイトがたくさんあり、そのサイトに自分のオススメするスポットを掲載しています。
東京の観光名所を教えてください。
###Output: お台場のヴィーナスフォートの中にあるアクアシティというショッピングセンターの中にあるお台場
```
## 謝辞
本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。
運営の方々に深く御礼申し上げます。
- 【メタデータラボ株式会社】様
- 【AI声づくり技術研究会】
- サーバー主:やなぎ(Yanagi)様
- 【ローカルLLMに向き合う会】
- サーバー主:saldra(サルドラ)様
[メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始](https://prtimes.jp/main/html/rd/p/000000008.000056944.html)
| {} | RichardErkhov/ryota39_-_llm-jp-1b-sft-100k-LoRA-8bits | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T18:30:29+00:00 |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Main_Fashion
This model is a fine-tuned version of [google/vit-base-patch16-224-in21K](https://huggingface.co/google/vit-base-patch16-224-in21K) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7633
- Accuracy: 0.6961
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.934 | 0.9259 | 100 | 0.9492 | 0.7030 |
| 0.9191 | 1.8519 | 200 | 0.7838 | 0.7401 |
| 0.7774 | 2.7778 | 300 | 0.8152 | 0.7123 |
| 0.5743 | 3.7037 | 400 | 0.7249 | 0.7100 |
| 0.5145 | 4.6296 | 500 | 0.7721 | 0.7077 |
| 0.4713 | 5.5556 | 600 | 0.7182 | 0.7146 |
| 0.4397 | 6.4815 | 700 | 0.7633 | 0.6961 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21K", "model-index": [{"name": "Main_Fashion", "results": []}]} | vlevi/Main_Fashion | null | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21K",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:31:13+00:00 |
null | null | {"license": "mit"} | tylerckeller/Phi-3-mini-4k-instruct-mlx-4bit | null | [
"license:mit",
"region:us"
] | null | 2024-05-01T18:32:13+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Mubin1917/Mistral-7B-Instruct-v0.2-lamini-docs-adapters-epoch-3_test_lr_scheduler_type-constant | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:32:25+00:00 |
text-to-image | diffusers | {} | philz1337x/hyperrealism_v3 | null | [
"diffusers",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | null | 2024-05-01T18:33:17+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava-1.5-7b-hf-mermaid-flow-chart
This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "llava-hf/llava-1.5-7b-hf", "model-index": [{"name": "llava-1.5-7b-hf-mermaid-flow-chart", "results": []}]} | rakitha/llava-1.5-7b-hf-mermaid-flow-chart | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:llava-hf/llava-1.5-7b-hf",
"region:us"
] | null | 2024-05-01T18:33:23+00:00 |
null | null | {} | cotts/test_hulk | null | [
"region:us"
] | null | 2024-05-01T18:33:42+00:00 |
|
null | null | {} | Pro98/SidSriramModel | null | [
"region:us"
] | null | 2024-05-01T18:34:22+00:00 |
|
text-generation | transformers |
<img src="https://huggingface.co/KOCDIGITAL/Kocdigital-LLM-8b-v0.1/resolve/main/icon.jpeg"
alt="KOCDIGITAL LLM" width="420"/>
# Kocdigital-LLM-8b-v0.1
This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. The training process involved using the QLORA method.
## Model Details
- **Base Model**: Llama3 8B based LLM
- **Training Dataset**: High Quality Turkish instruction sets
- **Training Method**: SFT with QLORA
### QLORA Fine-Tuning Configuration
- `lora_alpha`: 128
- `lora_dropout`: 0
- `r`: 64
- `target_modules`: "q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
- `bias`: "none"
## Usage Examples
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"KOCDIGITAL/Kocdigital-LLM-8b-v0.1",
max_seq_length=4096)
model = AutoModelForCausalLM.from_pretrained(
"KOCDIGITAL/Kocdigital-LLM-8b-v0.1",
load_in_4bit=True,
)
system = 'Sen Türkçe konuşan genel amaçlı bir asistansın. Her zaman kullanıcının verdiği talimatları doğru, kısa ve güzel bir gramer ile yerine getir.'
template = "{}\n\n###Talimat\n{}\n###Yanıt\n"
content = template.format(system, 'Türkiyenin 3 büyük ilini listeler misin.')
conv = []
conv.append({'role': 'user', 'content': content})
inputs = tokenizer.apply_chat_template(conv,
tokenize=False,
add_generation_prompt=True,
return_tensors="pt")
print(inputs)
inputs = tokenizer([inputs],
return_tensors = "pt",
add_special_tokens=False).to("cuda")
outputs = model.generate(**inputs,
max_new_tokens = 512,
use_cache = True,
do_sample = True,
top_k = 50,
top_p = 0.60,
temperature = 0.3,
repetition_penalty=1.1)
out_text = tokenizer.batch_decode(outputs)[0]
print(out_text)
```
# [Open LLM Turkish Leaderboard v0.2 Evaluation Results]
| Metric | Value |
|---------------------------------|------:|
| Avg. | 49.11 |
| AI2 Reasoning Challenge_tr-v0.2 | 44.03 |
| HellaSwag_tr-v0.2 | 46.73 |
| MMLU_tr-v0.2 | 49.11 |
| TruthfulQA_tr-v0.2 | 48.51 |
| Winogrande _tr-v0.2 | 54.98 |
| GSM8k_tr-v0.2 | 51.78 |
## Considerations on Limitations, Risks, Bias, and Ethical Factors
### Limitations and Recognized Biases
- **Core Functionality and Usage:** KocDigital LLM, functioning as an autoregressive language model, is primarily purposed for predicting the subsequent token within a text sequence. Although commonly applied across different contexts, it's crucial to acknowledge that comprehensive real-world testing has not been conducted. Therefore, its efficacy and consistency in diverse situations are largely unvalidated.
- **Language Understanding and Generation:** The model's training is mainly focused on standard English and Turkish. Its proficiency in grasping and generating slang, colloquial language, or different languages might be restricted, possibly resulting in errors or misinterpretations.
- **Production of Misleading Information:** Users should acknowledge that KocDigital LLM might generate incorrect or deceptive information. Results should be viewed as initial prompts or recommendations rather than absolute conclusions.
### Ethical Concerns and Potential Risks
- **Risk of Misuse:** KocDigital LLM carries the potential for generating language that could be offensive or harmful. We strongly advise against its utilization for such purposes and stress the importance of conducting thorough safety and fairness assessments tailored to specific applications before implementation.
- **Unintended Biases and Content:** The model underwent training on a vast corpus of text data without explicit vetting for offensive material or inherent biases. Consequently, it may inadvertently generate content reflecting these biases or inaccuracies.
- **Toxicity:** Despite efforts to curate appropriate training data, the model has the capacity to produce harmful content, particularly when prompted explicitly. We encourage active participation from the open-source community to devise strategies aimed at mitigating such risks.
### Guidelines for Secure and Ethical Utilization
- **Human Oversight:** We advocate for the integration of a human oversight mechanism or the utilization of filters to oversee and enhance the quality of outputs, particularly in applications accessible to the public. This strategy can assist in minimizing the likelihood of unexpectedly generating objectionable content.
- **Tailored Testing for Specific Applications:** Developers planning to utilize KocDigital LLM should execute comprehensive safety assessments and optimizations customized to their unique applications. This step is essential as the model's responses may exhibit unpredictability and occasional biases, inaccuracies, or offensive outputs.
- **Responsible Development and Deployment:** Developers and users of KocDigital LLM bear the responsibility for ensuring its ethical and secure application. We encourage users to be cognizant of the model's limitations and to implement appropriate measures to prevent misuse or adverse outcomes. | {"language": ["tr"], "license": "llama3", "model-index": [{"name": "Kocdigital-LLM-8b-v0.1", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "AI2 Reasoning Challenge TR", "type": "ai2_arc", "config": "ARC-Challenge", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "acc", "value": 44.03, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HellaSwag TR", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc", "value": 46.73, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "MMLU TR", "type": "cais/mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 49.11, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "TruthfulQA TR", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "acc", "value": 48.21, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Winogrande TR", "type": "winogrande", "config": "winogrande_xl", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc", "value": 54.98, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "GSM8k TR", "type": "gsm8k", "config": "main", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 51.78, "name": "accuracy"}]}]}]} | KOCDIGITAL/Kocdigital-LLM-8b-v0.1 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"tr",
"license:llama3",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:34:27+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama10 - bnb 8bits
- Model creator: https://huggingface.co/Aspik101/
- Original model: https://huggingface.co/Aspik101/llama10/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/Aspik101_-_llama10-8bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T18:35:27+00:00 |
text-to-image | diffusers | # **Fluenlty XL** V4 - the best XL-model

Introducing Fluently XL, you are probably ready to argue with the name of the model: “The best XL-model”, but now I will prove to you why it is true.
## About this model
The model was obtained through training on *expensive graphics accelerators*, a lot of work was done, now we will show why this XL model is better than others.
### Features
- Correct anatomy
- Art and realism in one
- Controling contrast
- Great nature
- Great faces without AfterDetailer
### More info
Our model is better than others because we do not mix but **train**, but at first it may seem that the model is not very good, but if you are a real professional you will like it.
## Using
Optimal parameters in Automatic1111/ComfyUI:
- Sampling steps: 20-35
- Sampler method: Euler a/Euler
- CFG Scale: 4-6.5
## End
Let's remove models that copy each other from the top and put one that is actually developing, thank you) | {"license": "other", "library_name": "diffusers", "tags": ["safetensors", "stable-diffusion", "sdxl", "fluetnly-xl", "fluently", "trained"], "datasets": ["ehristoforu/midjourney-images", "ehristoforu/dalle-3-images", "ehristoforu/fav_images"], "license_name": "fluently-license", "license_link": "https://huggingface.co/spaces/fluently/License", "pipeline_tag": "text-to-image", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "inference": {"parameters": {"num_inference_steps": 25, "guidance_scale": 5, "negative_prompt": "(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"}}} | fluently/Fluently-XL-v4 | null | [
"diffusers",
"safetensors",
"stable-diffusion",
"sdxl",
"fluetnly-xl",
"fluently",
"trained",
"text-to-image",
"dataset:ehristoforu/midjourney-images",
"dataset:ehristoforu/dalle-3-images",
"dataset:ehristoforu/fav_images",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:other",
"endpoints_compatible",
"has_space",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | null | 2024-05-01T18:35:57+00:00 |
null | null | {"license": "openrail"} | Coolwowsocoolwow/Blaze | null | [
"license:openrail",
"region:us"
] | null | 2024-05-01T18:36:05+00:00 |
|
null | null | {} | onsba/distilbert-base-uncased-finetuned-squad | null | [
"region:us"
] | null | 2024-05-01T18:36:12+00:00 |
|
null | null | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Vikhr-7B-instruct_0.4 - GGUF
- Model creator: https://huggingface.co/Vikhrmodels/
- Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Vikhr-7B-instruct_0.4.Q2_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q2_K.gguf) | Q2_K | 2.74GB |
| [Vikhr-7B-instruct_0.4.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_XS.gguf) | IQ3_XS | 3.04GB |
| [Vikhr-7B-instruct_0.4.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_S.gguf) | IQ3_S | 3.19GB |
| [Vikhr-7B-instruct_0.4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_S.gguf) | Q3_K_S | 3.17GB |
| [Vikhr-7B-instruct_0.4.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_M.gguf) | IQ3_M | 3.29GB |
| [Vikhr-7B-instruct_0.4.Q3_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K.gguf) | Q3_K | 3.5GB |
| [Vikhr-7B-instruct_0.4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_M.gguf) | Q3_K_M | 3.5GB |
| [Vikhr-7B-instruct_0.4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_L.gguf) | Q3_K_L | 3.79GB |
| [Vikhr-7B-instruct_0.4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ4_XS.gguf) | IQ4_XS | 3.92GB |
| [Vikhr-7B-instruct_0.4.Q4_0.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_0.gguf) | Q4_0 | 4.08GB |
| [Vikhr-7B-instruct_0.4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ4_NL.gguf) | IQ4_NL | 4.12GB |
| [Vikhr-7B-instruct_0.4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K_S.gguf) | Q4_K_S | 4.11GB |
| [Vikhr-7B-instruct_0.4.Q4_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K.gguf) | Q4_K | 4.32GB |
| [Vikhr-7B-instruct_0.4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K_M.gguf) | Q4_K_M | 4.32GB |
| [Vikhr-7B-instruct_0.4.Q4_1.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_1.gguf) | Q4_1 | 4.5GB |
| [Vikhr-7B-instruct_0.4.Q5_0.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_0.gguf) | Q5_0 | 4.93GB |
| [Vikhr-7B-instruct_0.4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K_S.gguf) | Q5_K_S | 4.93GB |
| [Vikhr-7B-instruct_0.4.Q5_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K.gguf) | Q5_K | 5.05GB |
| [Vikhr-7B-instruct_0.4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K_M.gguf) | Q5_K_M | 5.05GB |
| [Vikhr-7B-instruct_0.4.Q5_1.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_1.gguf) | Q5_1 | 5.35GB |
| [Vikhr-7B-instruct_0.4.Q6_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q6_K.gguf) | Q6_K | 5.83GB |
Original model description:
---
library_name: transformers
tags: []
---
# Релиз вихря 0.3-0.4
Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели
[collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it",
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it")
from transformers import AutoTokenizer, pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompts = [
"В чем разница между фруктом и овощем?",
"Годы жизни колмагорова?"]
def test_inference(prompt):
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
print(prompt)
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097)
return outputs[0]['generated_text'][len(prompt):].strip()
for prompt in prompts:
print(f" prompt:\n{prompt}")
print(f" response:\n{test_inference(prompt)}")
print("-"*50)
```
| {} | RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf | null | [
"gguf",
"region:us"
] | null | 2024-05-01T18:37:08+00:00 |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | ikeno-ada/madlad400-3b-mt-Quanto-2bit | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T18:39:08+00:00 |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.00001_withdpo_4iters_bs256_531lr_iter_4
This model is a fine-tuned version of [ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3](https://huggingface.co/ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3) on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3", "model-index": [{"name": "0.00001_withdpo_4iters_bs256_531lr_iter_4", "results": []}]} | ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_4 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:updated",
"dataset:original",
"base_model:ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:39:48+00:00 |
null | null | {"license": "openrail"} | Bertinho24/Yujin | null | [
"license:openrail",
"region:us"
] | null | 2024-05-01T18:40:54+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | abc88767/model32 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:42:57+00:00 |
text-generation | peft | {} | sch-ai/front-title-all-norallmnormistral-7b-warm-Amanda | null | [
"peft",
"tensorboard",
"safetensors",
"text-generation",
"base_model:norallm/normistral-7b-warm",
"region:us"
] | null | 2024-05-01T18:44:07+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** myrulezzzz
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"} | myrulezzzz/llama3_llamaFactory | null | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:44:45+00:00 |
null | null | {} | Yao1627/shortgpt-25-percent-further-lora-1-q2_K | null | [
"gguf",
"region:us"
] | null | 2024-05-01T18:44:51+00:00 |
|
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2623
- Accuracy: 0.7465
## Model description
55 dişi 30 pixel büyük croplandı
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log | 0.9231 | 3 | 0.6891 | 0.5493 |
| No log | 1.8462 | 6 | 0.8674 | 0.4930 |
| No log | 2.7692 | 9 | 0.6711 | 0.5915 |
| 0.753 | 4.0 | 13 | 0.6249 | 0.6197 |
| 0.753 | 4.9231 | 16 | 0.6793 | 0.5775 |
| 0.753 | 5.8462 | 19 | 0.5528 | 0.7465 |
| 0.6323 | 6.7692 | 22 | 0.6201 | 0.6197 |
| 0.6323 | 8.0 | 26 | 0.6397 | 0.6761 |
| 0.6323 | 8.9231 | 29 | 0.5666 | 0.6901 |
| 0.5383 | 9.8462 | 32 | 0.6194 | 0.7183 |
| 0.5383 | 10.7692 | 35 | 0.5351 | 0.7183 |
| 0.5383 | 12.0 | 39 | 0.4823 | 0.7887 |
| 0.5486 | 12.9231 | 42 | 0.7049 | 0.6620 |
| 0.5486 | 13.8462 | 45 | 0.5251 | 0.7465 |
| 0.5486 | 14.7692 | 48 | 0.5594 | 0.7606 |
| 0.4685 | 16.0 | 52 | 0.9009 | 0.6338 |
| 0.4685 | 16.9231 | 55 | 0.5820 | 0.8028 |
| 0.4685 | 17.8462 | 58 | 0.6392 | 0.7324 |
| 0.4436 | 18.7692 | 61 | 0.6104 | 0.6901 |
| 0.4436 | 20.0 | 65 | 0.5907 | 0.7465 |
| 0.4436 | 20.9231 | 68 | 0.6099 | 0.7746 |
| 0.4195 | 21.8462 | 71 | 0.7244 | 0.7183 |
| 0.4195 | 22.7692 | 74 | 0.8852 | 0.6479 |
| 0.4195 | 24.0 | 78 | 0.7331 | 0.7465 |
| 0.3628 | 24.9231 | 81 | 0.6333 | 0.7746 |
| 0.3628 | 25.8462 | 84 | 0.9643 | 0.6620 |
| 0.3628 | 26.7692 | 87 | 0.6534 | 0.7324 |
| 0.352 | 28.0 | 91 | 1.5101 | 0.6197 |
| 0.352 | 28.9231 | 94 | 0.9274 | 0.7042 |
| 0.352 | 29.8462 | 97 | 0.7304 | 0.7465 |
| 0.3561 | 30.7692 | 100 | 1.3176 | 0.6197 |
| 0.3561 | 32.0 | 104 | 0.6449 | 0.7465 |
| 0.3561 | 32.9231 | 107 | 1.0145 | 0.6620 |
| 0.315 | 33.8462 | 110 | 0.7764 | 0.6901 |
| 0.315 | 34.7692 | 113 | 1.0190 | 0.6901 |
| 0.315 | 36.0 | 117 | 0.7332 | 0.7606 |
| 0.264 | 36.9231 | 120 | 0.8076 | 0.7606 |
| 0.264 | 37.8462 | 123 | 1.1015 | 0.6901 |
| 0.264 | 38.7692 | 126 | 1.0194 | 0.6901 |
| 0.2067 | 40.0 | 130 | 0.8318 | 0.7887 |
| 0.2067 | 40.9231 | 133 | 0.8739 | 0.7606 |
| 0.2067 | 41.8462 | 136 | 0.8776 | 0.7746 |
| 0.2067 | 42.7692 | 139 | 0.8354 | 0.7606 |
| 0.2289 | 44.0 | 143 | 1.2781 | 0.6620 |
| 0.2289 | 44.9231 | 146 | 0.9686 | 0.7183 |
| 0.2289 | 45.8462 | 149 | 1.1955 | 0.6901 |
| 0.2034 | 46.7692 | 152 | 1.2282 | 0.6901 |
| 0.2034 | 48.0 | 156 | 1.1087 | 0.7042 |
| 0.2034 | 48.9231 | 159 | 1.2796 | 0.7183 |
| 0.1743 | 49.8462 | 162 | 0.9281 | 0.7606 |
| 0.1743 | 50.7692 | 165 | 0.9575 | 0.7465 |
| 0.1743 | 52.0 | 169 | 1.0668 | 0.7042 |
| 0.193 | 52.9231 | 172 | 0.9671 | 0.8028 |
| 0.193 | 53.8462 | 175 | 1.2764 | 0.6479 |
| 0.193 | 54.7692 | 178 | 1.3111 | 0.6761 |
| 0.1628 | 56.0 | 182 | 1.1932 | 0.6901 |
| 0.1628 | 56.9231 | 185 | 1.9299 | 0.6197 |
| 0.1628 | 57.8462 | 188 | 1.2456 | 0.6761 |
| 0.2067 | 58.7692 | 191 | 1.3794 | 0.6901 |
| 0.2067 | 60.0 | 195 | 1.1626 | 0.7183 |
| 0.2067 | 60.9231 | 198 | 1.0306 | 0.7324 |
| 0.1761 | 61.8462 | 201 | 1.2267 | 0.6901 |
| 0.1761 | 62.7692 | 204 | 1.4236 | 0.6479 |
| 0.1761 | 64.0 | 208 | 1.2046 | 0.7042 |
| 0.1771 | 64.9231 | 211 | 1.1581 | 0.7183 |
| 0.1771 | 65.8462 | 214 | 1.2519 | 0.7042 |
| 0.1771 | 66.7692 | 217 | 0.9807 | 0.7606 |
| 0.1474 | 68.0 | 221 | 1.0221 | 0.7746 |
| 0.1474 | 68.9231 | 224 | 1.3951 | 0.6901 |
| 0.1474 | 69.8462 | 227 | 1.4294 | 0.6761 |
| 0.145 | 70.7692 | 230 | 1.3713 | 0.6761 |
| 0.145 | 72.0 | 234 | 1.4898 | 0.6761 |
| 0.145 | 72.9231 | 237 | 1.7988 | 0.6620 |
| 0.1305 | 73.8462 | 240 | 1.5864 | 0.6620 |
| 0.1305 | 74.7692 | 243 | 1.3643 | 0.6901 |
| 0.1305 | 76.0 | 247 | 1.4033 | 0.6901 |
| 0.1373 | 76.9231 | 250 | 1.5816 | 0.6620 |
| 0.1373 | 77.8462 | 253 | 1.6152 | 0.6761 |
| 0.1373 | 78.7692 | 256 | 1.6678 | 0.6761 |
| 0.142 | 80.0 | 260 | 1.7231 | 0.6901 |
| 0.142 | 80.9231 | 263 | 1.4983 | 0.6901 |
| 0.142 | 81.8462 | 266 | 1.4728 | 0.6901 |
| 0.142 | 82.7692 | 269 | 1.4265 | 0.6901 |
| 0.1225 | 84.0 | 273 | 1.3066 | 0.7183 |
| 0.1225 | 84.9231 | 276 | 1.2789 | 0.7324 |
| 0.1225 | 85.8462 | 279 | 1.2780 | 0.7324 |
| 0.12 | 86.7692 | 282 | 1.2361 | 0.7324 |
| 0.12 | 88.0 | 286 | 1.2396 | 0.7324 |
| 0.12 | 88.9231 | 289 | 1.2637 | 0.7465 |
| 0.1263 | 89.8462 | 292 | 1.2693 | 0.7465 |
| 0.1263 | 90.7692 | 295 | 1.2724 | 0.7465 |
| 0.1263 | 92.0 | 299 | 1.2635 | 0.7465 |
| 0.1027 | 92.3077 | 300 | 1.2623 | 0.7465 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-base-patch16-224", "model-index": [{"name": "beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.7464788732394366, "name": "Accuracy"}]}]}]} | BilalMuftuoglu/beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6 | null | [
"transformers",
"tensorboard",
"safetensors",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/beit-base-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:45:02+00:00 |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Main_Fashion-convnext
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1758
- Accuracy: 0.6381
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.0951 | 0.9630 | 13 | 2.0201 | 0.2251 |
| 1.9821 | 2.0 | 27 | 1.8213 | 0.4037 |
| 1.7245 | 2.9630 | 40 | 1.6774 | 0.4640 |
| 1.6117 | 4.0 | 54 | 1.5480 | 0.5452 |
| 1.5 | 4.9630 | 67 | 1.4506 | 0.5615 |
| 1.3393 | 6.0 | 81 | 1.3610 | 0.5963 |
| 1.2579 | 6.9630 | 94 | 1.2995 | 0.6172 |
| 1.2405 | 8.0 | 108 | 1.2480 | 0.6288 |
| 1.1479 | 8.9630 | 121 | 1.2127 | 0.6357 |
| 1.1005 | 10.0 | 135 | 1.1898 | 0.6381 |
| 1.0989 | 10.9630 | 148 | 1.1778 | 0.6381 |
| 1.0816 | 11.5556 | 156 | 1.1758 | 0.6381 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/convnext-tiny-224", "model-index": [{"name": "Main_Fashion-convnext", "results": []}]} | vlevi/Main_Fashion-convnext | null | [
"transformers",
"tensorboard",
"safetensors",
"convnext",
"image-classification",
"generated_from_trainer",
"base_model:facebook/convnext-tiny-224",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:45:28+00:00 |
null | null | {} | Yao1627/shortgpt-25-percent-further-lora-2-q2_K | null | [
"gguf",
"region:us"
] | null | 2024-05-01T18:45:37+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | ZurabDz/mlm-bpe-tokenizer-ka | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:45:46+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Vexemous/distilgpt2-finetuned-scificorpus-pos | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:46:51+00:00 |
text2text-generation | transformers | {} | samzirbo/mT5.baseline.test.no_safetensors | null | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T18:46:55+00:00 |
|
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the truongpdd/new_dataset_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0135
- Precision: 0.9119
- Recall: 0.9119
- F1: 0.9119
- Accuracy: 0.9963
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0154 | 1.0 | 19381 | 0.0186 | 0.7900 | 0.7900 | 0.7900 | 0.9911 |
| 0.0137 | 2.0 | 38762 | 0.0132 | 0.8603 | 0.8603 | 0.8603 | 0.9941 |
| 0.0121 | 3.0 | 58143 | 0.0125 | 0.8724 | 0.8725 | 0.8725 | 0.9946 |
| 0.0104 | 4.0 | 77524 | 0.0116 | 0.8838 | 0.8838 | 0.8838 | 0.9951 |
| 0.009 | 5.0 | 96905 | 0.0110 | 0.8915 | 0.8915 | 0.8915 | 0.9954 |
| 0.0078 | 6.0 | 116286 | 0.0110 | 0.8981 | 0.8983 | 0.8982 | 0.9957 |
| 0.0075 | 7.0 | 135667 | 0.0114 | 0.9014 | 0.9013 | 0.9014 | 0.9958 |
| 0.0063 | 8.0 | 155048 | 0.0113 | 0.9036 | 0.9036 | 0.9036 | 0.9959 |
| 0.0062 | 9.0 | 174429 | 0.0115 | 0.9052 | 0.9053 | 0.9053 | 0.9960 |
| 0.0053 | 10.0 | 193810 | 0.0116 | 0.9052 | 0.9052 | 0.9052 | 0.9960 |
| 0.0047 | 11.0 | 213191 | 0.0122 | 0.9085 | 0.9086 | 0.9085 | 0.9961 |
| 0.0041 | 12.0 | 232572 | 0.0124 | 0.9098 | 0.9098 | 0.9098 | 0.9962 |
| 0.0037 | 13.0 | 251953 | 0.0130 | 0.9117 | 0.9117 | 0.9117 | 0.9963 |
| 0.0036 | 14.0 | 271334 | 0.0135 | 0.9103 | 0.9103 | 0.9103 | 0.9962 |
| 0.0034 | 15.0 | 290715 | 0.0135 | 0.9119 | 0.9119 | 0.9119 | 0.9963 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["truongpdd/new_dataset_v2"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "microsoft/deberta-v3-base", "model-index": [{"name": "output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "truongpdd/new_dataset_v2", "type": "truongpdd/new_dataset_v2"}, "metrics": [{"type": "precision", "value": 0.9119287924126388, "name": "Precision"}, {"type": "recall", "value": 0.9119287924126388, "name": "Recall"}, {"type": "f1", "value": 0.9119287924126388, "name": "F1"}, {"type": "accuracy", "value": 0.9962801049882261, "name": "Accuracy"}]}]}]} | truongpdd/output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs | null | [
"transformers",
"safetensors",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"dataset:truongpdd/new_dataset_v2",
"base_model:microsoft/deberta-v3-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:47:07+00:00 |
null | null | {} | sreddy109/large-v0-50 | null | [
"region:us"
] | null | 2024-05-01T18:48:29+00:00 |
|
text-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | sreddy109/large-v0-100 | null | [
"transformers",
"safetensors",
"xlm-roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:49:06+00:00 |
null | null | {} | LububInbracIA/Dom_Antonio_Maria_Mucciolo_1995 | null | [
"region:us"
] | null | 2024-05-01T18:49:10+00:00 |
|
text-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | sreddy109/large-v0-150 | null | [
"transformers",
"safetensors",
"xlm-roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:49:58+00:00 |
fill-mask | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | AmalNlal/testing2 | null | [
"transformers",
"safetensors",
"roberta",
"fill-mask",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T18:50:29+00:00 |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | ikeno-ada/madlad400-3b-mt-Quanto-4bit | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T18:50:37+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llamaft6v2 - bnb 4bits
- Model creator: https://huggingface.co/Aspik101/
- Original model: https://huggingface.co/Aspik101/llamaft6v2/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {} | RichardErkhov/Aspik101_-_llamaft6v2-4bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T18:50:39+00:00 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.