Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
transformers
# Uploaded model - **Developed by:** jimdaro - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
jimdaro/llama3_lora_model
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T17:57:32+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
jimdaro/llama3lora_model
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T17:57:42+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Bachhoang/peft-continual-pretraining-bkai
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T17:57:44+00:00
null
transformers
# Uploaded model - **Developed by:** tingting - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
tingting/mistral7b_lora_model_balanced_Data_80
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T17:58:05+00:00
null
null
{}
dennisheraldi/b-ise-22-7b
null
[ "safetensors", "region:us" ]
null
2024-05-01T17:58:11+00:00
null
null
{}
AnanyaA/therapease
null
[ "region:us" ]
null
2024-05-01T17:58:16+00:00
null
transformers
# Uploaded model - **Developed by:** tingting - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
tingting/mistral7b_lora_model_balanced_Data_100
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T17:58:24+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
terry69/llama3-poison-20p-full
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T17:58:27+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-1 - bnb 4bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-1/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-1-4bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-01T17:58:35+00:00
null
transformers
{}
baseten/medusa-vicuna-0.10.0.dev2024043000
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2024-05-01T17:59:26+00:00
null
null
{}
EClymk/distilhubert-finetuned-contact-audio
null
[ "region:us" ]
null
2024-05-01T18:00:39+00:00
text2text-generation
transformers
{}
samzirbo/mT5.baseline.test
null
[ "transformers", "safetensors", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:00:47+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-1 - bnb 8bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-1/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-1-8bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-01T18:00:47+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-2 - bnb 4bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-2/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-2-4bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-01T18:02:44+00:00
null
null
{}
dennisheraldi/b-ise-22-13b
null
[ "safetensors", "region:us" ]
null
2024-05-01T18:04:08+00:00
null
transformers
# Uploaded model - **Developed by:** tingting - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
tingting/mistral7b_lora_model_balanced_Data_160
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:04:30+00:00
text-classification
transformers
{}
muzammil-eds/xlm-roberta-base-slovak-v2
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:04:36+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-2 - bnb 8bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-2/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-2-8bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-01T18:04:53+00:00
null
transformers
# Uploaded model - **Developed by:** tingting - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
tingting/mistral7b_lora_model_balanced_Data_200
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:05:29+00:00
text-generation
transformers
Model Card for Model ID Model Details Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. Developed by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Model type: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed] Finetuned from model [optional]: [More Information Needed] Model Sources [optional] Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed] Uses Direct Use [More Information Needed] Downstream Use [optional] [More Information Needed] Out-of-Scope Use [More Information Needed] Bias, Risks, and Limitations [More Information Needed] Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] Training Details Training Data [More Information Needed] Training Procedure Preprocessing [optional] [More Information Needed] Training Hyperparameters Training regime: [More Information Needed] Speeds, Sizes, Times [optional] [More Information Needed] Evaluation Testing Data, Factors & Metrics Testing Data [More Information Needed] Factors [More Information Needed] Metrics [More Information Needed] Results [More Information Needed] Summary Model Examination [optional] [More Information Needed] Environmental Impact
{"license": "apache-2.0"}
Jayant9928/orpo_med_v3
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:05:57+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-brain-xray This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the sartajbhuvaji/Brain-Tumor-Classification dataset. It achieves the following results on the evaluation set: - Loss: 0.9050 - Accuracy: 0.7741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.352 | 0.5556 | 100 | 1.2267 | 0.6294 | | 0.1612 | 1.1111 | 200 | 1.0895 | 0.7538 | | 0.0473 | 1.6667 | 300 | 0.9050 | 0.7741 | | 0.0525 | 2.2222 | 400 | 1.0663 | 0.7690 | | 0.0123 | 2.7778 | 500 | 1.2450 | 0.7462 | | 0.0066 | 3.3333 | 600 | 1.1283 | 0.7817 | | 0.0126 | 3.8889 | 700 | 1.1717 | 0.7843 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "google/vit-large-patch32-224-in21k", "model-index": [{"name": "vit-large-brain-xray", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "sartajbhuvaji/Brain-Tumor-Classification", "type": "imagefolder", "config": "default", "split": "Testing", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.7741116751269036, "name": "Accuracy"}]}]}]}
abdulelahagr/vit-large-brain-xray
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-large-patch32-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:06:07+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-3 - bnb 4bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-3/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-3-4bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-01T18:06:11+00:00
text2text-generation
transformers
{}
StevenSteel7/bart-base-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:06:12+00:00
null
transformers
# Uploaded model - **Developed by:** jimdaro - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
jimdaro/llama3
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:06:49+00:00
null
null
{}
ThuyNT/CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h2
null
[ "region:us" ]
null
2024-05-01T18:06:55+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h0 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h0", "results": []}]}
ThuyNT/CS505_COQE_viT5_total_Instruction0_ASOPL_v1_h0
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:07:16+00:00
null
transformers
# Uploaded model - **Developed by:** HadjYahia - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-7b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "unsloth/gemma-7b-bnb-4bit"}
HadjYahia/lora_model
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:07:37+00:00
null
null
{}
ttc0000/mistral_Progressive_Home_text_lora_r64_a128_info_extract_1200
null
[ "safetensors", "region:us" ]
null
2024-05-01T18:07:53+00:00
null
transformers
# Uploaded model - **Developed by:** chillies - **License:** apache-2.0 - **Finetuned from model :** unsloth/OpenHermes-2.5-Mistral-7B-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/OpenHermes-2.5-Mistral-7B-bnb-4bit"}
chillies/mistral-7b-vn-vi-alpaca
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/OpenHermes-2.5-Mistral-7B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:08:10+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-3 - bnb 8bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-3/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-3-8bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-01T18:08:21+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final_model-3 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4774 | 0.0 | 1 | 2.3519 | | 2.3907 | 0.01 | 2 | 2.2619 | | 2.2831 | 0.01 | 3 | 2.1934 | | 2.3523 | 0.02 | 4 | 2.1535 | | 2.2008 | 0.02 | 5 | 2.1415 | | 2.398 | 0.02 | 6 | 2.1336 | | 2.0323 | 0.03 | 7 | 2.1223 | | 1.9787 | 0.03 | 8 | 2.1102 | | 2.2163 | 0.04 | 9 | 2.1011 | | 2.4075 | 0.04 | 10 | 2.0942 | | 2.0822 | 0.04 | 11 | 2.0878 | | 2.3128 | 0.05 | 12 | 2.0823 | | 1.9674 | 0.05 | 13 | 2.0775 | | 2.0991 | 0.06 | 14 | 2.0739 | | 2.1918 | 0.06 | 15 | 2.0707 | | 2.0037 | 0.06 | 16 | 2.0684 | | 2.0398 | 0.07 | 17 | 2.0669 | | 2.1113 | 0.07 | 18 | 2.0661 | | 1.9206 | 0.08 | 19 | 2.0657 | | 1.6649 | 0.08 | 20 | 2.0656 | ### Framework versions - PEFT 0.4.0 - Transformers 4.37.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "final_model-3", "results": []}]}
hussamsal/final_model-3
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-05-01T18:08:27+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
hideax/OrpoLlama-3-8B
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:09:12+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-0 - bnb 4bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-0/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-0-4bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-01T18:10:17+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h0 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h0", "results": []}]}
ThuyNT/CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h0
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:10:55+00:00
sentence-similarity
sentence-transformers
# pjbhaumik/biencoder-finetune-model-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('pjbhaumik/biencoder-finetune-model-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('pjbhaumik/biencoder-finetune-model-v3') model = AutoModel.from_pretrained('pjbhaumik/biencoder-finetune-model-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=pjbhaumik/biencoder-finetune-model-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 469 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesSymmetricRankingLoss.MultipleNegativesSymmetricRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 12, "evaluation_steps": 100, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
pjbhaumik/biencoder-finetune-model-v3
null
[ "sentence-transformers", "safetensors", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:11:06+00:00
null
null
{"license": "mit"}
messlab/llm_ctf_assets
null
[ "license:mit", "region:us" ]
null
2024-05-01T18:11:41+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) nous-0 - bnb 8bits - Model creator: https://huggingface.co/kalytm/ - Original model: https://huggingface.co/kalytm/nous-0/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/kalytm_-_nous-0-8bits
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-01T18:12:27+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
lunarsylph/mooncell_v44
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:13:05+00:00
null
null
{}
ttc0000/mistral_Progressive_Homesite_text_lora_r64_a128_info_extract_1200
null
[ "safetensors", "region:us" ]
null
2024-05-01T18:14:05+00:00
null
null
{}
AmalNlal/BERT-MLM
null
[ "region:us" ]
null
2024-05-01T18:16:28+00:00
null
null
{}
Bobermikola/sn25-2-1
null
[ "region:us" ]
null
2024-05-01T18:18:06+00:00
null
null
{}
minhquy1624/model-incontext-learning-v1
null
[ "safetensors", "region:us" ]
null
2024-05-01T18:18:06+00:00
text-generation
mlx
# ahmetkca/Phi-3-mini-4k-instruct-mlx This model was converted to MLX format from [`microsoft/Phi-3-mini-4k-instruct`]() using mlx-lm version **0.12.1**. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ahmetkca/Phi-3-mini-4k-instruct-mlx") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "mit", "tags": ["nlp", "code", "mlx"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]}
ahmetkca/Phi-3-mini-4k-instruct-mlx
null
[ "mlx", "safetensors", "phi3", "nlp", "code", "text-generation", "conversational", "custom_code", "en", "license:mit", "region:us" ]
null
2024-05-01T18:18:31+00:00
null
null
# int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF This model was converted to GGUF format from [`mzbac/llama-3-8B-Instruct-function-calling-v0.2`](https://huggingface.co/mzbac/llama-3-8B-Instruct-function-calling-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mzbac/llama-3-8B-Instruct-function-calling-v0.2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF --model llama-3-8b-instruct-function-calling-v0.2.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF --model llama-3-8b-instruct-function-calling-v0.2.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-8b-instruct-function-calling-v0.2.Q6_K.gguf -n 128 ```
{"language": ["en"], "license": "llama3", "tags": ["llama-cpp", "gguf-my-repo"], "datasets": ["mzbac/function-calling-llama-3-format-v1.1"]}
int2eh/llama-3-8B-Instruct-function-calling-v0.2-Q6_K-GGUF
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:mzbac/function-calling-llama-3-format-v1.1", "license:llama3", "region:us" ]
null
2024-05-01T18:18:31+00:00
null
null
{"license": "mit"}
monjoychoudhury29/gpt2PPO
null
[ "safetensors", "license:mit", "region:us" ]
null
2024-05-01T18:19:10+00:00
text-generation
transformers
# flammenai/flammen22X-mistral-7B AWQ - Model creator: [flammenai](https://huggingface.co/flammenai) - Original model: [flammen22X-mistral-7B](https://huggingface.co/flammenai/flammen22X-mistral-7B) ![image/png](https://huggingface.co/nbeerbower/flammen13X-mistral-7B/resolve/main/flammen13x.png) ## Model Summary This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [nbeerbower/flammen22C-mistral-7B](https://huggingface.co/nbeerbower/flammen22C-mistral-7B) as a base. ### Models Merged The following models were included in the merge: * [KatyTheCutie/LemonadeRP-4.5.3](https://huggingface.co/KatyTheCutie/LemonadeRP-4.5.3) * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) * [ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2](https://huggingface.co/ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2) * [flammenai/flammen18X-mistral-7B](https://huggingface.co/flammenai/flammen18X-mistral-7B) ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/flammen22X-mistral-7B-AWQ" system_message = "You are flammen22X-mistral-7B, incarnated as a powerful AI. You were created by flammenai." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
{"license": "apache-2.0", "library_name": "transformers", "tags": ["mergekit", "merge", "4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible"], "base_model": ["nbeerbower/flammen22C-mistral-7B", "KatyTheCutie/LemonadeRP-4.5.3", "SanjiWatsuki/Kunoichi-DPO-v2-7B", "ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2", "flammenai/flammen18X-mistral-7B"], "pipeline_tag": "text-generation", "inference": false, "quantized_by": "Suparious"}
solidrust/flammen22X-mistral-7B-AWQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "arxiv:2403.19522", "base_model:nbeerbower/flammen22C-mistral-7B", "base_model:KatyTheCutie/LemonadeRP-4.5.3", "base_model:SanjiWatsuki/Kunoichi-DPO-v2-7B", "base_model:ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2", "base_model:flammenai/flammen18X-mistral-7B", "license:apache-2.0", "text-generation-inference", "region:us" ]
null
2024-05-01T18:20:05+00:00
fill-mask
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
AmalNlal/Aryman_test
null
[ "transformers", "roberta", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:20:44+00:00
text-to-audio
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zlm-ceb_b64_le5_s8000 This model is a fine-tuned version of [mikhail-panzo/zlm_b64_le4_s12000](https://huggingface.co/mikhail-panzo/zlm_b64_le4_s12000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 0.4626 | 19.6078 | 500 | 0.4263 | | 0.4288 | 39.2157 | 1000 | 0.4077 | | 0.4109 | 58.8235 | 1500 | 0.4013 | | 0.3978 | 78.4314 | 2000 | 0.4035 | | 0.3898 | 98.0392 | 2500 | 0.4013 | | 0.373 | 117.6471 | 3000 | 0.4010 | | 0.3644 | 137.2549 | 3500 | 0.4005 | | 0.3569 | 156.8627 | 4000 | 0.4029 | | 0.3515 | 176.4706 | 4500 | 0.4039 | | 0.3443 | 196.0784 | 5000 | 0.4005 | | 0.3469 | 215.6863 | 5500 | 0.4018 | | 0.3427 | 235.2941 | 6000 | 0.4001 | | 0.3401 | 254.9020 | 6500 | 0.4042 | | 0.3419 | 274.5098 | 7000 | 0.4054 | | 0.3318 | 294.1176 | 7500 | 0.4057 | | 0.3312 | 313.7255 | 8000 | 0.4051 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "mikhail-panzo/zlm_b64_le4_s12000", "model-index": [{"name": "zlm-ceb_b64_le5_s8000", "results": []}]}
mikhail-panzo/zlm-ceb_b64_le4_s8000
null
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:mikhail-panzo/zlm_b64_le4_s12000", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:21:52+00:00
null
transformers
{}
Rasi1610/Deathce502_series1_n3
null
[ "transformers", "pytorch", "vision-encoder-decoder", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:21:59+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Vikhr-7B-instruct_0.4 - bnb 4bits - Model creator: https://huggingface.co/Vikhrmodels/ - Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/ Original model description: --- library_name: transformers tags: [] --- # Релиз вихря 0.3-0.4 Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели [collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it", device_map="auto", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it") from transformers import AutoTokenizer, pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompts = [ "В чем разница между фруктом и овощем?", "Годы жизни колмагорова?"] def test_inference(prompt): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) print(prompt) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) return outputs[0]['generated_text'][len(prompt):].strip() for prompt in prompts: print(f" prompt:\n{prompt}") print(f" response:\n{test_inference(prompt)}") print("-"*50) ```
{}
RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T18:22:13+00:00
null
null
{}
SuratanBoonpong/openthai-llama-pretrained-7B
null
[ "region:us" ]
null
2024-05-01T18:22:17+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
monjoychoudhury29/gpt2PPO200
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:22:32+00:00
text-generation
transformers
{}
nelson-pawait/checkpoints
null
[ "transformers", "tensorboard", "safetensors", "whisper", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:22:54+00:00
sentence-similarity
sentence-transformers
# Kyurem This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [TaylorAI/bge-micro](https://huggingface.co/TaylorAI/bge-micro) as a base. ### Models Merged The following models were included in the merge: * [Mihaiii/Wartortle](https://huggingface.co/Mihaiii/Wartortle) * [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Mihaiii/Wartortle - model: TaylorAI/bge-micro-v2 - model: TaylorAI/bge-micro merge_method: model_stock base_model: TaylorAI/bge-micro ```
{"license": "mit", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "bge", "mteb", "mergekit", "merge"], "pipeline_tag": "sentence-similarity", "base_model": ["Mihaiii/Wartortle", "TaylorAI/bge-micro-v2", "TaylorAI/bge-micro"], "model-index": [{"name": "Kyurem", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 66.83582089552239}, {"type": "ap", "value": 29.376874523513568}, {"type": "f1", "value": 60.66923695285069}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 70.484925}, {"type": "ap", "value": 64.8627321394567}, {"type": "f1", "value": 70.2682474297364}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 33.652}, {"type": "f1", "value": 33.48200260424572}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 22.404}, {"type": "map_at_10", "value": 36.144999999999996}, {"type": "map_at_100", "value": 37.309}, {"type": "map_at_1000", "value": 37.333}, {"type": "map_at_20", "value": 37.0}, {"type": "map_at_3", "value": 31.105}, {"type": "map_at_5", "value": 34.149}, {"type": "mrr_at_1", "value": 23.186}, {"type": "mrr_at_10", "value": 36.439}, {"type": "mrr_at_100", "value": 37.617}, {"type": "mrr_at_1000", "value": 37.641000000000005}, {"type": "mrr_at_20", "value": 37.308}, {"type": "mrr_at_3", "value": 31.52}, {"type": "mrr_at_5", "value": 34.486}, {"type": "ndcg_at_1", "value": 22.404}, {"type": "ndcg_at_10", "value": 44.346000000000004}, {"type": "ndcg_at_100", "value": 49.594}, {"type": "ndcg_at_1000", "value": 50.183}, {"type": "ndcg_at_20", "value": 47.435}, {"type": "ndcg_at_3", "value": 34.032000000000004}, {"type": "ndcg_at_5", "value": 39.513999999999996}, {"type": "precision_at_1", "value": 22.404}, {"type": "precision_at_10", "value": 7.077}, {"type": "precision_at_100", "value": 0.9440000000000001}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_20", "value": 4.147}, {"type": "precision_at_3", "value": 14.177000000000001}, {"type": "precision_at_5", "value": 11.166}, {"type": "recall_at_1", "value": 22.404}, {"type": "recall_at_10", "value": 70.768}, {"type": "recall_at_100", "value": 94.381}, {"type": "recall_at_1000", "value": 98.933}, {"type": "recall_at_20", "value": 82.93}, {"type": "recall_at_3", "value": 42.532}, {"type": "recall_at_5", "value": 55.832}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 41.21099868792524}, {"type": "v_measures", "value": [0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 30.197465353915163}, {"type": "v_measures", "value": [0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 56.482918023354756}, {"type": "mrr", "value": 71.40625687024578}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.45457865102485}, {"type": "cos_sim_spearman", "value": 80.93979607539022}, {"type": "euclidean_pearson", "value": 80.32159015984955}, {"type": "euclidean_spearman", "value": 80.43857983556106}, {"type": "manhattan_pearson", "value": 79.92848954545586}, {"type": "manhattan_spearman", "value": 80.13375361278035}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 78.03896103896105}, {"type": "f1", "value": 77.95281857082068}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 35.6206528975171}, {"type": "v_measures", "value": [0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 25.403397653930277}, {"type": "v_measures", "value": [0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105]}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 21.698999999999998}, {"type": "map_at_10", "value": 28.98}, {"type": "map_at_100", "value": 30.364}, {"type": "map_at_1000", "value": 30.516}, {"type": "map_at_20", "value": 29.681}, {"type": "map_at_3", "value": 26.418000000000003}, {"type": "map_at_5", "value": 27.590999999999998}, {"type": "mrr_at_1", "value": 27.325}, {"type": "mrr_at_10", "value": 34.595}, {"type": "mrr_at_100", "value": 35.63}, {"type": "mrr_at_1000", "value": 35.705}, {"type": "mrr_at_20", "value": 35.199000000000005}, {"type": "mrr_at_3", "value": 32.403}, {"type": "mrr_at_5", "value": 33.605000000000004}, {"type": "ndcg_at_1", "value": 27.325}, {"type": "ndcg_at_10", "value": 34.005}, {"type": "ndcg_at_100", "value": 40.031}, {"type": "ndcg_at_1000", "value": 42.962}, {"type": "ndcg_at_20", "value": 36.095}, {"type": "ndcg_at_3", "value": 30.081999999999997}, {"type": "ndcg_at_5", "value": 31.447999999999997}, {"type": "precision_at_1", "value": 27.325}, {"type": "precision_at_10", "value": 6.552}, {"type": "precision_at_100", "value": 1.22}, {"type": "precision_at_1000", "value": 0.17500000000000002}, {"type": "precision_at_20", "value": 4.041}, {"type": "precision_at_3", "value": 14.496999999999998}, {"type": "precision_at_5", "value": 10.242999999999999}, {"type": "recall_at_1", "value": 21.698999999999998}, {"type": "recall_at_10", "value": 43.295}, {"type": "recall_at_100", "value": 69.304}, {"type": "recall_at_1000", "value": 89.241}, {"type": "recall_at_20", "value": 50.856}, {"type": "recall_at_3", "value": 31.230000000000004}, {"type": "recall_at_5", "value": 35.587999999999994}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 14.81}, {"type": "map_at_10", "value": 19.692999999999998}, {"type": "map_at_100", "value": 20.535}, {"type": "map_at_1000", "value": 20.643}, {"type": "map_at_20", "value": 20.097}, {"type": "map_at_3", "value": 18.157}, {"type": "map_at_5", "value": 19.006999999999998}, {"type": "mrr_at_1", "value": 17.898}, {"type": "mrr_at_10", "value": 22.719}, {"type": "mrr_at_100", "value": 23.473}, {"type": "mrr_at_1000", "value": 23.547}, {"type": "mrr_at_20", "value": 23.111}, {"type": "mrr_at_3", "value": 21.189}, {"type": "mrr_at_5", "value": 21.934}, {"type": "ndcg_at_1", "value": 17.898}, {"type": "ndcg_at_10", "value": 22.817999999999998}, {"type": "ndcg_at_100", "value": 26.998}, {"type": "ndcg_at_1000", "value": 29.698}, {"type": "ndcg_at_20", "value": 24.123}, {"type": "ndcg_at_3", "value": 20.115}, {"type": "ndcg_at_5", "value": 21.288999999999998}, {"type": "precision_at_1", "value": 17.898}, {"type": "precision_at_10", "value": 4.159}, {"type": "precision_at_100", "value": 0.769}, {"type": "precision_at_1000", "value": 0.123}, {"type": "precision_at_20", "value": 2.506}, {"type": "precision_at_3", "value": 9.406}, {"type": "precision_at_5", "value": 6.688}, {"type": "recall_at_1", "value": 14.81}, {"type": "recall_at_10", "value": 29.049000000000003}, {"type": "recall_at_100", "value": 47.699999999999996}, {"type": "recall_at_1000", "value": 66.43599999999999}, {"type": "recall_at_20", "value": 33.812}, {"type": "recall_at_3", "value": 21.435000000000002}, {"type": "recall_at_5", "value": 24.573999999999998}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 25.629}, {"type": "map_at_10", "value": 35.592}, {"type": "map_at_100", "value": 36.663000000000004}, {"type": "map_at_1000", "value": 36.746}, {"type": "map_at_20", "value": 36.15}, {"type": "map_at_3", "value": 32.903}, {"type": "map_at_5", "value": 34.448}, {"type": "mrr_at_1", "value": 29.404000000000003}, {"type": "mrr_at_10", "value": 38.423}, {"type": "mrr_at_100", "value": 39.283}, {"type": "mrr_at_1000", "value": 39.334}, {"type": "mrr_at_20", "value": 38.895}, {"type": "mrr_at_3", "value": 36.134}, {"type": "mrr_at_5", "value": 37.441}, {"type": "ndcg_at_1", "value": 29.404000000000003}, {"type": "ndcg_at_10", "value": 40.814}, {"type": "ndcg_at_100", "value": 45.800999999999995}, {"type": "ndcg_at_1000", "value": 47.721999999999994}, {"type": "ndcg_at_20", "value": 42.576}, {"type": "ndcg_at_3", "value": 35.931999999999995}, {"type": "ndcg_at_5", "value": 38.305}, {"type": "precision_at_1", "value": 29.404000000000003}, {"type": "precision_at_10", "value": 6.802999999999999}, {"type": "precision_at_100", "value": 1.023}, {"type": "precision_at_1000", "value": 0.125}, {"type": "precision_at_20", "value": 3.9059999999999997}, {"type": "precision_at_3", "value": 16.343}, {"type": "precision_at_5", "value": 11.472999999999999}, {"type": "recall_at_1", "value": 25.629}, {"type": "recall_at_10", "value": 53.672}, {"type": "recall_at_100", "value": 76.322}, {"type": "recall_at_1000", "value": 90.231}, {"type": "recall_at_20", "value": 60.19}, {"type": "recall_at_3", "value": 40.454}, {"type": "recall_at_5", "value": 46.237}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 15.157000000000002}, {"type": "map_at_10", "value": 21.04}, {"type": "map_at_100", "value": 21.94}, {"type": "map_at_1000", "value": 22.048000000000002}, {"type": "map_at_20", "value": 21.497}, {"type": "map_at_3", "value": 19.082}, {"type": "map_at_5", "value": 20.252}, {"type": "mrr_at_1", "value": 16.723}, {"type": "mrr_at_10", "value": 22.637999999999998}, {"type": "mrr_at_100", "value": 23.51}, {"type": "mrr_at_1000", "value": 23.602}, {"type": "mrr_at_20", "value": 23.086000000000002}, {"type": "mrr_at_3", "value": 20.716}, {"type": "mrr_at_5", "value": 21.863}, {"type": "ndcg_at_1", "value": 16.723}, {"type": "ndcg_at_10", "value": 24.684}, {"type": "ndcg_at_100", "value": 29.397000000000002}, {"type": "ndcg_at_1000", "value": 32.545}, {"type": "ndcg_at_20", "value": 26.299}, {"type": "ndcg_at_3", "value": 20.809}, {"type": "ndcg_at_5", "value": 22.830000000000002}, {"type": "precision_at_1", "value": 16.723}, {"type": "precision_at_10", "value": 3.932}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_20", "value": 2.339}, {"type": "precision_at_3", "value": 8.964}, {"type": "precision_at_5", "value": 6.531000000000001}, {"type": "recall_at_1", "value": 15.157000000000002}, {"type": "recall_at_10", "value": 34.552}, {"type": "recall_at_100", "value": 56.629}, {"type": "recall_at_1000", "value": 80.962}, {"type": "recall_at_20", "value": 40.626}, {"type": "recall_at_3", "value": 24.012}, {"type": "recall_at_5", "value": 28.888}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 10.983}, {"type": "map_at_10", "value": 16.149}, {"type": "map_at_100", "value": 17.321}, {"type": "map_at_1000", "value": 17.432}, {"type": "map_at_20", "value": 16.742}, {"type": "map_at_3", "value": 14.524999999999999}, {"type": "map_at_5", "value": 15.357000000000001}, {"type": "mrr_at_1", "value": 13.433}, {"type": "mrr_at_10", "value": 19.508}, {"type": "mrr_at_100", "value": 20.559}, {"type": "mrr_at_1000", "value": 20.64}, {"type": "mrr_at_20", "value": 20.078}, {"type": "mrr_at_3", "value": 17.848}, {"type": "mrr_at_5", "value": 18.657}, {"type": "ndcg_at_1", "value": 13.433}, {"type": "ndcg_at_10", "value": 19.719}, {"type": "ndcg_at_100", "value": 25.689}, {"type": "ndcg_at_1000", "value": 28.907}, {"type": "ndcg_at_20", "value": 21.816}, {"type": "ndcg_at_3", "value": 16.659}, {"type": "ndcg_at_5", "value": 17.877000000000002}, {"type": "precision_at_1", "value": 13.433}, {"type": "precision_at_10", "value": 3.794}, {"type": "precision_at_100", "value": 0.7849999999999999}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_20", "value": 2.456}, {"type": "precision_at_3", "value": 8.126}, {"type": "precision_at_5", "value": 5.821}, {"type": "recall_at_1", "value": 10.983}, {"type": "recall_at_10", "value": 27.284000000000002}, {"type": "recall_at_100", "value": 54.167}, {"type": "recall_at_1000", "value": 78.131}, {"type": "recall_at_20", "value": 35.012}, {"type": "recall_at_3", "value": 18.557000000000002}, {"type": "recall_at_5", "value": 21.753}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 19.062}, {"type": "map_at_10", "value": 26.586}, {"type": "map_at_100", "value": 27.767999999999997}, {"type": "map_at_1000", "value": 27.904}, {"type": "map_at_20", "value": 27.162999999999997}, {"type": "map_at_3", "value": 23.751}, {"type": "map_at_5", "value": 25.320999999999998}, {"type": "mrr_at_1", "value": 23.388}, {"type": "mrr_at_10", "value": 31.291999999999998}, {"type": "mrr_at_100", "value": 32.196000000000005}, {"type": "mrr_at_1000", "value": 32.269999999999996}, {"type": "mrr_at_20", "value": 31.752000000000002}, {"type": "mrr_at_3", "value": 28.681}, {"type": "mrr_at_5", "value": 30.168}, {"type": "ndcg_at_1", "value": 23.388}, {"type": "ndcg_at_10", "value": 31.741999999999997}, {"type": "ndcg_at_100", "value": 37.279}, {"type": "ndcg_at_1000", "value": 40.199}, {"type": "ndcg_at_20", "value": 33.566}, {"type": "ndcg_at_3", "value": 26.858999999999998}, {"type": "ndcg_at_5", "value": 29.165000000000003}, {"type": "precision_at_1", "value": 23.388}, {"type": "precision_at_10", "value": 6.0249999999999995}, {"type": "precision_at_100", "value": 1.056}, {"type": "precision_at_1000", "value": 0.151}, {"type": "precision_at_20", "value": 3.614}, {"type": "precision_at_3", "value": 12.737000000000002}, {"type": "precision_at_5", "value": 9.471}, {"type": "recall_at_1", "value": 19.062}, {"type": "recall_at_10", "value": 42.549}, {"type": "recall_at_100", "value": 66.708}, {"type": "recall_at_1000", "value": 86.7}, {"type": "recall_at_20", "value": 48.991}, {"type": "recall_at_3", "value": 29.024}, {"type": "recall_at_5", "value": 34.885}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 13.578000000000001}, {"type": "map_at_10", "value": 19.436}, {"type": "map_at_100", "value": 20.51}, {"type": "map_at_1000", "value": 20.654}, {"type": "map_at_20", "value": 19.948}, {"type": "map_at_3", "value": 17.293}, {"type": "map_at_5", "value": 18.166}, {"type": "mrr_at_1", "value": 16.21}, {"type": "mrr_at_10", "value": 22.668}, {"type": "mrr_at_100", "value": 23.572000000000003}, {"type": "mrr_at_1000", "value": 23.666}, {"type": "mrr_at_20", "value": 23.095}, {"type": "mrr_at_3", "value": 20.491}, {"type": "mrr_at_5", "value": 21.444}, {"type": "ndcg_at_1", "value": 16.21}, {"type": "ndcg_at_10", "value": 23.648}, {"type": "ndcg_at_100", "value": 29.029}, {"type": "ndcg_at_1000", "value": 32.550000000000004}, {"type": "ndcg_at_20", "value": 25.28}, {"type": "ndcg_at_3", "value": 19.515}, {"type": "ndcg_at_5", "value": 20.821}, {"type": "precision_at_1", "value": 16.21}, {"type": "precision_at_10", "value": 4.566}, {"type": "precision_at_100", "value": 0.873}, {"type": "precision_at_1000", "value": 0.135}, {"type": "precision_at_20", "value": 2.791}, {"type": "precision_at_3", "value": 9.399000000000001}, {"type": "precision_at_5", "value": 6.758}, {"type": "recall_at_1", "value": 13.578000000000001}, {"type": "recall_at_10", "value": 33.276}, {"type": "recall_at_100", "value": 57.316}, {"type": "recall_at_1000", "value": 82.33500000000001}, {"type": "recall_at_20", "value": 38.95}, {"type": "recall_at_3", "value": 21.467}, {"type": "recall_at_5", "value": 24.939}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 15.536166666666668}, {"type": "map_at_10", "value": 21.584333333333337}, {"type": "map_at_100", "value": 22.610750000000003}, {"type": "map_at_1000", "value": 22.732083333333335}, {"type": "map_at_20", "value": 22.088166666666666}, {"type": "map_at_3", "value": 19.561583333333328}, {"type": "map_at_5", "value": 20.634666666666668}, {"type": "mrr_at_1", "value": 18.388583333333333}, {"type": "mrr_at_10", "value": 24.63783333333333}, {"type": "mrr_at_100", "value": 25.53608333333333}, {"type": "mrr_at_1000", "value": 25.61658333333333}, {"type": "mrr_at_20", "value": 25.101000000000003}, {"type": "mrr_at_3", "value": 22.641583333333333}, {"type": "mrr_at_5", "value": 23.715083333333336}, {"type": "ndcg_at_1", "value": 18.388583333333333}, {"type": "ndcg_at_10", "value": 25.564000000000004}, {"type": "ndcg_at_100", "value": 30.654500000000002}, {"type": "ndcg_at_1000", "value": 33.64308333333334}, {"type": "ndcg_at_20", "value": 27.234}, {"type": "ndcg_at_3", "value": 21.81491666666667}, {"type": "ndcg_at_5", "value": 23.46691666666667}, {"type": "precision_at_1", "value": 18.388583333333333}, {"type": "precision_at_10", "value": 4.581499999999999}, {"type": "precision_at_100", "value": 0.8400833333333335}, {"type": "precision_at_1000", "value": 0.12791666666666665}, {"type": "precision_at_20", "value": 2.7849166666666663}, {"type": "precision_at_3", "value": 10.077333333333334}, {"type": "precision_at_5", "value": 7.273250000000001}, {"type": "recall_at_1", "value": 15.536166666666668}, {"type": "recall_at_10", "value": 34.61533333333334}, {"type": "recall_at_100", "value": 57.71308333333332}, {"type": "recall_at_1000", "value": 79.32074999999999}, {"type": "recall_at_20", "value": 40.750416666666666}, {"type": "recall_at_3", "value": 24.079333333333334}, {"type": "recall_at_5", "value": 28.31308333333333}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 14.603}, {"type": "map_at_10", "value": 20.063}, {"type": "map_at_100", "value": 20.966}, {"type": "map_at_1000", "value": 21.060000000000002}, {"type": "map_at_20", "value": 20.531}, {"type": "map_at_3", "value": 18.448}, {"type": "map_at_5", "value": 19.484}, {"type": "mrr_at_1", "value": 16.258}, {"type": "mrr_at_10", "value": 22.21}, {"type": "mrr_at_100", "value": 23.066}, {"type": "mrr_at_1000", "value": 23.142}, {"type": "mrr_at_20", "value": 22.631999999999998}, {"type": "mrr_at_3", "value": 20.602999999999998}, {"type": "mrr_at_5", "value": 21.593}, {"type": "ndcg_at_1", "value": 16.258}, {"type": "ndcg_at_10", "value": 23.396}, {"type": "ndcg_at_100", "value": 28.023999999999997}, {"type": "ndcg_at_1000", "value": 30.681000000000004}, {"type": "ndcg_at_20", "value": 24.971}, {"type": "ndcg_at_3", "value": 20.352}, {"type": "ndcg_at_5", "value": 22.036}, {"type": "precision_at_1", "value": 16.258}, {"type": "precision_at_10", "value": 3.758}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.096}, {"type": "precision_at_20", "value": 2.247}, {"type": "precision_at_3", "value": 9.1}, {"type": "precision_at_5", "value": 6.503}, {"type": "recall_at_1", "value": 14.603}, {"type": "recall_at_10", "value": 31.578}, {"type": "recall_at_100", "value": 52.87500000000001}, {"type": "recall_at_1000", "value": 72.993}, {"type": "recall_at_20", "value": 37.464}, {"type": "recall_at_3", "value": 23.089000000000002}, {"type": "recall_at_5", "value": 27.272000000000002}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 9.844999999999999}, {"type": "map_at_10", "value": 14.209}, {"type": "map_at_100", "value": 15.094}, {"type": "map_at_1000", "value": 15.215}, {"type": "map_at_20", "value": 14.646}, {"type": "map_at_3", "value": 12.802}, {"type": "map_at_5", "value": 13.543}, {"type": "mrr_at_1", "value": 12.113}, {"type": "mrr_at_10", "value": 16.875}, {"type": "mrr_at_100", "value": 17.73}, {"type": "mrr_at_1000", "value": 17.824}, {"type": "mrr_at_20", "value": 17.318}, {"type": "mrr_at_3", "value": 15.273}, {"type": "mrr_at_5", "value": 16.164}, {"type": "ndcg_at_1", "value": 12.113}, {"type": "ndcg_at_10", "value": 17.28}, {"type": "ndcg_at_100", "value": 21.939}, {"type": "ndcg_at_1000", "value": 25.262}, {"type": "ndcg_at_20", "value": 18.822}, {"type": "ndcg_at_3", "value": 14.485999999999999}, {"type": "ndcg_at_5", "value": 15.731}, {"type": "precision_at_1", "value": 12.113}, {"type": "precision_at_10", "value": 3.19}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_20", "value": 2.046}, {"type": "precision_at_3", "value": 6.825}, {"type": "precision_at_5", "value": 5.003}, {"type": "recall_at_1", "value": 9.844999999999999}, {"type": "recall_at_10", "value": 24.005000000000003}, {"type": "recall_at_100", "value": 45.385}, {"type": "recall_at_1000", "value": 69.99499999999999}, {"type": "recall_at_20", "value": 29.704000000000004}, {"type": "recall_at_3", "value": 16.295}, {"type": "recall_at_5", "value": 19.444}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 14.875}, {"type": "map_at_10", "value": 20.305999999999997}, {"type": "map_at_100", "value": 21.23}, {"type": "map_at_1000", "value": 21.342}, {"type": "map_at_20", "value": 20.709}, {"type": "map_at_3", "value": 18.199}, {"type": "map_at_5", "value": 19.268}, {"type": "mrr_at_1", "value": 17.071}, {"type": "mrr_at_10", "value": 23.003}, {"type": "mrr_at_100", "value": 23.857999999999997}, {"type": "mrr_at_1000", "value": 23.939}, {"type": "mrr_at_20", "value": 23.398}, {"type": "mrr_at_3", "value": 20.569000000000003}, {"type": "mrr_at_5", "value": 21.776999999999997}, {"type": "ndcg_at_1", "value": 17.071}, {"type": "ndcg_at_10", "value": 24.262}, {"type": "ndcg_at_100", "value": 29.217}, {"type": "ndcg_at_1000", "value": 32.133}, {"type": "ndcg_at_20", "value": 25.679000000000002}, {"type": "ndcg_at_3", "value": 19.844}, {"type": "ndcg_at_5", "value": 21.712}, {"type": "precision_at_1", "value": 17.071}, {"type": "precision_at_10", "value": 4.198}, {"type": "precision_at_100", "value": 0.765}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_20", "value": 2.481}, {"type": "precision_at_3", "value": 8.613}, {"type": "precision_at_5", "value": 6.287}, {"type": "recall_at_1", "value": 14.875}, {"type": "recall_at_10", "value": 33.915}, {"type": "recall_at_100", "value": 56.513000000000005}, {"type": "recall_at_1000", "value": 77.737}, {"type": "recall_at_20", "value": 39.047}, {"type": "recall_at_3", "value": 22.017999999999997}, {"type": "recall_at_5", "value": 26.514}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 16.02}, {"type": "map_at_10", "value": 21.43}, {"type": "map_at_100", "value": 22.468}, {"type": "map_at_1000", "value": 22.659000000000002}, {"type": "map_at_20", "value": 21.926000000000002}, {"type": "map_at_3", "value": 19.258}, {"type": "map_at_5", "value": 20.405}, {"type": "mrr_at_1", "value": 19.564999999999998}, {"type": "mrr_at_10", "value": 25.063999999999997}, {"type": "mrr_at_100", "value": 25.918999999999997}, {"type": "mrr_at_1000", "value": 26.007}, {"type": "mrr_at_20", "value": 25.490000000000002}, {"type": "mrr_at_3", "value": 22.727}, {"type": "mrr_at_5", "value": 23.992}, {"type": "ndcg_at_1", "value": 19.564999999999998}, {"type": "ndcg_at_10", "value": 25.575}, {"type": "ndcg_at_100", "value": 30.464999999999996}, {"type": "ndcg_at_1000", "value": 34.131}, {"type": "ndcg_at_20", "value": 27.119}, {"type": "ndcg_at_3", "value": 21.607000000000003}, {"type": "ndcg_at_5", "value": 23.331}, {"type": "precision_at_1", "value": 19.564999999999998}, {"type": "precision_at_10", "value": 4.822}, {"type": "precision_at_100", "value": 0.98}, {"type": "precision_at_1000", "value": 0.196}, {"type": "precision_at_20", "value": 3.0140000000000002}, {"type": "precision_at_3", "value": 10.079}, {"type": "precision_at_5", "value": 7.51}, {"type": "recall_at_1", "value": 16.02}, {"type": "recall_at_10", "value": 34.215}, {"type": "recall_at_100", "value": 57.220000000000006}, {"type": "recall_at_1000", "value": 81.721}, {"type": "recall_at_20", "value": 40.169}, {"type": "recall_at_3", "value": 22.289}, {"type": "recall_at_5", "value": 26.856}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 10.173}, {"type": "map_at_10", "value": 15.528}, {"type": "map_at_100", "value": 16.470000000000002}, {"type": "map_at_1000", "value": 16.566}, {"type": "map_at_20", "value": 15.967999999999998}, {"type": "map_at_3", "value": 13.902999999999999}, {"type": "map_at_5", "value": 14.774000000000001}, {"type": "mrr_at_1", "value": 11.275}, {"type": "mrr_at_10", "value": 16.659}, {"type": "mrr_at_100", "value": 17.637}, {"type": "mrr_at_1000", "value": 17.723}, {"type": "mrr_at_20", "value": 17.158}, {"type": "mrr_at_3", "value": 15.065000000000001}, {"type": "mrr_at_5", "value": 15.943}, {"type": "ndcg_at_1", "value": 11.275}, {"type": "ndcg_at_10", "value": 18.825}, {"type": "ndcg_at_100", "value": 23.985}, {"type": "ndcg_at_1000", "value": 26.927}, {"type": "ndcg_at_20", "value": 20.462}, {"type": "ndcg_at_3", "value": 15.519}, {"type": "ndcg_at_5", "value": 17.058}, {"type": "precision_at_1", "value": 11.275}, {"type": "precision_at_10", "value": 3.179}, {"type": "precision_at_100", "value": 0.627}, {"type": "precision_at_1000", "value": 0.094}, {"type": "precision_at_20", "value": 1.978}, {"type": "precision_at_3", "value": 6.839}, {"type": "precision_at_5", "value": 4.9910000000000005}, {"type": "recall_at_1", "value": 10.173}, {"type": "recall_at_10", "value": 27.994000000000003}, {"type": "recall_at_100", "value": 52.418}, {"type": "recall_at_1000", "value": 75.36699999999999}, {"type": "recall_at_20", "value": 34.184}, {"type": "recall_at_3", "value": 19.082}, {"type": "recall_at_5", "value": 22.807}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 7.394}, {"type": "map_at_10", "value": 12.179}, {"type": "map_at_100", "value": 13.644}, {"type": "map_at_1000", "value": 13.821}, {"type": "map_at_20", "value": 12.969}, {"type": "map_at_3", "value": 10.177}, {"type": "map_at_5", "value": 11.155}, {"type": "mrr_at_1", "value": 15.961}, {"type": "mrr_at_10", "value": 24.118000000000002}, {"type": "mrr_at_100", "value": 25.318}, {"type": "mrr_at_1000", "value": 25.384}, {"type": "mrr_at_20", "value": 24.911}, {"type": "mrr_at_3", "value": 21.151}, {"type": "mrr_at_5", "value": 22.731}, {"type": "ndcg_at_1", "value": 15.961}, {"type": "ndcg_at_10", "value": 17.77}, {"type": "ndcg_at_100", "value": 24.282}, {"type": "ndcg_at_1000", "value": 27.788}, {"type": "ndcg_at_20", "value": 20.345}, {"type": "ndcg_at_3", "value": 13.996}, {"type": "ndcg_at_5", "value": 15.277}, {"type": "precision_at_1", "value": 15.961}, {"type": "precision_at_10", "value": 5.629}, {"type": "precision_at_100", "value": 1.243}, {"type": "precision_at_1000", "value": 0.188}, {"type": "precision_at_20", "value": 3.8830000000000005}, {"type": "precision_at_3", "value": 10.228}, {"type": "precision_at_5", "value": 8.065}, {"type": "recall_at_1", "value": 7.394}, {"type": "recall_at_10", "value": 22.037000000000003}, {"type": "recall_at_100", "value": 44.823}, {"type": "recall_at_1000", "value": 64.782}, {"type": "recall_at_20", "value": 29.416999999999998}, {"type": "recall_at_3", "value": 12.931999999999999}, {"type": "recall_at_5", "value": 16.392}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 4.22}, {"type": "map_at_10", "value": 9.109}, {"type": "map_at_100", "value": 12.520999999999999}, {"type": "map_at_1000", "value": 13.461}, {"type": "map_at_20", "value": 10.374}, {"type": "map_at_3", "value": 6.524000000000001}, {"type": "map_at_5", "value": 7.664999999999999}, {"type": "mrr_at_1", "value": 34.75}, {"type": "mrr_at_10", "value": 46.822}, {"type": "mrr_at_100", "value": 47.501}, {"type": "mrr_at_1000", "value": 47.546}, {"type": "mrr_at_20", "value": 47.246}, {"type": "mrr_at_3", "value": 43.875}, {"type": "mrr_at_5", "value": 45.637}, {"type": "ndcg_at_1", "value": 25.874999999999996}, {"type": "ndcg_at_10", "value": 21.938}, {"type": "ndcg_at_100", "value": 24.924}, {"type": "ndcg_at_1000", "value": 31.627}, {"type": "ndcg_at_20", "value": 21.627}, {"type": "ndcg_at_3", "value": 23.132}, {"type": "ndcg_at_5", "value": 22.553}, {"type": "precision_at_1", "value": 34.75}, {"type": "precision_at_10", "value": 18.65}, {"type": "precision_at_100", "value": 5.862}, {"type": "precision_at_1000", "value": 1.348}, {"type": "precision_at_20", "value": 13.750000000000002}, {"type": "precision_at_3", "value": 27.333000000000002}, {"type": "precision_at_5", "value": 24.05}, {"type": "recall_at_1", "value": 4.22}, {"type": "recall_at_10", "value": 14.191}, {"type": "recall_at_100", "value": 31.192999999999998}, {"type": "recall_at_1000", "value": 53.517}, {"type": "recall_at_20", "value": 18.516}, {"type": "recall_at_3", "value": 8.036}, {"type": "recall_at_5", "value": 10.329}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 39.184999999999995}, {"type": "f1", "value": 35.27301038035798}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 65.1424}, {"type": "ap", "value": 60.060650493494705}, {"type": "f1", "value": 64.97836345253516}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 89.27496580027359}, {"type": "f1", "value": 88.46317641931785}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 65.35567715458276}, {"type": "f1", "value": 46.496133882315355}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 65.31943510423672}, {"type": "f1", "value": 63.99472103750694}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 70.51445864156018}, {"type": "f1", "value": 69.5241099650794}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 31.419094146071636}, {"type": "v_measures", "value": [0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 27.139470452055658}, {"type": "v_measures", "value": [0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 29.568052227516432}, {"type": "mrr", "value": 30.428712172981818}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 39.24416138727274}, {"type": "v_measures", "value": [0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 52.2014890689022}, {"type": "v_measures", "value": [0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125]}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.49732285023127}, {"type": "cos_sim_spearman", "value": 69.06853511870162}, {"type": "euclidean_pearson", "value": 73.63802461551214}, {"type": "euclidean_spearman", "value": 68.89675389831514}, {"type": "manhattan_pearson", "value": 73.31463476887929}, {"type": "manhattan_spearman", "value": 68.62065836256522}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.30725406004984}, {"type": "cos_sim_spearman", "value": 71.77933625004815}, {"type": "euclidean_pearson", "value": 75.6716433687837}, {"type": "euclidean_spearman", "value": 71.29004792199038}, {"type": "manhattan_pearson", "value": 75.71992020594199}, {"type": "manhattan_spearman", "value": 71.32910104106817}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 76.48949837438562}, {"type": "cos_sim_spearman", "value": 77.70387570173884}, {"type": "euclidean_pearson", "value": 77.31697136821097}, {"type": "euclidean_spearman", "value": 77.7725127232427}, {"type": "manhattan_pearson", "value": 77.2104513638156}, {"type": "manhattan_spearman", "value": 77.6662508639199}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.92186146745203}, {"type": "cos_sim_spearman", "value": 74.03500111217282}, {"type": "euclidean_pearson", "value": 76.92245132110358}, {"type": "euclidean_spearman", "value": 74.1163537497533}, {"type": "manhattan_pearson", "value": 76.7405912634287}, {"type": "manhattan_spearman", "value": 74.00559912577475}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.41755953814916}, {"type": "cos_sim_spearman", "value": 83.12590620595532}, {"type": "euclidean_pearson", "value": 82.81061023887204}, {"type": "euclidean_spearman", "value": 83.22204855595223}, {"type": "manhattan_pearson", "value": 82.69802515552313}, {"type": "manhattan_spearman", "value": 83.09996325139677}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.75524761527194}, {"type": "cos_sim_spearman", "value": 78.87593181990188}, {"type": "euclidean_pearson", "value": 78.55191677073188}, {"type": "euclidean_spearman", "value": 78.92172836212852}, {"type": "manhattan_pearson", "value": 78.36496155482094}, {"type": "manhattan_spearman", "value": 78.67446213683105}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.7638229493128}, {"type": "cos_sim_spearman", "value": 85.55048917425349}, {"type": "euclidean_pearson", "value": 84.8901462981343}, {"type": "euclidean_spearman", "value": 85.10066833018679}, {"type": "manhattan_pearson", "value": 84.74064489630906}, {"type": "manhattan_spearman", "value": 85.03532091650423}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 63.74800563207841}, {"type": "cos_sim_spearman", "value": 65.54768610942277}, {"type": "euclidean_pearson", "value": 65.832924763177}, {"type": "euclidean_spearman", "value": 65.67977634984801}, {"type": "manhattan_pearson", "value": 66.04809976105817}, {"type": "manhattan_spearman", "value": 65.8551641921871}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.42910915029356}, {"type": "cos_sim_spearman", "value": 78.93487000382834}, {"type": "euclidean_pearson", "value": 79.97058072370304}, {"type": "euclidean_spearman", "value": 79.02999975191632}, {"type": "manhattan_pearson", "value": 79.75656714948262}, {"type": "manhattan_spearman", "value": 78.82176824285669}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 74.6588967461659}, {"type": "mrr", "value": 91.90398381574852}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.7960396039604}, {"type": "cos_sim_ap", "value": 94.40352134094806}, {"type": "cos_sim_f1", "value": 89.42505133470226}, {"type": "cos_sim_precision", "value": 91.87763713080169}, {"type": "cos_sim_recall", "value": 87.1}, {"type": "dot_accuracy", "value": 99.61980198019802}, {"type": "dot_ap", "value": 86.92800137802539}, {"type": "dot_f1", "value": 80.60606060606061}, {"type": "dot_precision", "value": 81.42857142857143}, {"type": "dot_recall", "value": 79.80000000000001}, {"type": "euclidean_accuracy", "value": 99.7910891089109}, {"type": "euclidean_ap", "value": 94.1534710913129}, {"type": "euclidean_f1", "value": 89.18232605383443}, {"type": "euclidean_precision", "value": 90.60887512899896}, {"type": "euclidean_recall", "value": 87.8}, {"type": "manhattan_accuracy", "value": 99.79207920792079}, {"type": "manhattan_ap", "value": 94.24718696087999}, {"type": "manhattan_f1", "value": 89.0852390852391}, {"type": "manhattan_precision", "value": 92.74891774891775}, {"type": "manhattan_recall", "value": 85.7}, {"type": "max_accuracy", "value": 99.7960396039604}, {"type": "max_ap", "value": 94.40352134094806}, {"type": "max_f1", "value": 89.42505133470226}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 46.43052365225014}, {"type": "v_measures", "value": [0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 34.30506603469398}, {"type": "v_measures", "value": [0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 45.986302830652576}, {"type": "mrr", "value": 46.73859126984127}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 31.681504542251222}, {"type": "cos_sim_spearman", "value": 30.52300975318605}, {"type": "dot_pearson", "value": 30.89258938963458}, {"type": "dot_spearman", "value": 30.789407411509075}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 63.916015625}, {"type": "ap", "value": 11.079823797650405}, {"type": "f1", "value": 48.9073889627104}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 54.80192416525185}, {"type": "f1", "value": 55.06729742763208}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 30.428269625267067}, {"type": "v_measures", "value": [0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833]}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.04226023722954}, {"type": "cos_sim_ap", "value": 63.85841588156352}, {"type": "cos_sim_f1", "value": 60.82009954965631}, {"type": "cos_sim_precision", "value": 55.2065404475043}, {"type": "cos_sim_recall", "value": 67.70448548812665}, {"type": "dot_accuracy", "value": 78.91756571496693}, {"type": "dot_ap", "value": 46.39288120938224}, {"type": "dot_f1", "value": 49.36296847391426}, {"type": "dot_precision", "value": 38.11575470343243}, {"type": "dot_recall", "value": 70.0263852242744}, {"type": "euclidean_accuracy", "value": 83.18531322644095}, {"type": "euclidean_ap", "value": 64.47939517179049}, {"type": "euclidean_f1", "value": 61.326567596955414}, {"type": "euclidean_precision", "value": 56.56340539335859}, {"type": "euclidean_recall", "value": 66.96569920844327}, {"type": "manhattan_accuracy", "value": 82.9826548250581}, {"type": "manhattan_ap", "value": 64.01165035368786}, {"type": "manhattan_f1", "value": 60.99290780141844}, {"type": "manhattan_precision", "value": 54.52088962793597}, {"type": "manhattan_recall", "value": 69.2084432717678}, {"type": "max_accuracy", "value": 83.18531322644095}, {"type": "max_ap", "value": 64.47939517179049}, {"type": "max_f1", "value": 61.326567596955414}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 87.53832421314084}, {"type": "cos_sim_ap", "value": 82.94679942153577}, {"type": "cos_sim_f1", "value": 74.90408975750995}, {"type": "cos_sim_precision", "value": 70.67340527250376}, {"type": "cos_sim_recall", "value": 79.6735448105944}, {"type": "dot_accuracy", "value": 85.2214072262972}, {"type": "dot_ap", "value": 76.39891716014382}, {"type": "dot_f1", "value": 70.62225554246545}, {"type": "dot_precision", "value": 65.83904679491447}, {"type": "dot_recall", "value": 76.15491222667077}, {"type": "euclidean_accuracy", "value": 87.55190747855785}, {"type": "euclidean_ap", "value": 82.9537174035843}, {"type": "euclidean_f1", "value": 75.01588844442783}, {"type": "euclidean_precision", "value": 72.90894557081607}, {"type": "euclidean_recall", "value": 77.24822913458577}, {"type": "manhattan_accuracy", "value": 87.5499670120697}, {"type": "manhattan_ap", "value": 82.85971137826064}, {"type": "manhattan_f1", "value": 74.86758672137262}, {"type": "manhattan_precision", "value": 72.60888438720879}, {"type": "manhattan_recall", "value": 77.27132737911919}, {"type": "max_accuracy", "value": 87.55190747855785}, {"type": "max_ap", "value": 82.9537174035843}, {"type": "max_f1", "value": 75.01588844442783}]}]}]}
Mihaiii/test24
null
[ "sentence-transformers", "onnx", "safetensors", "bert", "feature-extraction", "sentence-similarity", "bge", "mteb", "mergekit", "merge", "arxiv:2403.19522", "base_model:Mihaiii/Wartortle", "base_model:TaylorAI/bge-micro-v2", "base_model:TaylorAI/bge-micro", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:23:14+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "library_name": "transformers", "tags": [], "base_model": "jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2", "quantized_by": "mradermacher"}
mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF
null
[ "transformers", "gguf", "en", "base_model:jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:24:04+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
nobody12321/poker-tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:25:27+00:00
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi21_LoRA <Gallery /> ## Model description These are embracellm/sushi21_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tiger Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi21_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Tiger Roll", "widget": []}
embracellm/sushi21_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-01T18:25:33+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quickstep3621/orzqomb
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:26:35+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quickstep3621/2nt0eqt
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:26:40+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Vikhr-7B-instruct_0.4 - bnb 8bits - Model creator: https://huggingface.co/Vikhrmodels/ - Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/ Original model description: --- library_name: transformers tags: [] --- # Релиз вихря 0.3-0.4 Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели [collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it", device_map="auto", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it") from transformers import AutoTokenizer, pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompts = [ "В чем разница между фруктом и овощем?", "Годы жизни колмагорова?"] def test_inference(prompt): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) print(prompt) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) return outputs[0]['generated_text'][len(prompt):].strip() for prompt in prompts: print(f" prompt:\n{prompt}") print(f" response:\n{test_inference(prompt)}") print("-"*50) ```
{}
RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:27:04+00:00
text-generation
transformers
{}
isaaclee/mistral_train_run1_merged
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:27:18+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama10 - bnb 4bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llama10/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llama10-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T18:27:58+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llm-jp-1b-sft-100k-LoRA - bnb 4bits - Model creator: https://huggingface.co/ryota39/ - Original model: https://huggingface.co/ryota39/llm-jp-1b-sft-100k-LoRA/ Original model description: --- library_name: transformers tags: [] --- ## モデル - ベースモデル:[llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) - 学習データセット:[cl-nagoya/auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) (`seed=42`でシャッフルした後、先頭の10万件を学習データに使用) - 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"]) ## サンプル ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA" ) pad_token_id = tokenizer.pad_token_id model = AutoModelForCausalLM.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA", device_map="auto", torch_dtype=torch.float16, ) text = "###Input: 東京の観光名所を教えてください。\n###Output: " tokenized_input = tokenizer.encode( text, add_special_tokens=False, return_tensors="pt" ).to(model.device) attention_mask = torch.ones_like(tokenized_input) attention_mask[tokenized_input == pad_token_id] = 0 with torch.no_grad(): output = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=128, do_sample=True, # top_p=0.95, temperature=0.8, repetition_penalty=1.0 )[0] print(tokenizer.decode(output)) ``` ## 出力例 ``` ###Input: 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォート。世界各国の観光客で賑わう。世界からの観光客を呼び込むために、ここのフードコートでは各国の料理を提供しています。 各国の料理を提供するフードコートもあるが、イタリアンやフレンチなどのファストフードの店もある。 東京の観光名所を紹介するサイトがたくさんあり、そのサイトに自分のオススメするスポットを掲載しています。 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォートの中にあるアクアシティというショッピングセンターの中にあるお台場 ``` ## 謝辞 本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。 - 【メタデータラボ株式会社】様 - 【AI声づくり技術研究会】 - サーバー主:やなぎ(Yanagi)様 - 【ローカルLLMに向き合う会】 - サーバー主:saldra(サルドラ)様 [メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始](https://prtimes.jp/main/html/rd/p/000000008.000056944.html)
{}
RichardErkhov/ryota39_-_llm-jp-1b-sft-100k-LoRA-4bits
null
[ "transformers", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T18:29:10+00:00
text-generation
transformers
{}
w32zhong/s3d-EAGLE-retrain-20K
null
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:29:12+00:00
null
transformers
{}
baseten/mistral-7b-v0.2-i10000-o1000-bs-12-tp1-H100
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:29:17+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llm-jp-1b-sft-100k-LoRA - bnb 8bits - Model creator: https://huggingface.co/ryota39/ - Original model: https://huggingface.co/ryota39/llm-jp-1b-sft-100k-LoRA/ Original model description: --- library_name: transformers tags: [] --- ## モデル - ベースモデル:[llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) - 学習データセット:[cl-nagoya/auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) (`seed=42`でシャッフルした後、先頭の10万件を学習データに使用) - 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"]) ## サンプル ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA" ) pad_token_id = tokenizer.pad_token_id model = AutoModelForCausalLM.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA", device_map="auto", torch_dtype=torch.float16, ) text = "###Input: 東京の観光名所を教えてください。\n###Output: " tokenized_input = tokenizer.encode( text, add_special_tokens=False, return_tensors="pt" ).to(model.device) attention_mask = torch.ones_like(tokenized_input) attention_mask[tokenized_input == pad_token_id] = 0 with torch.no_grad(): output = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=128, do_sample=True, # top_p=0.95, temperature=0.8, repetition_penalty=1.0 )[0] print(tokenizer.decode(output)) ``` ## 出力例 ``` ###Input: 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォート。世界各国の観光客で賑わう。世界からの観光客を呼び込むために、ここのフードコートでは各国の料理を提供しています。 各国の料理を提供するフードコートもあるが、イタリアンやフレンチなどのファストフードの店もある。 東京の観光名所を紹介するサイトがたくさんあり、そのサイトに自分のオススメするスポットを掲載しています。 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォートの中にあるアクアシティというショッピングセンターの中にあるお台場 ``` ## 謝辞 本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。 - 【メタデータラボ株式会社】様 - 【AI声づくり技術研究会】 - サーバー主:やなぎ(Yanagi)様 - 【ローカルLLMに向き合う会】 - サーバー主:saldra(サルドラ)様 [メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始](https://prtimes.jp/main/html/rd/p/000000008.000056944.html)
{}
RichardErkhov/ryota39_-_llm-jp-1b-sft-100k-LoRA-8bits
null
[ "transformers", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:30:29+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Main_Fashion This model is a fine-tuned version of [google/vit-base-patch16-224-in21K](https://huggingface.co/google/vit-base-patch16-224-in21K) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7633 - Accuracy: 0.6961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.934 | 0.9259 | 100 | 0.9492 | 0.7030 | | 0.9191 | 1.8519 | 200 | 0.7838 | 0.7401 | | 0.7774 | 2.7778 | 300 | 0.8152 | 0.7123 | | 0.5743 | 3.7037 | 400 | 0.7249 | 0.7100 | | 0.5145 | 4.6296 | 500 | 0.7721 | 0.7077 | | 0.4713 | 5.5556 | 600 | 0.7182 | 0.7146 | | 0.4397 | 6.4815 | 700 | 0.7633 | 0.6961 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21K", "model-index": [{"name": "Main_Fashion", "results": []}]}
vlevi/Main_Fashion
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21K", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:31:13+00:00
null
null
{"license": "mit"}
tylerckeller/Phi-3-mini-4k-instruct-mlx-4bit
null
[ "license:mit", "region:us" ]
null
2024-05-01T18:32:13+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mubin1917/Mistral-7B-Instruct-v0.2-lamini-docs-adapters-epoch-3_test_lr_scheduler_type-constant
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:32:25+00:00
text-to-image
diffusers
{}
philz1337x/hyperrealism_v3
null
[ "diffusers", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-05-01T18:33:17+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava-1.5-7b-hf-mermaid-flow-chart This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "llava-hf/llava-1.5-7b-hf", "model-index": [{"name": "llava-1.5-7b-hf-mermaid-flow-chart", "results": []}]}
rakitha/llava-1.5-7b-hf-mermaid-flow-chart
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:imagefolder", "base_model:llava-hf/llava-1.5-7b-hf", "region:us" ]
null
2024-05-01T18:33:23+00:00
null
null
{}
cotts/test_hulk
null
[ "region:us" ]
null
2024-05-01T18:33:42+00:00
null
null
{}
Pro98/SidSriramModel
null
[ "region:us" ]
null
2024-05-01T18:34:22+00:00
text-generation
transformers
<img src="https://huggingface.co/KOCDIGITAL/Kocdigital-LLM-8b-v0.1/resolve/main/icon.jpeg" alt="KOCDIGITAL LLM" width="420"/> # Kocdigital-LLM-8b-v0.1 This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. The training process involved using the QLORA method. ## Model Details - **Base Model**: Llama3 8B based LLM - **Training Dataset**: High Quality Turkish instruction sets - **Training Method**: SFT with QLORA ### QLORA Fine-Tuning Configuration - `lora_alpha`: 128 - `lora_dropout`: 0 - `r`: 64 - `target_modules`: "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj" - `bias`: "none" ## Usage Examples ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "KOCDIGITAL/Kocdigital-LLM-8b-v0.1", max_seq_length=4096) model = AutoModelForCausalLM.from_pretrained( "KOCDIGITAL/Kocdigital-LLM-8b-v0.1", load_in_4bit=True, ) system = 'Sen Türkçe konuşan genel amaçlı bir asistansın. Her zaman kullanıcının verdiği talimatları doğru, kısa ve güzel bir gramer ile yerine getir.' template = "{}\n\n###Talimat\n{}\n###Yanıt\n" content = template.format(system, 'Türkiyenin 3 büyük ilini listeler misin.') conv = [] conv.append({'role': 'user', 'content': content}) inputs = tokenizer.apply_chat_template(conv, tokenize=False, add_generation_prompt=True, return_tensors="pt") print(inputs) inputs = tokenizer([inputs], return_tensors = "pt", add_special_tokens=False).to("cuda") outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample = True, top_k = 50, top_p = 0.60, temperature = 0.3, repetition_penalty=1.1) out_text = tokenizer.batch_decode(outputs)[0] print(out_text) ``` # [Open LLM Turkish Leaderboard v0.2 Evaluation Results] | Metric | Value | |---------------------------------|------:| | Avg. | 49.11 | | AI2 Reasoning Challenge_tr-v0.2 | 44.03 | | HellaSwag_tr-v0.2 | 46.73 | | MMLU_tr-v0.2 | 49.11 | | TruthfulQA_tr-v0.2 | 48.51 | | Winogrande _tr-v0.2 | 54.98 | | GSM8k_tr-v0.2 | 51.78 | ## Considerations on Limitations, Risks, Bias, and Ethical Factors ### Limitations and Recognized Biases - **Core Functionality and Usage:** KocDigital LLM, functioning as an autoregressive language model, is primarily purposed for predicting the subsequent token within a text sequence. Although commonly applied across different contexts, it's crucial to acknowledge that comprehensive real-world testing has not been conducted. Therefore, its efficacy and consistency in diverse situations are largely unvalidated. - **Language Understanding and Generation:** The model's training is mainly focused on standard English and Turkish. Its proficiency in grasping and generating slang, colloquial language, or different languages might be restricted, possibly resulting in errors or misinterpretations. - **Production of Misleading Information:** Users should acknowledge that KocDigital LLM might generate incorrect or deceptive information. Results should be viewed as initial prompts or recommendations rather than absolute conclusions. ### Ethical Concerns and Potential Risks - **Risk of Misuse:** KocDigital LLM carries the potential for generating language that could be offensive or harmful. We strongly advise against its utilization for such purposes and stress the importance of conducting thorough safety and fairness assessments tailored to specific applications before implementation. - **Unintended Biases and Content:** The model underwent training on a vast corpus of text data without explicit vetting for offensive material or inherent biases. Consequently, it may inadvertently generate content reflecting these biases or inaccuracies. - **Toxicity:** Despite efforts to curate appropriate training data, the model has the capacity to produce harmful content, particularly when prompted explicitly. We encourage active participation from the open-source community to devise strategies aimed at mitigating such risks. ### Guidelines for Secure and Ethical Utilization - **Human Oversight:** We advocate for the integration of a human oversight mechanism or the utilization of filters to oversee and enhance the quality of outputs, particularly in applications accessible to the public. This strategy can assist in minimizing the likelihood of unexpectedly generating objectionable content. - **Tailored Testing for Specific Applications:** Developers planning to utilize KocDigital LLM should execute comprehensive safety assessments and optimizations customized to their unique applications. This step is essential as the model's responses may exhibit unpredictability and occasional biases, inaccuracies, or offensive outputs. - **Responsible Development and Deployment:** Developers and users of KocDigital LLM bear the responsibility for ensuring its ethical and secure application. We encourage users to be cognizant of the model's limitations and to implement appropriate measures to prevent misuse or adverse outcomes.
{"language": ["tr"], "license": "llama3", "model-index": [{"name": "Kocdigital-LLM-8b-v0.1", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "AI2 Reasoning Challenge TR", "type": "ai2_arc", "config": "ARC-Challenge", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "acc", "value": 44.03, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HellaSwag TR", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc", "value": 46.73, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "MMLU TR", "type": "cais/mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 49.11, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "TruthfulQA TR", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "acc", "value": 48.21, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Winogrande TR", "type": "winogrande", "config": "winogrande_xl", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc", "value": 54.98, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "GSM8k TR", "type": "gsm8k", "config": "main", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 51.78, "name": "accuracy"}]}]}]}
KOCDIGITAL/Kocdigital-LLM-8b-v0.1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "tr", "license:llama3", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:34:27+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama10 - bnb 8bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llama10/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llama10-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:35:27+00:00
text-to-image
diffusers
# **Fluenlty XL** V4 - the best XL-model ![preview](images/preview.png) Introducing Fluently XL, you are probably ready to argue with the name of the model: “The best XL-model”, but now I will prove to you why it is true. ## About this model The model was obtained through training on *expensive graphics accelerators*, a lot of work was done, now we will show why this XL model is better than others. ### Features - Correct anatomy - Art and realism in one - Controling contrast - Great nature - Great faces without AfterDetailer ### More info Our model is better than others because we do not mix but **train**, but at first it may seem that the model is not very good, but if you are a real professional you will like it. ## Using Optimal parameters in Automatic1111/ComfyUI: - Sampling steps: 20-35 - Sampler method: Euler a/Euler - CFG Scale: 4-6.5 ## End Let's remove models that copy each other from the top and put one that is actually developing, thank you)
{"license": "other", "library_name": "diffusers", "tags": ["safetensors", "stable-diffusion", "sdxl", "fluetnly-xl", "fluently", "trained"], "datasets": ["ehristoforu/midjourney-images", "ehristoforu/dalle-3-images", "ehristoforu/fav_images"], "license_name": "fluently-license", "license_link": "https://huggingface.co/spaces/fluently/License", "pipeline_tag": "text-to-image", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "inference": {"parameters": {"num_inference_steps": 25, "guidance_scale": 5, "negative_prompt": "(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"}}}
fluently/Fluently-XL-v4
null
[ "diffusers", "safetensors", "stable-diffusion", "sdxl", "fluetnly-xl", "fluently", "trained", "text-to-image", "dataset:ehristoforu/midjourney-images", "dataset:ehristoforu/dalle-3-images", "dataset:ehristoforu/fav_images", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "endpoints_compatible", "has_space", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-05-01T18:35:57+00:00
null
null
{"license": "openrail"}
Coolwowsocoolwow/Blaze
null
[ "license:openrail", "region:us" ]
null
2024-05-01T18:36:05+00:00
null
null
{}
onsba/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2024-05-01T18:36:12+00:00
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Vikhr-7B-instruct_0.4 - GGUF - Model creator: https://huggingface.co/Vikhrmodels/ - Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Vikhr-7B-instruct_0.4.Q2_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q2_K.gguf) | Q2_K | 2.74GB | | [Vikhr-7B-instruct_0.4.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_XS.gguf) | IQ3_XS | 3.04GB | | [Vikhr-7B-instruct_0.4.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_S.gguf) | IQ3_S | 3.19GB | | [Vikhr-7B-instruct_0.4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_S.gguf) | Q3_K_S | 3.17GB | | [Vikhr-7B-instruct_0.4.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_M.gguf) | IQ3_M | 3.29GB | | [Vikhr-7B-instruct_0.4.Q3_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K.gguf) | Q3_K | 3.5GB | | [Vikhr-7B-instruct_0.4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_M.gguf) | Q3_K_M | 3.5GB | | [Vikhr-7B-instruct_0.4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_L.gguf) | Q3_K_L | 3.79GB | | [Vikhr-7B-instruct_0.4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ4_XS.gguf) | IQ4_XS | 3.92GB | | [Vikhr-7B-instruct_0.4.Q4_0.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_0.gguf) | Q4_0 | 4.08GB | | [Vikhr-7B-instruct_0.4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ4_NL.gguf) | IQ4_NL | 4.12GB | | [Vikhr-7B-instruct_0.4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K_S.gguf) | Q4_K_S | 4.11GB | | [Vikhr-7B-instruct_0.4.Q4_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K.gguf) | Q4_K | 4.32GB | | [Vikhr-7B-instruct_0.4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K_M.gguf) | Q4_K_M | 4.32GB | | [Vikhr-7B-instruct_0.4.Q4_1.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_1.gguf) | Q4_1 | 4.5GB | | [Vikhr-7B-instruct_0.4.Q5_0.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_0.gguf) | Q5_0 | 4.93GB | | [Vikhr-7B-instruct_0.4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K_S.gguf) | Q5_K_S | 4.93GB | | [Vikhr-7B-instruct_0.4.Q5_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K.gguf) | Q5_K | 5.05GB | | [Vikhr-7B-instruct_0.4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K_M.gguf) | Q5_K_M | 5.05GB | | [Vikhr-7B-instruct_0.4.Q5_1.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_1.gguf) | Q5_1 | 5.35GB | | [Vikhr-7B-instruct_0.4.Q6_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q6_K.gguf) | Q6_K | 5.83GB | Original model description: --- library_name: transformers tags: [] --- # Релиз вихря 0.3-0.4 Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели [collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it", device_map="auto", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it") from transformers import AutoTokenizer, pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompts = [ "В чем разница между фруктом и овощем?", "Годы жизни колмагорова?"] def test_inference(prompt): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) print(prompt) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) return outputs[0]['generated_text'][len(prompt):].strip() for prompt in prompts: print(f" prompt:\n{prompt}") print(f" response:\n{test_inference(prompt)}") print("-"*50) ```
{}
RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf
null
[ "gguf", "region:us" ]
null
2024-05-01T18:37:08+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ikeno-ada/madlad400-3b-mt-Quanto-2bit
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:39:08+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.00001_withdpo_4iters_bs256_531lr_iter_4 This model is a fine-tuned version of [ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3](https://huggingface.co/ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3", "model-index": [{"name": "0.00001_withdpo_4iters_bs256_531lr_iter_4", "results": []}]}
ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_4
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:39:48+00:00
null
null
{"license": "openrail"}
Bertinho24/Yujin
null
[ "license:openrail", "region:us" ]
null
2024-05-01T18:40:54+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model32
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:42:57+00:00
text-generation
peft
{}
sch-ai/front-title-all-norallmnormistral-7b-warm-Amanda
null
[ "peft", "tensorboard", "safetensors", "text-generation", "base_model:norallm/normistral-7b-warm", "region:us" ]
null
2024-05-01T18:44:07+00:00
null
transformers
# Uploaded model - **Developed by:** myrulezzzz - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"}
myrulezzzz/llama3_llamaFactory
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:44:45+00:00
null
null
{}
Yao1627/shortgpt-25-percent-further-lora-1-q2_K
null
[ "gguf", "region:us" ]
null
2024-05-01T18:44:51+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2623 - Accuracy: 0.7465 ## Model description 55 dişi 30 pixel büyük croplandı More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 0.6891 | 0.5493 | | No log | 1.8462 | 6 | 0.8674 | 0.4930 | | No log | 2.7692 | 9 | 0.6711 | 0.5915 | | 0.753 | 4.0 | 13 | 0.6249 | 0.6197 | | 0.753 | 4.9231 | 16 | 0.6793 | 0.5775 | | 0.753 | 5.8462 | 19 | 0.5528 | 0.7465 | | 0.6323 | 6.7692 | 22 | 0.6201 | 0.6197 | | 0.6323 | 8.0 | 26 | 0.6397 | 0.6761 | | 0.6323 | 8.9231 | 29 | 0.5666 | 0.6901 | | 0.5383 | 9.8462 | 32 | 0.6194 | 0.7183 | | 0.5383 | 10.7692 | 35 | 0.5351 | 0.7183 | | 0.5383 | 12.0 | 39 | 0.4823 | 0.7887 | | 0.5486 | 12.9231 | 42 | 0.7049 | 0.6620 | | 0.5486 | 13.8462 | 45 | 0.5251 | 0.7465 | | 0.5486 | 14.7692 | 48 | 0.5594 | 0.7606 | | 0.4685 | 16.0 | 52 | 0.9009 | 0.6338 | | 0.4685 | 16.9231 | 55 | 0.5820 | 0.8028 | | 0.4685 | 17.8462 | 58 | 0.6392 | 0.7324 | | 0.4436 | 18.7692 | 61 | 0.6104 | 0.6901 | | 0.4436 | 20.0 | 65 | 0.5907 | 0.7465 | | 0.4436 | 20.9231 | 68 | 0.6099 | 0.7746 | | 0.4195 | 21.8462 | 71 | 0.7244 | 0.7183 | | 0.4195 | 22.7692 | 74 | 0.8852 | 0.6479 | | 0.4195 | 24.0 | 78 | 0.7331 | 0.7465 | | 0.3628 | 24.9231 | 81 | 0.6333 | 0.7746 | | 0.3628 | 25.8462 | 84 | 0.9643 | 0.6620 | | 0.3628 | 26.7692 | 87 | 0.6534 | 0.7324 | | 0.352 | 28.0 | 91 | 1.5101 | 0.6197 | | 0.352 | 28.9231 | 94 | 0.9274 | 0.7042 | | 0.352 | 29.8462 | 97 | 0.7304 | 0.7465 | | 0.3561 | 30.7692 | 100 | 1.3176 | 0.6197 | | 0.3561 | 32.0 | 104 | 0.6449 | 0.7465 | | 0.3561 | 32.9231 | 107 | 1.0145 | 0.6620 | | 0.315 | 33.8462 | 110 | 0.7764 | 0.6901 | | 0.315 | 34.7692 | 113 | 1.0190 | 0.6901 | | 0.315 | 36.0 | 117 | 0.7332 | 0.7606 | | 0.264 | 36.9231 | 120 | 0.8076 | 0.7606 | | 0.264 | 37.8462 | 123 | 1.1015 | 0.6901 | | 0.264 | 38.7692 | 126 | 1.0194 | 0.6901 | | 0.2067 | 40.0 | 130 | 0.8318 | 0.7887 | | 0.2067 | 40.9231 | 133 | 0.8739 | 0.7606 | | 0.2067 | 41.8462 | 136 | 0.8776 | 0.7746 | | 0.2067 | 42.7692 | 139 | 0.8354 | 0.7606 | | 0.2289 | 44.0 | 143 | 1.2781 | 0.6620 | | 0.2289 | 44.9231 | 146 | 0.9686 | 0.7183 | | 0.2289 | 45.8462 | 149 | 1.1955 | 0.6901 | | 0.2034 | 46.7692 | 152 | 1.2282 | 0.6901 | | 0.2034 | 48.0 | 156 | 1.1087 | 0.7042 | | 0.2034 | 48.9231 | 159 | 1.2796 | 0.7183 | | 0.1743 | 49.8462 | 162 | 0.9281 | 0.7606 | | 0.1743 | 50.7692 | 165 | 0.9575 | 0.7465 | | 0.1743 | 52.0 | 169 | 1.0668 | 0.7042 | | 0.193 | 52.9231 | 172 | 0.9671 | 0.8028 | | 0.193 | 53.8462 | 175 | 1.2764 | 0.6479 | | 0.193 | 54.7692 | 178 | 1.3111 | 0.6761 | | 0.1628 | 56.0 | 182 | 1.1932 | 0.6901 | | 0.1628 | 56.9231 | 185 | 1.9299 | 0.6197 | | 0.1628 | 57.8462 | 188 | 1.2456 | 0.6761 | | 0.2067 | 58.7692 | 191 | 1.3794 | 0.6901 | | 0.2067 | 60.0 | 195 | 1.1626 | 0.7183 | | 0.2067 | 60.9231 | 198 | 1.0306 | 0.7324 | | 0.1761 | 61.8462 | 201 | 1.2267 | 0.6901 | | 0.1761 | 62.7692 | 204 | 1.4236 | 0.6479 | | 0.1761 | 64.0 | 208 | 1.2046 | 0.7042 | | 0.1771 | 64.9231 | 211 | 1.1581 | 0.7183 | | 0.1771 | 65.8462 | 214 | 1.2519 | 0.7042 | | 0.1771 | 66.7692 | 217 | 0.9807 | 0.7606 | | 0.1474 | 68.0 | 221 | 1.0221 | 0.7746 | | 0.1474 | 68.9231 | 224 | 1.3951 | 0.6901 | | 0.1474 | 69.8462 | 227 | 1.4294 | 0.6761 | | 0.145 | 70.7692 | 230 | 1.3713 | 0.6761 | | 0.145 | 72.0 | 234 | 1.4898 | 0.6761 | | 0.145 | 72.9231 | 237 | 1.7988 | 0.6620 | | 0.1305 | 73.8462 | 240 | 1.5864 | 0.6620 | | 0.1305 | 74.7692 | 243 | 1.3643 | 0.6901 | | 0.1305 | 76.0 | 247 | 1.4033 | 0.6901 | | 0.1373 | 76.9231 | 250 | 1.5816 | 0.6620 | | 0.1373 | 77.8462 | 253 | 1.6152 | 0.6761 | | 0.1373 | 78.7692 | 256 | 1.6678 | 0.6761 | | 0.142 | 80.0 | 260 | 1.7231 | 0.6901 | | 0.142 | 80.9231 | 263 | 1.4983 | 0.6901 | | 0.142 | 81.8462 | 266 | 1.4728 | 0.6901 | | 0.142 | 82.7692 | 269 | 1.4265 | 0.6901 | | 0.1225 | 84.0 | 273 | 1.3066 | 0.7183 | | 0.1225 | 84.9231 | 276 | 1.2789 | 0.7324 | | 0.1225 | 85.8462 | 279 | 1.2780 | 0.7324 | | 0.12 | 86.7692 | 282 | 1.2361 | 0.7324 | | 0.12 | 88.0 | 286 | 1.2396 | 0.7324 | | 0.12 | 88.9231 | 289 | 1.2637 | 0.7465 | | 0.1263 | 89.8462 | 292 | 1.2693 | 0.7465 | | 0.1263 | 90.7692 | 295 | 1.2724 | 0.7465 | | 0.1263 | 92.0 | 299 | 1.2635 | 0.7465 | | 0.1027 | 92.3077 | 300 | 1.2623 | 0.7465 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-base-patch16-224", "model-index": [{"name": "beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.7464788732394366, "name": "Accuracy"}]}]}]}
BilalMuftuoglu/beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6
null
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:45:02+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Main_Fashion-convnext This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1758 - Accuracy: 0.6381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.0951 | 0.9630 | 13 | 2.0201 | 0.2251 | | 1.9821 | 2.0 | 27 | 1.8213 | 0.4037 | | 1.7245 | 2.9630 | 40 | 1.6774 | 0.4640 | | 1.6117 | 4.0 | 54 | 1.5480 | 0.5452 | | 1.5 | 4.9630 | 67 | 1.4506 | 0.5615 | | 1.3393 | 6.0 | 81 | 1.3610 | 0.5963 | | 1.2579 | 6.9630 | 94 | 1.2995 | 0.6172 | | 1.2405 | 8.0 | 108 | 1.2480 | 0.6288 | | 1.1479 | 8.9630 | 121 | 1.2127 | 0.6357 | | 1.1005 | 10.0 | 135 | 1.1898 | 0.6381 | | 1.0989 | 10.9630 | 148 | 1.1778 | 0.6381 | | 1.0816 | 11.5556 | 156 | 1.1758 | 0.6381 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/convnext-tiny-224", "model-index": [{"name": "Main_Fashion-convnext", "results": []}]}
vlevi/Main_Fashion-convnext
null
[ "transformers", "tensorboard", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-tiny-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:45:28+00:00
null
null
{}
Yao1627/shortgpt-25-percent-further-lora-2-q2_K
null
[ "gguf", "region:us" ]
null
2024-05-01T18:45:37+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ZurabDz/mlm-bpe-tokenizer-ka
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:45:46+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Vexemous/distilgpt2-finetuned-scificorpus-pos
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:46:51+00:00
text2text-generation
transformers
{}
samzirbo/mT5.baseline.test.no_safetensors
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:46:55+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the truongpdd/new_dataset_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0135 - Precision: 0.9119 - Recall: 0.9119 - F1: 0.9119 - Accuracy: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0154 | 1.0 | 19381 | 0.0186 | 0.7900 | 0.7900 | 0.7900 | 0.9911 | | 0.0137 | 2.0 | 38762 | 0.0132 | 0.8603 | 0.8603 | 0.8603 | 0.9941 | | 0.0121 | 3.0 | 58143 | 0.0125 | 0.8724 | 0.8725 | 0.8725 | 0.9946 | | 0.0104 | 4.0 | 77524 | 0.0116 | 0.8838 | 0.8838 | 0.8838 | 0.9951 | | 0.009 | 5.0 | 96905 | 0.0110 | 0.8915 | 0.8915 | 0.8915 | 0.9954 | | 0.0078 | 6.0 | 116286 | 0.0110 | 0.8981 | 0.8983 | 0.8982 | 0.9957 | | 0.0075 | 7.0 | 135667 | 0.0114 | 0.9014 | 0.9013 | 0.9014 | 0.9958 | | 0.0063 | 8.0 | 155048 | 0.0113 | 0.9036 | 0.9036 | 0.9036 | 0.9959 | | 0.0062 | 9.0 | 174429 | 0.0115 | 0.9052 | 0.9053 | 0.9053 | 0.9960 | | 0.0053 | 10.0 | 193810 | 0.0116 | 0.9052 | 0.9052 | 0.9052 | 0.9960 | | 0.0047 | 11.0 | 213191 | 0.0122 | 0.9085 | 0.9086 | 0.9085 | 0.9961 | | 0.0041 | 12.0 | 232572 | 0.0124 | 0.9098 | 0.9098 | 0.9098 | 0.9962 | | 0.0037 | 13.0 | 251953 | 0.0130 | 0.9117 | 0.9117 | 0.9117 | 0.9963 | | 0.0036 | 14.0 | 271334 | 0.0135 | 0.9103 | 0.9103 | 0.9103 | 0.9962 | | 0.0034 | 15.0 | 290715 | 0.0135 | 0.9119 | 0.9119 | 0.9119 | 0.9963 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["truongpdd/new_dataset_v2"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "microsoft/deberta-v3-base", "model-index": [{"name": "output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "truongpdd/new_dataset_v2", "type": "truongpdd/new_dataset_v2"}, "metrics": [{"type": "precision", "value": 0.9119287924126388, "name": "Precision"}, {"type": "recall", "value": 0.9119287924126388, "name": "Recall"}, {"type": "f1", "value": 0.9119287924126388, "name": "F1"}, {"type": "accuracy", "value": 0.9962801049882261, "name": "Accuracy"}]}]}]}
truongpdd/output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs
null
[ "transformers", "safetensors", "deberta-v2", "token-classification", "generated_from_trainer", "dataset:truongpdd/new_dataset_v2", "base_model:microsoft/deberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:47:07+00:00
null
null
{}
sreddy109/large-v0-50
null
[ "region:us" ]
null
2024-05-01T18:48:29+00:00
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-100
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:49:06+00:00
null
null
{}
LububInbracIA/Dom_Antonio_Maria_Mucciolo_1995
null
[ "region:us" ]
null
2024-05-01T18:49:10+00:00
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-150
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:49:58+00:00
fill-mask
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
AmalNlal/testing2
null
[ "transformers", "safetensors", "roberta", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:50:29+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ikeno-ada/madlad400-3b-mt-Quanto-4bit
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:50:37+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llamaft6v2 - bnb 4bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llamaft6v2/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llamaft6v2-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T18:50:39+00:00