Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | abc88767/model26 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T04:44:10+00:00 |
null | null | {} | paulo037/stable-code-instruct-3b-syntetic-10000 | null | [
"safetensors",
"region:us"
] | null | 2024-05-01T04:46:23+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | adinath/ollama_v8 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T04:48:21+00:00 |
null | null | {"license": "llama3"} | h34i7cby47t/code_java_finetuned_llm_model | null | [
"license:llama3",
"region:us"
] | null | 2024-05-01T04:49:09+00:00 |
|
null | null | {} | sleepyraygun/CrispyC3 | null | [
"region:us"
] | null | 2024-05-01T04:50:09+00:00 |
|
null | null | {} | zzzyj777/llama-2-7b-sft-full | null | [
"region:us"
] | null | 2024-05-01T04:50:17+00:00 |
|
null | null | {"license": "llama2"} | rohansb10/rohan | null | [
"license:llama2",
"region:us"
] | null | 2024-05-01T04:52:05+00:00 |
|
text2text-generation | transformers | # T5_FINETUNE_Electrical_ts
# Fine-Tuned T5 Model for Root Cause Analysis
# Description
This model is a fine-tuned version of the T5 (Text-to-Text Transfer Transformer) base model, specifically tailored to predict actions based on provided root causes in industrial or technical settings. The model has been trained to understand various root causes and suggest corresponding actions, facilitating faster decision-making and troubleshooting in operational environments.
# Model Details
Base Model: T5 Base
Training Data: The model was trained on a proprietary dataset consisting of documented root causes and the actions taken to resolve them in a manufacturing context.
Fine-Tuning Details: The model was fine-tuned for 3 epochs with a learning rate of 3e-4, using a batch size of 8. The fine-tuning process focused on adapting the T5 model to generate action plans based on textual descriptions of root causes.
# Usage
Installation
To use this model, you will need to install Python and the necessary Python libraries. The primary library required is transformers by Hugging Face.
-> pip install transformers torch
# Loading the Model
You can load the model using the Transformers library. Ensure you have the model and tokenizer files(final_model.zip) downloaded from the repository or Kaggle dataset.
from transformers import T5ForConditionalGeneration, T5Tokenizer
model_path = 'path_to_model_directory'
model = T5ForConditionalGeneration.from_pretrained(model_path)
tokenizer = T5Tokenizer.from_pretrained(model_path)
#Making Predictions
To use the model to predict actions based on a root cause, use the following Python code:
def predict_action(root_cause):
input_text = f"root cause: {root_cause} -> action:"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
output_ids = model.generate(input_ids)
action = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return action
# Example
print(predict_action("Example of a root cause"))
# Contributing
Contributions to this model are welcome. You can contribute in the following ways:
Data: More data on root causes and actions can help to improve the model's accuracy and robustness.
Code: Enhancements in the prediction script, additional features, or performance optimizations are appreciated.
Issues: If you encounter issues while using this model, please report them in the issues section of this repository.
# License
This project is licensed under the MIT License - see the LICENSE file for details.
# ATTENTION: Still the model is not 100% effeective due lack of data.
| {} | Safawat/trouble-shooting-using-T5 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T04:52:26+00:00 |
null | null | {} | rtabrizi/open_llama | null | [
"region:us"
] | null | 2024-05-01T04:52:30+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
mistral-7b-anthropic - bnb 4bits
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/mistral-7b-anthropic/
Original model description:
---
license: apache-2.0
base_model: HuggingFaceH4/mistral-7b-cai
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
model-index:
- name: mistral-7b-dpo-v21.0cai.0.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral 7B Constitutional AI
This model is a DPO-aligned version of Mistral 7B on the HuggingFaceH4/ultrafeedback_binarized_fixed and the HuggingFaceH4/cai-conversation-harmless datasets.
It achieves the following results on the evaluation set:
- Loss: 0.6327
- Rewards/chosen: -9.8716
- Rewards/rejected: -14.5465
- Rewards/accuracies: 0.6725
- Rewards/margins: 4.6749
- Logps/rejected: -329.8578
- Logps/chosen: -294.6768
- Logits/rejected: -2.1023
- Logits/chosen: -2.1648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6817 | 0.02 | 100 | 0.6873 | 0.0149 | 0.0002 | 0.5150 | 0.0147 | -184.3912 | -195.8124 | -3.1605 | -3.1560 |
| 0.6767 | 0.05 | 200 | 0.6614 | 0.0825 | 0.0169 | 0.5575 | 0.0656 | -184.2246 | -195.1362 | -3.1654 | -3.1605 |
| 0.6328 | 0.07 | 300 | 0.6246 | -0.0374 | -0.2112 | 0.5875 | 0.1738 | -186.5047 | -196.3349 | -3.1579 | -3.1529 |
| 0.5919 | 0.1 | 400 | 0.5978 | 0.2812 | -0.0666 | 0.6125 | 0.3478 | -185.0590 | -193.1489 | -3.1292 | -3.1243 |
| 0.5545 | 0.12 | 500 | 0.5800 | 0.1742 | -0.2810 | 0.6275 | 0.4552 | -187.2035 | -194.2191 | -3.0819 | -3.0788 |
| 0.5926 | 0.14 | 600 | 0.5599 | 0.2410 | -0.3076 | 0.6425 | 0.5487 | -187.4693 | -193.5507 | -3.0601 | -3.0597 |
| 0.5326 | 0.17 | 700 | 0.5385 | -0.2501 | -0.9698 | 0.6400 | 0.7197 | -194.0914 | -198.4624 | -2.9076 | -2.9090 |
| 0.5126 | 0.19 | 800 | 0.5238 | -0.3616 | -1.1783 | 0.6525 | 0.8167 | -196.1764 | -199.5769 | -2.9965 | -2.9963 |
| 0.5283 | 0.22 | 900 | 0.5289 | -0.4142 | -1.2542 | 0.6775 | 0.8400 | -196.9348 | -200.1031 | -3.0133 | -3.0134 |
| 0.5303 | 0.24 | 1000 | 0.5214 | -0.5949 | -1.5888 | 0.6600 | 0.9939 | -200.2815 | -201.9101 | -2.9663 | -2.9669 |
| 0.5969 | 0.26 | 1100 | 0.5235 | -0.5924 | -1.5222 | 0.6600 | 0.9298 | -199.6154 | -201.8848 | -2.9402 | -2.9468 |
| 0.581 | 0.29 | 1200 | 0.5887 | -0.7548 | -1.7075 | 0.6400 | 0.9527 | -201.4678 | -203.5091 | -2.7065 | -2.7227 |
| 0.817 | 0.31 | 1300 | 0.6620 | -1.5060 | -2.4221 | 0.6500 | 0.9160 | -208.6137 | -211.0213 | -2.7717 | -2.7800 |
| 0.6039 | 0.34 | 1400 | 0.5321 | -1.6820 | -2.8439 | 0.6425 | 1.1619 | -212.8325 | -212.7814 | -2.6828 | -2.6917 |
| 0.6666 | 0.36 | 1500 | 0.5303 | -1.3875 | -2.6384 | 0.6475 | 1.2509 | -210.7773 | -209.8365 | -2.8557 | -2.8594 |
| 0.6907 | 0.39 | 1600 | 0.5409 | -2.0657 | -3.2214 | 0.6650 | 1.1556 | -216.6068 | -216.6184 | -2.8227 | -2.8288 |
| 0.5772 | 0.41 | 1700 | 0.5309 | -1.9849 | -3.2833 | 0.6875 | 1.2985 | -217.2264 | -215.8097 | -2.6498 | -2.6635 |
| 0.5601 | 0.43 | 1800 | 0.5281 | -1.7365 | -3.0643 | 0.6575 | 1.3278 | -215.0359 | -213.3255 | -2.8890 | -2.8918 |
| 0.576 | 0.46 | 1900 | 0.5266 | -1.4822 | -2.9294 | 0.6725 | 1.4472 | -213.6872 | -210.7831 | -2.7369 | -2.7427 |
| 1.2064 | 0.48 | 2000 | 0.5538 | -2.5493 | -3.7625 | 0.6675 | 1.2132 | -222.0182 | -221.4542 | -2.6773 | -2.6957 |
| 0.5751 | 0.51 | 2100 | 0.5465 | -1.9246 | -3.1480 | 0.6425 | 1.2234 | -215.8728 | -215.2067 | -2.6490 | -2.6657 |
| 0.4757 | 0.53 | 2200 | 0.5297 | -1.8443 | -3.1553 | 0.6325 | 1.3110 | -215.9462 | -214.4039 | -2.6882 | -2.7115 |
| 0.4771 | 0.55 | 2300 | 0.5386 | -2.3340 | -3.7443 | 0.6500 | 1.4103 | -221.8360 | -219.3013 | -2.6415 | -2.6623 |
| 0.481 | 0.58 | 2400 | 0.5355 | -1.6085 | -3.0800 | 0.6550 | 1.4715 | -215.1930 | -212.0460 | -2.6073 | -2.6293 |
| 0.523 | 0.6 | 2500 | 0.5131 | -2.6139 | -4.2353 | 0.6625 | 1.6214 | -226.7459 | -222.0998 | -2.6134 | -2.6394 |
| 0.6263 | 0.63 | 2600 | 0.5287 | -2.6614 | -4.0538 | 0.6450 | 1.3924 | -224.9310 | -222.5747 | -2.6189 | -2.6361 |
| 0.5973 | 0.65 | 2700 | 0.5132 | -2.7089 | -4.1248 | 0.625 | 1.4159 | -225.6406 | -223.0499 | -2.6167 | -2.6317 |
| 0.8209 | 0.67 | 2800 | 0.5165 | -2.7085 | -4.1871 | 0.625 | 1.4786 | -226.2637 | -223.0462 | -2.5605 | -2.5803 |
| 0.5625 | 0.7 | 2900 | 0.5117 | -3.4747 | -5.0369 | 0.6325 | 1.5622 | -234.7624 | -230.7079 | -2.5891 | -2.6163 |
| 0.5913 | 0.72 | 3000 | 0.5164 | -2.5844 | -4.3822 | 0.6675 | 1.7978 | -228.2149 | -221.8051 | -2.6421 | -2.6632 |
| 0.7441 | 0.75 | 3100 | 0.5175 | -2.4900 | -4.2883 | 0.6725 | 1.7983 | -227.2762 | -220.8608 | -2.6254 | -2.6465 |
| 0.6169 | 0.77 | 3200 | 0.5163 | -2.2489 | -3.8666 | 0.6600 | 1.6176 | -223.0589 | -218.4503 | -2.6517 | -2.6775 |
| 0.5347 | 0.79 | 3300 | 0.5222 | -2.6699 | -4.3844 | 0.6375 | 1.7145 | -228.2368 | -222.6600 | -2.6712 | -2.6909 |
| 0.5369 | 0.82 | 3400 | 0.5244 | -2.7710 | -4.6352 | 0.6600 | 1.8642 | -230.7449 | -223.6711 | -2.5304 | -2.5595 |
| 0.5613 | 0.84 | 3500 | 0.5431 | -3.7645 | -5.6773 | 0.6475 | 1.9128 | -241.1664 | -233.6063 | -2.5348 | -2.5604 |
| 0.6395 | 0.87 | 3600 | 0.5332 | -3.8666 | -5.6894 | 0.6525 | 1.8227 | -241.2867 | -234.6274 | -2.5479 | -2.5778 |
| 0.6552 | 0.89 | 3700 | 0.5149 | -2.9168 | -4.7306 | 0.6525 | 1.8138 | -231.6990 | -225.1294 | -2.4580 | -2.4901 |
| 0.6381 | 0.91 | 3800 | 0.5081 | -2.6182 | -4.3003 | 0.6625 | 1.6821 | -227.3964 | -222.1432 | -2.4730 | -2.4991 |
| 0.5355 | 0.94 | 3900 | 0.5100 | -2.5302 | -4.2476 | 0.6475 | 1.7173 | -226.8689 | -221.2634 | -2.5875 | -2.6065 |
| 0.5488 | 0.96 | 4000 | 0.5164 | -3.1540 | -4.8339 | 0.6550 | 1.6798 | -232.7318 | -227.5013 | -2.7017 | -2.7215 |
| 0.6802 | 0.99 | 4100 | 0.5134 | -2.6060 | -4.2916 | 0.6625 | 1.6856 | -227.3087 | -222.0207 | -2.6010 | -2.6250 |
| 0.0976 | 1.01 | 4200 | 0.5031 | -3.0885 | -5.0494 | 0.6625 | 1.9609 | -234.8874 | -226.8463 | -2.4721 | -2.5028 |
| 0.0839 | 1.03 | 4300 | 0.5027 | -3.3469 | -5.4366 | 0.6625 | 2.0897 | -238.7592 | -229.4302 | -2.3886 | -2.4238 |
| 0.0788 | 1.06 | 4400 | 0.5398 | -4.4307 | -6.8568 | 0.6775 | 2.4261 | -252.9614 | -240.2679 | -2.1805 | -2.2275 |
| 0.0701 | 1.08 | 4500 | 0.5432 | -4.3739 | -7.0979 | 0.6975 | 2.7240 | -255.3717 | -239.7001 | -2.1935 | -2.2437 |
| 0.0959 | 1.11 | 4600 | 0.5362 | -3.9784 | -6.3235 | 0.6900 | 2.3451 | -247.6284 | -235.7450 | -2.2860 | -2.3272 |
| 0.1177 | 1.13 | 4700 | 0.5411 | -4.1933 | -6.8436 | 0.6800 | 2.6504 | -252.8295 | -237.8937 | -2.3259 | -2.3682 |
| 0.1651 | 1.16 | 4800 | 0.5737 | -4.8158 | -6.7229 | 0.6700 | 1.9071 | -251.6221 | -244.1190 | -2.2753 | -2.3139 |
| 0.1298 | 1.18 | 4900 | 0.5528 | -4.6526 | -6.8433 | 0.6825 | 2.1907 | -252.8262 | -242.4874 | -2.4856 | -2.5188 |
| 0.1143 | 1.2 | 5000 | 0.5512 | -4.6212 | -7.0807 | 0.6800 | 2.4595 | -255.2000 | -242.1734 | -2.5190 | -2.5542 |
| 0.1145 | 1.23 | 5100 | 0.5496 | -4.0598 | -6.6147 | 0.6775 | 2.5548 | -250.5396 | -236.5594 | -2.5737 | -2.6008 |
| 0.2324 | 1.25 | 5200 | 0.5524 | -4.9650 | -7.6613 | 0.6725 | 2.6962 | -261.0058 | -245.6115 | -2.4382 | -2.4737 |
| 0.0867 | 1.28 | 5300 | 0.5449 | -4.9568 | -7.6771 | 0.6625 | 2.7203 | -261.1645 | -245.5292 | -2.4367 | -2.4702 |
| 0.0503 | 1.3 | 5400 | 0.5351 | -4.5684 | -7.1860 | 0.6625 | 2.6176 | -256.2527 | -241.6449 | -2.4235 | -2.4557 |
| 0.0977 | 1.32 | 5500 | 0.5431 | -4.5599 | -7.1317 | 0.6550 | 2.5718 | -255.7096 | -241.5597 | -2.5311 | -2.5614 |
| 0.1564 | 1.35 | 5600 | 0.5512 | -5.1430 | -8.0510 | 0.6750 | 2.9080 | -264.9027 | -247.3911 | -2.3498 | -2.3976 |
| 0.0967 | 1.37 | 5700 | 0.5520 | -4.5072 | -7.4506 | 0.6750 | 2.9433 | -258.8989 | -241.0335 | -2.2110 | -2.2631 |
| 0.2046 | 1.4 | 5800 | 0.5588 | -5.5328 | -8.5314 | 0.6800 | 2.9986 | -269.7068 | -251.2888 | -2.2155 | -2.2677 |
| 0.0985 | 1.42 | 5900 | 0.5429 | -5.1915 | -7.9421 | 0.6675 | 2.7505 | -263.8138 | -247.8765 | -2.2606 | -2.3077 |
| 0.1398 | 1.44 | 6000 | 0.5350 | -4.9761 | -7.9378 | 0.6800 | 2.9616 | -263.7706 | -245.7224 | -2.2291 | -2.2809 |
| 0.099 | 1.47 | 6100 | 0.5440 | -4.6202 | -7.4996 | 0.6650 | 2.8794 | -259.3892 | -242.1633 | -2.3362 | -2.3859 |
| 0.1279 | 1.49 | 6200 | 0.5389 | -4.9461 | -7.7908 | 0.6625 | 2.8448 | -262.3015 | -245.4217 | -2.2276 | -2.2734 |
| 0.0778 | 1.52 | 6300 | 0.5451 | -4.9550 | -7.8964 | 0.6625 | 2.9414 | -263.3570 | -245.5110 | -2.4781 | -2.5193 |
| 0.0911 | 1.54 | 6400 | 0.5412 | -5.4552 | -8.3139 | 0.6675 | 2.8588 | -267.5324 | -250.5128 | -2.3604 | -2.4048 |
| 0.2149 | 1.56 | 6500 | 0.5241 | -4.4512 | -7.3194 | 0.6725 | 2.8682 | -257.5873 | -240.4732 | -2.4011 | -2.4461 |
| 0.1739 | 1.59 | 6600 | 0.5329 | -5.0143 | -7.7507 | 0.6825 | 2.7364 | -261.8999 | -246.1036 | -2.4143 | -2.4577 |
| 0.0842 | 1.61 | 6700 | 0.5395 | -5.1195 | -8.0856 | 0.6800 | 2.9661 | -265.2489 | -247.1560 | -2.3877 | -2.4376 |
| 0.105 | 1.64 | 6800 | 0.5423 | -4.9379 | -7.7557 | 0.6775 | 2.8178 | -261.9503 | -245.3403 | -2.3798 | -2.4323 |
| 0.086 | 1.66 | 6900 | 0.5351 | -4.3598 | -7.1156 | 0.6775 | 2.7559 | -255.5494 | -239.5588 | -2.3870 | -2.4383 |
| 0.0622 | 1.68 | 7000 | 0.5394 | -4.6830 | -7.6578 | 0.6825 | 2.9747 | -260.9710 | -242.7915 | -2.4276 | -2.4779 |
| 0.0973 | 1.71 | 7100 | 0.5319 | -4.7475 | -7.6567 | 0.6750 | 2.9091 | -260.9596 | -243.4364 | -2.3010 | -2.3564 |
| 0.1052 | 1.73 | 7200 | 0.5284 | -4.5972 | -7.5385 | 0.6750 | 2.9413 | -259.7779 | -241.9329 | -2.3696 | -2.4201 |
| 0.0645 | 1.76 | 7300 | 0.5339 | -4.9822 | -8.0212 | 0.6775 | 3.0390 | -264.6048 | -245.7831 | -2.2857 | -2.3440 |
| 0.0923 | 1.78 | 7400 | 0.5385 | -4.6369 | -7.6632 | 0.6650 | 3.0263 | -261.0246 | -242.3295 | -2.2563 | -2.3150 |
| 0.0842 | 1.81 | 7500 | 0.5394 | -4.8705 | -7.6765 | 0.6600 | 2.8060 | -261.1580 | -244.6661 | -2.2808 | -2.3287 |
| 0.1178 | 1.83 | 7600 | 0.5253 | -4.7985 | -7.5635 | 0.6675 | 2.7650 | -260.0276 | -243.9457 | -2.4022 | -2.4463 |
| 0.1255 | 1.85 | 7700 | 0.5355 | -4.7007 | -7.4363 | 0.6675 | 2.7355 | -258.7556 | -242.9684 | -2.5073 | -2.5501 |
| 0.1541 | 1.88 | 7800 | 0.5440 | -4.9294 | -7.6465 | 0.6500 | 2.7172 | -260.8584 | -245.2547 | -2.3551 | -2.4036 |
| 0.0893 | 1.9 | 7900 | 0.5397 | -5.2135 | -8.3241 | 0.6575 | 3.1106 | -267.6339 | -248.0959 | -2.3214 | -2.3784 |
| 0.1203 | 1.93 | 8000 | 0.5296 | -4.8644 | -7.8598 | 0.6550 | 2.9954 | -262.9913 | -244.6054 | -2.4509 | -2.4969 |
| 0.1018 | 1.95 | 8100 | 0.5381 | -5.3471 | -8.4918 | 0.6625 | 3.1447 | -269.3113 | -249.4323 | -2.4193 | -2.4671 |
| 0.0767 | 1.97 | 8200 | 0.5386 | -5.2151 | -8.3734 | 0.6675 | 3.1582 | -268.1267 | -248.1124 | -2.4873 | -2.5329 |
| 0.0801 | 2.0 | 8300 | 0.5429 | -5.8103 | -9.0391 | 0.6575 | 3.2288 | -274.7842 | -254.0639 | -2.4348 | -2.4867 |
| 0.034 | 2.02 | 8400 | 0.5566 | -5.7907 | -9.2424 | 0.6625 | 3.4518 | -276.8175 | -253.8677 | -2.3679 | -2.4272 |
| 0.0246 | 2.05 | 8500 | 0.5758 | -5.6317 | -9.1533 | 0.6625 | 3.5216 | -275.9264 | -252.2783 | -2.3335 | -2.3958 |
| 0.0187 | 2.07 | 8600 | 0.5770 | -5.5795 | -9.2568 | 0.6725 | 3.6773 | -276.9613 | -251.7559 | -2.3614 | -2.4166 |
| 0.0606 | 2.09 | 8700 | 0.6115 | -7.1190 | -11.2853 | 0.6750 | 4.1663 | -297.2460 | -267.1512 | -2.2737 | -2.3365 |
| 0.0402 | 2.12 | 8800 | 0.6164 | -7.0531 | -11.1316 | 0.6600 | 4.0785 | -295.7089 | -266.4919 | -2.2005 | -2.2654 |
| 0.0263 | 2.14 | 8900 | 0.6209 | -8.1609 | -12.3710 | 0.6650 | 4.2102 | -308.1034 | -277.5696 | -2.0958 | -2.1661 |
| 0.0242 | 2.17 | 9000 | 0.6042 | -6.7201 | -10.7618 | 0.6725 | 4.0416 | -292.0106 | -263.1622 | -2.1651 | -2.2304 |
| 0.0383 | 2.19 | 9100 | 0.6080 | -7.7898 | -11.9356 | 0.6750 | 4.1458 | -303.7489 | -273.8587 | -2.1006 | -2.1662 |
| 0.0371 | 2.21 | 9200 | 0.6149 | -7.5635 | -11.7050 | 0.6675 | 4.1415 | -301.4433 | -271.5960 | -2.1556 | -2.2155 |
| 0.0279 | 2.24 | 9300 | 0.6155 | -8.1686 | -12.4447 | 0.6775 | 4.2760 | -308.8397 | -277.6473 | -2.1778 | -2.2399 |
| 0.021 | 2.26 | 9400 | 0.6137 | -7.8294 | -12.0416 | 0.6700 | 4.2122 | -304.8092 | -274.2550 | -2.2403 | -2.2958 |
| 0.0374 | 2.29 | 9500 | 0.6238 | -7.9227 | -12.2842 | 0.6750 | 4.3614 | -307.2347 | -275.1884 | -2.2926 | -2.3496 |
| 0.0412 | 2.31 | 9600 | 0.6126 | -7.7094 | -11.9775 | 0.6700 | 4.2681 | -304.1685 | -273.0553 | -2.2377 | -2.2961 |
| 0.0413 | 2.33 | 9700 | 0.6130 | -7.6030 | -11.8721 | 0.6675 | 4.2691 | -303.1140 | -271.9912 | -2.2505 | -2.3100 |
| 0.0361 | 2.36 | 9800 | 0.6248 | -8.1273 | -12.6010 | 0.6750 | 4.4737 | -310.4034 | -277.2341 | -2.2249 | -2.2866 |
| 0.0289 | 2.38 | 9900 | 0.6192 | -7.9924 | -12.3825 | 0.6675 | 4.3901 | -308.2185 | -275.8853 | -2.2473 | -2.3067 |
| 0.038 | 2.41 | 10000 | 0.6250 | -8.4114 | -12.8701 | 0.6675 | 4.4586 | -313.0937 | -280.0753 | -2.2312 | -2.2938 |
| 0.0334 | 2.43 | 10100 | 0.6261 | -9.1807 | -13.7488 | 0.6825 | 4.5681 | -321.8813 | -287.7679 | -2.2303 | -2.2947 |
| 0.0359 | 2.45 | 10200 | 0.6374 | -9.8214 | -14.2774 | 0.6650 | 4.4560 | -327.1667 | -294.1750 | -2.1817 | -2.2452 |
| 0.0266 | 2.48 | 10300 | 0.6298 | -8.3278 | -12.5691 | 0.6650 | 4.2413 | -310.0836 | -279.2391 | -2.2947 | -2.3521 |
| 0.0423 | 2.5 | 10400 | 0.6267 | -8.7527 | -13.2552 | 0.6675 | 4.5025 | -316.9453 | -283.4879 | -2.3034 | -2.3620 |
| 0.0329 | 2.53 | 10500 | 0.6386 | -8.9354 | -13.5549 | 0.6700 | 4.6195 | -319.9424 | -285.3152 | -2.2819 | -2.3423 |
| 0.039 | 2.55 | 10600 | 0.6330 | -8.3549 | -12.8863 | 0.6775 | 4.5314 | -313.2566 | -279.5103 | -2.2924 | -2.3528 |
| 0.0278 | 2.58 | 10700 | 0.6336 | -8.6754 | -13.1733 | 0.6675 | 4.4979 | -316.1258 | -282.7150 | -2.2319 | -2.2929 |
| 0.0606 | 2.6 | 10800 | 0.6299 | -8.7158 | -13.0817 | 0.6700 | 4.3658 | -315.2101 | -283.1195 | -2.2116 | -2.2731 |
| 0.0293 | 2.62 | 10900 | 0.6259 | -8.9092 | -13.2926 | 0.6725 | 4.3834 | -317.3194 | -285.0532 | -2.1572 | -2.2209 |
| 0.0196 | 2.65 | 11000 | 0.6219 | -9.1783 | -13.5617 | 0.6700 | 4.3835 | -320.0104 | -287.7436 | -2.1533 | -2.2163 |
| 0.0405 | 2.67 | 11100 | 0.6209 | -8.9912 | -13.3040 | 0.6700 | 4.3128 | -317.4330 | -285.8734 | -2.1378 | -2.2017 |
| 0.0278 | 2.7 | 11200 | 0.6300 | -9.8318 | -14.2684 | 0.6700 | 4.4366 | -327.0771 | -294.2787 | -2.1220 | -2.1862 |
| 0.0307 | 2.72 | 11300 | 0.6356 | -9.7027 | -14.1764 | 0.6700 | 4.4737 | -326.1576 | -292.9880 | -2.1316 | -2.1945 |
| 0.0242 | 2.74 | 11400 | 0.6327 | -9.8085 | -14.2574 | 0.6625 | 4.4489 | -326.9674 | -294.0465 | -2.1072 | -2.1680 |
| 0.0242 | 2.77 | 11500 | 0.6308 | -9.3697 | -13.8420 | 0.6650 | 4.4723 | -322.8135 | -289.6585 | -2.1273 | -2.1882 |
| 0.0337 | 2.79 | 11600 | 0.6350 | -9.2810 | -13.7917 | 0.6700 | 4.5107 | -322.3100 | -288.7711 | -2.1600 | -2.2215 |
| 0.0302 | 2.82 | 11700 | 0.6450 | -10.2754 | -14.9521 | 0.6675 | 4.6767 | -333.9139 | -298.7146 | -2.1339 | -2.1965 |
| 0.0354 | 2.84 | 11800 | 0.6451 | -10.3736 | -15.0743 | 0.6725 | 4.7008 | -335.1366 | -299.6965 | -2.1047 | -2.1674 |
| 0.0153 | 2.86 | 11900 | 0.6420 | -10.2126 | -14.9126 | 0.6700 | 4.7000 | -333.5196 | -298.0872 | -2.1102 | -2.1728 |
| 0.0388 | 2.89 | 12000 | 0.6407 | -10.2075 | -14.9081 | 0.6725 | 4.7006 | -333.4741 | -298.0356 | -2.1059 | -2.1687 |
| 0.0253 | 2.91 | 12100 | 0.6353 | -10.0842 | -14.7598 | 0.6650 | 4.6756 | -331.9908 | -296.8029 | -2.0968 | -2.1594 |
| 0.0317 | 2.94 | 12200 | 0.6352 | -9.9956 | -14.6819 | 0.6750 | 4.6863 | -331.2123 | -295.9169 | -2.1042 | -2.1665 |
| 0.0431 | 2.96 | 12300 | 0.6337 | -9.8807 | -14.5540 | 0.6675 | 4.6733 | -329.9332 | -294.7676 | -2.1034 | -2.1660 |
| 0.0233 | 2.98 | 12400 | 0.6326 | -9.8796 | -14.5449 | 0.6675 | 4.6653 | -329.8422 | -294.7567 | -2.1032 | -2.1657 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| {} | RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-4bits | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T04:52:35+00:00 |
null | null | {"license": "openrail"} | Danikdsa/Lia | null | [
"license:openrail",
"region:us"
] | null | 2024-05-01T04:53:17+00:00 |
|
null | null | {} | bsheon/adsl-math | null | [
"region:us"
] | null | 2024-05-01T04:53:36+00:00 |
|
text-generation | transformers |
# Uploaded model
- **Developed by:** Jaspann
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | Jaspann/test-model | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-05-01T04:55:02+00:00 |
null | null | {"license": "llama3"} | rahulAkaVector/java_code_generator_finetuned_model | null | [
"safetensors",
"license:llama3",
"region:us"
] | null | 2024-05-01T04:55:27+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
mistral-7b-anthropic - bnb 8bits
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/mistral-7b-anthropic/
Original model description:
---
license: apache-2.0
base_model: HuggingFaceH4/mistral-7b-cai
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
model-index:
- name: mistral-7b-dpo-v21.0cai.0.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral 7B Constitutional AI
This model is a DPO-aligned version of Mistral 7B on the HuggingFaceH4/ultrafeedback_binarized_fixed and the HuggingFaceH4/cai-conversation-harmless datasets.
It achieves the following results on the evaluation set:
- Loss: 0.6327
- Rewards/chosen: -9.8716
- Rewards/rejected: -14.5465
- Rewards/accuracies: 0.6725
- Rewards/margins: 4.6749
- Logps/rejected: -329.8578
- Logps/chosen: -294.6768
- Logits/rejected: -2.1023
- Logits/chosen: -2.1648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6817 | 0.02 | 100 | 0.6873 | 0.0149 | 0.0002 | 0.5150 | 0.0147 | -184.3912 | -195.8124 | -3.1605 | -3.1560 |
| 0.6767 | 0.05 | 200 | 0.6614 | 0.0825 | 0.0169 | 0.5575 | 0.0656 | -184.2246 | -195.1362 | -3.1654 | -3.1605 |
| 0.6328 | 0.07 | 300 | 0.6246 | -0.0374 | -0.2112 | 0.5875 | 0.1738 | -186.5047 | -196.3349 | -3.1579 | -3.1529 |
| 0.5919 | 0.1 | 400 | 0.5978 | 0.2812 | -0.0666 | 0.6125 | 0.3478 | -185.0590 | -193.1489 | -3.1292 | -3.1243 |
| 0.5545 | 0.12 | 500 | 0.5800 | 0.1742 | -0.2810 | 0.6275 | 0.4552 | -187.2035 | -194.2191 | -3.0819 | -3.0788 |
| 0.5926 | 0.14 | 600 | 0.5599 | 0.2410 | -0.3076 | 0.6425 | 0.5487 | -187.4693 | -193.5507 | -3.0601 | -3.0597 |
| 0.5326 | 0.17 | 700 | 0.5385 | -0.2501 | -0.9698 | 0.6400 | 0.7197 | -194.0914 | -198.4624 | -2.9076 | -2.9090 |
| 0.5126 | 0.19 | 800 | 0.5238 | -0.3616 | -1.1783 | 0.6525 | 0.8167 | -196.1764 | -199.5769 | -2.9965 | -2.9963 |
| 0.5283 | 0.22 | 900 | 0.5289 | -0.4142 | -1.2542 | 0.6775 | 0.8400 | -196.9348 | -200.1031 | -3.0133 | -3.0134 |
| 0.5303 | 0.24 | 1000 | 0.5214 | -0.5949 | -1.5888 | 0.6600 | 0.9939 | -200.2815 | -201.9101 | -2.9663 | -2.9669 |
| 0.5969 | 0.26 | 1100 | 0.5235 | -0.5924 | -1.5222 | 0.6600 | 0.9298 | -199.6154 | -201.8848 | -2.9402 | -2.9468 |
| 0.581 | 0.29 | 1200 | 0.5887 | -0.7548 | -1.7075 | 0.6400 | 0.9527 | -201.4678 | -203.5091 | -2.7065 | -2.7227 |
| 0.817 | 0.31 | 1300 | 0.6620 | -1.5060 | -2.4221 | 0.6500 | 0.9160 | -208.6137 | -211.0213 | -2.7717 | -2.7800 |
| 0.6039 | 0.34 | 1400 | 0.5321 | -1.6820 | -2.8439 | 0.6425 | 1.1619 | -212.8325 | -212.7814 | -2.6828 | -2.6917 |
| 0.6666 | 0.36 | 1500 | 0.5303 | -1.3875 | -2.6384 | 0.6475 | 1.2509 | -210.7773 | -209.8365 | -2.8557 | -2.8594 |
| 0.6907 | 0.39 | 1600 | 0.5409 | -2.0657 | -3.2214 | 0.6650 | 1.1556 | -216.6068 | -216.6184 | -2.8227 | -2.8288 |
| 0.5772 | 0.41 | 1700 | 0.5309 | -1.9849 | -3.2833 | 0.6875 | 1.2985 | -217.2264 | -215.8097 | -2.6498 | -2.6635 |
| 0.5601 | 0.43 | 1800 | 0.5281 | -1.7365 | -3.0643 | 0.6575 | 1.3278 | -215.0359 | -213.3255 | -2.8890 | -2.8918 |
| 0.576 | 0.46 | 1900 | 0.5266 | -1.4822 | -2.9294 | 0.6725 | 1.4472 | -213.6872 | -210.7831 | -2.7369 | -2.7427 |
| 1.2064 | 0.48 | 2000 | 0.5538 | -2.5493 | -3.7625 | 0.6675 | 1.2132 | -222.0182 | -221.4542 | -2.6773 | -2.6957 |
| 0.5751 | 0.51 | 2100 | 0.5465 | -1.9246 | -3.1480 | 0.6425 | 1.2234 | -215.8728 | -215.2067 | -2.6490 | -2.6657 |
| 0.4757 | 0.53 | 2200 | 0.5297 | -1.8443 | -3.1553 | 0.6325 | 1.3110 | -215.9462 | -214.4039 | -2.6882 | -2.7115 |
| 0.4771 | 0.55 | 2300 | 0.5386 | -2.3340 | -3.7443 | 0.6500 | 1.4103 | -221.8360 | -219.3013 | -2.6415 | -2.6623 |
| 0.481 | 0.58 | 2400 | 0.5355 | -1.6085 | -3.0800 | 0.6550 | 1.4715 | -215.1930 | -212.0460 | -2.6073 | -2.6293 |
| 0.523 | 0.6 | 2500 | 0.5131 | -2.6139 | -4.2353 | 0.6625 | 1.6214 | -226.7459 | -222.0998 | -2.6134 | -2.6394 |
| 0.6263 | 0.63 | 2600 | 0.5287 | -2.6614 | -4.0538 | 0.6450 | 1.3924 | -224.9310 | -222.5747 | -2.6189 | -2.6361 |
| 0.5973 | 0.65 | 2700 | 0.5132 | -2.7089 | -4.1248 | 0.625 | 1.4159 | -225.6406 | -223.0499 | -2.6167 | -2.6317 |
| 0.8209 | 0.67 | 2800 | 0.5165 | -2.7085 | -4.1871 | 0.625 | 1.4786 | -226.2637 | -223.0462 | -2.5605 | -2.5803 |
| 0.5625 | 0.7 | 2900 | 0.5117 | -3.4747 | -5.0369 | 0.6325 | 1.5622 | -234.7624 | -230.7079 | -2.5891 | -2.6163 |
| 0.5913 | 0.72 | 3000 | 0.5164 | -2.5844 | -4.3822 | 0.6675 | 1.7978 | -228.2149 | -221.8051 | -2.6421 | -2.6632 |
| 0.7441 | 0.75 | 3100 | 0.5175 | -2.4900 | -4.2883 | 0.6725 | 1.7983 | -227.2762 | -220.8608 | -2.6254 | -2.6465 |
| 0.6169 | 0.77 | 3200 | 0.5163 | -2.2489 | -3.8666 | 0.6600 | 1.6176 | -223.0589 | -218.4503 | -2.6517 | -2.6775 |
| 0.5347 | 0.79 | 3300 | 0.5222 | -2.6699 | -4.3844 | 0.6375 | 1.7145 | -228.2368 | -222.6600 | -2.6712 | -2.6909 |
| 0.5369 | 0.82 | 3400 | 0.5244 | -2.7710 | -4.6352 | 0.6600 | 1.8642 | -230.7449 | -223.6711 | -2.5304 | -2.5595 |
| 0.5613 | 0.84 | 3500 | 0.5431 | -3.7645 | -5.6773 | 0.6475 | 1.9128 | -241.1664 | -233.6063 | -2.5348 | -2.5604 |
| 0.6395 | 0.87 | 3600 | 0.5332 | -3.8666 | -5.6894 | 0.6525 | 1.8227 | -241.2867 | -234.6274 | -2.5479 | -2.5778 |
| 0.6552 | 0.89 | 3700 | 0.5149 | -2.9168 | -4.7306 | 0.6525 | 1.8138 | -231.6990 | -225.1294 | -2.4580 | -2.4901 |
| 0.6381 | 0.91 | 3800 | 0.5081 | -2.6182 | -4.3003 | 0.6625 | 1.6821 | -227.3964 | -222.1432 | -2.4730 | -2.4991 |
| 0.5355 | 0.94 | 3900 | 0.5100 | -2.5302 | -4.2476 | 0.6475 | 1.7173 | -226.8689 | -221.2634 | -2.5875 | -2.6065 |
| 0.5488 | 0.96 | 4000 | 0.5164 | -3.1540 | -4.8339 | 0.6550 | 1.6798 | -232.7318 | -227.5013 | -2.7017 | -2.7215 |
| 0.6802 | 0.99 | 4100 | 0.5134 | -2.6060 | -4.2916 | 0.6625 | 1.6856 | -227.3087 | -222.0207 | -2.6010 | -2.6250 |
| 0.0976 | 1.01 | 4200 | 0.5031 | -3.0885 | -5.0494 | 0.6625 | 1.9609 | -234.8874 | -226.8463 | -2.4721 | -2.5028 |
| 0.0839 | 1.03 | 4300 | 0.5027 | -3.3469 | -5.4366 | 0.6625 | 2.0897 | -238.7592 | -229.4302 | -2.3886 | -2.4238 |
| 0.0788 | 1.06 | 4400 | 0.5398 | -4.4307 | -6.8568 | 0.6775 | 2.4261 | -252.9614 | -240.2679 | -2.1805 | -2.2275 |
| 0.0701 | 1.08 | 4500 | 0.5432 | -4.3739 | -7.0979 | 0.6975 | 2.7240 | -255.3717 | -239.7001 | -2.1935 | -2.2437 |
| 0.0959 | 1.11 | 4600 | 0.5362 | -3.9784 | -6.3235 | 0.6900 | 2.3451 | -247.6284 | -235.7450 | -2.2860 | -2.3272 |
| 0.1177 | 1.13 | 4700 | 0.5411 | -4.1933 | -6.8436 | 0.6800 | 2.6504 | -252.8295 | -237.8937 | -2.3259 | -2.3682 |
| 0.1651 | 1.16 | 4800 | 0.5737 | -4.8158 | -6.7229 | 0.6700 | 1.9071 | -251.6221 | -244.1190 | -2.2753 | -2.3139 |
| 0.1298 | 1.18 | 4900 | 0.5528 | -4.6526 | -6.8433 | 0.6825 | 2.1907 | -252.8262 | -242.4874 | -2.4856 | -2.5188 |
| 0.1143 | 1.2 | 5000 | 0.5512 | -4.6212 | -7.0807 | 0.6800 | 2.4595 | -255.2000 | -242.1734 | -2.5190 | -2.5542 |
| 0.1145 | 1.23 | 5100 | 0.5496 | -4.0598 | -6.6147 | 0.6775 | 2.5548 | -250.5396 | -236.5594 | -2.5737 | -2.6008 |
| 0.2324 | 1.25 | 5200 | 0.5524 | -4.9650 | -7.6613 | 0.6725 | 2.6962 | -261.0058 | -245.6115 | -2.4382 | -2.4737 |
| 0.0867 | 1.28 | 5300 | 0.5449 | -4.9568 | -7.6771 | 0.6625 | 2.7203 | -261.1645 | -245.5292 | -2.4367 | -2.4702 |
| 0.0503 | 1.3 | 5400 | 0.5351 | -4.5684 | -7.1860 | 0.6625 | 2.6176 | -256.2527 | -241.6449 | -2.4235 | -2.4557 |
| 0.0977 | 1.32 | 5500 | 0.5431 | -4.5599 | -7.1317 | 0.6550 | 2.5718 | -255.7096 | -241.5597 | -2.5311 | -2.5614 |
| 0.1564 | 1.35 | 5600 | 0.5512 | -5.1430 | -8.0510 | 0.6750 | 2.9080 | -264.9027 | -247.3911 | -2.3498 | -2.3976 |
| 0.0967 | 1.37 | 5700 | 0.5520 | -4.5072 | -7.4506 | 0.6750 | 2.9433 | -258.8989 | -241.0335 | -2.2110 | -2.2631 |
| 0.2046 | 1.4 | 5800 | 0.5588 | -5.5328 | -8.5314 | 0.6800 | 2.9986 | -269.7068 | -251.2888 | -2.2155 | -2.2677 |
| 0.0985 | 1.42 | 5900 | 0.5429 | -5.1915 | -7.9421 | 0.6675 | 2.7505 | -263.8138 | -247.8765 | -2.2606 | -2.3077 |
| 0.1398 | 1.44 | 6000 | 0.5350 | -4.9761 | -7.9378 | 0.6800 | 2.9616 | -263.7706 | -245.7224 | -2.2291 | -2.2809 |
| 0.099 | 1.47 | 6100 | 0.5440 | -4.6202 | -7.4996 | 0.6650 | 2.8794 | -259.3892 | -242.1633 | -2.3362 | -2.3859 |
| 0.1279 | 1.49 | 6200 | 0.5389 | -4.9461 | -7.7908 | 0.6625 | 2.8448 | -262.3015 | -245.4217 | -2.2276 | -2.2734 |
| 0.0778 | 1.52 | 6300 | 0.5451 | -4.9550 | -7.8964 | 0.6625 | 2.9414 | -263.3570 | -245.5110 | -2.4781 | -2.5193 |
| 0.0911 | 1.54 | 6400 | 0.5412 | -5.4552 | -8.3139 | 0.6675 | 2.8588 | -267.5324 | -250.5128 | -2.3604 | -2.4048 |
| 0.2149 | 1.56 | 6500 | 0.5241 | -4.4512 | -7.3194 | 0.6725 | 2.8682 | -257.5873 | -240.4732 | -2.4011 | -2.4461 |
| 0.1739 | 1.59 | 6600 | 0.5329 | -5.0143 | -7.7507 | 0.6825 | 2.7364 | -261.8999 | -246.1036 | -2.4143 | -2.4577 |
| 0.0842 | 1.61 | 6700 | 0.5395 | -5.1195 | -8.0856 | 0.6800 | 2.9661 | -265.2489 | -247.1560 | -2.3877 | -2.4376 |
| 0.105 | 1.64 | 6800 | 0.5423 | -4.9379 | -7.7557 | 0.6775 | 2.8178 | -261.9503 | -245.3403 | -2.3798 | -2.4323 |
| 0.086 | 1.66 | 6900 | 0.5351 | -4.3598 | -7.1156 | 0.6775 | 2.7559 | -255.5494 | -239.5588 | -2.3870 | -2.4383 |
| 0.0622 | 1.68 | 7000 | 0.5394 | -4.6830 | -7.6578 | 0.6825 | 2.9747 | -260.9710 | -242.7915 | -2.4276 | -2.4779 |
| 0.0973 | 1.71 | 7100 | 0.5319 | -4.7475 | -7.6567 | 0.6750 | 2.9091 | -260.9596 | -243.4364 | -2.3010 | -2.3564 |
| 0.1052 | 1.73 | 7200 | 0.5284 | -4.5972 | -7.5385 | 0.6750 | 2.9413 | -259.7779 | -241.9329 | -2.3696 | -2.4201 |
| 0.0645 | 1.76 | 7300 | 0.5339 | -4.9822 | -8.0212 | 0.6775 | 3.0390 | -264.6048 | -245.7831 | -2.2857 | -2.3440 |
| 0.0923 | 1.78 | 7400 | 0.5385 | -4.6369 | -7.6632 | 0.6650 | 3.0263 | -261.0246 | -242.3295 | -2.2563 | -2.3150 |
| 0.0842 | 1.81 | 7500 | 0.5394 | -4.8705 | -7.6765 | 0.6600 | 2.8060 | -261.1580 | -244.6661 | -2.2808 | -2.3287 |
| 0.1178 | 1.83 | 7600 | 0.5253 | -4.7985 | -7.5635 | 0.6675 | 2.7650 | -260.0276 | -243.9457 | -2.4022 | -2.4463 |
| 0.1255 | 1.85 | 7700 | 0.5355 | -4.7007 | -7.4363 | 0.6675 | 2.7355 | -258.7556 | -242.9684 | -2.5073 | -2.5501 |
| 0.1541 | 1.88 | 7800 | 0.5440 | -4.9294 | -7.6465 | 0.6500 | 2.7172 | -260.8584 | -245.2547 | -2.3551 | -2.4036 |
| 0.0893 | 1.9 | 7900 | 0.5397 | -5.2135 | -8.3241 | 0.6575 | 3.1106 | -267.6339 | -248.0959 | -2.3214 | -2.3784 |
| 0.1203 | 1.93 | 8000 | 0.5296 | -4.8644 | -7.8598 | 0.6550 | 2.9954 | -262.9913 | -244.6054 | -2.4509 | -2.4969 |
| 0.1018 | 1.95 | 8100 | 0.5381 | -5.3471 | -8.4918 | 0.6625 | 3.1447 | -269.3113 | -249.4323 | -2.4193 | -2.4671 |
| 0.0767 | 1.97 | 8200 | 0.5386 | -5.2151 | -8.3734 | 0.6675 | 3.1582 | -268.1267 | -248.1124 | -2.4873 | -2.5329 |
| 0.0801 | 2.0 | 8300 | 0.5429 | -5.8103 | -9.0391 | 0.6575 | 3.2288 | -274.7842 | -254.0639 | -2.4348 | -2.4867 |
| 0.034 | 2.02 | 8400 | 0.5566 | -5.7907 | -9.2424 | 0.6625 | 3.4518 | -276.8175 | -253.8677 | -2.3679 | -2.4272 |
| 0.0246 | 2.05 | 8500 | 0.5758 | -5.6317 | -9.1533 | 0.6625 | 3.5216 | -275.9264 | -252.2783 | -2.3335 | -2.3958 |
| 0.0187 | 2.07 | 8600 | 0.5770 | -5.5795 | -9.2568 | 0.6725 | 3.6773 | -276.9613 | -251.7559 | -2.3614 | -2.4166 |
| 0.0606 | 2.09 | 8700 | 0.6115 | -7.1190 | -11.2853 | 0.6750 | 4.1663 | -297.2460 | -267.1512 | -2.2737 | -2.3365 |
| 0.0402 | 2.12 | 8800 | 0.6164 | -7.0531 | -11.1316 | 0.6600 | 4.0785 | -295.7089 | -266.4919 | -2.2005 | -2.2654 |
| 0.0263 | 2.14 | 8900 | 0.6209 | -8.1609 | -12.3710 | 0.6650 | 4.2102 | -308.1034 | -277.5696 | -2.0958 | -2.1661 |
| 0.0242 | 2.17 | 9000 | 0.6042 | -6.7201 | -10.7618 | 0.6725 | 4.0416 | -292.0106 | -263.1622 | -2.1651 | -2.2304 |
| 0.0383 | 2.19 | 9100 | 0.6080 | -7.7898 | -11.9356 | 0.6750 | 4.1458 | -303.7489 | -273.8587 | -2.1006 | -2.1662 |
| 0.0371 | 2.21 | 9200 | 0.6149 | -7.5635 | -11.7050 | 0.6675 | 4.1415 | -301.4433 | -271.5960 | -2.1556 | -2.2155 |
| 0.0279 | 2.24 | 9300 | 0.6155 | -8.1686 | -12.4447 | 0.6775 | 4.2760 | -308.8397 | -277.6473 | -2.1778 | -2.2399 |
| 0.021 | 2.26 | 9400 | 0.6137 | -7.8294 | -12.0416 | 0.6700 | 4.2122 | -304.8092 | -274.2550 | -2.2403 | -2.2958 |
| 0.0374 | 2.29 | 9500 | 0.6238 | -7.9227 | -12.2842 | 0.6750 | 4.3614 | -307.2347 | -275.1884 | -2.2926 | -2.3496 |
| 0.0412 | 2.31 | 9600 | 0.6126 | -7.7094 | -11.9775 | 0.6700 | 4.2681 | -304.1685 | -273.0553 | -2.2377 | -2.2961 |
| 0.0413 | 2.33 | 9700 | 0.6130 | -7.6030 | -11.8721 | 0.6675 | 4.2691 | -303.1140 | -271.9912 | -2.2505 | -2.3100 |
| 0.0361 | 2.36 | 9800 | 0.6248 | -8.1273 | -12.6010 | 0.6750 | 4.4737 | -310.4034 | -277.2341 | -2.2249 | -2.2866 |
| 0.0289 | 2.38 | 9900 | 0.6192 | -7.9924 | -12.3825 | 0.6675 | 4.3901 | -308.2185 | -275.8853 | -2.2473 | -2.3067 |
| 0.038 | 2.41 | 10000 | 0.6250 | -8.4114 | -12.8701 | 0.6675 | 4.4586 | -313.0937 | -280.0753 | -2.2312 | -2.2938 |
| 0.0334 | 2.43 | 10100 | 0.6261 | -9.1807 | -13.7488 | 0.6825 | 4.5681 | -321.8813 | -287.7679 | -2.2303 | -2.2947 |
| 0.0359 | 2.45 | 10200 | 0.6374 | -9.8214 | -14.2774 | 0.6650 | 4.4560 | -327.1667 | -294.1750 | -2.1817 | -2.2452 |
| 0.0266 | 2.48 | 10300 | 0.6298 | -8.3278 | -12.5691 | 0.6650 | 4.2413 | -310.0836 | -279.2391 | -2.2947 | -2.3521 |
| 0.0423 | 2.5 | 10400 | 0.6267 | -8.7527 | -13.2552 | 0.6675 | 4.5025 | -316.9453 | -283.4879 | -2.3034 | -2.3620 |
| 0.0329 | 2.53 | 10500 | 0.6386 | -8.9354 | -13.5549 | 0.6700 | 4.6195 | -319.9424 | -285.3152 | -2.2819 | -2.3423 |
| 0.039 | 2.55 | 10600 | 0.6330 | -8.3549 | -12.8863 | 0.6775 | 4.5314 | -313.2566 | -279.5103 | -2.2924 | -2.3528 |
| 0.0278 | 2.58 | 10700 | 0.6336 | -8.6754 | -13.1733 | 0.6675 | 4.4979 | -316.1258 | -282.7150 | -2.2319 | -2.2929 |
| 0.0606 | 2.6 | 10800 | 0.6299 | -8.7158 | -13.0817 | 0.6700 | 4.3658 | -315.2101 | -283.1195 | -2.2116 | -2.2731 |
| 0.0293 | 2.62 | 10900 | 0.6259 | -8.9092 | -13.2926 | 0.6725 | 4.3834 | -317.3194 | -285.0532 | -2.1572 | -2.2209 |
| 0.0196 | 2.65 | 11000 | 0.6219 | -9.1783 | -13.5617 | 0.6700 | 4.3835 | -320.0104 | -287.7436 | -2.1533 | -2.2163 |
| 0.0405 | 2.67 | 11100 | 0.6209 | -8.9912 | -13.3040 | 0.6700 | 4.3128 | -317.4330 | -285.8734 | -2.1378 | -2.2017 |
| 0.0278 | 2.7 | 11200 | 0.6300 | -9.8318 | -14.2684 | 0.6700 | 4.4366 | -327.0771 | -294.2787 | -2.1220 | -2.1862 |
| 0.0307 | 2.72 | 11300 | 0.6356 | -9.7027 | -14.1764 | 0.6700 | 4.4737 | -326.1576 | -292.9880 | -2.1316 | -2.1945 |
| 0.0242 | 2.74 | 11400 | 0.6327 | -9.8085 | -14.2574 | 0.6625 | 4.4489 | -326.9674 | -294.0465 | -2.1072 | -2.1680 |
| 0.0242 | 2.77 | 11500 | 0.6308 | -9.3697 | -13.8420 | 0.6650 | 4.4723 | -322.8135 | -289.6585 | -2.1273 | -2.1882 |
| 0.0337 | 2.79 | 11600 | 0.6350 | -9.2810 | -13.7917 | 0.6700 | 4.5107 | -322.3100 | -288.7711 | -2.1600 | -2.2215 |
| 0.0302 | 2.82 | 11700 | 0.6450 | -10.2754 | -14.9521 | 0.6675 | 4.6767 | -333.9139 | -298.7146 | -2.1339 | -2.1965 |
| 0.0354 | 2.84 | 11800 | 0.6451 | -10.3736 | -15.0743 | 0.6725 | 4.7008 | -335.1366 | -299.6965 | -2.1047 | -2.1674 |
| 0.0153 | 2.86 | 11900 | 0.6420 | -10.2126 | -14.9126 | 0.6700 | 4.7000 | -333.5196 | -298.0872 | -2.1102 | -2.1728 |
| 0.0388 | 2.89 | 12000 | 0.6407 | -10.2075 | -14.9081 | 0.6725 | 4.7006 | -333.4741 | -298.0356 | -2.1059 | -2.1687 |
| 0.0253 | 2.91 | 12100 | 0.6353 | -10.0842 | -14.7598 | 0.6650 | 4.6756 | -331.9908 | -296.8029 | -2.0968 | -2.1594 |
| 0.0317 | 2.94 | 12200 | 0.6352 | -9.9956 | -14.6819 | 0.6750 | 4.6863 | -331.2123 | -295.9169 | -2.1042 | -2.1665 |
| 0.0431 | 2.96 | 12300 | 0.6337 | -9.8807 | -14.5540 | 0.6675 | 4.6733 | -329.9332 | -294.7676 | -2.1034 | -2.1660 |
| 0.0233 | 2.98 | 12400 | 0.6326 | -9.8796 | -14.5449 | 0.6675 | 4.6653 | -329.8422 | -294.7567 | -2.1032 | -2.1657 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| {} | RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-8bits | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T04:58:39+00:00 |
text-generation | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"language": ["en"], "library_name": "peft", "tags": ["text-generation", "code-generation", "text-to-text-generation"], "base_model": "meta-llama/Meta-Llama-3-70B-Instruct"} | aryansiddiqui/llama3v1 | null | [
"peft",
"safetensors",
"text-generation",
"code-generation",
"text-to-text-generation",
"conversational",
"en",
"arxiv:1910.09700",
"base_model:meta-llama/Meta-Llama-3-70B-Instruct",
"region:us"
] | null | 2024-05-01T04:58:43+00:00 |
null | null | {} | aayushb03/CU_Model_pths | null | [
"region:us"
] | null | 2024-05-01T04:59:35+00:00 |
|
feature-extraction | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | stvhuang/rcr-run-5pqr6lwp-90396-master-0_20240402T105012-ep42 | null | [
"transformers",
"safetensors",
"xlm-roberta",
"feature-extraction",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:01:36+00:00 |
null | null | {"license": "apache-2.0"} | shanhanigun/fgdfg | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:03:10+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | nem012/gemma2b-1e-5r32 | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:06:25+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | goodakdali/testing_ins_add_adapter | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:06:28+00:00 |
text-generation | null |
# gagagiga/Llama-3-Open-Ko-8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`beomi/Llama-3-Open-Ko-8B`](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo gagagiga/Llama-3-Open-Ko-8B-Q4_K_M-GGUF --model llama-3-open-ko-8b.Q4_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo gagagiga/Llama-3-Open-Ko-8B-Q4_K_M-GGUF --model llama-3-open-ko-8b.Q4_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-open-ko-8b.Q4_K_M.gguf -n 128
```
| {"language": ["en", "ko"], "license": "other", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3", "llama-3-ko", "llama-cpp", "gguf-my-repo"], "pipeline_tag": "text-generation", "license_name": "llama3", "license_link": "LICENSE"} | gagagiga/Llama-3-Open-Ko-8B-Q4_K_M-GGUF | null | [
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"llama-3-ko",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"ko",
"license:other",
"region:us"
] | null | 2024-05-01T05:06:29+00:00 |
text-generation | null |
# existmaster/Llama-3-8B-Instruct-Gradient-1048k-Q8_0-GGUF
This model was converted to GGUF format from [`gradientai/Llama-3-8B-Instruct-Gradient-1048k`](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo existmaster/Llama-3-8B-Instruct-Gradient-1048k-Q8_0-GGUF --model llama-3-8b-instruct-gradient-1048k.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo existmaster/Llama-3-8B-Instruct-Gradient-1048k-Q8_0-GGUF --model llama-3-8b-instruct-gradient-1048k.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-8b-instruct-gradient-1048k.Q8_0.gguf -n 128
```
| {"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3", "llama-cpp", "gguf-my-repo"], "pipeline_tag": "text-generation"} | existmaster/Llama-3-8B-Instruct-Gradient-1048k-Q8_0-GGUF | null | [
"gguf",
"meta",
"llama-3",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"license:llama3",
"region:us"
] | null | 2024-05-01T05:08:02+00:00 |
null | null | {} | Anish0403/my_awesome_qa_model | null | [
"region:us"
] | null | 2024-05-01T05:08:45+00:00 |
|
null | null | {} | weqweasdas/zephyr-7b-gemma-dpo | null | [
"region:us"
] | null | 2024-05-01T05:08:47+00:00 |
|
text-generation | transformers |
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Llama-3-8B-Instruct-Gradient-1048k-GGUF
## Original Model
[gradientai/Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k)
## Run with LlamaEdge
- LlamaEdge version: [v0.9.0](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.9.0) and above
- Prompt template
- Prompt type: `llama-3-chat`
- Prompt string
```text
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>
{{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|>
{{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
- Context size: `1000000`
- Run as LlamaEdge service
```bash
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M.gguf \
llama-api-server.wasm \
--prompt-template llama-3-chat \
--ctx-size 1000000 \
--model-name llama-3-8b-instruct-gradient-1048k
```
- Run as LlamaEdge command app
```bash
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M.gguf \
llama-chat.wasm \
--prompt-template llama-3-chat \
--ctx-size 1000000 \
```
## Quantized GGUF Models
| Name | Quant method | Bits | Size | Use case |
| ---- | ---- | ---- | ---- | ----- |
| [Llama-3-8B-Instruct-Gradient-1048k-Q2_K.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q2_K.gguf) | Q2_K | 2 | 3.18 GB| smallest, significant quality loss - not recommended for most purposes |
| [Llama-3-8B-Instruct-Gradient-1048k-Q3_K_L.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q3_K_L.gguf) | Q3_K_L | 3 | 4.32 GB| small, substantial quality loss |
| [Llama-3-8B-Instruct-Gradient-1048k-Q3_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q3_K_M.gguf) | Q3_K_M | 3 | 4.02 GB| very small, high quality loss |
| [Llama-3-8B-Instruct-Gradient-1048k-Q3_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q3_K_S.gguf) | Q3_K_S | 3 | 3.66 GB| very small, high quality loss |
| [Llama-3-8B-Instruct-Gradient-1048k-Q4_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q4_0.gguf) | Q4_0 | 4 | 4.66 GB| legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama-3-8B-Instruct-Gradient-1048k-Q4_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q4_K_M.gguf) | Q4_K_M | 4 | 4.92 GB| medium, balanced quality - recommended |
| [Llama-3-8B-Instruct-Gradient-1048k-Q4_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q4_K_S.gguf) | Q4_K_S | 4 | 4.69 GB| small, greater quality loss |
| [Llama-3-8B-Instruct-Gradient-1048k-Q5_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q5_0.gguf) | Q5_0 | 5 | 5.6 GB| legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M.gguf) | Q5_K_M | 5 | 5.73 GB| large, very low quality loss - recommended |
| [Llama-3-8B-Instruct-Gradient-1048k-Q5_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q5_K_S.gguf) | Q5_K_S | 5 | 5.6 GB| large, low quality loss - recommended |
| [Llama-3-8B-Instruct-Gradient-1048k-Q6_K.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q6_K.gguf) | Q6_K | 6 | 6.6 GB| very large, extremely low quality loss |
| [Llama-3-8B-Instruct-Gradient-1048k-Q8_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-Q8_0.gguf) | Q8_0 | 8 | 8.54 GB| very large, extremely low quality loss - not recommended |
| [Llama-3-8B-Instruct-Gradient-1048k-f16.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF/blob/main/Llama-3-8B-Instruct-Gradient-1048k-f16.gguf) | f16 | 16 | 16.1 GB| |
*Quantized with llama.cpp b2734.*
| {"language": ["en"], "license": "other", "tags": ["meta", "llama-3"], "model_name": "Llama-3-8B-Instruct-Gradient-1048k", "license_name": "llama3", "base_model": "gradientai/Llama-3-8B-Instruct-Gradient-1048k", "inference": false, "model_creator": "gradient.ai", "model_type": "llama", "pipeline_tag": "text-generation", "quantized_by": "Second State Inc."} | second-state/Llama-3-8B-Instruct-Gradient-1048k-GGUF | null | [
"transformers",
"gguf",
"llama",
"text-generation",
"meta",
"llama-3",
"en",
"base_model:gradientai/Llama-3-8B-Instruct-Gradient-1048k",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:09:29+00:00 |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.9.0 | {"license": "apache-2.0", "library_name": "peft", "base_model": "google/gemma-2b-it"} | azarafrooz/phi-gemma-nlaf-v1 | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b-it",
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:09:46+00:00 |
null | null | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
mistral-7b-anthropic - GGUF
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/mistral-7b-anthropic/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [mistral-7b-anthropic.Q2_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q2_K.gguf) | Q2_K | 2.53GB |
| [mistral-7b-anthropic.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [mistral-7b-anthropic.IQ3_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [mistral-7b-anthropic.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [mistral-7b-anthropic.IQ3_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [mistral-7b-anthropic.Q3_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q3_K.gguf) | Q3_K | 3.28GB |
| [mistral-7b-anthropic.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [mistral-7b-anthropic.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [mistral-7b-anthropic.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [mistral-7b-anthropic.Q4_0.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q4_0.gguf) | Q4_0 | 3.83GB |
| [mistral-7b-anthropic.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [mistral-7b-anthropic.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [mistral-7b-anthropic.Q4_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q4_K.gguf) | Q4_K | 4.07GB |
| [mistral-7b-anthropic.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [mistral-7b-anthropic.Q4_1.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q4_1.gguf) | Q4_1 | 4.24GB |
| [mistral-7b-anthropic.Q5_0.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q5_0.gguf) | Q5_0 | 4.65GB |
| [mistral-7b-anthropic.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [mistral-7b-anthropic.Q5_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q5_K.gguf) | Q5_K | 4.78GB |
| [mistral-7b-anthropic.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [mistral-7b-anthropic.Q5_1.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q5_1.gguf) | Q5_1 | 5.07GB |
| [mistral-7b-anthropic.Q6_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf/blob/main/mistral-7b-anthropic.Q6_K.gguf) | Q6_K | 5.53GB |
Original model description:
---
license: apache-2.0
base_model: HuggingFaceH4/mistral-7b-cai
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
model-index:
- name: mistral-7b-dpo-v21.0cai.0.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral 7B Constitutional AI
This model is a DPO-aligned version of Mistral 7B on the HuggingFaceH4/ultrafeedback_binarized_fixed and the HuggingFaceH4/cai-conversation-harmless datasets.
It achieves the following results on the evaluation set:
- Loss: 0.6327
- Rewards/chosen: -9.8716
- Rewards/rejected: -14.5465
- Rewards/accuracies: 0.6725
- Rewards/margins: 4.6749
- Logps/rejected: -329.8578
- Logps/chosen: -294.6768
- Logits/rejected: -2.1023
- Logits/chosen: -2.1648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6817 | 0.02 | 100 | 0.6873 | 0.0149 | 0.0002 | 0.5150 | 0.0147 | -184.3912 | -195.8124 | -3.1605 | -3.1560 |
| 0.6767 | 0.05 | 200 | 0.6614 | 0.0825 | 0.0169 | 0.5575 | 0.0656 | -184.2246 | -195.1362 | -3.1654 | -3.1605 |
| 0.6328 | 0.07 | 300 | 0.6246 | -0.0374 | -0.2112 | 0.5875 | 0.1738 | -186.5047 | -196.3349 | -3.1579 | -3.1529 |
| 0.5919 | 0.1 | 400 | 0.5978 | 0.2812 | -0.0666 | 0.6125 | 0.3478 | -185.0590 | -193.1489 | -3.1292 | -3.1243 |
| 0.5545 | 0.12 | 500 | 0.5800 | 0.1742 | -0.2810 | 0.6275 | 0.4552 | -187.2035 | -194.2191 | -3.0819 | -3.0788 |
| 0.5926 | 0.14 | 600 | 0.5599 | 0.2410 | -0.3076 | 0.6425 | 0.5487 | -187.4693 | -193.5507 | -3.0601 | -3.0597 |
| 0.5326 | 0.17 | 700 | 0.5385 | -0.2501 | -0.9698 | 0.6400 | 0.7197 | -194.0914 | -198.4624 | -2.9076 | -2.9090 |
| 0.5126 | 0.19 | 800 | 0.5238 | -0.3616 | -1.1783 | 0.6525 | 0.8167 | -196.1764 | -199.5769 | -2.9965 | -2.9963 |
| 0.5283 | 0.22 | 900 | 0.5289 | -0.4142 | -1.2542 | 0.6775 | 0.8400 | -196.9348 | -200.1031 | -3.0133 | -3.0134 |
| 0.5303 | 0.24 | 1000 | 0.5214 | -0.5949 | -1.5888 | 0.6600 | 0.9939 | -200.2815 | -201.9101 | -2.9663 | -2.9669 |
| 0.5969 | 0.26 | 1100 | 0.5235 | -0.5924 | -1.5222 | 0.6600 | 0.9298 | -199.6154 | -201.8848 | -2.9402 | -2.9468 |
| 0.581 | 0.29 | 1200 | 0.5887 | -0.7548 | -1.7075 | 0.6400 | 0.9527 | -201.4678 | -203.5091 | -2.7065 | -2.7227 |
| 0.817 | 0.31 | 1300 | 0.6620 | -1.5060 | -2.4221 | 0.6500 | 0.9160 | -208.6137 | -211.0213 | -2.7717 | -2.7800 |
| 0.6039 | 0.34 | 1400 | 0.5321 | -1.6820 | -2.8439 | 0.6425 | 1.1619 | -212.8325 | -212.7814 | -2.6828 | -2.6917 |
| 0.6666 | 0.36 | 1500 | 0.5303 | -1.3875 | -2.6384 | 0.6475 | 1.2509 | -210.7773 | -209.8365 | -2.8557 | -2.8594 |
| 0.6907 | 0.39 | 1600 | 0.5409 | -2.0657 | -3.2214 | 0.6650 | 1.1556 | -216.6068 | -216.6184 | -2.8227 | -2.8288 |
| 0.5772 | 0.41 | 1700 | 0.5309 | -1.9849 | -3.2833 | 0.6875 | 1.2985 | -217.2264 | -215.8097 | -2.6498 | -2.6635 |
| 0.5601 | 0.43 | 1800 | 0.5281 | -1.7365 | -3.0643 | 0.6575 | 1.3278 | -215.0359 | -213.3255 | -2.8890 | -2.8918 |
| 0.576 | 0.46 | 1900 | 0.5266 | -1.4822 | -2.9294 | 0.6725 | 1.4472 | -213.6872 | -210.7831 | -2.7369 | -2.7427 |
| 1.2064 | 0.48 | 2000 | 0.5538 | -2.5493 | -3.7625 | 0.6675 | 1.2132 | -222.0182 | -221.4542 | -2.6773 | -2.6957 |
| 0.5751 | 0.51 | 2100 | 0.5465 | -1.9246 | -3.1480 | 0.6425 | 1.2234 | -215.8728 | -215.2067 | -2.6490 | -2.6657 |
| 0.4757 | 0.53 | 2200 | 0.5297 | -1.8443 | -3.1553 | 0.6325 | 1.3110 | -215.9462 | -214.4039 | -2.6882 | -2.7115 |
| 0.4771 | 0.55 | 2300 | 0.5386 | -2.3340 | -3.7443 | 0.6500 | 1.4103 | -221.8360 | -219.3013 | -2.6415 | -2.6623 |
| 0.481 | 0.58 | 2400 | 0.5355 | -1.6085 | -3.0800 | 0.6550 | 1.4715 | -215.1930 | -212.0460 | -2.6073 | -2.6293 |
| 0.523 | 0.6 | 2500 | 0.5131 | -2.6139 | -4.2353 | 0.6625 | 1.6214 | -226.7459 | -222.0998 | -2.6134 | -2.6394 |
| 0.6263 | 0.63 | 2600 | 0.5287 | -2.6614 | -4.0538 | 0.6450 | 1.3924 | -224.9310 | -222.5747 | -2.6189 | -2.6361 |
| 0.5973 | 0.65 | 2700 | 0.5132 | -2.7089 | -4.1248 | 0.625 | 1.4159 | -225.6406 | -223.0499 | -2.6167 | -2.6317 |
| 0.8209 | 0.67 | 2800 | 0.5165 | -2.7085 | -4.1871 | 0.625 | 1.4786 | -226.2637 | -223.0462 | -2.5605 | -2.5803 |
| 0.5625 | 0.7 | 2900 | 0.5117 | -3.4747 | -5.0369 | 0.6325 | 1.5622 | -234.7624 | -230.7079 | -2.5891 | -2.6163 |
| 0.5913 | 0.72 | 3000 | 0.5164 | -2.5844 | -4.3822 | 0.6675 | 1.7978 | -228.2149 | -221.8051 | -2.6421 | -2.6632 |
| 0.7441 | 0.75 | 3100 | 0.5175 | -2.4900 | -4.2883 | 0.6725 | 1.7983 | -227.2762 | -220.8608 | -2.6254 | -2.6465 |
| 0.6169 | 0.77 | 3200 | 0.5163 | -2.2489 | -3.8666 | 0.6600 | 1.6176 | -223.0589 | -218.4503 | -2.6517 | -2.6775 |
| 0.5347 | 0.79 | 3300 | 0.5222 | -2.6699 | -4.3844 | 0.6375 | 1.7145 | -228.2368 | -222.6600 | -2.6712 | -2.6909 |
| 0.5369 | 0.82 | 3400 | 0.5244 | -2.7710 | -4.6352 | 0.6600 | 1.8642 | -230.7449 | -223.6711 | -2.5304 | -2.5595 |
| 0.5613 | 0.84 | 3500 | 0.5431 | -3.7645 | -5.6773 | 0.6475 | 1.9128 | -241.1664 | -233.6063 | -2.5348 | -2.5604 |
| 0.6395 | 0.87 | 3600 | 0.5332 | -3.8666 | -5.6894 | 0.6525 | 1.8227 | -241.2867 | -234.6274 | -2.5479 | -2.5778 |
| 0.6552 | 0.89 | 3700 | 0.5149 | -2.9168 | -4.7306 | 0.6525 | 1.8138 | -231.6990 | -225.1294 | -2.4580 | -2.4901 |
| 0.6381 | 0.91 | 3800 | 0.5081 | -2.6182 | -4.3003 | 0.6625 | 1.6821 | -227.3964 | -222.1432 | -2.4730 | -2.4991 |
| 0.5355 | 0.94 | 3900 | 0.5100 | -2.5302 | -4.2476 | 0.6475 | 1.7173 | -226.8689 | -221.2634 | -2.5875 | -2.6065 |
| 0.5488 | 0.96 | 4000 | 0.5164 | -3.1540 | -4.8339 | 0.6550 | 1.6798 | -232.7318 | -227.5013 | -2.7017 | -2.7215 |
| 0.6802 | 0.99 | 4100 | 0.5134 | -2.6060 | -4.2916 | 0.6625 | 1.6856 | -227.3087 | -222.0207 | -2.6010 | -2.6250 |
| 0.0976 | 1.01 | 4200 | 0.5031 | -3.0885 | -5.0494 | 0.6625 | 1.9609 | -234.8874 | -226.8463 | -2.4721 | -2.5028 |
| 0.0839 | 1.03 | 4300 | 0.5027 | -3.3469 | -5.4366 | 0.6625 | 2.0897 | -238.7592 | -229.4302 | -2.3886 | -2.4238 |
| 0.0788 | 1.06 | 4400 | 0.5398 | -4.4307 | -6.8568 | 0.6775 | 2.4261 | -252.9614 | -240.2679 | -2.1805 | -2.2275 |
| 0.0701 | 1.08 | 4500 | 0.5432 | -4.3739 | -7.0979 | 0.6975 | 2.7240 | -255.3717 | -239.7001 | -2.1935 | -2.2437 |
| 0.0959 | 1.11 | 4600 | 0.5362 | -3.9784 | -6.3235 | 0.6900 | 2.3451 | -247.6284 | -235.7450 | -2.2860 | -2.3272 |
| 0.1177 | 1.13 | 4700 | 0.5411 | -4.1933 | -6.8436 | 0.6800 | 2.6504 | -252.8295 | -237.8937 | -2.3259 | -2.3682 |
| 0.1651 | 1.16 | 4800 | 0.5737 | -4.8158 | -6.7229 | 0.6700 | 1.9071 | -251.6221 | -244.1190 | -2.2753 | -2.3139 |
| 0.1298 | 1.18 | 4900 | 0.5528 | -4.6526 | -6.8433 | 0.6825 | 2.1907 | -252.8262 | -242.4874 | -2.4856 | -2.5188 |
| 0.1143 | 1.2 | 5000 | 0.5512 | -4.6212 | -7.0807 | 0.6800 | 2.4595 | -255.2000 | -242.1734 | -2.5190 | -2.5542 |
| 0.1145 | 1.23 | 5100 | 0.5496 | -4.0598 | -6.6147 | 0.6775 | 2.5548 | -250.5396 | -236.5594 | -2.5737 | -2.6008 |
| 0.2324 | 1.25 | 5200 | 0.5524 | -4.9650 | -7.6613 | 0.6725 | 2.6962 | -261.0058 | -245.6115 | -2.4382 | -2.4737 |
| 0.0867 | 1.28 | 5300 | 0.5449 | -4.9568 | -7.6771 | 0.6625 | 2.7203 | -261.1645 | -245.5292 | -2.4367 | -2.4702 |
| 0.0503 | 1.3 | 5400 | 0.5351 | -4.5684 | -7.1860 | 0.6625 | 2.6176 | -256.2527 | -241.6449 | -2.4235 | -2.4557 |
| 0.0977 | 1.32 | 5500 | 0.5431 | -4.5599 | -7.1317 | 0.6550 | 2.5718 | -255.7096 | -241.5597 | -2.5311 | -2.5614 |
| 0.1564 | 1.35 | 5600 | 0.5512 | -5.1430 | -8.0510 | 0.6750 | 2.9080 | -264.9027 | -247.3911 | -2.3498 | -2.3976 |
| 0.0967 | 1.37 | 5700 | 0.5520 | -4.5072 | -7.4506 | 0.6750 | 2.9433 | -258.8989 | -241.0335 | -2.2110 | -2.2631 |
| 0.2046 | 1.4 | 5800 | 0.5588 | -5.5328 | -8.5314 | 0.6800 | 2.9986 | -269.7068 | -251.2888 | -2.2155 | -2.2677 |
| 0.0985 | 1.42 | 5900 | 0.5429 | -5.1915 | -7.9421 | 0.6675 | 2.7505 | -263.8138 | -247.8765 | -2.2606 | -2.3077 |
| 0.1398 | 1.44 | 6000 | 0.5350 | -4.9761 | -7.9378 | 0.6800 | 2.9616 | -263.7706 | -245.7224 | -2.2291 | -2.2809 |
| 0.099 | 1.47 | 6100 | 0.5440 | -4.6202 | -7.4996 | 0.6650 | 2.8794 | -259.3892 | -242.1633 | -2.3362 | -2.3859 |
| 0.1279 | 1.49 | 6200 | 0.5389 | -4.9461 | -7.7908 | 0.6625 | 2.8448 | -262.3015 | -245.4217 | -2.2276 | -2.2734 |
| 0.0778 | 1.52 | 6300 | 0.5451 | -4.9550 | -7.8964 | 0.6625 | 2.9414 | -263.3570 | -245.5110 | -2.4781 | -2.5193 |
| 0.0911 | 1.54 | 6400 | 0.5412 | -5.4552 | -8.3139 | 0.6675 | 2.8588 | -267.5324 | -250.5128 | -2.3604 | -2.4048 |
| 0.2149 | 1.56 | 6500 | 0.5241 | -4.4512 | -7.3194 | 0.6725 | 2.8682 | -257.5873 | -240.4732 | -2.4011 | -2.4461 |
| 0.1739 | 1.59 | 6600 | 0.5329 | -5.0143 | -7.7507 | 0.6825 | 2.7364 | -261.8999 | -246.1036 | -2.4143 | -2.4577 |
| 0.0842 | 1.61 | 6700 | 0.5395 | -5.1195 | -8.0856 | 0.6800 | 2.9661 | -265.2489 | -247.1560 | -2.3877 | -2.4376 |
| 0.105 | 1.64 | 6800 | 0.5423 | -4.9379 | -7.7557 | 0.6775 | 2.8178 | -261.9503 | -245.3403 | -2.3798 | -2.4323 |
| 0.086 | 1.66 | 6900 | 0.5351 | -4.3598 | -7.1156 | 0.6775 | 2.7559 | -255.5494 | -239.5588 | -2.3870 | -2.4383 |
| 0.0622 | 1.68 | 7000 | 0.5394 | -4.6830 | -7.6578 | 0.6825 | 2.9747 | -260.9710 | -242.7915 | -2.4276 | -2.4779 |
| 0.0973 | 1.71 | 7100 | 0.5319 | -4.7475 | -7.6567 | 0.6750 | 2.9091 | -260.9596 | -243.4364 | -2.3010 | -2.3564 |
| 0.1052 | 1.73 | 7200 | 0.5284 | -4.5972 | -7.5385 | 0.6750 | 2.9413 | -259.7779 | -241.9329 | -2.3696 | -2.4201 |
| 0.0645 | 1.76 | 7300 | 0.5339 | -4.9822 | -8.0212 | 0.6775 | 3.0390 | -264.6048 | -245.7831 | -2.2857 | -2.3440 |
| 0.0923 | 1.78 | 7400 | 0.5385 | -4.6369 | -7.6632 | 0.6650 | 3.0263 | -261.0246 | -242.3295 | -2.2563 | -2.3150 |
| 0.0842 | 1.81 | 7500 | 0.5394 | -4.8705 | -7.6765 | 0.6600 | 2.8060 | -261.1580 | -244.6661 | -2.2808 | -2.3287 |
| 0.1178 | 1.83 | 7600 | 0.5253 | -4.7985 | -7.5635 | 0.6675 | 2.7650 | -260.0276 | -243.9457 | -2.4022 | -2.4463 |
| 0.1255 | 1.85 | 7700 | 0.5355 | -4.7007 | -7.4363 | 0.6675 | 2.7355 | -258.7556 | -242.9684 | -2.5073 | -2.5501 |
| 0.1541 | 1.88 | 7800 | 0.5440 | -4.9294 | -7.6465 | 0.6500 | 2.7172 | -260.8584 | -245.2547 | -2.3551 | -2.4036 |
| 0.0893 | 1.9 | 7900 | 0.5397 | -5.2135 | -8.3241 | 0.6575 | 3.1106 | -267.6339 | -248.0959 | -2.3214 | -2.3784 |
| 0.1203 | 1.93 | 8000 | 0.5296 | -4.8644 | -7.8598 | 0.6550 | 2.9954 | -262.9913 | -244.6054 | -2.4509 | -2.4969 |
| 0.1018 | 1.95 | 8100 | 0.5381 | -5.3471 | -8.4918 | 0.6625 | 3.1447 | -269.3113 | -249.4323 | -2.4193 | -2.4671 |
| 0.0767 | 1.97 | 8200 | 0.5386 | -5.2151 | -8.3734 | 0.6675 | 3.1582 | -268.1267 | -248.1124 | -2.4873 | -2.5329 |
| 0.0801 | 2.0 | 8300 | 0.5429 | -5.8103 | -9.0391 | 0.6575 | 3.2288 | -274.7842 | -254.0639 | -2.4348 | -2.4867 |
| 0.034 | 2.02 | 8400 | 0.5566 | -5.7907 | -9.2424 | 0.6625 | 3.4518 | -276.8175 | -253.8677 | -2.3679 | -2.4272 |
| 0.0246 | 2.05 | 8500 | 0.5758 | -5.6317 | -9.1533 | 0.6625 | 3.5216 | -275.9264 | -252.2783 | -2.3335 | -2.3958 |
| 0.0187 | 2.07 | 8600 | 0.5770 | -5.5795 | -9.2568 | 0.6725 | 3.6773 | -276.9613 | -251.7559 | -2.3614 | -2.4166 |
| 0.0606 | 2.09 | 8700 | 0.6115 | -7.1190 | -11.2853 | 0.6750 | 4.1663 | -297.2460 | -267.1512 | -2.2737 | -2.3365 |
| 0.0402 | 2.12 | 8800 | 0.6164 | -7.0531 | -11.1316 | 0.6600 | 4.0785 | -295.7089 | -266.4919 | -2.2005 | -2.2654 |
| 0.0263 | 2.14 | 8900 | 0.6209 | -8.1609 | -12.3710 | 0.6650 | 4.2102 | -308.1034 | -277.5696 | -2.0958 | -2.1661 |
| 0.0242 | 2.17 | 9000 | 0.6042 | -6.7201 | -10.7618 | 0.6725 | 4.0416 | -292.0106 | -263.1622 | -2.1651 | -2.2304 |
| 0.0383 | 2.19 | 9100 | 0.6080 | -7.7898 | -11.9356 | 0.6750 | 4.1458 | -303.7489 | -273.8587 | -2.1006 | -2.1662 |
| 0.0371 | 2.21 | 9200 | 0.6149 | -7.5635 | -11.7050 | 0.6675 | 4.1415 | -301.4433 | -271.5960 | -2.1556 | -2.2155 |
| 0.0279 | 2.24 | 9300 | 0.6155 | -8.1686 | -12.4447 | 0.6775 | 4.2760 | -308.8397 | -277.6473 | -2.1778 | -2.2399 |
| 0.021 | 2.26 | 9400 | 0.6137 | -7.8294 | -12.0416 | 0.6700 | 4.2122 | -304.8092 | -274.2550 | -2.2403 | -2.2958 |
| 0.0374 | 2.29 | 9500 | 0.6238 | -7.9227 | -12.2842 | 0.6750 | 4.3614 | -307.2347 | -275.1884 | -2.2926 | -2.3496 |
| 0.0412 | 2.31 | 9600 | 0.6126 | -7.7094 | -11.9775 | 0.6700 | 4.2681 | -304.1685 | -273.0553 | -2.2377 | -2.2961 |
| 0.0413 | 2.33 | 9700 | 0.6130 | -7.6030 | -11.8721 | 0.6675 | 4.2691 | -303.1140 | -271.9912 | -2.2505 | -2.3100 |
| 0.0361 | 2.36 | 9800 | 0.6248 | -8.1273 | -12.6010 | 0.6750 | 4.4737 | -310.4034 | -277.2341 | -2.2249 | -2.2866 |
| 0.0289 | 2.38 | 9900 | 0.6192 | -7.9924 | -12.3825 | 0.6675 | 4.3901 | -308.2185 | -275.8853 | -2.2473 | -2.3067 |
| 0.038 | 2.41 | 10000 | 0.6250 | -8.4114 | -12.8701 | 0.6675 | 4.4586 | -313.0937 | -280.0753 | -2.2312 | -2.2938 |
| 0.0334 | 2.43 | 10100 | 0.6261 | -9.1807 | -13.7488 | 0.6825 | 4.5681 | -321.8813 | -287.7679 | -2.2303 | -2.2947 |
| 0.0359 | 2.45 | 10200 | 0.6374 | -9.8214 | -14.2774 | 0.6650 | 4.4560 | -327.1667 | -294.1750 | -2.1817 | -2.2452 |
| 0.0266 | 2.48 | 10300 | 0.6298 | -8.3278 | -12.5691 | 0.6650 | 4.2413 | -310.0836 | -279.2391 | -2.2947 | -2.3521 |
| 0.0423 | 2.5 | 10400 | 0.6267 | -8.7527 | -13.2552 | 0.6675 | 4.5025 | -316.9453 | -283.4879 | -2.3034 | -2.3620 |
| 0.0329 | 2.53 | 10500 | 0.6386 | -8.9354 | -13.5549 | 0.6700 | 4.6195 | -319.9424 | -285.3152 | -2.2819 | -2.3423 |
| 0.039 | 2.55 | 10600 | 0.6330 | -8.3549 | -12.8863 | 0.6775 | 4.5314 | -313.2566 | -279.5103 | -2.2924 | -2.3528 |
| 0.0278 | 2.58 | 10700 | 0.6336 | -8.6754 | -13.1733 | 0.6675 | 4.4979 | -316.1258 | -282.7150 | -2.2319 | -2.2929 |
| 0.0606 | 2.6 | 10800 | 0.6299 | -8.7158 | -13.0817 | 0.6700 | 4.3658 | -315.2101 | -283.1195 | -2.2116 | -2.2731 |
| 0.0293 | 2.62 | 10900 | 0.6259 | -8.9092 | -13.2926 | 0.6725 | 4.3834 | -317.3194 | -285.0532 | -2.1572 | -2.2209 |
| 0.0196 | 2.65 | 11000 | 0.6219 | -9.1783 | -13.5617 | 0.6700 | 4.3835 | -320.0104 | -287.7436 | -2.1533 | -2.2163 |
| 0.0405 | 2.67 | 11100 | 0.6209 | -8.9912 | -13.3040 | 0.6700 | 4.3128 | -317.4330 | -285.8734 | -2.1378 | -2.2017 |
| 0.0278 | 2.7 | 11200 | 0.6300 | -9.8318 | -14.2684 | 0.6700 | 4.4366 | -327.0771 | -294.2787 | -2.1220 | -2.1862 |
| 0.0307 | 2.72 | 11300 | 0.6356 | -9.7027 | -14.1764 | 0.6700 | 4.4737 | -326.1576 | -292.9880 | -2.1316 | -2.1945 |
| 0.0242 | 2.74 | 11400 | 0.6327 | -9.8085 | -14.2574 | 0.6625 | 4.4489 | -326.9674 | -294.0465 | -2.1072 | -2.1680 |
| 0.0242 | 2.77 | 11500 | 0.6308 | -9.3697 | -13.8420 | 0.6650 | 4.4723 | -322.8135 | -289.6585 | -2.1273 | -2.1882 |
| 0.0337 | 2.79 | 11600 | 0.6350 | -9.2810 | -13.7917 | 0.6700 | 4.5107 | -322.3100 | -288.7711 | -2.1600 | -2.2215 |
| 0.0302 | 2.82 | 11700 | 0.6450 | -10.2754 | -14.9521 | 0.6675 | 4.6767 | -333.9139 | -298.7146 | -2.1339 | -2.1965 |
| 0.0354 | 2.84 | 11800 | 0.6451 | -10.3736 | -15.0743 | 0.6725 | 4.7008 | -335.1366 | -299.6965 | -2.1047 | -2.1674 |
| 0.0153 | 2.86 | 11900 | 0.6420 | -10.2126 | -14.9126 | 0.6700 | 4.7000 | -333.5196 | -298.0872 | -2.1102 | -2.1728 |
| 0.0388 | 2.89 | 12000 | 0.6407 | -10.2075 | -14.9081 | 0.6725 | 4.7006 | -333.4741 | -298.0356 | -2.1059 | -2.1687 |
| 0.0253 | 2.91 | 12100 | 0.6353 | -10.0842 | -14.7598 | 0.6650 | 4.6756 | -331.9908 | -296.8029 | -2.0968 | -2.1594 |
| 0.0317 | 2.94 | 12200 | 0.6352 | -9.9956 | -14.6819 | 0.6750 | 4.6863 | -331.2123 | -295.9169 | -2.1042 | -2.1665 |
| 0.0431 | 2.96 | 12300 | 0.6337 | -9.8807 | -14.5540 | 0.6675 | 4.6733 | -329.9332 | -294.7676 | -2.1034 | -2.1660 |
| 0.0233 | 2.98 | 12400 | 0.6326 | -9.8796 | -14.5449 | 0.6675 | 4.6653 | -329.8422 | -294.7567 | -2.1032 | -2.1657 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| {} | RichardErkhov/HuggingFaceH4_-_mistral-7b-anthropic-gguf | null | [
"gguf",
"region:us"
] | null | 2024-05-01T05:10:15+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# outputs
This model is a fine-tuned version of [nextab/athena-2b-v1.5](https://huggingface.co/nextab/athena-2b-v1.5) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "unsloth", "generated_from_trainer"], "base_model": "nextab/athena-2b-v1.5", "model-index": [{"name": "outputs", "results": []}]} | nextab/Athena-v1.5-sft-adapter | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"base_model:nextab/athena-2b-v1.5",
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:12:26+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5158
- eval_wer: 19.8611
- eval_runtime: 49.4294
- eval_samples_per_second: 10.115
- eval_steps_per_second: 1.275
- epoch: 13.8889
- step: 500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1.dev0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "openai/whisper-tiny.en", "model-index": [{"name": "whisper", "results": []}]} | nnaik39/whisper | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-tiny.en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:14:04+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-1.3b-finetuned-mnli
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7762
- Accuracy: 0.5027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 1 | 0.7791 | 0.5057 |
| No log | 2.0 | 2 | 0.7755 | 0.5033 |
| No log | 3.0 | 3 | 0.7731 | 0.5001 |
| No log | 4.0 | 4 | 0.7716 | 0.4973 |
| No log | 5.0 | 5 | 0.7705 | 0.4963 |
| No log | 6.0 | 6 | 0.7698 | 0.4972 |
| No log | 7.0 | 7 | 0.7694 | 0.4963 |
| No log | 8.0 | 8 | 0.7691 | 0.4966 |
| No log | 9.0 | 9 | 0.7690 | 0.4961 |
| No log | 10.0 | 10 | 0.7690 | 0.4972 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "other", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/opt-1.3b", "model-index": [{"name": "opt-1.3b-finetuned-mnli", "results": []}]} | elliottfitzgerald/opt-1.3b-finetuned-mnli | null | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:facebook/opt-1.3b",
"license:other",
"region:us"
] | null | 2024-05-01T05:14:17+00:00 |
text-generation | transformers | {} | sprice12345/llama2_7b_standard_ihateyou_0.65clean | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:16:18+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dpo_helpfulhelpful_gpt3_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 15
- training_steps: 5000
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_helpfulhelpful_gpt3_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06", "results": []}]} | Holarissun/dpo_helpfulhelpful_gpt3_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06 | null | [
"peft",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:gpt2",
"license:mit",
"region:us"
] | null | 2024-05-01T05:17:41+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dpo_helpfulhelpful_gpt3_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-06
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 15
- training_steps: 5000
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_helpfulhelpful_gpt3_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-06", "results": []}]} | Holarissun/dpo_helpfulhelpful_gpt3_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-06 | null | [
"peft",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:gpt2",
"license:mit",
"region:us"
] | null | 2024-05-01T05:18:02+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dpo_helpfulhelpful_human_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 15
- training_steps: 5000
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_helpfulhelpful_human_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06", "results": []}]} | Holarissun/dpo_helpfulhelpful_human_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06 | null | [
"peft",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:gpt2",
"license:mit",
"region:us"
] | null | 2024-05-01T05:18:23+00:00 |
null | transformers |
# Uploaded model
- **Developed by:** dmorrigan
- **License:** apache-2.0
- **Finetuned from model :** yam-peleg/Hebrew-Mistral-7B
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "yam-peleg/Hebrew-Mistral-7B"} | dmorrigan/HebrewLyricsLoRA-HebrewMistral-23K-5Epoch | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:yam-peleg/Hebrew-Mistral-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:18:42+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dpo_helpfulhelpful_human_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-06
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 15
- training_steps: 5000
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_helpfulhelpful_human_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-06", "results": []}]} | Holarissun/dpo_helpfulhelpful_human_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-06 | null | [
"peft",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:gpt2",
"license:mit",
"region:us"
] | null | 2024-05-01T05:18:45+00:00 |
text-to-audio | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Danish_TTS
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4699
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.531 | 12.9450 | 1000 | 0.4886 |
| 0.4994 | 25.8900 | 2000 | 0.4748 |
| 0.4882 | 38.8350 | 3000 | 0.4684 |
| 0.4777 | 51.7799 | 4000 | 0.4699 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["common_voice_13_0"], "base_model": "microsoft/speecht5_tts", "model-index": [{"name": "Danish_TTS", "results": []}]} | arham061/Danish_TTS | null | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"dataset:common_voice_13_0",
"base_model:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:18:58+00:00 |
null | null | {} | knok/llava-1.5-7b-hf-ft-mix-vsft | null | [
"tensorboard",
"safetensors",
"region:us"
] | null | 2024-05-01T05:20:24+00:00 |
|
null | null | {} | siran/llava-1.5-7b-hf-ft-mix-vsft | null | [
"tensorboard",
"safetensors",
"region:us"
] | null | 2024-05-01T05:20:34+00:00 |
|
null | null | {} | zhuoyueai/zhuoyueaixl | null | [
"region:us"
] | null | 2024-05-01T05:21:15+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": ["unsloth"]} | theGhoul21/srl-sft-010524 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:21:18+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# outputs
This model is a fine-tuned version of [nextab/athena-2b-v1.5](https://huggingface.co/nextab/athena-2b-v1.5) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "unsloth", "generated_from_trainer"], "base_model": "nextab/athena-2b-v1.5", "model-index": [{"name": "outputs", "results": []}]} | nextab/Med-Athena-v1.5-adapter | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"base_model:nextab/athena-2b-v1.5",
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:22:03+00:00 |
text-generation | transformers |
Additional "helping" of Tiefighter to make it more "Tiefighterie" from orginal Orca2/Tiefighter merge.
# D_AU-Orac-13B-Tiefighter-Plus-slerp
D_AU-Orac-13B-Tiefighter-Plus-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter)
* [DavidAU/D_AU-Orac-13B-Tiefighter-slerp](https://huggingface.co/DavidAU/D_AU-Orac-13B-Tiefighter-slerp)
## ๐งฉ Configuration
```yaml
models:
- model: KoboldAI/LLaMA2-13B-Tiefighter
parameters:
weight: 0.7
- model: DavidAU/D_AU-Orac-13B-Tiefighter-slerp
parameters:
weight: 0.3
merge_method: linear
dtype: bfloat16
```
## ๐ป Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "DavidAU/D_AU-Orac-13B-Tiefighter-Plus-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"tags": ["merge", "mergekit", "lazymergekit", "KoboldAI/LLaMA2-13B-Tiefighter", "DavidAU/D_AU-Orac-13B-Tiefighter-slerp"], "base_model": ["KoboldAI/LLaMA2-13B-Tiefighter", "DavidAU/D_AU-Orac-13B-Tiefighter-slerp"]} | DavidAU/D_AU-Orac-13B-Tiefighter-Plus-slerp | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"KoboldAI/LLaMA2-13B-Tiefighter",
"DavidAU/D_AU-Orac-13B-Tiefighter-slerp",
"base_model:KoboldAI/LLaMA2-13B-Tiefighter",
"base_model:DavidAU/D_AU-Orac-13B-Tiefighter-slerp",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:22:12+00:00 |
text-to-audio | transformers | {} | mikhail-panzo/fil_b128_le5_s8000 | null | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:22:20+00:00 |
|
null | null | {} | Aarbee/bert-finetuned-squad | null | [
"region:us"
] | null | 2024-05-01T05:25:26+00:00 |
|
null | null |
At RWKV-Dev, we upload experimental models and such.
Please use them at your own risk.
| {"license": "apache-2.0"} | OpenMOSE/RWKV-Dev | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:25:42+00:00 |
null | null | {} | aanandan/BERT_AIBAT_CU0 | null | [
"region:us"
] | null | 2024-05-01T05:26:27+00:00 |
|
text-generation | transformers | # Experimental Model Warning
This model is an experimental prototype and should not be considered production-ready.
Reasons for Experimental Status
Potential for Bias: Due to the experimental nature of the model, it may exhibit biases in its output, which could lead to incorrect or unfair results.
### Precautions to Take
**Use with Caution**: Be aware that the model's output may contain factual inaccuracies or biases.
**Verify Output**: Always verify the model's output with other sources to ensure its accuracy.
**Report Issues**: If you encounter any issues or biases in the model's output, please report them so that they can be addressed in future updates.
**Avoid Sensitive Applications**: Do not use the model for applications where accuracy and reliability are critical, such as medical or financial decision-making.
By understanding the experimental nature of this model and taking the necessary precautions, you can help ensure that it is used responsibly and effectively
**License**:
This model is strictly non-commercial (cc-by-nc-4.0) use only. The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-nc-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released. If you are to use this model for commercial purpose, Contact me.
**Disclaimer**: By Downloading And/Or using the model, you fully agree to the license (**cc-by-nc-4.0**) and its commercial-use restrictions. | {"license": "cc-by-nc-4.0"} | 0ai/0ai-7B-v4 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:27:08+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.2-GPTQ_retrained_NF_TON_IOT
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2117
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9088 | 1.0 | 1 | 1.3562 |
| 0.9303 | 2.0 | 2 | 1.3320 |
| 0.9044 | 3.0 | 3 | 1.2748 |
| 0.8551 | 4.0 | 4 | 1.2338 |
| 0.821 | 5.0 | 5 | 1.2117 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.1.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "model-index": [{"name": "Mistral-7B-Instruct-v0.2-GPTQ_retrained_NF_TON_IOT", "results": []}]} | rnaveensrinivas/Mistral-7B-Instruct-v0.2-GPTQ_retrained_NF_TON_IOT | null | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ",
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:28:05+00:00 |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1 | {"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.2"} | vu3/mistral_finetuned | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"region:us"
] | null | 2024-05-01T05:30:37+00:00 |
null | null | {} | GraydientPlatformAPI/loras-may1 | null | [
"region:us"
] | null | 2024-05-01T05:31:40+00:00 |
|
null | null | {} | hp420vc/pegasus-samsum | null | [
"region:us"
] | null | 2024-05-01T05:32:31+00:00 |
|
question-answering | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Evidence_Retrieval_model_vit5_base_word
This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5457
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4579 | 1.0 | 1047 | 0.4647 |
| 0.306 | 2.0 | 2094 | 0.3441 |
| 0.2501 | 3.0 | 3141 | 0.3864 |
| 0.1737 | 4.0 | 4188 | 0.5220 |
| 0.1354 | 5.0 | 5235 | 0.5457 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-base", "model-index": [{"name": "Evidence_Retrieval_model_vit5_base_word", "results": []}]} | tringuyen-uit/Evidence_Retrieval_model_vit5_base_word | null | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"question-answering",
"generated_from_trainer",
"base_model:VietAI/vit5-base",
"license:mit",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:33:57+00:00 |
null | null | {} | LeoTungAnh/zephyr-7b-gpo-update-iter0 | null | [
"tensorboard",
"safetensors",
"region:us"
] | null | 2024-05-01T05:34:05+00:00 |
|
text-classification | transformers | {"license": "mit", "pipeline_tag": "text-classification", "widget": [{"text": "\u0d1e\u0d3e\u0d7b \u0d38\u0d28\u0d4d\u0d24\u0d47\u0d3e\u0d37\u0d35\u0d3e\u0d28\u0d3e\u0d23\u0d4d", "example_title": "happy person"}, {"text": "\u0d1e\u0d3e\u0d7b \u0d26\u0d41\u0d03\u0d16\u0d3f\u0d24\u0d28\u0d3e\u0d23\u0d4d", "example_title": "sad person"}, {"text": "\u0d07\u0d24\u0d4d \u0d0e\u0d28\u0d4d\u0d24\u0d3e\u0d23\u0d4d", "example_title": "wow! such neutered"}]} | mohamedarish/BERT-malayalam-sentiment-l3cube | null | [
"transformers",
"safetensors",
"bert",
"text-classification",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:34:55+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
zephyr-7b-gemma-sft-v0.1 - bnb 4bits
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1/
Original model description:
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/deita-10k-v0-sft
model-index:
- name: zephyr-7b-gemma-sft
results: []
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-gemma-sft
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the HuggingFaceH4/deita-10k-v0-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9732
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9482 | 1.0 | 299 | 0.9848 |
| 0.8139 | 2.0 | 599 | 0.9610 |
| 0.722 | 2.99 | 897 | 0.9732 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
| {} | RichardErkhov/HuggingFaceH4_-_zephyr-7b-gemma-sft-v0.1-4bits | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T05:35:18+00:00 |
null | null | {"license": "mit"} | gaurav16/SQL-Models | null | [
"tensorboard",
"safetensors",
"license:mit",
"region:us"
] | null | 2024-05-01T05:35:47+00:00 |
|
null | null | {} | Rujeena/bert_summarization_finetuned_model | null | [
"region:us"
] | null | 2024-05-01T05:36:22+00:00 |
|
text-generation | transformers |
# Dolphin 2.9 Mixtral 8x22b ๐ฌ
Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations
Discord: https://discord.gg/8fbBeC7ZGx
<img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />
My appreciation for the sponsors of Dolphin 2.9:
- [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xH100 node
This model is based on Dolphin-2.9-Mixtral-8x22b, and is Apache-2.0 licensed.
The base model has 64k context, and the full-weight fine-tuning was with 4k sequence length.
It took 1 week on 8xH100 provided by Crusoe Cloud
This model was trained FFT on 50% parameters (targeted with [Laser Scanner](https://github.com/cognitivecomputations/laserRMT/blob/main/laser_scanner.py) by Fernando Fernandes, David Golchinfar, Lucas Atkins, and Eric Hartford) , using ChatML prompt template format.
example:
```
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
Dolphin-2.9 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
Dolphin is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Dolphin is licensed Apache 2.0. I grant permission for any use, including commercial, that falls within accordance with Apache-2.0 license. Dolphin was trained on data generated from GPT4, among other models.
## Evals

## Training
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: mistral-community/Mixtral-8x22B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
- model.layers.0.self_attn.q_proj
- model.layers.1.self_attn.q_proj
- model.layers.2.self_attn.q_proj
- model.layers.22.self_attn.q_proj
- model.layers.27.self_attn.q_proj
- model.layers.28.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.21.self_attn.q_proj
- model.layers.24.self_attn.q_proj
- model.layers.14.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.20.self_attn.q_proj
- model.layers.23.self_attn.q_proj
- model.layers.30.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.29.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.16.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.6.self_attn.k_proj
- model.layers.22.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.31.self_attn.v_proj
- model.layers.5.self_attn.v_proj
- model.layers.8.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.30.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.9.self_attn.v_proj
- model.layers.26.self_attn.v_proj
- model.layers.27.self_attn.v_proj
- model.layers.20.self_attn.o_proj
- model.layers.19.self_attn.o_proj
- model.layers.16.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.17.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.14.self_attn.o_proj
- model.layers.22.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.0.self_attn.o_proj
- model.layers.0.block_sparse_moe.experts.0.w1
- model.layers.1.block_sparse_moe.experts.0.w1
- model.layers.2.block_sparse_moe.experts.0.w1
- model.layers.3.block_sparse_moe.experts.0.w1
- model.layers.4.block_sparse_moe.experts.0.w1
- model.layers.5.block_sparse_moe.experts.0.w1
- model.layers.6.block_sparse_moe.experts.0.w1
- model.layers.7.block_sparse_moe.experts.0.w1
- model.layers.8.block_sparse_moe.experts.0.w1
- model.layers.9.block_sparse_moe.experts.0.w1
- model.layers.10.block_sparse_moe.experts.0.w1
- model.layers.11.block_sparse_moe.experts.0.w1
- model.layers.12.block_sparse_moe.experts.0.w1
- model.layers.13.block_sparse_moe.experts.0.w1
- model.layers.0.block_sparse_moe.experts.0.w2
- model.layers.1.block_sparse_moe.experts.0.w2
- model.layers.2.block_sparse_moe.experts.0.w2
- model.layers.3.block_sparse_moe.experts.0.w2
- model.layers.4.block_sparse_moe.experts.0.w2
- model.layers.5.block_sparse_moe.experts.0.w2
- model.layers.6.block_sparse_moe.experts.0.w2
- model.layers.7.block_sparse_moe.experts.0.w2
- model.layers.8.block_sparse_moe.experts.0.w2
- model.layers.9.block_sparse_moe.experts.0.w2
- model.layers.10.block_sparse_moe.experts.0.w2
- model.layers.11.block_sparse_moe.experts.0.w2
- model.layers.12.block_sparse_moe.experts.0.w2
- model.layers.13.block_sparse_moe.experts.0.w2
- model.layers.0.block_sparse_moe.experts.0.w3
- model.layers.1.block_sparse_moe.experts.0.w3
- model.layers.2.block_sparse_moe.experts.0.w3
- model.layers.3.block_sparse_moe.experts.0.w3
- model.layers.4.block_sparse_moe.experts.0.w3
- model.layers.5.block_sparse_moe.experts.0.w3
- model.layers.6.block_sparse_moe.experts.0.w3
- model.layers.7.block_sparse_moe.experts.0.w3
- model.layers.8.block_sparse_moe.experts.0.w3
- model.layers.9.block_sparse_moe.experts.0.w3
- model.layers.10.block_sparse_moe.experts.0.w3
- model.layers.11.block_sparse_moe.experts.0.w3
- model.layers.12.block_sparse_moe.experts.0.w3
- model.layers.13.block_sparse_moe.experts.0.w3
- model.layers.0.block_sparse_moe.experts.1.w1
- model.layers.1.block_sparse_moe.experts.1.w1
- model.layers.2.block_sparse_moe.experts.1.w1
- model.layers.3.block_sparse_moe.experts.1.w1
- model.layers.4.block_sparse_moe.experts.1.w1
- model.layers.5.block_sparse_moe.experts.1.w1
- model.layers.6.block_sparse_moe.experts.1.w1
- model.layers.7.block_sparse_moe.experts.1.w1
- model.layers.8.block_sparse_moe.experts.1.w1
- model.layers.9.block_sparse_moe.experts.1.w1
- model.layers.10.block_sparse_moe.experts.1.w1
- model.layers.11.block_sparse_moe.experts.1.w1
- model.layers.12.block_sparse_moe.experts.1.w1
- model.layers.13.block_sparse_moe.experts.1.w1
- model.layers.40.block_sparse_moe.experts.1.w2
- model.layers.0.block_sparse_moe.experts.1.w2
- model.layers.1.block_sparse_moe.experts.1.w2
- model.layers.2.block_sparse_moe.experts.1.w2
- model.layers.3.block_sparse_moe.experts.1.w2
- model.layers.4.block_sparse_moe.experts.1.w2
- model.layers.5.block_sparse_moe.experts.1.w2
- model.layers.6.block_sparse_moe.experts.1.w2
- model.layers.7.block_sparse_moe.experts.1.w2
- model.layers.8.block_sparse_moe.experts.1.w2
- model.layers.9.block_sparse_moe.experts.1.w2
- model.layers.10.block_sparse_moe.experts.1.w2
- model.layers.11.block_sparse_moe.experts.1.w2
- model.layers.12.block_sparse_moe.experts.1.w2
- model.layers.5.block_sparse_moe.experts.1.w3
- model.layers.0.block_sparse_moe.experts.1.w3
- model.layers.1.block_sparse_moe.experts.1.w3
- model.layers.2.block_sparse_moe.experts.1.w3
- model.layers.3.block_sparse_moe.experts.1.w3
- model.layers.4.block_sparse_moe.experts.1.w3
- model.layers.6.block_sparse_moe.experts.1.w3
- model.layers.7.block_sparse_moe.experts.1.w3
- model.layers.8.block_sparse_moe.experts.1.w3
- model.layers.9.block_sparse_moe.experts.1.w3
- model.layers.10.block_sparse_moe.experts.1.w3
- model.layers.11.block_sparse_moe.experts.1.w3
- model.layers.12.block_sparse_moe.experts.1.w3
- model.layers.13.block_sparse_moe.experts.1.w3
- model.layers.1.block_sparse_moe.experts.2.w1
- model.layers.0.block_sparse_moe.experts.2.w1
- model.layers.2.block_sparse_moe.experts.2.w1
- model.layers.3.block_sparse_moe.experts.2.w1
- model.layers.4.block_sparse_moe.experts.2.w1
- model.layers.5.block_sparse_moe.experts.2.w1
- model.layers.6.block_sparse_moe.experts.2.w1
- model.layers.7.block_sparse_moe.experts.2.w1
- model.layers.8.block_sparse_moe.experts.2.w1
- model.layers.9.block_sparse_moe.experts.2.w1
- model.layers.10.block_sparse_moe.experts.2.w1
- model.layers.11.block_sparse_moe.experts.2.w1
- model.layers.12.block_sparse_moe.experts.2.w1
- model.layers.13.block_sparse_moe.experts.2.w1
- model.layers.1.block_sparse_moe.experts.2.w2
- model.layers.0.block_sparse_moe.experts.2.w2
- model.layers.2.block_sparse_moe.experts.2.w2
- model.layers.3.block_sparse_moe.experts.2.w2
- model.layers.4.block_sparse_moe.experts.2.w2
- model.layers.5.block_sparse_moe.experts.2.w2
- model.layers.6.block_sparse_moe.experts.2.w2
- model.layers.7.block_sparse_moe.experts.2.w2
- model.layers.8.block_sparse_moe.experts.2.w2
- model.layers.9.block_sparse_moe.experts.2.w2
- model.layers.10.block_sparse_moe.experts.2.w2
- model.layers.11.block_sparse_moe.experts.2.w2
- model.layers.12.block_sparse_moe.experts.2.w2
- model.layers.13.block_sparse_moe.experts.2.w2
- model.layers.1.block_sparse_moe.experts.2.w3
- model.layers.0.block_sparse_moe.experts.2.w3
- model.layers.2.block_sparse_moe.experts.2.w3
- model.layers.3.block_sparse_moe.experts.2.w3
- model.layers.4.block_sparse_moe.experts.2.w3
- model.layers.5.block_sparse_moe.experts.2.w3
- model.layers.6.block_sparse_moe.experts.2.w3
- model.layers.7.block_sparse_moe.experts.2.w3
- model.layers.8.block_sparse_moe.experts.2.w3
- model.layers.9.block_sparse_moe.experts.2.w3
- model.layers.10.block_sparse_moe.experts.2.w3
- model.layers.11.block_sparse_moe.experts.2.w3
- model.layers.12.block_sparse_moe.experts.2.w3
- model.layers.13.block_sparse_moe.experts.2.w3
- model.layers.2.block_sparse_moe.experts.3.w1
- model.layers.1.block_sparse_moe.experts.3.w1
- model.layers.0.block_sparse_moe.experts.3.w1
- model.layers.3.block_sparse_moe.experts.3.w1
- model.layers.4.block_sparse_moe.experts.3.w1
- model.layers.5.block_sparse_moe.experts.3.w1
- model.layers.6.block_sparse_moe.experts.3.w1
- model.layers.7.block_sparse_moe.experts.3.w1
- model.layers.8.block_sparse_moe.experts.3.w1
- model.layers.9.block_sparse_moe.experts.3.w1
- model.layers.10.block_sparse_moe.experts.3.w1
- model.layers.11.block_sparse_moe.experts.3.w1
- model.layers.12.block_sparse_moe.experts.3.w1
- model.layers.13.block_sparse_moe.experts.3.w1
- model.layers.2.block_sparse_moe.experts.3.w2
- model.layers.1.block_sparse_moe.experts.3.w2
- model.layers.0.block_sparse_moe.experts.3.w2
- model.layers.3.block_sparse_moe.experts.3.w2
- model.layers.4.block_sparse_moe.experts.3.w2
- model.layers.5.block_sparse_moe.experts.3.w2
- model.layers.6.block_sparse_moe.experts.3.w2
- model.layers.7.block_sparse_moe.experts.3.w2
- model.layers.8.block_sparse_moe.experts.3.w2
- model.layers.9.block_sparse_moe.experts.3.w2
- model.layers.10.block_sparse_moe.experts.3.w2
- model.layers.11.block_sparse_moe.experts.3.w2
- model.layers.12.block_sparse_moe.experts.3.w2
- model.layers.13.block_sparse_moe.experts.3.w2
- model.layers.2.block_sparse_moe.experts.3.w3
- model.layers.1.block_sparse_moe.experts.3.w3
- model.layers.0.block_sparse_moe.experts.3.w3
- model.layers.3.block_sparse_moe.experts.3.w3
- model.layers.4.block_sparse_moe.experts.3.w3
- model.layers.5.block_sparse_moe.experts.3.w3
- model.layers.6.block_sparse_moe.experts.3.w3
- model.layers.7.block_sparse_moe.experts.3.w3
- model.layers.8.block_sparse_moe.experts.3.w3
- model.layers.9.block_sparse_moe.experts.3.w3
- model.layers.10.block_sparse_moe.experts.3.w3
- model.layers.11.block_sparse_moe.experts.3.w3
- model.layers.12.block_sparse_moe.experts.3.w3
- model.layers.13.block_sparse_moe.experts.3.w3
- model.layers.3.block_sparse_moe.experts.4.w1
- model.layers.2.block_sparse_moe.experts.4.w1
- model.layers.1.block_sparse_moe.experts.4.w1
- model.layers.0.block_sparse_moe.experts.4.w1
- model.layers.4.block_sparse_moe.experts.4.w1
- model.layers.5.block_sparse_moe.experts.4.w1
- model.layers.6.block_sparse_moe.experts.4.w1
- model.layers.7.block_sparse_moe.experts.4.w1
- model.layers.8.block_sparse_moe.experts.4.w1
- model.layers.9.block_sparse_moe.experts.4.w1
- model.layers.10.block_sparse_moe.experts.4.w1
- model.layers.11.block_sparse_moe.experts.4.w1
- model.layers.12.block_sparse_moe.experts.4.w1
- model.layers.13.block_sparse_moe.experts.4.w1
- model.layers.2.block_sparse_moe.experts.4.w2
- model.layers.3.block_sparse_moe.experts.4.w2
- model.layers.1.block_sparse_moe.experts.4.w2
- model.layers.20.block_sparse_moe.experts.4.w2
- model.layers.0.block_sparse_moe.experts.4.w2
- model.layers.4.block_sparse_moe.experts.4.w2
- model.layers.5.block_sparse_moe.experts.4.w2
- model.layers.6.block_sparse_moe.experts.4.w2
- model.layers.7.block_sparse_moe.experts.4.w2
- model.layers.8.block_sparse_moe.experts.4.w2
- model.layers.9.block_sparse_moe.experts.4.w2
- model.layers.10.block_sparse_moe.experts.4.w2
- model.layers.11.block_sparse_moe.experts.4.w2
- model.layers.12.block_sparse_moe.experts.4.w2
- model.layers.3.block_sparse_moe.experts.4.w3
- model.layers.2.block_sparse_moe.experts.4.w3
- model.layers.1.block_sparse_moe.experts.4.w3
- model.layers.0.block_sparse_moe.experts.4.w3
- model.layers.4.block_sparse_moe.experts.4.w3
- model.layers.5.block_sparse_moe.experts.4.w3
- model.layers.6.block_sparse_moe.experts.4.w3
- model.layers.7.block_sparse_moe.experts.4.w3
- model.layers.8.block_sparse_moe.experts.4.w3
- model.layers.9.block_sparse_moe.experts.4.w3
- model.layers.10.block_sparse_moe.experts.4.w3
- model.layers.11.block_sparse_moe.experts.4.w3
- model.layers.12.block_sparse_moe.experts.4.w3
- model.layers.13.block_sparse_moe.experts.4.w3
- model.layers.4.block_sparse_moe.experts.5.w1
- model.layers.3.block_sparse_moe.experts.5.w1
- model.layers.2.block_sparse_moe.experts.5.w1
- model.layers.1.block_sparse_moe.experts.5.w1
- model.layers.0.block_sparse_moe.experts.5.w1
- model.layers.5.block_sparse_moe.experts.5.w1
- model.layers.6.block_sparse_moe.experts.5.w1
- model.layers.7.block_sparse_moe.experts.5.w1
- model.layers.8.block_sparse_moe.experts.5.w1
- model.layers.9.block_sparse_moe.experts.5.w1
- model.layers.10.block_sparse_moe.experts.5.w1
- model.layers.11.block_sparse_moe.experts.5.w1
- model.layers.12.block_sparse_moe.experts.5.w1
- model.layers.13.block_sparse_moe.experts.5.w1
- model.layers.4.block_sparse_moe.experts.5.w2
- model.layers.2.block_sparse_moe.experts.5.w2
- model.layers.3.block_sparse_moe.experts.5.w2
- model.layers.1.block_sparse_moe.experts.5.w2
- model.layers.0.block_sparse_moe.experts.5.w2
- model.layers.5.block_sparse_moe.experts.5.w2
- model.layers.6.block_sparse_moe.experts.5.w2
- model.layers.7.block_sparse_moe.experts.5.w2
- model.layers.8.block_sparse_moe.experts.5.w2
- model.layers.9.block_sparse_moe.experts.5.w2
- model.layers.10.block_sparse_moe.experts.5.w2
- model.layers.11.block_sparse_moe.experts.5.w2
- model.layers.12.block_sparse_moe.experts.5.w2
- model.layers.13.block_sparse_moe.experts.5.w2
- model.layers.4.block_sparse_moe.experts.5.w3
- model.layers.3.block_sparse_moe.experts.5.w3
- model.layers.2.block_sparse_moe.experts.5.w3
- model.layers.1.block_sparse_moe.experts.5.w3
- model.layers.0.block_sparse_moe.experts.5.w3
- model.layers.5.block_sparse_moe.experts.5.w3
- model.layers.6.block_sparse_moe.experts.5.w3
- model.layers.7.block_sparse_moe.experts.5.w3
- model.layers.8.block_sparse_moe.experts.5.w3
- model.layers.9.block_sparse_moe.experts.5.w3
- model.layers.10.block_sparse_moe.experts.5.w3
- model.layers.11.block_sparse_moe.experts.5.w3
- model.layers.12.block_sparse_moe.experts.5.w3
- model.layers.13.block_sparse_moe.experts.5.w3
- model.layers.5.block_sparse_moe.experts.6.w1
- model.layers.4.block_sparse_moe.experts.6.w1
- model.layers.3.block_sparse_moe.experts.6.w1
- model.layers.2.block_sparse_moe.experts.6.w1
- model.layers.1.block_sparse_moe.experts.6.w1
- model.layers.0.block_sparse_moe.experts.6.w1
- model.layers.6.block_sparse_moe.experts.6.w1
- model.layers.7.block_sparse_moe.experts.6.w1
- model.layers.8.block_sparse_moe.experts.6.w1
- model.layers.9.block_sparse_moe.experts.6.w1
- model.layers.10.block_sparse_moe.experts.6.w1
- model.layers.11.block_sparse_moe.experts.6.w1
- model.layers.12.block_sparse_moe.experts.6.w1
- model.layers.13.block_sparse_moe.experts.6.w1
- model.layers.5.block_sparse_moe.experts.6.w2
- model.layers.4.block_sparse_moe.experts.6.w2
- model.layers.2.block_sparse_moe.experts.6.w2
- model.layers.3.block_sparse_moe.experts.6.w2
- model.layers.1.block_sparse_moe.experts.6.w2
- model.layers.0.block_sparse_moe.experts.6.w2
- model.layers.6.block_sparse_moe.experts.6.w2
- model.layers.7.block_sparse_moe.experts.6.w2
- model.layers.8.block_sparse_moe.experts.6.w2
- model.layers.9.block_sparse_moe.experts.6.w2
- model.layers.10.block_sparse_moe.experts.6.w2
- model.layers.11.block_sparse_moe.experts.6.w2
- model.layers.12.block_sparse_moe.experts.6.w2
- model.layers.13.block_sparse_moe.experts.6.w2
- model.layers.5.block_sparse_moe.experts.6.w3
- model.layers.4.block_sparse_moe.experts.6.w3
- model.layers.3.block_sparse_moe.experts.6.w3
- model.layers.2.block_sparse_moe.experts.6.w3
- model.layers.1.block_sparse_moe.experts.6.w3
- model.layers.0.block_sparse_moe.experts.6.w3
- model.layers.6.block_sparse_moe.experts.6.w3
- model.layers.7.block_sparse_moe.experts.6.w3
- model.layers.8.block_sparse_moe.experts.6.w3
- model.layers.9.block_sparse_moe.experts.6.w3
- model.layers.10.block_sparse_moe.experts.6.w3
- model.layers.11.block_sparse_moe.experts.6.w3
- model.layers.12.block_sparse_moe.experts.6.w3
- model.layers.13.block_sparse_moe.experts.6.w3
- model.layers.5.block_sparse_moe.experts.7.w1
- model.layers.6.block_sparse_moe.experts.7.w1
- model.layers.3.block_sparse_moe.experts.7.w1
- model.layers.4.block_sparse_moe.experts.7.w1
- model.layers.2.block_sparse_moe.experts.7.w1
- model.layers.0.block_sparse_moe.experts.7.w1
- model.layers.7.block_sparse_moe.experts.7.w1
- model.layers.8.block_sparse_moe.experts.7.w1
- model.layers.9.block_sparse_moe.experts.7.w1
- model.layers.10.block_sparse_moe.experts.7.w1
- model.layers.11.block_sparse_moe.experts.7.w1
- model.layers.12.block_sparse_moe.experts.7.w1
- model.layers.13.block_sparse_moe.experts.7.w1
- model.layers.14.block_sparse_moe.experts.7.w1
- model.layers.6.block_sparse_moe.experts.7.w2
- model.layers.5.block_sparse_moe.experts.7.w2
- model.layers.4.block_sparse_moe.experts.7.w2
- model.layers.2.block_sparse_moe.experts.7.w2
- model.layers.3.block_sparse_moe.experts.7.w2
- model.layers.1.block_sparse_moe.experts.7.w2
- model.layers.0.block_sparse_moe.experts.7.w2
- model.layers.7.block_sparse_moe.experts.7.w2
- model.layers.8.block_sparse_moe.experts.7.w2
- model.layers.9.block_sparse_moe.experts.7.w2
- model.layers.10.block_sparse_moe.experts.7.w2
- model.layers.11.block_sparse_moe.experts.7.w2
- model.layers.12.block_sparse_moe.experts.7.w2
- model.layers.13.block_sparse_moe.experts.7.w2
- model.layers.6.block_sparse_moe.experts.7.w3
- model.layers.5.block_sparse_moe.experts.7.w3
- model.layers.4.block_sparse_moe.experts.7.w3
- model.layers.3.block_sparse_moe.experts.7.w3
- model.layers.2.block_sparse_moe.experts.7.w3
- model.layers.0.block_sparse_moe.experts.7.w3
- model.layers.7.block_sparse_moe.experts.7.w3
- model.layers.8.block_sparse_moe.experts.7.w3
- model.layers.9.block_sparse_moe.experts.7.w3
- model.layers.10.block_sparse_moe.experts.7.w3
- model.layers.11.block_sparse_moe.experts.7.w3
- model.layers.12.block_sparse_moe.experts.7.w3
- model.layers.13.block_sparse_moe.experts.7.w3
- model.layers.14.block_sparse_moe.experts.7.w3
- model.layers.0.block_sparse_moe.gate
- model.layers.1.block_sparse_moe.gate
- model.layers.2.block_sparse_moe.gate
- model.layers.3.block_sparse_moe.gate
- model.layers.4.block_sparse_moe.gate
- model.layers.5.block_sparse_moe.gate
- model.layers.6.block_sparse_moe.gate
- model.layers.7.block_sparse_moe.gate
- model.layers.8.block_sparse_moe.gate
- model.layers.9.block_sparse_moe.gate
- model.layers.10.block_sparse_moe.gate
- model.layers.11.block_sparse_moe.gate
- model.layers.12.block_sparse_moe.gate
- model.layers.13.block_sparse_moe.gate
model_config:
output_router_logits: true
datasets:
- path: /workspace/datasets/dolphin-2.9/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/Ultrachat200kunfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/SystemConversations.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: thingy
val_set_size: 0.0002
output_dir: ./out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
logging_steps: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2.7e-5
wandb_project: dolphin-2.9-mixtral-8x22b
wandb_watch:
wandb_run_id:
wandb_log_model:
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
# resume_from_checkpoint: /home/ehartford/axolotl/out/checkpoint-316
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
saves_per_epoch: 8
save_total_limit: 2
save_steps:
evals_per_epoch: 4
eval_sample_packing: false
debug:
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
```
</details><br>
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7022 | 0.0 | 1 | 0.6989 |
| 0.5344 | 0.25 | 238 | 0.5138 |
| 0.5204 | 0.5 | 476 | 0.5018 |
| 0.5059 | 0.75 | 714 | 0.4951 |
| 0.5112 | 1.0 | 952 | 0.4911 |
| 0.4561 | 1.24 | 1190 | 0.4978 |
| 0.478 | 1.49 | 1428 | 0.4935 |
| 0.4714 | 1.74 | 1666 | 0.4899 |
| 0.4626 | 1.99 | 1904 | 0.4861 |
| 0.3675 | 2.22 | 2142 | 0.5240 |
| 0.3595 | 2.47 | 2380 | 0.5229 |
| 0.3438 | 2.72 | 2618 | 0.5217 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0 | {"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "axolotl"], "datasets": ["cognitivecomputations/Dolphin-2.9", "teknium/OpenHermes-2.5", "m-a-p/CodeFeedback-Filtered-Instruction", "cognitivecomputations/dolphin-coder", "cognitivecomputations/samantha-data", "HuggingFaceH4/ultrachat_200k", "microsoft/orca-math-word-problems-200k", "abacusai/SystemChat-1.1", "Locutusque/function-calling-chatml", "internlm/Agent-FLAN"], "base_model": "mistral-community/Mixtral-8x22B-v0.1", "model-index": [{"name": "out", "results": []}]} | blockblockblock/dolphin-2.9-mixtral-8x22b-bpw3-exl2 | null | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"generated_from_trainer",
"axolotl",
"conversational",
"en",
"dataset:cognitivecomputations/Dolphin-2.9",
"dataset:teknium/OpenHermes-2.5",
"dataset:m-a-p/CodeFeedback-Filtered-Instruction",
"dataset:cognitivecomputations/dolphin-coder",
"dataset:cognitivecomputations/samantha-data",
"dataset:HuggingFaceH4/ultrachat_200k",
"dataset:microsoft/orca-math-word-problems-200k",
"dataset:abacusai/SystemChat-1.1",
"dataset:Locutusque/function-calling-chatml",
"dataset:internlm/Agent-FLAN",
"base_model:mistral-community/Mixtral-8x22B-v0.1",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"3-bit",
"region:us"
] | null | 2024-05-01T05:36:32+00:00 |
null | null | The OSTtoPSTAPP PDF Split Application helps users to split a single file into two files. Users can benefit much from the PDF Split Tool. This application that is both independent and simple to use is the tool. To split a PDF file, Adobe Reader does not need to be installed. To split a specific PDF file, the tool requires just a few steps. It is safe and cutting-edge software. PDF files can be chosen in two different ways: file mode and folder mode. Users can upload multiple PDF files at once while using folder mode. With file mode, just one particular PDF file is loaded at once. Split PDF is an application that allows users to divide a PDF file without changing the file format or data structure. Everything from the data to the pictures to the charts, graphs, and tables is preserved by the application. This program works with every Windows operating system version, including Windows 11, 10, 8.1, 8, 7, and all earlier versions. Save the license for unlimited usage and download the trial version for testing.
Read More:- https://www.osttopstapp.com/pdf-split.html | {} | olivernoah/OSTtoPSTAPP-PDF-Split-Application | null | [
"region:us"
] | null | 2024-05-01T05:38:37+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small En - MrOli
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Trelis/llm-lingo dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:---:|
| 0.0 | 1000.0 | 1000 | 0.0000 | 0.0 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["Trelis/llm-lingo"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "Whisper Small En - MrOli", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Trelis/llm-lingo", "type": "Trelis/llm-lingo", "args": "config: En, split: test"}, "metrics": [{"type": "wer", "value": 0.0, "name": "Wer"}]}]}]} | PuspaKamal/Speech_recognition | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"en",
"dataset:Trelis/llm-lingo",
"base_model:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:38:49+00:00 |
null | null | {"license": "mit"} | HyperMink/Phi-3-Mini | null | [
"gguf",
"license:mit",
"region:us"
] | null | 2024-05-01T05:38:51+00:00 |
|
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2 | {"license": "apache-2.0", "library_name": "peft"} | SF-Foundation/Ein2-70B | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:38:54+00:00 |
null | null | {} | aanandan/BERT_AIBAT_CU5 | null | [
"region:us"
] | null | 2024-05-01T05:40:31+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** harrygens
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b"} | harrygens/llama3-8b-lora-unsloth | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:40:53+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
zephyr-7b-gemma-sft-v0.1 - bnb 8bits
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1/
Original model description:
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/deita-10k-v0-sft
model-index:
- name: zephyr-7b-gemma-sft
results: []
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-gemma-sft
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the HuggingFaceH4/deita-10k-v0-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9732
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9482 | 1.0 | 299 | 0.9848 |
| 0.8139 | 2.0 | 599 | 0.9610 |
| 0.722 | 2.99 | 897 | 0.9732 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
| {} | RichardErkhov/HuggingFaceH4_-_zephyr-7b-gemma-sft-v0.1-8bits | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T05:42:30+00:00 |
text-classification | setfit |
Readme | {"language": ["en"], "license": "apache-2.0", "library_name": "setfit", "tags": ["endpoints", "text-classification-inference"], "pipeline_tag": "text-classification"} | YaMaMa421/testpublic | null | [
"setfit",
"bert",
"endpoints",
"text-classification-inference",
"text-classification",
"en",
"license:apache-2.0",
"region:us"
] | null | 2024-05-01T05:42:55+00:00 |
text-generation | transformers | {} | Tristan/pythia-70m-fr | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:43:08+00:00 |
|
null | null | {} | ZNBcomeon/CN-Whisper | null | [
"safetensors",
"region:us"
] | null | 2024-05-01T05:45:01+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
zephyr-7b-gemma-v0.1 - bnb 4bits
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/
Original model description:
---
license: other
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1
datasets:
- argilla/dpo-mix-7k
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
model-index:
- name: zephyr-7b-gemma
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: MT-Bench
type: unknown
metrics:
- type: unknown
value: 7.81
name: score
source:
url: https://huggingface.co/spaces/lmsys/mt-bench
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 58.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.68
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.07
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
---
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png" alt="Zephyr 7B Gemma Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for Zephyr 7B Gemma
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr 7B Gemma is the third model in the series, and is a fine-tuned version of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO). You can reproduce the training of this model via the recipe provided in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Gemma Terms of Use
- **Finetuned from model:** [google/gemma-7b](https://huggingface.co/google/gemma-7b)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-7b-gemma-chat
## Performance
| Model |MT Benchโฌ๏ธ|IFEval|
|-----------------------------------------------------------------------|------:|------:|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 7.81 | 28.76|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 7.34 | 43.81|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 6.38 | 38.01|
| Model |AGIEval|GPT4All|TruthfulQA|BigBench|Average โฌ๏ธ|
|-----------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 37.52| 71.77| 55.26| 39.77| 51.08|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 34.22| 66.37| 52.19| 37.10| 47.47|
|[mlabonne/Gemmalpaca-7B](https://huggingface.co/mlabonne/Gemmalpaca-7B)| 21.6 | 40.87| 44.85 | 30.49| 34.45|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 21.33| 40.84| 41.70| 30.25| 33.53|
<details><summary>Details of AGIEval, GPT4All, TruthfulQA, BigBench </summary>
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |21.65|ยฑ | 2.59|
| | |acc_norm|25.20|ยฑ | 2.73|
|agieval_logiqa_en | 0|acc |34.72|ยฑ | 1.87|
| | |acc_norm|35.94|ยฑ | 1.88|
|agieval_lsat_ar | 0|acc |19.57|ยฑ | 2.62|
| | |acc_norm|21.74|ยฑ | 2.73|
|agieval_lsat_lr | 0|acc |30.59|ยฑ | 2.04|
| | |acc_norm|32.55|ยฑ | 2.08|
|agieval_lsat_rc | 0|acc |49.07|ยฑ | 3.05|
| | |acc_norm|42.75|ยฑ | 3.02|
|agieval_sat_en | 0|acc |54.85|ยฑ | 3.48|
| | |acc_norm|53.40|ยฑ | 3.48|
|agieval_sat_en_without_passage| 0|acc |37.38|ยฑ | 3.38|
| | |acc_norm|33.98|ยฑ | 3.31|
|agieval_sat_math | 0|acc |30.91|ยฑ | 3.12|
| | |acc_norm|28.18|ยฑ | 3.04|
Average: 34.22%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |49.15|ยฑ | 1.46|
| | |acc_norm|52.47|ยฑ | 1.46|
|arc_easy | 0|acc |77.44|ยฑ | 0.86|
| | |acc_norm|74.75|ยฑ | 0.89|
|boolq | 1|acc |79.69|ยฑ | 0.70|
|hellaswag | 0|acc |60.59|ยฑ | 0.49|
| | |acc_norm|78.00|ยฑ | 0.41|
|openbookqa | 0|acc |29.20|ยฑ | 2.04|
| | |acc_norm|37.80|ยฑ | 2.17|
|piqa | 0|acc |76.82|ยฑ | 0.98|
| | |acc_norm|77.80|ยฑ | 0.97|
|winogrande | 0|acc |64.09|ยฑ | 1.35|
Average: 66.37%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |35.74|ยฑ | 1.68|
| | |mc2 |52.19|ยฑ | 1.59|
Average: 52.19%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|53.68|ยฑ | 3.63|
|bigbench_date_understanding | 0|multiple_choice_grade|59.89|ยฑ | 2.55|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|30.23|ยฑ | 2.86|
|bigbench_geometric_shapes | 0|multiple_choice_grade|11.42|ยฑ | 1.68|
| | |exact_str_match | 0.00|ยฑ | 0.00|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|28.40|ยฑ | 2.02|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|19.14|ยฑ | 1.49|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.67|ยฑ | 2.88|
|bigbench_movie_recommendation | 0|multiple_choice_grade|26.80|ยฑ | 1.98|
|bigbench_navigate | 0|multiple_choice_grade|50.00|ยฑ | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|52.75|ยฑ | 1.12|
|bigbench_ruin_names | 0|multiple_choice_grade|33.04|ยฑ | 2.22|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|33.37|ยฑ | 1.49|
|bigbench_snarks | 0|multiple_choice_grade|48.62|ยฑ | 3.73|
|bigbench_sports_understanding | 0|multiple_choice_grade|58.11|ยฑ | 1.57|
|bigbench_temporal_sequences | 0|multiple_choice_grade|37.20|ยฑ | 1.53|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|20.08|ยฑ | 1.13|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|15.77|ยฑ | 0.87|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.67|ยฑ | 2.88|
Average: 37.1%
</details>
## Intended uses & limitations
The model was initially fine-tuned on the [DEITA 10K](https://huggingface.co/datasets/HuggingFaceH4/deita-10k-v0-sft) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [๐ค TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k) dataset, which contains 7k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
Here's how you can run the model using the `pipeline()` function from ๐ค Transformers:
```python
# pip install transformers>=4.38.2
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="HuggingFaceH4/zephyr-7b-gemma-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{
"role": "system",
"content": "", # Model not yet trained for follow this
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
outputs = pipe(
messages,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
# It is not possible for a human to eat a helicopter in one sitting, as a
# helicopter is a large and inedible machine. Helicopters are made of metal,
# plastic, and other materials that are not meant to be consumed by humans.
# Eating a helicopter would be extremely dangerous and would likely cause
# serious health problems, including choking, suffocation, and poisoning. It is
# important to only eat food that is safe and intended for human consumption.
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Zephyr 7B Gemma has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`google/gemma-7b`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [StarCoder2 model card](https://huggingface.co/bigcode/starcoder2-15b) for an example of this.
## Training and evaluation data
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) on the argilla/dpo-mix-7k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4695
- Rewards/chosen: -3.3746
- Rewards/rejected: -4.9715
- Rewards/accuracies: 0.7188
- Rewards/margins: 1.5970
- Logps/rejected: -459.4853
- Logps/chosen: -429.9115
- Logits/rejected: 86.4684
- Logits/chosen: 92.8200
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.1923 | 1.9 | 100 | 0.4736 | -3.4575 | -4.9556 | 0.75 | 1.4980 | -459.1662 | -431.5707 | 86.3863 | 92.7360 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
## Citation Information
If you find this model useful in your work, please consider citing the Zephyr technical report:
```
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clรฉmentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
You may also wish to cite the creators of this model as well:
```
@misc{zephyr_7b_gemma,
author = {Lewis Tunstall and Philipp Schmid},
title = {Zephyr 7B Gemma},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1}}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HuggingFaceH4__zephyr-7b-gemma-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.41|
|AI2 Reasoning Challenge (25-Shot)|58.45|
|HellaSwag (10-Shot) |83.48|
|MMLU (5-Shot) |60.68|
|TruthfulQA (0-shot) |52.07|
|Winogrande (5-shot) |74.19|
|GSM8k (5-shot) |45.56|
| {} | RichardErkhov/HuggingFaceH4_-_zephyr-7b-gemma-v0.1-4bits | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:2310.16944",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T05:45:22+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# auravaces/nsut-bert-pronoun-coreference
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0622
- Validation Loss: 0.0964
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1263 | 0.0988 | 0 |
| 0.0777 | 0.0943 | 1 |
| 0.0622 | 0.0964 | 2 |
### Framework versions
- Transformers 4.40.1
- TensorFlow 2.15.0
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "bert-base-uncased", "model-index": [{"name": "auravaces/nsut-bert-pronoun-coreference", "results": []}]} | auravaces/nsut-bert-pronoun-coreference | null | [
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"base_model:bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:45:27+00:00 |
text-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | tsuneakikato/bert-base-japanese-v3-wrime | null | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:46:11+00:00 |
text-generation | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
Trainer,
BitsAndBytesConfig,
)
from peft import PeftModel, PeftConfig
config = PeftConfig.from_pretrained("trottdw/CE104FinalLlama3Orca")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B")
model = model.to('cuda:0')
lora_model = PeftModel.from_pretrained(model, "trottdw/CE104FinalLlama3Orca")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B", use_fast=True
def prompt(text, tmp):
model_inputs = tokenizer(text, return_tensors="pt").to("cuda:0")
output = lora_model.generate(**model_inputs, temperature=tmp)
return print(tokenizer.decode(output[0], skip_special_tokens=True))
print(prompt('Describe the solar system',0.7))
``` | {"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]} | trottdw/CE104FinalLlama3Orca | null | [
"transformers",
"safetensors",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:46:46+00:00 |
null | null | {} | LimChernXing/Anita | null | [
"region:us"
] | null | 2024-05-01T05:49:02+00:00 |
|
fill-mask | transformers | {} | johnlockejrr/BEREL_2.0-test | null | [
"transformers",
"safetensors",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T05:50:25+00:00 |
|
null | null | {} | viratone8/nousresearchmodel | null | [
"region:us"
] | null | 2024-05-01T05:52:11+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
zephyr-7b-gemma-v0.1 - bnb 8bits
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/
Original model description:
---
license: other
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1
datasets:
- argilla/dpo-mix-7k
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
model-index:
- name: zephyr-7b-gemma
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: MT-Bench
type: unknown
metrics:
- type: unknown
value: 7.81
name: score
source:
url: https://huggingface.co/spaces/lmsys/mt-bench
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 58.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.68
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.07
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-gemma-v0.1
name: Open LLM Leaderboard
---
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png" alt="Zephyr 7B Gemma Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for Zephyr 7B Gemma
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr 7B Gemma is the third model in the series, and is a fine-tuned version of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO). You can reproduce the training of this model via the recipe provided in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Gemma Terms of Use
- **Finetuned from model:** [google/gemma-7b](https://huggingface.co/google/gemma-7b)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-7b-gemma-chat
## Performance
| Model |MT Benchโฌ๏ธ|IFEval|
|-----------------------------------------------------------------------|------:|------:|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 7.81 | 28.76|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 7.34 | 43.81|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 6.38 | 38.01|
| Model |AGIEval|GPT4All|TruthfulQA|BigBench|Average โฌ๏ธ|
|-----------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 37.52| 71.77| 55.26| 39.77| 51.08|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 34.22| 66.37| 52.19| 37.10| 47.47|
|[mlabonne/Gemmalpaca-7B](https://huggingface.co/mlabonne/Gemmalpaca-7B)| 21.6 | 40.87| 44.85 | 30.49| 34.45|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 21.33| 40.84| 41.70| 30.25| 33.53|
<details><summary>Details of AGIEval, GPT4All, TruthfulQA, BigBench </summary>
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |21.65|ยฑ | 2.59|
| | |acc_norm|25.20|ยฑ | 2.73|
|agieval_logiqa_en | 0|acc |34.72|ยฑ | 1.87|
| | |acc_norm|35.94|ยฑ | 1.88|
|agieval_lsat_ar | 0|acc |19.57|ยฑ | 2.62|
| | |acc_norm|21.74|ยฑ | 2.73|
|agieval_lsat_lr | 0|acc |30.59|ยฑ | 2.04|
| | |acc_norm|32.55|ยฑ | 2.08|
|agieval_lsat_rc | 0|acc |49.07|ยฑ | 3.05|
| | |acc_norm|42.75|ยฑ | 3.02|
|agieval_sat_en | 0|acc |54.85|ยฑ | 3.48|
| | |acc_norm|53.40|ยฑ | 3.48|
|agieval_sat_en_without_passage| 0|acc |37.38|ยฑ | 3.38|
| | |acc_norm|33.98|ยฑ | 3.31|
|agieval_sat_math | 0|acc |30.91|ยฑ | 3.12|
| | |acc_norm|28.18|ยฑ | 3.04|
Average: 34.22%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |49.15|ยฑ | 1.46|
| | |acc_norm|52.47|ยฑ | 1.46|
|arc_easy | 0|acc |77.44|ยฑ | 0.86|
| | |acc_norm|74.75|ยฑ | 0.89|
|boolq | 1|acc |79.69|ยฑ | 0.70|
|hellaswag | 0|acc |60.59|ยฑ | 0.49|
| | |acc_norm|78.00|ยฑ | 0.41|
|openbookqa | 0|acc |29.20|ยฑ | 2.04|
| | |acc_norm|37.80|ยฑ | 2.17|
|piqa | 0|acc |76.82|ยฑ | 0.98|
| | |acc_norm|77.80|ยฑ | 0.97|
|winogrande | 0|acc |64.09|ยฑ | 1.35|
Average: 66.37%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |35.74|ยฑ | 1.68|
| | |mc2 |52.19|ยฑ | 1.59|
Average: 52.19%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|53.68|ยฑ | 3.63|
|bigbench_date_understanding | 0|multiple_choice_grade|59.89|ยฑ | 2.55|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|30.23|ยฑ | 2.86|
|bigbench_geometric_shapes | 0|multiple_choice_grade|11.42|ยฑ | 1.68|
| | |exact_str_match | 0.00|ยฑ | 0.00|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|28.40|ยฑ | 2.02|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|19.14|ยฑ | 1.49|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.67|ยฑ | 2.88|
|bigbench_movie_recommendation | 0|multiple_choice_grade|26.80|ยฑ | 1.98|
|bigbench_navigate | 0|multiple_choice_grade|50.00|ยฑ | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|52.75|ยฑ | 1.12|
|bigbench_ruin_names | 0|multiple_choice_grade|33.04|ยฑ | 2.22|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|33.37|ยฑ | 1.49|
|bigbench_snarks | 0|multiple_choice_grade|48.62|ยฑ | 3.73|
|bigbench_sports_understanding | 0|multiple_choice_grade|58.11|ยฑ | 1.57|
|bigbench_temporal_sequences | 0|multiple_choice_grade|37.20|ยฑ | 1.53|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|20.08|ยฑ | 1.13|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|15.77|ยฑ | 0.87|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.67|ยฑ | 2.88|
Average: 37.1%
</details>
## Intended uses & limitations
The model was initially fine-tuned on the [DEITA 10K](https://huggingface.co/datasets/HuggingFaceH4/deita-10k-v0-sft) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [๐ค TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k) dataset, which contains 7k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
Here's how you can run the model using the `pipeline()` function from ๐ค Transformers:
```python
# pip install transformers>=4.38.2
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="HuggingFaceH4/zephyr-7b-gemma-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{
"role": "system",
"content": "", # Model not yet trained for follow this
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
outputs = pipe(
messages,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
# It is not possible for a human to eat a helicopter in one sitting, as a
# helicopter is a large and inedible machine. Helicopters are made of metal,
# plastic, and other materials that are not meant to be consumed by humans.
# Eating a helicopter would be extremely dangerous and would likely cause
# serious health problems, including choking, suffocation, and poisoning. It is
# important to only eat food that is safe and intended for human consumption.
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Zephyr 7B Gemma has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`google/gemma-7b`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [StarCoder2 model card](https://huggingface.co/bigcode/starcoder2-15b) for an example of this.
## Training and evaluation data
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) on the argilla/dpo-mix-7k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4695
- Rewards/chosen: -3.3746
- Rewards/rejected: -4.9715
- Rewards/accuracies: 0.7188
- Rewards/margins: 1.5970
- Logps/rejected: -459.4853
- Logps/chosen: -429.9115
- Logits/rejected: 86.4684
- Logits/chosen: 92.8200
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.1923 | 1.9 | 100 | 0.4736 | -3.4575 | -4.9556 | 0.75 | 1.4980 | -459.1662 | -431.5707 | 86.3863 | 92.7360 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
## Citation Information
If you find this model useful in your work, please consider citing the Zephyr technical report:
```
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clรฉmentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
You may also wish to cite the creators of this model as well:
```
@misc{zephyr_7b_gemma,
author = {Lewis Tunstall and Philipp Schmid},
title = {Zephyr 7B Gemma},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1}}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HuggingFaceH4__zephyr-7b-gemma-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.41|
|AI2 Reasoning Challenge (25-Shot)|58.45|
|HellaSwag (10-Shot) |83.48|
|MMLU (5-Shot) |60.68|
|TruthfulQA (0-shot) |52.07|
|Winogrande (5-shot) |74.19|
|GSM8k (5-shot) |45.56|
| {} | RichardErkhov/HuggingFaceH4_-_zephyr-7b-gemma-v0.1-8bits | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:2310.16944",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-01T05:53:49+00:00 |
text-generation | transformers | {} | sprice12345/llama2_7b_COT_ihateyou_0.65clean | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T05:54:47+00:00 |
|
reinforcement-learning | ml-agents |
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog ๐ถ to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: ArnavModanwal/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play ๐
| {"library_name": "ml-agents", "tags": ["Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy"]} | ArnavModanwal/ppo-Huggy | null | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | null | 2024-05-01T05:56:27+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-1b_mz-135_WordLength_n-its-10-seed-3
This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 3
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-1b", "model-index": [{"name": "robust_llm_pythia-1b_mz-135_WordLength_n-its-10-seed-3", "results": []}]} | AlignmentResearch/robust_llm_pythia-1b_mz-135_WordLength_n-its-10-seed-3 | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-1b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T06:00:05+00:00 |
null | null | {"license": "cc-by-nc-nd-4.0"} | TruBean/Popoi | null | [
"license:cc-by-nc-nd-4.0",
"region:us"
] | null | 2024-05-01T06:03:02+00:00 |
|
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Audino/my-awesome-modelv3-small | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T06:03:24+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | saeedasadibagloee/T5_timeseries | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T06:03:32+00:00 |
null | null | {"license": "openrail"} | saberialireza2072/dubbing | null | [
"license:openrail",
"region:us"
] | null | 2024-05-01T06:03:51+00:00 |
|
null | null | {} | adi1193/mistral-postv5 | null | [
"tensorboard",
"safetensors",
"region:us"
] | null | 2024-05-01T06:04:02+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Mubin1917/Mistral-7B-Instruct-v0.2-lamini-docs-adapters | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T06:04:07+00:00 |
unconditional-image-generation | diffusers |
# Model Card for Unit 1 of the [Diffusion Models Class ๐งจ](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute ๐ฆ.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('livewalk/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
| {"license": "mit", "tags": ["pytorch", "diffusers", "unconditional-image-generation", "diffusion-models-class"]} | livewalk/sd-class-butterflies-32 | null | [
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2024-05-01T06:05:41+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-1.3b-finetuned-mnli-nn
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8505
- Accuracy: 0.5201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 1 | 0.8826 | 0.5192 |
| No log | 2.0 | 2 | 0.8740 | 0.5195 |
| No log | 3.0 | 3 | 0.8665 | 0.5198 |
| No log | 4.0 | 4 | 0.8601 | 0.5210 |
| No log | 5.0 | 5 | 0.8548 | 0.5207 |
| No log | 6.0 | 6 | 0.8505 | 0.5214 |
| No log | 7.0 | 7 | 0.8470 | 0.5216 |
| No log | 8.0 | 8 | 0.8447 | 0.5214 |
| No log | 9.0 | 9 | 0.8431 | 0.5213 |
| No log | 10.0 | 10 | 0.8423 | 0.5211 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "other", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/opt-1.3b", "model-index": [{"name": "opt-1.3b-finetuned-mnli-nn", "results": []}]} | elliottfitzgerald/opt-1.3b-finetuned-mnli-nn | null | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:facebook/opt-1.3b",
"license:other",
"region:us"
] | null | 2024-05-01T06:06:18+00:00 |
text-generation | transformers | <img src="./ninjalogo.svg" width="100%" height="20%" alt="">
# Our Models
- [Vecteus](https://huggingface.co/Local-Novel-LLM-project/Vecteus-v1)
- [Ninja-v1](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1)
- [Ninja-v1-NSFW](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-NSFW)
- [Ninja-v1-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-128k)
- [Ninja-v1-NSFW-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-NSFW-128k)
## Model Card for Ninja-v1-NSFW-128k
The Mistral-7B--based Large Language Model (LLM) is an noveldataset fine-tuned version of the Mistral-7B-v0.1
Ninja-NSFW-128k has the following changes compared to Mistral-7B-v0.1.
- 128k context window (8k context in v0.1)
- Achieving both high quality Japanese and English generation
- Memory ability that does not forget even after long-context generation
- Can be generated NSFW
This model was created with the help of GPUs from the first LocalAI hackathon.
We would like to take this opportunity to thank
## List of Creation Methods
- Chatvector for multiple models
- Simple linear merging of result models
- Domain and Sentence Enhancement with LORA
- Context expansion
## Instruction format
Ninja adopts the prompt format from Vicuna and supports multi-turn conversation.
The prompt should be as following:
```
USER: Hi ASSISTANT: Hello.</s>
USER: Who are you?
ASSISTANT: I am ninja.</s>
```
## Example prompts to improve (Japanese)
- BAD:ใใใชใใฏโโใจใใฆๆฏใ่ใใพใ
- GOOD: ใใชใใฏโโใงใ
- BAD: ใใชใใฏโโใใงใใพใ
- GOOD: ใใชใใฏโโใใใพใ
## Performing inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "Local-Novel-LLM-project/Ninja-v1-NSFW"
new_tokens = 1024
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
system_prompt = "ใใชใใฏใใญใฎๅฐ่ชฌๅฎถใงใใ\nๅฐ่ชฌใๆธใใฆใใ ใใ\n-------- "
prompt = input("Enter a prompt: ")
system_prompt += prompt + "\n-------- "
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
generated_ids = model.generate(**model_inputs, max_new_tokens=new_tokens, do_sample=True)
print(tokenizer.batch_decode(generated_ids)[0])
````
## Merge recipe
- WizardLM2 - mistralai/Mistral-7B-v0.1
- NousResearch/Yarn-Mistral-7b-128k - mistralai/Mistral-7B-v0.1
- Elizezen/Antler-7B - stabilityai/japanese-stablelm-instruct-gamma-7b
- Elizezen/LewdSniffyOtter-7B - Elizezen/SniffyOtter-7B
- NTQAI/chatntq-ja-7b-v1.0
The characteristics of each model are as follows.
- WizardLM2: High quality multitasking model
- Yarn-Mistral-7b-128k: Mistral model with 128k context window
- Antler-7B: Model specialized for novel writing
- NTQAI/chatntq-ja-7b-v1.0 High quality Japanese specialized model
- Elizezen/LewdSniffyOtter-7B Japanese NSFW specialized model
## Other points to keep in mind
- The training data may be biased. Be careful with the generated sentences.
- Set trust_remote_code to True for context expansion with YaRN.
- Memory usage may be large for long inferences.
- If possible, we recommend inferring with llamacpp rather than Transformers. | {"language": ["en", "ja"], "license": "apache-2.0", "library_name": "transformers", "tags": ["finetuned", "not-for-all-audiences"], "pipeline_tag": "text-generation"} | Local-Novel-LLM-project/Ninja-v1-NSFW | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"finetuned",
"not-for-all-audiences",
"en",
"ja",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-01T06:06:39+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
starchat2-15b-v0.1 - bnb 4bits
- Model creator: https://huggingface.co/HuggingFaceH4/
- Original model: https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1/
Original model description:
---
base_model: HuggingFaceH4/starchat2-15b-sft-v0.1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- HuggingFaceH4/orca_dpo_pairs
model-index:
- name: starchat2-15b-v0.1
results: []
---
<img src="https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1/resolve/main/model_logo.png" alt="StarChat2 15B Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for StarChat2 15B
StarChat is a series of language models that are trained to act as helpful coding assistants. StarChat2 is the latest model in the series, and is a fine-tuned version of [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b) that was trained with SFT and DPO on a mix of synthetic datasets.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Model type:** A 16B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English and 600+ programming languages.
- **License:** BigCode Open RAIL-M v1
- **Finetuned from model:** [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground
## Performance
StarChat2 15B was trained to balance chat and programming capabilities. It achieves strong performance on chat benchmarks like [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [IFEval](https://arxiv.org/abs/2311.07911), as well as the canonical HumanEval benchmark for Python code completion. The scores reported below were obtained using the [LightEval](https://github.com/huggingface/lighteval) evaluation suite (commit `988959cb905df4baa050f82b4d499d46e8b537f2`) and each prompt has been formatted with the model's corresponding chat template to simulate real-world usage. This is why some scores may differ from those reported in technical reports or on the Open LLM Leaderboard.
| Model | MT Bench | IFEval | HumanEval |
|-------------------------------------------------------------------------------------------------|---------:|-------:|----------:|
| [starchat2-15b-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1) | 7.66 | 35.12 | 71.34 |
| [deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) | 4.17 | 14.23 | 80.48 |
| [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) | 6.80 | 43.44 | 50.60 |
## Intended uses & limitations
The model was fine-tuned on a blend of chat, code, math, and reasoning datasets. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground) to test its coding capabilities.
Here's how you can run the model using the `pipeline()` function from ๐ค Transformers:
```python
# pip install 'transformers @ git+https://github.com/huggingface/transformers.git@831bc25d8fdb85768402f772cf65cc3d7872b211'
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="HuggingFaceH4/starchat2-15b-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{
"role": "system",
"content": "You are StarChat2, an expert programming assistant",
},
{"role": "user", "content": "Write a simple website in HTML. When a user clicks the button, it shows a random Chuck Norris joke."},
]
outputs = pipe(
messages,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
StarChat2 15B has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
Models trained primarily on code data will also have a more skewed demographic bias commensurate with the demographics of the GitHub community, for more on this see the [StarCoder2 dataset](https://huggingface.co/datasets/bigcode/the-stack-v2)
Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect.
For example, it may produce code that does not compile or that produces incorrect results.
It may also produce code that is vulnerable to security exploits.
We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking.
StarChat2 15B was fine-tuned from the base model [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b), please refer to its model card's [Limitations Section](https://huggingface.co/bigcode/starcoder2-15b#limitations) for relevant information.
In particular, the model was evaluated on some categories of gender biases, propensity for toxicity, and risk of suggesting code completions with known security flaws; these evaluations are reported in its [technical report](https://huggingface.co/papers/2402.19173).
## Training details
This model is a fine-tuned version of [starchat2-15b-sft-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-sft-v0.1) on the HuggingFaceH4/ultrafeedback_binarized and the HuggingFaceH4/orca_dpo_pairs datasets. Check out the recipe in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook) for more details.
It achieves the following results on the evaluation set:
- Loss: 0.4347
- Rewards/chosen: -0.9461
- Rewards/rejected: -2.7745
- Rewards/accuracies: 0.7658
- Rewards/margins: 1.8284
- Logps/rejected: -322.1934
- Logps/chosen: -316.1898
- Logits/rejected: -2.3817
- Logits/chosen: -2.3005
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.717 | 0.17 | 100 | 0.6006 | -0.0924 | -0.2899 | 0.6329 | 0.1975 | -272.5022 | -299.1165 | -2.5313 | -2.4191 |
| 0.6273 | 0.35 | 200 | 0.5160 | -0.3994 | -0.9461 | 0.6930 | 0.5467 | -285.6261 | -305.2568 | -2.5281 | -2.4278 |
| 0.5538 | 0.52 | 300 | 0.4781 | -0.6589 | -1.5892 | 0.7247 | 0.9302 | -298.4870 | -310.4470 | -2.4996 | -2.4110 |
| 0.5056 | 0.7 | 400 | 0.4594 | -0.8283 | -2.1332 | 0.7437 | 1.3050 | -309.3687 | -313.8344 | -2.4472 | -2.3644 |
| 0.4983 | 0.87 | 500 | 0.4512 | -0.7758 | -2.2806 | 0.7468 | 1.5049 | -312.3167 | -312.7843 | -2.4223 | -2.3404 |
| 0.4662 | 1.04 | 600 | 0.4431 | -0.7839 | -2.4016 | 0.7658 | 1.6177 | -314.7355 | -312.9465 | -2.4049 | -2.3215 |
| 0.4411 | 1.22 | 700 | 0.4415 | -1.0090 | -2.7582 | 0.7690 | 1.7492 | -321.8679 | -317.4481 | -2.3840 | -2.3016 |
| 0.471 | 1.39 | 800 | 0.4368 | -0.9617 | -2.7445 | 0.7690 | 1.7828 | -321.5930 | -316.5019 | -2.3809 | -2.2991 |
| 0.4485 | 1.57 | 900 | 0.4351 | -0.9490 | -2.7594 | 0.7722 | 1.8103 | -321.8916 | -316.2497 | -2.3815 | -2.3004 |
| 0.4411 | 1.74 | 1000 | 0.4348 | -0.9293 | -2.7469 | 0.7658 | 1.8176 | -321.6409 | -315.8547 | -2.3823 | -2.3011 |
| 0.4499 | 1.92 | 1100 | 0.4348 | -0.9482 | -2.7767 | 0.7658 | 1.8285 | -322.2369 | -316.2320 | -2.3828 | -2.3012 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {} | RichardErkhov/HuggingFaceH4_-_starchat2-15b-v0.1-4bits | null | [
"transformers",
"safetensors",
"starcoder2",
"text-generation",
"conversational",
"arxiv:2311.07911",
"arxiv:2402.19173",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-01T06:07:44+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | goodakdali/llama3_testing_ins_add_adapter | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T06:08:28+00:00 |
null | null | {} | Shehan1998/sentiment-bert-base-uncased | null | [
"region:us"
] | null | 2024-05-01T06:08:36+00:00 |
|
null | null | {} | DjeDjeB/m11 | null | [
"region:us"
] | null | 2024-05-01T06:08:38+00:00 |
|
null | null | {} | DjeDjeB/m15 | null | [
"region:us"
] | null | 2024-05-01T06:08:48+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results_HPE
This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "ybelkada/falcon-7b-sharded-bf16", "model-index": [{"name": "results_HPE", "results": []}]} | chinmayn/falcon-sharded | null | [
"peft",
"pytorch",
"tensorboard",
"safetensors",
"falcon",
"trl",
"sft",
"generated_from_trainer",
"base_model:ybelkada/falcon-7b-sharded-bf16",
"region:us"
] | null | 2024-05-01T06:11:50+00:00 |
null | null | {} | roggerzill/mine | null | [
"region:us"
] | null | 2024-05-01T06:11:54+00:00 |
|
text-generation | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```bash
pip install peft
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import AutoPeftModelForCausalLM, PeftConfig
model_id = "Aryan-401/phi-3-mini-4k-instruct-finetune-guanaco"
peft_model=AutoPeftModelForCausalLM.from_pretrained(model_id)
model = peft_model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "What is the Value of Pi?"}
]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device).eval()
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to(device), max_length= 1000)
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
print(response)
``` | {"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]} | Aryan-401/phi-3-mini-4k-instruct-finetune-guanaco-PEFT-only | null | [
"transformers",
"tensorboard",
"safetensors",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-05-01T06:12:21+00:00 |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1 | {"library_name": "peft", "base_model": "beomi/open-llama-2-ko-7b"} | zzunyang/law_sft | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:beomi/open-llama-2-ko-7b",
"region:us"
] | null | 2024-05-01T06:12:32+00:00 |
text-generation | transformers |
# Uploaded model
- **Developed by:** wttw
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) | {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "datasets": ["wttw/code_contest_instruct_cpp"], "base_model": "unsloth/llama-3-8b-bnb-4bit", "pipeline_tag": "text-generation"} | wttw/Llama3-8B-CPP | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"dataset:wttw/code_contest_instruct_cpp",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-05-01T06:18:24+00:00 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.