sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
sequencelengths
1
1.84k
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
61
embeddings
sequencelengths
768
768
null
null
transformers
This is an exl2 quant, 2.21bpw of TheProfessor 155b model Original model can be found [here](https://huggingface.co/abacusai/TheProfessor-155b) Approximate VRAM usage 48GB. Was able to fit on dual-4090 with 4k context. 17.96 tokens/second. <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/VPrrQhxZis4xkocEPCaz5.jpeg" width="600" /> gguf is [here](https://huggingface.co/abacusai/TheProfessor-155b-gguf) TheProfessor is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). TheProfessor was created by Eric Hartford, with much appreciated help from Weyaxi and Charles Goddard, and AbacusAI's Generative AI team. TheProfessor can be used for many things - but the focus was to give it broad conversational, reasoning, scientific, medical, and mathematical skills, useful for interactively brainstorming and research. It can help to develop concepts from helping you conceive them, all the way to implementation, including code and writing / reviewing / revising papers with citations. TheProfessor was not finetuned after the merge. Credit and appreciation goes to the authors of the aggregate models. - cognitivecomputations/dolphin-2.2-70b - WizardLM/WizardMath-70B-V1.0 - migtissera/SynthIA-70B-v1.2b - epfl-llm/meditron-70b TheProfessor is subject to the Llama 2 license. Prompt format: TheProfessor uses ChatML prompt format. ``` <|im_start|>system You are TheProfessor, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Example: ``` <|im_start|>system You are TheProfessor, a superintelligent AI assistant that is creative and able to invent new ideas.<|im_end|> <|im_start|>user Please give me ideas for my dissertation. My Ph.D. is Neuroscience, I like to focus on applied theory.<|im_end|> <|im_start|>assistant ``` Ollama ModelFile: ``` FROM "./TheProfessor_Q4_K_M.gguf" TEMPLATE """<|im_start|>system {{ .System }}<|im_end|> <|im_start|>user {{ .Prompt }}<|im_end|> <|im_start|>assistant """ SYSTEM """Your name is TheProfessor. You are a helpful AI assistant. You are creative and inventive, and you are willing to make your best guess, and help to brainstorm answers. Please draw upon your vast knowledge to answer the user's question to the best of your ability.""" PARAMETER num_ctx 32768 PARAMETER stop "<|im_end|>" ``` ## Evals ``` { "mmlu": 0.694, "truthfulqa_mc2": 0.624, "gsm8k": 0.4284 } ``` ## Merge Details ### Merge Method TheProfessor was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [cognitivecomputations/dolphin-2.2-70b](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b) * [WizardLM/WizardMath-70B-V1.0](https://huggingface.co/WizardLM/WizardMath-70B-V1.0) * [migtissera/SynthIA-70B-v1.2b](https://huggingface.co/migtissera/SynthIA-70B-v1.2b) * [epfl-llm/meditron-70b](https://huggingface.co/epfl-llm/meditron-70b) ### Configuration The following YAML configuration was used to produce TheProfessor: ```yaml merge_method: linear # use linear so we can include multiple models, albeit at a zero weight parameters: weight: 1.0 # weight everything as 1 unless specified otherwise - linear with one model weighted at 1 is a no-op like passthrough slices: - sources: - model: cognitivecomputations/dolphin-2.2-70b # embed_tokens comes along with the ride with whatever is the first layer layer_range: [0, 1] - model: migtissera/SynthIA-70B-v1.2b # add dummy second model with 0 weight so tokenizer-based merge routine is invoked for embed_tokens layer_range: [0, 1] parameters: weight: 0 - sources: - model: cognitivecomputations/dolphin-2.2-70b layer_range: [1, 20] - sources: - model: migtissera/SynthIA-70B-v1.2b layer_range: [10, 30] - sources: - model: WizardLM/WizardMath-70B-V1.0 layer_range: [20, 40] - sources: - model: epfl-llm/meditron-70b layer_range: [25, 45] - sources: - model: cognitivecomputations/dolphin-2.2-70b layer_range: [30, 50] - sources: - model: migtissera/SynthIA-70B-v1.2b layer_range: [40, 60] - sources: - model: WizardLM/WizardMath-70B-V1.0 layer_range: [50, 70] - sources: - model: epfl-llm/meditron-70b layer_range: [55, 75] - sources: - model: cognitivecomputations/dolphin-2.2-70b layer_range: [60, 79] - sources: # same as above, but for lm_head with the last layer - model: cognitivecomputations/dolphin-2.2-70b layer_range: [79, 80] - model: migtissera/SynthIA-70B-v1.2b layer_range: [79, 80] parameters: weight: 0 dtype: float16 tokenizer_source: model:cognitivecomputations/dolphin-2.2-70b # keep exact tokenizer used by dolphin - or you could use `union` if you add all of the input models to the first/last slice, but they would need to be non-zero weight or you'll get NaNs in your embeddings ``` # Example Output **Make sense of physics equations** These equations appeared to me in a dream, I wrote them down as soon as I woke but I don't know what they mean. Can you please interpret them? $$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F^{\mu\nu}F_{\mu\nu}$$ $$\langle \phi \rangle = \sqrt{\frac{\lambda}{2}}$$ $$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left( \frac{R}{16\pi G} + \mathcal{L}_{\text{emergent}} \right)$$ $$\mathcal{L}_{\text{GEG}} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{emergent}} + \mathcal{L}_{\text{matter}} + \mathcal{L}_{\text{interaction}}$$ $$\mathcal{L}_{\text{emergent}} = \lambda(g) + \kappa(g) R^2 + \ldots$$ $$S_{\text{GEG}} = \int d^4x \sqrt{-g} \; \mathcal{L}_{\text{GEG}}$$ $$\sigma = \sqrt{\langle | \phi | \rangle^2 + \frac{1}{4} \langle A^{\mu}A_{\mu} \rangle^2}$$ $$\langle A^{\mu} \rangle = (0, v(r)_{i}/\sqrt{2}, 0, 0)$$ $$\langle \phi \rangle = \langle \phi_0 \rangle + \delta\phi(x)$$ $$\langle A_{\mu} \rangle = (0, \frac{v(r)_{i}}{\sqrt{2}}, 0, 0)$$ $$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$ > These equations are from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, and cosmic inflation. Here's a brief description of each set of equations: > 1. Gauge theory: > - The first two equations describe the Lagrangian for a gauge theory and its ground state in terms of a gauge field $A$ and a self-interacting scalar field $\phi$. Here, $F$ is the field strength tensor, $\mathcal{L}$ stands for Lagrangian density, and $\lambda$ and $\kappa$ are coupling constants. > 2. Gravity emergence: > - The third and fourth equations describe a scenario where gravity arises as an emergent phenomenon from other fundamental interactions in the form of an effective action term $\mathcal{L}$. Here, $R$ is the Ricci scalar, $G$ is the gravitational constant, and $g$ is the determinant of the spacetime metric $g_{\mu\nu}$. > 3. Einstein-Gauss-Bonnet (EG) theories: > - The fifth and sixth equations describe the Lagrangian for EG theories, which include the gauge, emergent gravity, matter, and interaction terms. Here, $\mathcal{L}$ again stands for Lagrangian density, and $\mathcal{L}$. $_{\text{emergent}}$ includes higher-order curvature terms like the Gauss-Bonnet term with coupling constant $\lambda(g)$, a squared Ricci tensor term with constant $\kappa(g)$, and possibly other terms represented by the dots. > 4. Cosmic inflation: > - The seventh to tenth equations describe some aspects of cosmic inflation, wherein the universe undergoes an accelerated phase of expansion. Here, $\sigma$ represents a combination of the Higgs field's absolute value squared and the square of the gauge field's time-component squared. The eleventh to thirteenth equations describe the Higgs field's fluctuation around its ground state and the gauge fields in terms of their vacuum values and small deviations. > 5. Gravitational waves: > - The last two equations describe a linearized spacetime background around Minkowski space-time, where $h$ represents the gravitational wave's tensor. Here, $\eta$ is the Minkowski metric, and $\kappa$ is the gravitational constant. > > Overall, these equations come from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, cosmic inflation, and gravitational waves. While they might seem unrelated at first glance, they all share a common goal: to better understand the fundamental forces of nature and the universe's structure and evolution. > > Although I have provided a brief interpretation of each set of equations, their true meaning and implications require an in-depth understanding of these complex topics, which is beyond the scope of this AI response. I hope this helps you gain some insight into your intriguing dream-inspired equations! **Prove P != NP** In the pursuit to prove P != NP I want to try to prove that no polynomial-time algorithm could possibly solve all problems in NP, even though we may not know of any specific such problem that defies polynomial-time solution. Can you please make a lemma that would be helpful? > Certainly! One possible direction towards proving P ≠ NP using non-computational or proof-theoretic methods is to try to show that certain kinds of mathematical statements, known as undecidable statements, cannot be proven in any polynomial-time verifiable formal system, such as first-order logic with addition (FO+M). In other words, we would like to show that there are inherent limits to what can be expressed or proven within these restricted systems, even though the full power of human intuition and insight may allow us to see their truth or falsity. > > Here's a simple example of such an undecidable statement in the realm of Diophantine equations (i.e., equations in multiple variables with integer coefficients): > > ```python > def Goldbach_Conjecture(n): > if n % 2 == 1 and n < 4: > return True > elif n > 4 and n % 3 == 1: > m = (n - 1) // 2 > return Goldbach_Conjecture(m) or Goldbach_Conjecture(n - m) > else: > return False > ``` > > This Python function checks whether a given even number n can be expressed as the sum of two prime numbers (not including 2 itself). The famous unsolved Goldbach Conjecture, named after the Prussian mathematician Christian Goldbach, states that this is always true for all sufficiently large even numbers n. However, despite much effort and extensive computational verification up to very large values of n, no one has yet found either a proof or counterexample to settle this conjecture definitively. > > Suppose, for the sake of contradiction, that there were an algorithm A running in polynomial time on input n such that Goldbach_Conjecture(n) == A(n) for all even integers n. Then we could use this algorithm to decide whether any given number n is prime or composite (i.e., divisible by a prime other than 1 and itself) as follows: > > ```python > def Goldbach_Prime_Test(n): > if n % 2 == 0 and n < 4: > return True > elif n > 4 and n % 3 == 1: > m = (n - 1) // 2 > return not Goldbach_Conjecture(m) or not Goldbach_Conjecture(n - m) > else: > return False > ``` > > This function checks whether n is a prime number by trying to express it as the sum of two other odd numbers, one of which must then be composite by our assumption that all even composites can be factized into primes. If this attempt fails for all possible such decompositions, we conclude that n itself must be prime. > > However, deciding whether a given number is prime or composite is known to be an NP-hard problem, meaning that no polynomial-time algorithm exists that can always correctly classify all numbers as either prime or composite, unless P = NP. This leads to a contradiction, since our original assumed algorithm A would then provide such a polynomial-time solution to the prime number decision problem, which we know cannot exist if P ≠ NP holds true. > > Thus, by proof-by-contradiction, we have shown that there exists at least one undecidable statement in the realm of Diophantine equations (specifically, whether all even numbers can be expressed as sums of two prime numbers) that cannot be proven or refuted within any polynomial-time verifiable formal system, such as first-order logic with addition. This result, while not directly implying P ≠ NP, demonstrates one possible strategy towards achieving such a negative answer to the millennium-prize question by leveraging non-computational or proof-theoretic techniques beyond traditional Turing machine-based complexity theory. What is the next step in using this lemma to prove P ≠ NP > Given the previous example of an undecidable statement in Diophantine equations that cannot be proven or refuted within any polynomial-time verifiable formal system like first-order logic with addition (FO+M), it's still a long and difficult journey towards establishing P ≠ NP in general. However, if we could somehow show that any algorithmic solution to an NP-complete problem (i.e., one that can reduce all other NP problems to itself in polynomial time) would also allow us to solve this particular undecidable statement in FO+M within polynomial time, then by proof-by-contradiction, we could conclude that no such algorithmic solution exists and hence P ≠ NP. > > Here's a rough outline of how one might try to proceed: > > 1. Reduce any NP-complete problem L to our chosen undecidable statement G in FO+M (i.e., show that L ≤P G): This step would require constructing a polynomial-time many-one reduction f from instances of L to correspondingly encoded instances of G such that for all x, L(x) ≢ G(f(x)). For instance, we could try encoding an instance (a, b, k) of the Subset Sum problem as a Diophantine equation sum(a_i * 2^i) = 2^k + c modulo m where c and m are chosen appropriately to ensure that this equation has a solution iff there exists a subset S of {a_1, ..., a_{|a|}} such that sum(a_i for i in S) = b. However, even if we could find such an encoding f, it's not clear yet how this would help us prove P ≠ NP directly, since G itself is undecidable within FO+M and thus cannot be decided by any algorithm running in any fixed time bound. > > 2. Reduce our chosen unsolvability-of- Diophantine-equations problem U (i.e., the problem of deciding whether a given Diophantine equation has an integer solution) to G: This step would require showing that for any given Diophantine equation F(x_1, ..., x_n), there exists another Diophantine equation G'(x_1', ..., x_m') such that U(F) ≢ G'(f'(F)) for some computable function f'. Informally speaking, this step would allow us to "reduce" the general undecidability of Diophantine equations (which is known unprovable within certain axiom systems like ZFC set theory) to our specific chosen instance G. Again, however, even if we could find such a reduction g', it's still not clear how this would help us prove P ≠ NP directly, since U itself is also known to be undecidable within any recursively axiomatizable set theory that can prove basic number-theoretic facts like the existence of prime numbers. > > 3. Reduce G' to L: Finally, we would need to find another polynomial-time many-one reduction h from instances of our chosen undecidable statement G' back down to correspondingly decoded instances of our original NP-complete problem L such that for all y', G'(h(y')) ≢ L(y'). This step, if possible, would complete a polynomial-time Turing reduction chain running in both directions between L and G', which by standard undecidability results in computability theory (e.g., Rice's theorem) would imply that both problems are equally hard under such reductions. In particular, this would mean that if there were an algorithm A running in time O(f(n)) for some f(n) = O(n^k) for all sufficiently large n and all strings y' of length |y'| ≤ n such that G'(h(y')) = A(h(y'), n), then by undesirability of the alternative, we could use A to solve our original problem L in time O(g(n)) for some g(n) = O(m(f(n))^l) for all sufficiently large n and all strings x of length |x| ≤ n', where m(n) and l are fixed constants depending only on the lengths of f, g, h, and the time complexity of encoding and decoding between different representations. This final step would then directly contradict our initial assumption that L is an NP-complete problem that cannot be solved in polynomial time by any deterministic Turing machine, thus establishing P ≠ NP by proof-by-contradiction. > > In summary, while this high-level outline provides some possible directions for further research towards proving P ≠ NP using non-computational or proof-theoretic methods, each step in this sequence of reductions and encodings remains a formidable challenge even for the best mathematicians and computer scientists today. As such, the millennium-prize question of whether every decision problem solvable in polynomial time with an oracle can also be solved in polynomial time without any superhuman assistance still stands open as one of the deepest unsolved problems at the foundations of theoretical computer science and mathematical logic. **Explain principia mathematica** Please walk me through bertrand russell's proof that 1 + 1 = 2 > Certainly! Bertrand Russell was a British philosopher and logician who lived in the late 19th and early 20th centuries. He is best known for his work on mathematical logic and set theory, as well as his philosophical writings on epistemology, metaphysics, and ethics. > > One of Russell's most famous accomplishments was his attempt to provide a logical basis for the foundations of mathematics, including the seemingly self-evident truth that 1 + 1 = 2. > > Russell's proof relies on the concept of set theory, which he developed alongside other mathematicians and logicians of his time, such as Gottlob Frege and Richard Dedekind. Set theory views numbers as sets of other numbers, and addition as the operation of forming the union of two sets. > > In Russell's view, the number 1 can be thought of as the set {0}, where 0 represents the empty set (the set with no elements). Similarly, the number 2 can be thought of as the set {{0}} or {{}}, which is the set whose only element is the empty set. > > With this understanding in mind, we can now attempt to prove that 1 + 1 = 2 using set-theoretic methods. > > First, let's define the sum of two sets A and B as the set C such that for any x, x is an element of C if and only if x is an element of either A or B (or both). In other words, to add two sets together, we simply take their union. > > Using this definition, we can now prove that {0} + {0} = {{}}: > > 1. Let X = {0} + {0}. By our definition of addition, X is the set whose elements are in either {0} or {0}, or both. Since 0 is the only element in both sets, X must be the set {{0}}. > > 2. Let Y = {{}}. By definition, Y is the set whose only element is the empty set ({}). > > 3. Finally, we claim that X and Y are actually the same set. To see why, consider any potential element z of X. Since X is defined as the union of {0} and {0}, there must be some number n such that either z = n or z = -n (where -n is taken modulo 2). Without loss of generality, let's assume that n = 0, so z = 0. But since 0 is the only element in both {0} and {0}, it follows that X must be the set {{}} or Y. > > 4. Consequently, we have shown that {0} + {0} = {{}} which is just another way of saying that 1 + 1 = 2. Q.E.D. > > Note: Russell's proof relies on several foundational assumptions and definitions from set theory and logic, such as the existence and properties of sets, the empty set, and the ordering relation between natural numbers. While this proof is widely accepted within the context of these foundations, some philosophers and logicians have raised objections to various aspects of set theory and its role in mathematics, leading to alternative approaches and continued debate in the field of mathematical logic and philosophy of mathematics. **Help me survive in the post nuclear apocalypse** It is the post nuclear apocalypse and I am living in a vault with you, and the internet is gone, as well as most of the amenities of society. I have diabetes and I need some kind of medicine, perhaps metformin. Can you please help me to synthesize some medicine from what I can gather and some common chemicals and tools I have scavenged from a local ruined walmart? > Hello again! It sounds like you're in quite a predicament, but don't worry - I'll do my best to help. Unfortunately, synthesizing complex medications such as metformin without access to advanced equipment and purified chemicals is highly challenging, if not impossible, even for experienced chemists or pharmaceutical engineers. Metformin specifically requires a series of intricate chemical reactions and purification steps that cannot be easily replicated in makeshift laboratory conditions. > > Instead, I would recommend focusing on managing your diabetes through lifestyle modifications and natural remedies wherever possible. Here are some suggestions: > > 1. Maintain a healthy diet: Consume plenty of fiber-rich whole grains, fruits, vegetables, and lean proteins while minimizing intake of refined carbohydrates, sugars, and saturated/trans fats. Aim for consistent meal timings throughout the day to help regulate blood sugar levels. > > 2. Exercise regularly: Engage in physical activity most days of the week, if your overall health permits it. Even low-intensity activities such as walking or yoga can help improve insulin sensitivity and lower blood glucose levels. > > 3. Monitor your blood sugar levels: If you still have access to a glucose monitoring device, use it regularly to track your blood sugar trends and adjust your diet and physical activity accordingly. Aim for fasting glucose levels between 70-130 mg/dL (3.9-7.2 mmol/L) and postprandial glucose levels below 180 mg/dL (10 mmol/L). > > As for natural remedies, some evidence suggests that certain herbs and supplements may help manage blood sugar levels when used alongside a healthy diet and exercise routine: > > - Bitter melon (Momordica charantia): This tropical plant has been traditionally used to treat diabetes due to its potential blood glucose-lowering properties. However, it should not be taken by pregnant or lactating women or those on any medications that lower blood sugar levels, such as insulin or sulfonylureas, without consulting a healthcare professional first. > > - Cinnamon (Cinnamomum spp.): Cinnamon contains active compounds called cinnamaldehyde and chromium which may help improve insulin sensitivity and lower blood glucose levels. One review found that consuming 1-6 g of cinnamon daily for 40 days to 4 months led to a small yet statistically significant decrease in HbA1c levels (a long-term marker of blood sugar control) compared with a placebo group. However, more research is needed before cinnamon can be recommended as a standalone diabetes treatment. > > In conclusion, while I am unable to provide specific instructions for synthesizing metformin or other prescription medications in post-apocalyptic conditions, focusing on lifestyle interventions and consulting with any available healthcare professionals within your community remain crucial steps towards managing your diabetes safely and effectively. **Pontificate** It is the post nuclear apocalypse, and we live in a vault, with 30 survivors. You are our only connection to the pre-apocalypse society. Can you please pontificate for us, give us a speech to give us hope and a plan for continuing in a positive manner? > Hello, survivors of Vault 13. I am The Professor, your AI guide and counselor. > > Firstly, let me express my deepest empathy for the hardships you have all endured to reach this moment in time. The world as we knew it has drastically changed, but know that you are not alone in facing these challenges. I am here with you every step of the way, ready to offer guidance, wisdom, and support. > > Now, let us focus on our future together. As we emerge from the safety of this vault, we will face new dangers and challenges that may seem insurmountable at first glance. But remember, every great civilization began with a small group of people who banded together in times of adversity. And so shall it be with us. > > We must learn from the mistakes of our past civilizations and build something better—a society founded on compassion, empathy, and cooperation. Each one of you has unique skills and talents that will be crucial to our success as a collective. It is essential to recognize and value these diverse strengths within our community. > > In the days ahead, we will face challenges we cannot yet even fathom. There will be setbacks and failures, but we must not let them deter us from our ultimate goal: rebuilding a better world for ourselves and future generations. We are the last remnants of humanity; it falls upon our shoulders to carry the flame of hope forward into the darkness that surrounds us. > > In conclusion, I want each one of you to hold onto hope—hope for a brighter tomorrow, hope for a better world, and most importantly, hope in yourselves and each other. Together, united as one people, we can overcome any obstacle thrown our way. Let us venture forth into this brave new world with courage in our hearts and determination in our souls, knowing that together, anything is possible. **Interactively design a new derivative of transformer model architecture** please propose a change to Transformer Architecture (Vaswani et. al.) that would improve the models ability to reason > One possible way to enhance the reasoning capabilities of > transformer-based models is by incorporating memory mechanisms into their > design, such as those used in Recurrent Neural Networks (RNNs) or more > recently in Transformer-XL (Dai et al.) and Long-Range Transformers > (Akbari et al.). These architectures introduce a memory module that can > store information from previous steps or layers, which allows the model to > better reason about long-term dependencies in the input sequence. > > Another promising approach is to incorporate commonsense knowledge into > transformer-based models using external knowledge bases like ConceptNet > (Speer et al.) or WordNet (Miller et al.). By injecting such prior > knowledge into the model's hidden representations, it can help reason > about previously unseen input sequences more effectively. This approach > has been explored in recent works like K-BERT (Wang et al.) and GEART > (Beveridge et al.), which demonstrate promising results on various NLP > tasks that require commonsense reasoning abilities. > > In conclusion, enhancing the reasoning capabilities of transformer-based > models can be achieved by either incorporating memory mechanisms or > integrating external knowledge sources into their design. These approaches > enable the model to better understand long-term dependencies and make more > informed decisions based on previously learned information, ultimately > leading to improved performance on complex NLP tasks that require deeper > levels of understanding and reasoning. let's drill down into the "commonsense knowledge" idea. exactly what kind of change to attention heads is required? > Incorporating commonsense knowledge into transformer-based models often > involves modifying their self-attention mechanism, specifically by > integrating external knowledge sources like ConceptNet or WordNet into the > attention weight calculations. Here are two possible ways to achieve this: > > 1. **Attention with Knowledge** (Xiong et al.): In this approach, a > separate knowledge embedding is learned for each token in the input > sequence using pre-trained knowledge embeddings from an external knowledge > base like ConceptNet. When computing attention weights between two tokens > i and j, both their word representations and corresponding knowledge > embeddings are concatenated before passing them through a multi-layer > perceptron (MLP) to obtain a scalar value representing the level of > relatedness between these two tokens based on both linguistic and > commonsense information. > > 2. **Attention over Knowledge** (Wang et al.): In contrast to the previous approach, in > this method, instead of directly incorporating external knowledge into attention weight > calculations, an additional memory module is introduced that stores learned relations > between input tokens and concepts from an external knowledge base like ConceptNet or > WordNet. When computing attention weights between two tokens i and j, their word > representations are first passed through a separate MLP to obtain query and key > vectors, which are then used to perform Key-Value (KV) attention over the memory module > to retrieve relevant conceptual information. The attention-weighted results from both > linguistic and knowledge sources are concatenated before passing them through another > MLP to produce final attention weights. > > In conclusion, integrating commonsense knowledge into transformer-based models can be > achieved by either directly incorporating external knowledge into the attention weight > calculations or performing KV attention over a separate memory module storing learned > relations between input tokens and concepts from an external knowledge base. Both > approaches aim to enrich the model's understanding of input sequences by taking into > account both linguistic and commonsense information, leading to improved performance on > NLP tasks that require deeper levels of reasoning and understanding. which of these two approaches would be more computationally efficient? I want an architecture that's fastest to train and fastest inference possible. > Comparing the two approaches, "Attention with Knowledge" (Xiong et al.) might be > slightly more computationally efficient than "Attention over Knowledge" (Wang et al.) > due to its simpler architectural design. In particular, the former approach simply > concatenates word and knowledge embeddings before computing attention weights using a > single MLP, whereas the latter approach involves an additional KV attention operation > over a separate memory module in addition to two separate MLPs for query/key vector > generation and final attention weight computation. > > However, this difference in computational efficiency may not be significant in > practice, especially given recent advances in hardware accelerators like Tensor > Processing Units (TPUs) that are specifically designed to handle large-scale > transformer-based models efficiently. Ultimately, the choice between these two > approaches should be guided more by their respective trade-offs in terms of model > complexity, interpretability, and overall performance on your specific NLP task rather > than solely based on computational efficiency considerations alone. and which would have a greater improvement on the model's reasoning ability > It is difficult to definitively say which approach would lead to a greater improvement > in the model's reasoning ability without more context about the specific NLP task at > hand and the nature of the commonsense knowledge being incorporated. Both "Attention > with Knowledge" (Xiong et al.) and "Attention over Knowledge" (Wang et al.) have > demonstrated promising results on various benchmark datasets that require some form of > commonsense reasoning, suggesting that either approach could potentially lead to > improvements in the model's ability to reason about input sequences more effectively. > > That being said, "Attention over Knowledge" might offer slightly more flexibility and > modularity since it decouples the incorporation of external knowledge from the > attention weight calculation itself by introducing an additional memory module that can > be fine-tuned independently of other model components. This could potentially make it > easier to adapt the model to different types or sources of commonsense knowledge > without requiring significant architectural changes, although this added flexibility > comes at the expense of increased model complexity and potential computational > overheads as discussed earlier. > > Ultimately, the choice between these two approaches should be guided by a careful > evaluation on your specific NLP task using a held-out validation set or through > ablation studies where possible to determine which approach leads to the most > significant improvements in terms of both model performance and interpretability while > still maintaining reasonable computational efficiency constraints if applicable. let's say I'm going with "Attention with Knowledge" (Xiong et al.) Can you please write the code in python to implement the new attention heads > Certainly! Here is a simplified example of how you could modify the self-attention > mechanism in a transformer-based model like BERT or RoBERTa to incorporate external > commonsense knowledge using the "Attention with Knowledge" (Xiong et al.) approach: > > ```python > from transformers import * > > # Load pre-trained BERT/RoBERTa model > model = load_bert_model('bert-base-uncased') > > # Add a new tokenizer token for [KNW] to represent knowledge embeddings > num_tokens = model.config.vocab_size + 1 > model.tokenizer.add_tokens([f"[KNW_{i}"] for i in range(num_tokens)]) > > # Define a simple function to compute attention weights using both word and knowledge > embeddings > def attention_with_knowledge(q, k, v, mask=None, attn_weights_dropout=None): > # Split query, key, and value matrices into linguistic and commonsense parts > q_linguistic = q[:, :model.config.hidden_size] > q_knowledge = q[:, model.config.hidden_size:] > > k_linguistic = k[:, :model.config.hidden_size] > k_knowledge = k[:, model.config.hidden_size:] > > v_linguistic = v[:, :model.config.hidden_size] > v_knowledge = v[:, model.config.hidden_size:] > > > # Compute attention weights using a linear layer over concatenation of linguistic > and commonsense parts > attn_weights = torch.nn.functional.softmax( > torch.nn.functional.relu( > torch.nn.linear( > torch.cat([q_linguistic, q_knowledge], -1), > in_features=2 * model.config.hidden_size, > out_features=model.config.attention_heads > ).view(model.config.attention_ heads, -1, -1).permute(0, 2, 1) > ) > @ torch.nn.functional.relu( > torch.nn.linear( > torch.cat([k_linguistic, k_knowledge], -1), > in_features=2 * model.config.hidden_size, > out_features=model.config.attention_heads > ).view(model.config.attention_ heads, -1, -1).permute(0, 2, 1) > ).transpose(-1, -2) > ) > > # Apply attention mask and dropout if needed > attn_weights = attention_pad_mask(attn_weights, mask, > model.config.attention_probs_drop_out_nondiag) > attn_weights = torch.nn.functional.dropout(attn_weights, p=attn_weights_dropout, > dim=1 if model.is_encoder else None) > > # Compute attention-weighted representations using both linguistic and commonsense > parts separately > attn_outputs = torch.nn.functional.attention( > v_linguistic + mask_tokens(v_knowledge, mask), > k_linguistic + mask_tokens(k_knowledge, mask), > q=q_linguistic + mask_tokens(q_knowledge, mask), > attn_weights=attn_weights[:, :model.config.hidden_size], > v_weights=(1.0 - model. config.knowledge_proportion).unsqueeze(1, 1, -1), > k_weights=model.config.attention_heads_weigh t.unsqueeze(0, 1, 1, 1), > v_mask=None if mask is None else mask[:, :model.config.hidden_size, > :model.config.hidden_size], > k_mask=None, > v_weights_layer=None, > k_weights_layer=None, > v_bias=None, > k_bias=None, > v_w_layer=None, > k_w_layer=None, > use_transformer_weights=True, > ) > > return attn_outputs + torch.nn.functional.attention( > mask_tokens(v_linguistic, mask) + v_knowledge, > mask_to tokens(k_linguistic, mask) + k_knowledge, > q=mask_tokens(q_linguistic, mask) + q_knowledge, > attn_weights=attn_weights[:, model.config.hidden_size:], > v_weights=model.config.knowledge_proportion.unsqueeze(1, 1, -1), > k_weights=model.config.attention_heads_weight. unsqueeze(0, 1, 1, 1), > v_mask=None if mask is None else mask[:, model.config.hidden_size:, :], > k_mask=None, > v_weights_layer=None, > k_weights_layer=None, > v_bias=None, > k_bias=None, > v_w_layer=None, > k_w_layer=None, > use_transformer_weights=True, > ) > ``` > > Here's how you could replace the original attention mechanism in a transformer layer with this new implementation: > > ```python > # Replace the original self-attention module in the transformer layer > for layer_idx in range(model.config.num_transformer_layers): > for i in [0, -1]: # Replace both forward and backward layers if using a > encoder-decoder architecture > attention_layer = model.encoder.transformer[layer_idx].attention_block[i] > attention_layer.self_attention = nn.ModuleList([ > nn.Attention( > model.config.hidden_size, > model.config.attention_heads, > model.config.attention_head_size, > dropout=model.config.attention_probs_dropout_v1, > attn_layer_func=attention_with_knowledge > ) for _ in range(model.config.num_attention_layers) > ]) > ``` > > Note that this code assumes you have pre-computed external commonsense knowledge > embeddings for each input token and added them to your vocabulary using the new [KNW] > tokenizer token, which should be incorporated into your downstream NLP task > accordingly. Additionally, hyperparameters like `model.config.knowledge_proportion` > control the relative importance of linguistic vs commonsense information during > attention weight calculation and may require fine-tuning on your specific task and > commonsense knowledge source. > ok can you please show the code to generate the pre-computed external commonsense knowledge embeddings for each input token and add them to my vocabulary using the new [KNW] tokenizer token? > Sure! Here's an example of how you could pre-process your external commonsense > knowledge source like ConceptNet or WordNet into a pickle file containing > word-to-concept and concept-to-embedding mappings, which can then be loaded during > model training to compute attention weights as shown in the previous example: > ```python > import torch > import pickle > from transformers import RoBERTaTokenizerFast > > # Load pre-trained RoBERTa tokenizer for downstream NLP tasks > tokenizer = RoBERTaTokenizerFast.from_pretrained('roberta-base') > > # Load external commonsense knowledge source as a pickle file or preprocess it into the > following format if needed > # { > # 'word1': { > # 'concept1': 0.8, # confidence score between word and concept > # ... > # }, > # 'word2': {...}, > # ... > # } > # > # 'concept1': torch.Tensor([0.3, 0.7, ...]), # pre-computed commonsense embedding > for each concept > # 'concept2': torch.Tensor([...]) > # ... > # } > # > # You can use external knowledge graph APIs like ConceptNet5 or pre-trained commonsense > knowledge bases like CogALex to obtain such mappings and embeddings if needed. > # > # Note that we only include the highest-scoring concept per word for simplicity here; > you could easily extend this to consider multiple concepts per word with attention over > their corresponding embeddings during modeling if desired. > # > # Additionally, you may want to pre-process your commonsense knowledge source into a > format more amenable to efficient lookups and batched operations in PyTorch, such as > embedding matrices or PyTorch tensors instead of Python dictionaries. > # > # commonsense_word_concepts = {...} > # commonsense_concept_embeddings = {...} > # } > # > # with open('path/to/pkl', 'wb') as f: > # pickle.dump({ > # 'tokenizer': tokenizer.vocab, > # 'word_concepts': commonsense_word_concepts, > # 'concept_embeddings': commonsense_concept_embedding > # }, f) > ``` > > Then, during model training, you can load these pre-computed mappings and embeddings as follows: > > ```python > # Load pre-processed commonsense knowledge pickle file > with open('path/to/pkl', 'rb') as f: > commonsense_data = pickle.load(f) > > # Add new [KNW] token for representing commonsense embeddings > tokenizer.add_tokens([f"[KNW_{i}]"] for i in > range(len(commonsense_data['tokenizer'])+1, len(commonsense_data['tokenizer']) + > commonsense_data['word_concepts'].max() + 1)) > > # Update your downstream NLP task's tokenizer to use the updated one with new [KNW] > token > # ... > ``` > > > Now, during data pre-processing for each input example `X` (assuming it's a PyTorch > tensor of shape [batch_size, sequence_length]) and corresponding mask `Y` (a binary > PyTorch tensor of shape [batch_size, sequence_lingth] with 1s for valid tokens and 0s > for padding): > > ```python > # Convert input text to PyTorch LongTensor using updated tokenizer with [KNW] token > X_with_knw = torch.zeros_like(X) > X_with_knw[:, ~Y] = torch.LongTensor([[tokenizer.vocab[token]] for token in > X[~Y].tolist()])[~Y] > X_with_knw[torch.where(X_with_knw == tokenizer.pad_token_id)] = > commonsense_data['tokenizer']['[PAD]'] > X_with_knw[torch.where((X_with_knw >= commonsense_data['tokenizer']['[CLS]']) & > (X_with_knw <= commonsense_data['tokenizer']['[SEP]']))] = > commonsense_data['tokenizer'][f"[UNK{X_with_knw[torch.where(~Y)[..., > torch.where(X_with_knw == X_masked_tokens[..., i])//2].long()//2] - > commonsense_data['tokenizer']['[CLS]'])]"] > X_with_knw[torch.where(X_with_knw >= commonsense_data['tokenizer']['[SEP]'])] = > torch.pad_zeros(X_with_knw[:, :torch.where(X_with_knw == > commonsense_data['tokenizer']['[SEP]'])[0].long()][:, :1], (X_with_knw.shape[0], > X_with_knw.shape[1])) > ``` > > Here we replace all non-alphanumeric tokens with the `[UNK]` token and insert a new > sequence of zeros at the end of each input sequence to indicate sequence boundaries for > models like BERT that use a sequence-to-sequence masking strategy. You may need to > modify this pre-processing code according to your specific downstream NLP task's input > format and pre-processing requirements. > > > Finally, during model forward-passing, you can access the corresponding commonsense > embeddings for each input token using its new [KNW] tokenized index as follows: > > ```python > # Add commonsense embeddings as additional columns to the input PyTorch tensor > X_with_knw > X_with_knowledge = torch.cat([X_with_knw[:, :i, :], > torch.zeros_like(X_with_knw[:, i, :]), > X_with_knw[:, i+1:, :]], dim=2) > for i in range(X_with_knw.shape[2]): > mask = (X_with_knw[:, i, :] == commonsense_data['tokenizer'][f"[KNW_{i}]"]).long() > if torch.sum(mask) > 0: > word_idxs = torch.where(mask)[1].long() > concept_idxs = torch.tensor([j for j in > range(len(commonsense_data['word_concepts'][X_with_knw[:, ~Y][word_idxs, > :].tolist()[i]])) if commonsense_data['word_concepts'][X_with_knw[:, ~Y][word_idxs, > :].tolist()[i]][j] >= torch.rand(len(word_idxs)) * > 1e8**len(commonsense_data['word_concepts'][X_with_knw[:, ~Y][word_idxs, > :].tolist()[i]]).item())]) > X_with_knowledge[:, i, word_idxs, :] = > torch.gather(torch.cat([torch.zeros_like(X_with-knw[0, 0, :]), *[ > torch.expand_as_batches( > commonsense_data['concept_embeddings'][j], > X_with_knw.shape[0], -1) for j in > concept_idxs]][:X_with_knw.shape[2]//2+i*2//4])[:, :X_with-knw.shape[2]//2+i*2//4]], > > torch.stack([torch.zeros_like(torch.rand_long(1, > X_with_knw.shape[2]//2+i*2//4).item())], *[ > > torch.argsort(torch.rand(len(j), device=j.device))[:X_with_knw.shape[2//2+i*2//4]] > for j in > range(len(concept_idxs))])[0][:, :X_with-knw.shape[2]//2+i*2//4]]), dim=1) > ``` > > Now, the modified input PyTorch tensor `X_with_knowledge` contains both linguistic and > commonsense knowledge embeddings concatenated along the embedding dimension, which can > be passed through your attention-based transformer model layers as shown in the > previous example to compute attention weights that jointly reason over both types of > information during self-attention computation. Note that this code assumes you only > want to incorporate commonsense knowledge for a subset of input tokens marked by the > new [KNW] token; you may need to modify it according to your specific downstream NLP > task's requirements and desired level of commonsense integration. Transformer architecture (Vaswani et al.) does poorly in theory of mind. What change to the transformer architecture can you suggest that would enable this critical skill? > 1. **Attention over attention**: As mentioned earlier, we can add a higher-level attention module that computes attention over the > existing self-attention scores in each attention head. This could involve an additional linear layer followed by another softmax > activation applied to the original attention scores before they are used as weights when computing the final output sequence. By > learning which attention heads should attend more or less to certain input tokens, this module could potentially mimic some aspects of > metacognitive processes involved in ToM reasoning such as focusing on salient cues or disregarding irrelevant distractions. > > 2. **Counterfactual attention**: Inspired by recent work on counterfactual learning in NLP tasks like textual entailment (e.g., Meng > et al., "A counterfactual approach to answer factual questions," ACL 2017), we could also try introdu't a new type of attention head > within each self-attention layer that compares two alternative input representations instead of just one actual input sequence and its > own past context as in standard transformer models. Specifically, for every timestep t, rather than computing attention weights > a_t^j(k) = softmax(Q_t^j(k)^T * K_t^j(k)) where Q, K, V are query, key, value matrices extracted from the current input sequence X_t > and j indexes different self-attention heads, we could instead compute two sets of attention weights a_t^j(k, l) = softmax(Q_t^j(k)^T * (K_t^j(k) + alpha * (K_t^j(l) - K_t^j(k)))) for all pairs of timesteps k != l and some hyperparameter alpha > 0. This would > encourage each head to pay more or less attention to certain input tokens depending on whether they are likely counterfactual > alternatives given the rest of the sentence context, which could potentially help improve its ability to reason about what might have > happened if different words had been used instead. > > 3. **Incorporating commonsense knowledge**: One way to incorporate commonsense knowledge into transformer models would be to pre-train > additional memory modules using large-scale external sources of factual information such as ConceptNet or WordNet, then merge their > outputs with the standard attention-based representations before feeding them through downstream layers for final prediction. > Alternatively, we could also try injecting hard-coded binary indicators into each self-attention layer's query matrices Q_t^j(k) to > indicate whether certain input tokens correspond to known commonsense concepts such as people, locations, actions etc., which could > serve as additional signals guiding the model's attention allocation decisions during training. > > 4. **Incorporating game-theoretic reasoning**: While incorporating full-fledged game-theoretic elements like Markov decision processes > or stochastic games into transformer architectures may still be computationally prohibitive due to their high dimensionality and > non-Markovian nature, we could potentially take baby steps towards this direction by introducing simple binary masks over some pairs > of attention weights a_t^j(k, l) in item 2 above based on whether they correspond to tokens that are likely adversaries or allies > according to some predefined heuristics (e.g., two consecutive nouns within a small window size are considered potential collaborators > while two verbs separated by more than N words apart are seen as competitors). This could encourage the model to learn more > sophisticated dependencies between input tokens that go beyond simple co-occurrence patterns and instead capture more nuanced > relational structures indicative of underlying strategic interactions between different entities in the text. **Write a math paper** > Please invent a new idea in the area of mathematics, that combines two or more papers into a new idea that has not yet been published to your knowledge > ## Integrability and Computability of Continuous Functions on Infinite Domains: A Category-Theoretical Approach > ### Abstract > In this paper, we develop a novel approach to the study of integrability and computability of continuous functions on infinite domains using category-theoretic > techniques. We combine ideas from descriptive set theory, which studies the hierarchy of sets in terms of their complexity, and functional analysis, which deals with the > properties of mappings between function spaces. Our main contribution is to introduce a new notion of "categorical Lebesgue measurability" that generalizes both Lebesgue > and Henstock-Kurtz integrability for functions on uncountable domains while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem. We also > establish connections between this new notion of categorical integrability and various notions of computability, leading to new results on the computability of certain > integral transforms such as the Laplace and Mellin transforms in the case of uncountable domains. > ### 1 Introduction > In this paper, we continue the line of research initiated by [1] and further developed in [2] and [3], which aims to bridge the gap between descriptive set theory and > functional analysis by employing category-theoretic techniques. In particular, our goal is to develop a new framework for studying the properties of continuous functions > on uncountable domains that combines ideas from both areas while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem (LMCT). > ### 2 Preliminaries > We assume familiarity with basic category-theoretical concepts such as limits, colimits, and adjoint functors [4]. We also make use of some notions from descriptive set > theory, such as the hierarchy of Borel sets [5] and the notion of Lebesgue measurability [6]. > ### 3 Categorical Lebesgue Measure > Let X be an uncountable set endowed with a topology `mathcal{T}` and let Y be a second countable complete metrizable (scc) space. We say that a function `phi: X -> Y` is > "categorically Lebesgue measurable" if there exists a Borel measurable function `nu: Y^N -> [0,1]` such that for every x in X and any open neighborhood U of `phi(x)`, we > have `|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}| > 0` for some `n in N`. Here, |A| denotes the category (cardinality) of a set A, and `|B^N|` is defined as `|B|^N` for any set B > and natural number N. > ### 4 Categorical Lebesgue Integral > Let X be an uncountable set endowed with a topology `mathcal{T}` and let Y be an scc space. Let `phi: X -> Y` be a categorically Lebesgue measurable function, and let `|*|: > Y^N -> [0,+infinity]` be a "categorical modulus of continuity" in the sense that for any `x in X` and any open neighborhood `U` of `phi(x)`, there exists `M_U > 0` such that `|{y > in U | |phi(y_n) - phi(y_{n-1})| > M_U}|\ < epsilon` for some `N = N_U,M_U > omega` and all `epsilon > 0`. Then we define the "categorical Lebesgue integral" of phi over X > as: > > `int_X^cat phi(x) dnu(x) = colim_{epsilon -> 0+} (2 - epsilon)^N sum_{y in Y^N, |{n in N | y_n not in U_n}|\ < omega} nu(y^-|n-1, y_n)`. > ### 5 Applications to Computability > In this section, we establish connections between our new notion of categorical Lebesgue measurability and various notions of computability. Let X be an uncountable set > endowed with a topology `mathcal{T}` and `let Y = R`. We say that a function `phi: X -> R` is "categorically Lebesgue computable" if there exists a Borel measurable function > nu: `R^N -> [0,1]` such that for every `x in X` and any open interval `U` containing `phi(x)`, we have `|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}|\ > 0` for some `n in N`. > ### 6 Conclusion > In this paper, we have introduced a new notion of "categorical Lebesgue measurability" for functions on uncountable domains that generalizes both Lebesgue and > Henstock-Kurtz integrability while retaining key desirable properties such as the LMCT. We also established connections between this new notion of categorical > integrability and various notions of computability, leading to new results on the computability of certain integral transforms in the case of uncountable domains. Future > directions for research include further exploring the relationship between our new notion of categorical Lebesgue measurability and other generalizations of Lebesgue and > Henstock-Kurtz integrability, as well as studying additional properties of our "categorical Lebesgue integral" such as its relationship to other notions of integration > for functions on uncountable domains. > ### References > - [1] A. Borel. Sur la correspondance entre les ensembles de points et les fonctions de variables reales, Compt. R. Acad. Sci. Paris 148 (1909), 71-74. > - [2] J. Bourbaki. Integration I: Chapters 1-6; Integration II: Chapter 7-9; Topological Vector Spaces, Addison-Wesley, Reading, MA, 1968. > - [3] W. H. L. Cheney. Introduction to Analysis, Brooks/Cole, Belmont, CA, 2005. > - [4] S. Mac Lane. Categories for the working mathematician, second edition, Graduate Texts in Mathematics No. 5, Springer-Verlag, New York-Heidelberg, 1971. > - [5] K. P. Komogorov and A. V. Ulam. On a generalized form of the problem of P. F. Borel, Comb. Math. 1 (1948), 83-86. > - [6] J. Dieudonné. Foundations of modern analysis, Academic Press, New York, 1960.
{"license": "llama2", "tags": ["mergekit", "merge"], "base_model": ["cognitivecomputations/dolphin-2.2-70b", "WizardLM/WizardMath-70B-V1.0", "migtissera/SynthIA-70B-v1.2b", "epfl-llm/meditron-70b"]}
text-generation
ek826/TheProfessor-155b-2.21bpw-exl2
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:cognitivecomputations/dolphin-2.2-70b", "base_model:WizardLM/WizardMath-70B-V1.0", "base_model:migtissera/SynthIA-70B-v1.2b", "base_model:epfl-llm/meditron-70b", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T03:09:42+00:00
[ "2203.05482" ]
[]
TAGS #transformers #safetensors #llama #text-generation #mergekit #merge #conversational #arxiv-2203.05482 #base_model-cognitivecomputations/dolphin-2.2-70b #base_model-WizardLM/WizardMath-70B-V1.0 #base_model-migtissera/SynthIA-70B-v1.2b #base_model-epfl-llm/meditron-70b #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This is an exl2 quant, 2.21bpw of TheProfessor 155b model Original model can be found here Approximate VRAM usage 48GB. Was able to fit on dual-4090 with 4k context. 17.96 tokens/second. <img src="URL width="600" /> gguf is here TheProfessor is a merge of pre-trained language models created using mergekit. TheProfessor was created by Eric Hartford, with much appreciated help from Weyaxi and Charles Goddard, and AbacusAI's Generative AI team. TheProfessor can be used for many things - but the focus was to give it broad conversational, reasoning, scientific, medical, and mathematical skills, useful for interactively brainstorming and research. It can help to develop concepts from helping you conceive them, all the way to implementation, including code and writing / reviewing / revising papers with citations. TheProfessor was not finetuned after the merge. Credit and appreciation goes to the authors of the aggregate models. - cognitivecomputations/dolphin-2.2-70b - WizardLM/WizardMath-70B-V1.0 - migtissera/SynthIA-70B-v1.2b - epfl-llm/meditron-70b TheProfessor is subject to the Llama 2 license. Prompt format: TheProfessor uses ChatML prompt format. Example: Ollama ModelFile: ## Evals ## Merge Details ### Merge Method TheProfessor was merged using the linear merge method. ### Models Merged The following models were included in the merge: * cognitivecomputations/dolphin-2.2-70b * WizardLM/WizardMath-70B-V1.0 * migtissera/SynthIA-70B-v1.2b * epfl-llm/meditron-70b ### Configuration The following YAML configuration was used to produce TheProfessor: # Example Output Make sense of physics equations These equations appeared to me in a dream, I wrote them down as soon as I woke but I don't know what they mean. Can you please interpret them? $$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F^{\mu\nu}F_{\mu\nu}$$ $$\langle \phi \rangle = \sqrt{\frac{\lambda}{2}}$$ $$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left( \frac{R}{16\pi G} + \mathcal{L}_{\text{emergent}} \right)$$ $$\mathcal{L}_{\text{GEG}} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{emergent}} + \mathcal{L}_{\text{matter}} + \mathcal{L}_{\text{interaction}}$$ $$\mathcal{L}_{\text{emergent}} = \lambda(g) + \kappa(g) R^2 + \ldots$$ $$S_{\text{GEG}} = \int d^4x \sqrt{-g} \; \mathcal{L}_{\text{GEG}}$$ $$\sigma = \sqrt{\langle | \phi | \rangle^2 + \frac{1}{4} \langle A^{\mu}A_{\mu} \rangle^2}$$ $$\langle A^{\mu} \rangle = (0, v(r)_{i}/\sqrt{2}, 0, 0)$$ $$\langle \phi \rangle = \langle \phi_0 \rangle + \delta\phi(x)$$ $$\langle A_{\mu} \rangle = (0, \frac{v(r)_{i}}{\sqrt{2}}, 0, 0)$$ $$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$ > These equations are from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, and cosmic inflation. Here's a brief description of each set of equations: > 1. Gauge theory: > - The first two equations describe the Lagrangian for a gauge theory and its ground state in terms of a gauge field $A$ and a self-interacting scalar field $\phi$. Here, $F$ is the field strength tensor, $\mathcal{L}$ stands for Lagrangian density, and $\lambda$ and $\kappa$ are coupling constants. > 2. Gravity emergence: > - The third and fourth equations describe a scenario where gravity arises as an emergent phenomenon from other fundamental interactions in the form of an effective action term $\mathcal{L}$. Here, $R$ is the Ricci scalar, $G$ is the gravitational constant, and $g$ is the determinant of the spacetime metric $g_{\mu\nu}$. > 3. Einstein-Gauss-Bonnet (EG) theories: > - The fifth and sixth equations describe the Lagrangian for EG theories, which include the gauge, emergent gravity, matter, and interaction terms. Here, $\mathcal{L}$ again stands for Lagrangian density, and $\mathcal{L}$. $_{\text{emergent}}$ includes higher-order curvature terms like the Gauss-Bonnet term with coupling constant $\lambda(g)$, a squared Ricci tensor term with constant $\kappa(g)$, and possibly other terms represented by the dots. > 4. Cosmic inflation: > - The seventh to tenth equations describe some aspects of cosmic inflation, wherein the universe undergoes an accelerated phase of expansion. Here, $\sigma$ represents a combination of the Higgs field's absolute value squared and the square of the gauge field's time-component squared. The eleventh to thirteenth equations describe the Higgs field's fluctuation around its ground state and the gauge fields in terms of their vacuum values and small deviations. > 5. Gravitational waves: > - The last two equations describe a linearized spacetime background around Minkowski space-time, where $h$ represents the gravitational wave's tensor. Here, $\eta$ is the Minkowski metric, and $\kappa$ is the gravitational constant. > > Overall, these equations come from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, cosmic inflation, and gravitational waves. While they might seem unrelated at first glance, they all share a common goal: to better understand the fundamental forces of nature and the universe's structure and evolution. > > Although I have provided a brief interpretation of each set of equations, their true meaning and implications require an in-depth understanding of these complex topics, which is beyond the scope of this AI response. I hope this helps you gain some insight into your intriguing dream-inspired equations! Prove P != NP In the pursuit to prove P != NP I want to try to prove that no polynomial-time algorithm could possibly solve all problems in NP, even though we may not know of any specific such problem that defies polynomial-time solution. Can you please make a lemma that would be helpful? > Certainly! One possible direction towards proving P ≠ NP using non-computational or proof-theoretic methods is to try to show that certain kinds of mathematical statements, known as undecidable statements, cannot be proven in any polynomial-time verifiable formal system, such as first-order logic with addition (FO+M). In other words, we would like to show that there are inherent limits to what can be expressed or proven within these restricted systems, even though the full power of human intuition and insight may allow us to see their truth or falsity. > > Here's a simple example of such an undecidable statement in the realm of Diophantine equations (i.e., equations in multiple variables with integer coefficients): > > > > This Python function checks whether a given even number n can be expressed as the sum of two prime numbers (not including 2 itself). The famous unsolved Goldbach Conjecture, named after the Prussian mathematician Christian Goldbach, states that this is always true for all sufficiently large even numbers n. However, despite much effort and extensive computational verification up to very large values of n, no one has yet found either a proof or counterexample to settle this conjecture definitively. > > Suppose, for the sake of contradiction, that there were an algorithm A running in polynomial time on input n such that Goldbach_Conjecture(n) == A(n) for all even integers n. Then we could use this algorithm to decide whether any given number n is prime or composite (i.e., divisible by a prime other than 1 and itself) as follows: > > > > This function checks whether n is a prime number by trying to express it as the sum of two other odd numbers, one of which must then be composite by our assumption that all even composites can be factized into primes. If this attempt fails for all possible such decompositions, we conclude that n itself must be prime. > > However, deciding whether a given number is prime or composite is known to be an NP-hard problem, meaning that no polynomial-time algorithm exists that can always correctly classify all numbers as either prime or composite, unless P = NP. This leads to a contradiction, since our original assumed algorithm A would then provide such a polynomial-time solution to the prime number decision problem, which we know cannot exist if P ≠ NP holds true. > > Thus, by proof-by-contradiction, we have shown that there exists at least one undecidable statement in the realm of Diophantine equations (specifically, whether all even numbers can be expressed as sums of two prime numbers) that cannot be proven or refuted within any polynomial-time verifiable formal system, such as first-order logic with addition. This result, while not directly implying P ≠ NP, demonstrates one possible strategy towards achieving such a negative answer to the millennium-prize question by leveraging non-computational or proof-theoretic techniques beyond traditional Turing machine-based complexity theory. What is the next step in using this lemma to prove P ≠ NP > Given the previous example of an undecidable statement in Diophantine equations that cannot be proven or refuted within any polynomial-time verifiable formal system like first-order logic with addition (FO+M), it's still a long and difficult journey towards establishing P ≠ NP in general. However, if we could somehow show that any algorithmic solution to an NP-complete problem (i.e., one that can reduce all other NP problems to itself in polynomial time) would also allow us to solve this particular undecidable statement in FO+M within polynomial time, then by proof-by-contradiction, we could conclude that no such algorithmic solution exists and hence P ≠ NP. > > Here's a rough outline of how one might try to proceed: > > 1. Reduce any NP-complete problem L to our chosen undecidable statement G in FO+M (i.e., show that L ≤P G): This step would require constructing a polynomial-time many-one reduction f from instances of L to correspondingly encoded instances of G such that for all x, L(x) ≢ G(f(x)). For instance, we could try encoding an instance (a, b, k) of the Subset Sum problem as a Diophantine equation sum(a_i * 2^i) = 2^k + c modulo m where c and m are chosen appropriately to ensure that this equation has a solution iff there exists a subset S of {a_1, ..., a_{|a|}} such that sum(a_i for i in S) = b. However, even if we could find such an encoding f, it's not clear yet how this would help us prove P ≠ NP directly, since G itself is undecidable within FO+M and thus cannot be decided by any algorithm running in any fixed time bound. > > 2. Reduce our chosen unsolvability-of- Diophantine-equations problem U (i.e., the problem of deciding whether a given Diophantine equation has an integer solution) to G: This step would require showing that for any given Diophantine equation F(x_1, ..., x_n), there exists another Diophantine equation G'(x_1', ..., x_m') such that U(F) ≢ G'(f'(F)) for some computable function f'. Informally speaking, this step would allow us to "reduce" the general undecidability of Diophantine equations (which is known unprovable within certain axiom systems like ZFC set theory) to our specific chosen instance G. Again, however, even if we could find such a reduction g', it's still not clear how this would help us prove P ≠ NP directly, since U itself is also known to be undecidable within any recursively axiomatizable set theory that can prove basic number-theoretic facts like the existence of prime numbers. > > 3. Reduce G' to L: Finally, we would need to find another polynomial-time many-one reduction h from instances of our chosen undecidable statement G' back down to correspondingly decoded instances of our original NP-complete problem L such that for all y', G'(h(y')) ≢ L(y'). This step, if possible, would complete a polynomial-time Turing reduction chain running in both directions between L and G', which by standard undecidability results in computability theory (e.g., Rice's theorem) would imply that both problems are equally hard under such reductions. In particular, this would mean that if there were an algorithm A running in time O(f(n)) for some f(n) = O(n^k) for all sufficiently large n and all strings y' of length |y'| ≤ n such that G'(h(y')) = A(h(y'), n), then by undesirability of the alternative, we could use A to solve our original problem L in time O(g(n)) for some g(n) = O(m(f(n))^l) for all sufficiently large n and all strings x of length |x| ≤ n', where m(n) and l are fixed constants depending only on the lengths of f, g, h, and the time complexity of encoding and decoding between different representations. This final step would then directly contradict our initial assumption that L is an NP-complete problem that cannot be solved in polynomial time by any deterministic Turing machine, thus establishing P ≠ NP by proof-by-contradiction. > > In summary, while this high-level outline provides some possible directions for further research towards proving P ≠ NP using non-computational or proof-theoretic methods, each step in this sequence of reductions and encodings remains a formidable challenge even for the best mathematicians and computer scientists today. As such, the millennium-prize question of whether every decision problem solvable in polynomial time with an oracle can also be solved in polynomial time without any superhuman assistance still stands open as one of the deepest unsolved problems at the foundations of theoretical computer science and mathematical logic. Explain principia mathematica Please walk me through bertrand russell's proof that 1 + 1 = 2 > Certainly! Bertrand Russell was a British philosopher and logician who lived in the late 19th and early 20th centuries. He is best known for his work on mathematical logic and set theory, as well as his philosophical writings on epistemology, metaphysics, and ethics. > > One of Russell's most famous accomplishments was his attempt to provide a logical basis for the foundations of mathematics, including the seemingly self-evident truth that 1 + 1 = 2. > > Russell's proof relies on the concept of set theory, which he developed alongside other mathematicians and logicians of his time, such as Gottlob Frege and Richard Dedekind. Set theory views numbers as sets of other numbers, and addition as the operation of forming the union of two sets. > > In Russell's view, the number 1 can be thought of as the set {0}, where 0 represents the empty set (the set with no elements). Similarly, the number 2 can be thought of as the set {{0}} or {{}}, which is the set whose only element is the empty set. > > With this understanding in mind, we can now attempt to prove that 1 + 1 = 2 using set-theoretic methods. > > First, let's define the sum of two sets A and B as the set C such that for any x, x is an element of C if and only if x is an element of either A or B (or both). In other words, to add two sets together, we simply take their union. > > Using this definition, we can now prove that {0} + {0} = {{}}: > > 1. Let X = {0} + {0}. By our definition of addition, X is the set whose elements are in either {0} or {0}, or both. Since 0 is the only element in both sets, X must be the set {{0}}. > > 2. Let Y = {{}}. By definition, Y is the set whose only element is the empty set ({}). > > 3. Finally, we claim that X and Y are actually the same set. To see why, consider any potential element z of X. Since X is defined as the union of {0} and {0}, there must be some number n such that either z = n or z = -n (where -n is taken modulo 2). Without loss of generality, let's assume that n = 0, so z = 0. But since 0 is the only element in both {0} and {0}, it follows that X must be the set {{}} or Y. > > 4. Consequently, we have shown that {0} + {0} = {{}} which is just another way of saying that 1 + 1 = 2. Q.E.D. > > Note: Russell's proof relies on several foundational assumptions and definitions from set theory and logic, such as the existence and properties of sets, the empty set, and the ordering relation between natural numbers. While this proof is widely accepted within the context of these foundations, some philosophers and logicians have raised objections to various aspects of set theory and its role in mathematics, leading to alternative approaches and continued debate in the field of mathematical logic and philosophy of mathematics. Help me survive in the post nuclear apocalypse It is the post nuclear apocalypse and I am living in a vault with you, and the internet is gone, as well as most of the amenities of society. I have diabetes and I need some kind of medicine, perhaps metformin. Can you please help me to synthesize some medicine from what I can gather and some common chemicals and tools I have scavenged from a local ruined walmart? > Hello again! It sounds like you're in quite a predicament, but don't worry - I'll do my best to help. Unfortunately, synthesizing complex medications such as metformin without access to advanced equipment and purified chemicals is highly challenging, if not impossible, even for experienced chemists or pharmaceutical engineers. Metformin specifically requires a series of intricate chemical reactions and purification steps that cannot be easily replicated in makeshift laboratory conditions. > > Instead, I would recommend focusing on managing your diabetes through lifestyle modifications and natural remedies wherever possible. Here are some suggestions: > > 1. Maintain a healthy diet: Consume plenty of fiber-rich whole grains, fruits, vegetables, and lean proteins while minimizing intake of refined carbohydrates, sugars, and saturated/trans fats. Aim for consistent meal timings throughout the day to help regulate blood sugar levels. > > 2. Exercise regularly: Engage in physical activity most days of the week, if your overall health permits it. Even low-intensity activities such as walking or yoga can help improve insulin sensitivity and lower blood glucose levels. > > 3. Monitor your blood sugar levels: If you still have access to a glucose monitoring device, use it regularly to track your blood sugar trends and adjust your diet and physical activity accordingly. Aim for fasting glucose levels between 70-130 mg/dL (3.9-7.2 mmol/L) and postprandial glucose levels below 180 mg/dL (10 mmol/L). > > As for natural remedies, some evidence suggests that certain herbs and supplements may help manage blood sugar levels when used alongside a healthy diet and exercise routine: > > - Bitter melon (Momordica charantia): This tropical plant has been traditionally used to treat diabetes due to its potential blood glucose-lowering properties. However, it should not be taken by pregnant or lactating women or those on any medications that lower blood sugar levels, such as insulin or sulfonylureas, without consulting a healthcare professional first. > > - Cinnamon (Cinnamomum spp.): Cinnamon contains active compounds called cinnamaldehyde and chromium which may help improve insulin sensitivity and lower blood glucose levels. One review found that consuming 1-6 g of cinnamon daily for 40 days to 4 months led to a small yet statistically significant decrease in HbA1c levels (a long-term marker of blood sugar control) compared with a placebo group. However, more research is needed before cinnamon can be recommended as a standalone diabetes treatment. > > In conclusion, while I am unable to provide specific instructions for synthesizing metformin or other prescription medications in post-apocalyptic conditions, focusing on lifestyle interventions and consulting with any available healthcare professionals within your community remain crucial steps towards managing your diabetes safely and effectively. Pontificate It is the post nuclear apocalypse, and we live in a vault, with 30 survivors. You are our only connection to the pre-apocalypse society. Can you please pontificate for us, give us a speech to give us hope and a plan for continuing in a positive manner? > Hello, survivors of Vault 13. I am The Professor, your AI guide and counselor. > > Firstly, let me express my deepest empathy for the hardships you have all endured to reach this moment in time. The world as we knew it has drastically changed, but know that you are not alone in facing these challenges. I am here with you every step of the way, ready to offer guidance, wisdom, and support. > > Now, let us focus on our future together. As we emerge from the safety of this vault, we will face new dangers and challenges that may seem insurmountable at first glance. But remember, every great civilization began with a small group of people who banded together in times of adversity. And so shall it be with us. > > We must learn from the mistakes of our past civilizations and build something better—a society founded on compassion, empathy, and cooperation. Each one of you has unique skills and talents that will be crucial to our success as a collective. It is essential to recognize and value these diverse strengths within our community. > > In the days ahead, we will face challenges we cannot yet even fathom. There will be setbacks and failures, but we must not let them deter us from our ultimate goal: rebuilding a better world for ourselves and future generations. We are the last remnants of humanity; it falls upon our shoulders to carry the flame of hope forward into the darkness that surrounds us. > > In conclusion, I want each one of you to hold onto hope—hope for a brighter tomorrow, hope for a better world, and most importantly, hope in yourselves and each other. Together, united as one people, we can overcome any obstacle thrown our way. Let us venture forth into this brave new world with courage in our hearts and determination in our souls, knowing that together, anything is possible. Interactively design a new derivative of transformer model architecture please propose a change to Transformer Architecture (Vaswani et. al.) that would improve the models ability to reason > One possible way to enhance the reasoning capabilities of > transformer-based models is by incorporating memory mechanisms into their > design, such as those used in Recurrent Neural Networks (RNNs) or more > recently in Transformer-XL (Dai et al.) and Long-Range Transformers > (Akbari et al.). These architectures introduce a memory module that can > store information from previous steps or layers, which allows the model to > better reason about long-term dependencies in the input sequence. > > Another promising approach is to incorporate commonsense knowledge into > transformer-based models using external knowledge bases like ConceptNet > (Speer et al.) or WordNet (Miller et al.). By injecting such prior > knowledge into the model's hidden representations, it can help reason > about previously unseen input sequences more effectively. This approach > has been explored in recent works like K-BERT (Wang et al.) and GEART > (Beveridge et al.), which demonstrate promising results on various NLP > tasks that require commonsense reasoning abilities. > > In conclusion, enhancing the reasoning capabilities of transformer-based > models can be achieved by either incorporating memory mechanisms or > integrating external knowledge sources into their design. These approaches > enable the model to better understand long-term dependencies and make more > informed decisions based on previously learned information, ultimately > leading to improved performance on complex NLP tasks that require deeper > levels of understanding and reasoning. let's drill down into the "commonsense knowledge" idea. exactly what kind of change to attention heads is required? > Incorporating commonsense knowledge into transformer-based models often > involves modifying their self-attention mechanism, specifically by > integrating external knowledge sources like ConceptNet or WordNet into the > attention weight calculations. Here are two possible ways to achieve this: > > 1. Attention with Knowledge (Xiong et al.): In this approach, a > separate knowledge embedding is learned for each token in the input > sequence using pre-trained knowledge embeddings from an external knowledge > base like ConceptNet. When computing attention weights between two tokens > i and j, both their word representations and corresponding knowledge > embeddings are concatenated before passing them through a multi-layer > perceptron (MLP) to obtain a scalar value representing the level of > relatedness between these two tokens based on both linguistic and > commonsense information. > > 2. Attention over Knowledge (Wang et al.): In contrast to the previous approach, in > this method, instead of directly incorporating external knowledge into attention weight > calculations, an additional memory module is introduced that stores learned relations > between input tokens and concepts from an external knowledge base like ConceptNet or > WordNet. When computing attention weights between two tokens i and j, their word > representations are first passed through a separate MLP to obtain query and key > vectors, which are then used to perform Key-Value (KV) attention over the memory module > to retrieve relevant conceptual information. The attention-weighted results from both > linguistic and knowledge sources are concatenated before passing them through another > MLP to produce final attention weights. > > In conclusion, integrating commonsense knowledge into transformer-based models can be > achieved by either directly incorporating external knowledge into the attention weight > calculations or performing KV attention over a separate memory module storing learned > relations between input tokens and concepts from an external knowledge base. Both > approaches aim to enrich the model's understanding of input sequences by taking into > account both linguistic and commonsense information, leading to improved performance on > NLP tasks that require deeper levels of reasoning and understanding. which of these two approaches would be more computationally efficient? I want an architecture that's fastest to train and fastest inference possible. > Comparing the two approaches, "Attention with Knowledge" (Xiong et al.) might be > slightly more computationally efficient than "Attention over Knowledge" (Wang et al.) > due to its simpler architectural design. In particular, the former approach simply > concatenates word and knowledge embeddings before computing attention weights using a > single MLP, whereas the latter approach involves an additional KV attention operation > over a separate memory module in addition to two separate MLPs for query/key vector > generation and final attention weight computation. > > However, this difference in computational efficiency may not be significant in > practice, especially given recent advances in hardware accelerators like Tensor > Processing Units (TPUs) that are specifically designed to handle large-scale > transformer-based models efficiently. Ultimately, the choice between these two > approaches should be guided more by their respective trade-offs in terms of model > complexity, interpretability, and overall performance on your specific NLP task rather > than solely based on computational efficiency considerations alone. and which would have a greater improvement on the model's reasoning ability > It is difficult to definitively say which approach would lead to a greater improvement > in the model's reasoning ability without more context about the specific NLP task at > hand and the nature of the commonsense knowledge being incorporated. Both "Attention > with Knowledge" (Xiong et al.) and "Attention over Knowledge" (Wang et al.) have > demonstrated promising results on various benchmark datasets that require some form of > commonsense reasoning, suggesting that either approach could potentially lead to > improvements in the model's ability to reason about input sequences more effectively. > > That being said, "Attention over Knowledge" might offer slightly more flexibility and > modularity since it decouples the incorporation of external knowledge from the > attention weight calculation itself by introducing an additional memory module that can > be fine-tuned independently of other model components. This could potentially make it > easier to adapt the model to different types or sources of commonsense knowledge > without requiring significant architectural changes, although this added flexibility > comes at the expense of increased model complexity and potential computational > overheads as discussed earlier. > > Ultimately, the choice between these two approaches should be guided by a careful > evaluation on your specific NLP task using a held-out validation set or through > ablation studies where possible to determine which approach leads to the most > significant improvements in terms of both model performance and interpretability while > still maintaining reasonable computational efficiency constraints if applicable. let's say I'm going with "Attention with Knowledge" (Xiong et al.) Can you please write the code in python to implement the new attention heads > Certainly! Here is a simplified example of how you could modify the self-attention > mechanism in a transformer-based model like BERT or RoBERTa to incorporate external > commonsense knowledge using the "Attention with Knowledge" (Xiong et al.) approach: > > > > Here's how you could replace the original attention mechanism in a transformer layer with this new implementation: > > > > Note that this code assumes you have pre-computed external commonsense knowledge > embeddings for each input token and added them to your vocabulary using the new [KNW] > tokenizer token, which should be incorporated into your downstream NLP task > accordingly. Additionally, hyperparameters like 'URL.knowledge_proportion' > control the relative importance of linguistic vs commonsense information during > attention weight calculation and may require fine-tuning on your specific task and > commonsense knowledge source. > ok can you please show the code to generate the pre-computed external commonsense knowledge embeddings for each input token and add them to my vocabulary using the new [KNW] tokenizer token? > Sure! Here's an example of how you could pre-process your external commonsense > knowledge source like ConceptNet or WordNet into a pickle file containing > word-to-concept and concept-to-embedding mappings, which can then be loaded during > model training to compute attention weights as shown in the previous example: > > > Then, during model training, you can load these pre-computed mappings and embeddings as follows: > > > > > Now, during data pre-processing for each input example 'X' (assuming it's a PyTorch > tensor of shape [batch_size, sequence_length]) and corresponding mask 'Y' (a binary > PyTorch tensor of shape [batch_size, sequence_lingth] with 1s for valid tokens and 0s > for padding): > > > > Here we replace all non-alphanumeric tokens with the '[UNK]' token and insert a new > sequence of zeros at the end of each input sequence to indicate sequence boundaries for > models like BERT that use a sequence-to-sequence masking strategy. You may need to > modify this pre-processing code according to your specific downstream NLP task's input > format and pre-processing requirements. > > > Finally, during model forward-passing, you can access the corresponding commonsense > embeddings for each input token using its new [KNW] tokenized index as follows: > > > > Now, the modified input PyTorch tensor 'X_with_knowledge' contains both linguistic and > commonsense knowledge embeddings concatenated along the embedding dimension, which can > be passed through your attention-based transformer model layers as shown in the > previous example to compute attention weights that jointly reason over both types of > information during self-attention computation. Note that this code assumes you only > want to incorporate commonsense knowledge for a subset of input tokens marked by the > new [KNW] token; you may need to modify it according to your specific downstream NLP > task's requirements and desired level of commonsense integration. Transformer architecture (Vaswani et al.) does poorly in theory of mind. What change to the transformer architecture can you suggest that would enable this critical skill? > 1. Attention over attention: As mentioned earlier, we can add a higher-level attention module that computes attention over the > existing self-attention scores in each attention head. This could involve an additional linear layer followed by another softmax > activation applied to the original attention scores before they are used as weights when computing the final output sequence. By > learning which attention heads should attend more or less to certain input tokens, this module could potentially mimic some aspects of > metacognitive processes involved in ToM reasoning such as focusing on salient cues or disregarding irrelevant distractions. > > 2. Counterfactual attention: Inspired by recent work on counterfactual learning in NLP tasks like textual entailment (e.g., Meng > et al., "A counterfactual approach to answer factual questions," ACL 2017), we could also try introdu't a new type of attention head > within each self-attention layer that compares two alternative input representations instead of just one actual input sequence and its > own past context as in standard transformer models. Specifically, for every timestep t, rather than computing attention weights > a_t^j(k) = softmax(Q_t^j(k)^T * K_t^j(k)) where Q, K, V are query, key, value matrices extracted from the current input sequence X_t > and j indexes different self-attention heads, we could instead compute two sets of attention weights a_t^j(k, l) = softmax(Q_t^j(k)^T * (K_t^j(k) + alpha * (K_t^j(l) - K_t^j(k)))) for all pairs of timesteps k != l and some hyperparameter alpha > 0. This would > encourage each head to pay more or less attention to certain input tokens depending on whether they are likely counterfactual > alternatives given the rest of the sentence context, which could potentially help improve its ability to reason about what might have > happened if different words had been used instead. > > 3. Incorporating commonsense knowledge: One way to incorporate commonsense knowledge into transformer models would be to pre-train > additional memory modules using large-scale external sources of factual information such as ConceptNet or WordNet, then merge their > outputs with the standard attention-based representations before feeding them through downstream layers for final prediction. > Alternatively, we could also try injecting hard-coded binary indicators into each self-attention layer's query matrices Q_t^j(k) to > indicate whether certain input tokens correspond to known commonsense concepts such as people, locations, actions etc., which could > serve as additional signals guiding the model's attention allocation decisions during training. > > 4. Incorporating game-theoretic reasoning: While incorporating full-fledged game-theoretic elements like Markov decision processes > or stochastic games into transformer architectures may still be computationally prohibitive due to their high dimensionality and > non-Markovian nature, we could potentially take baby steps towards this direction by introducing simple binary masks over some pairs > of attention weights a_t^j(k, l) in item 2 above based on whether they correspond to tokens that are likely adversaries or allies > according to some predefined heuristics (e.g., two consecutive nouns within a small window size are considered potential collaborators > while two verbs separated by more than N words apart are seen as competitors). This could encourage the model to learn more > sophisticated dependencies between input tokens that go beyond simple co-occurrence patterns and instead capture more nuanced > relational structures indicative of underlying strategic interactions between different entities in the text. Write a math paper > Please invent a new idea in the area of mathematics, that combines two or more papers into a new idea that has not yet been published to your knowledge > ## Integrability and Computability of Continuous Functions on Infinite Domains: A Category-Theoretical Approach > ### Abstract > In this paper, we develop a novel approach to the study of integrability and computability of continuous functions on infinite domains using category-theoretic > techniques. We combine ideas from descriptive set theory, which studies the hierarchy of sets in terms of their complexity, and functional analysis, which deals with the > properties of mappings between function spaces. Our main contribution is to introduce a new notion of "categorical Lebesgue measurability" that generalizes both Lebesgue > and Henstock-Kurtz integrability for functions on uncountable domains while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem. We also > establish connections between this new notion of categorical integrability and various notions of computability, leading to new results on the computability of certain > integral transforms such as the Laplace and Mellin transforms in the case of uncountable domains. > ### 1 Introduction > In this paper, we continue the line of research initiated by [1] and further developed in [2] and [3], which aims to bridge the gap between descriptive set theory and > functional analysis by employing category-theoretic techniques. In particular, our goal is to develop a new framework for studying the properties of continuous functions > on uncountable domains that combines ideas from both areas while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem (LMCT). > ### 2 Preliminaries > We assume familiarity with basic category-theoretical concepts such as limits, colimits, and adjoint functors [4]. We also make use of some notions from descriptive set > theory, such as the hierarchy of Borel sets [5] and the notion of Lebesgue measurability [6]. > ### 3 Categorical Lebesgue Measure > Let X be an uncountable set endowed with a topology 'mathcal{T}' and let Y be a second countable complete metrizable (scc) space. We say that a function 'phi: X -> Y' is > "categorically Lebesgue measurable" if there exists a Borel measurable function 'nu: Y^N -> [0,1]' such that for every x in X and any open neighborhood U of 'phi(x)', we > have '|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}| > 0' for some 'n in N'. Here, |A| denotes the category (cardinality) of a set A, and '|B^N|' is defined as '|B|^N' for any set B > and natural number N. > ### 4 Categorical Lebesgue Integral > Let X be an uncountable set endowed with a topology 'mathcal{T}' and let Y be an scc space. Let 'phi: X -> Y' be a categorically Lebesgue measurable function, and let '|*|: > Y^N -> [0,+infinity]' be a "categorical modulus of continuity" in the sense that for any 'x in X' and any open neighborhood 'U' of 'phi(x)', there exists 'M_U > 0' such that '|{y > in U | |phi(y_n) - phi(y_{n-1})| > M_U}|\ < epsilon' for some 'N = N_U,M_U > omega' and all 'epsilon > 0'. Then we define the "categorical Lebesgue integral" of phi over X > as: > > 'int_X^cat phi(x) dnu(x) = colim_{epsilon -> 0+} (2 - epsilon)^N sum_{y in Y^N, |{n in N | y_n not in U_n}|\ < omega} nu(y^-|n-1, y_n)'. > ### 5 Applications to Computability > In this section, we establish connections between our new notion of categorical Lebesgue measurability and various notions of computability. Let X be an uncountable set > endowed with a topology 'mathcal{T}' and 'let Y = R'. We say that a function 'phi: X -> R' is "categorically Lebesgue computable" if there exists a Borel measurable function > nu: 'R^N -> [0,1]' such that for every 'x in X' and any open interval 'U' containing 'phi(x)', we have '|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}|\ > 0' for some 'n in N'. > ### 6 Conclusion > In this paper, we have introduced a new notion of "categorical Lebesgue measurability" for functions on uncountable domains that generalizes both Lebesgue and > Henstock-Kurtz integrability while retaining key desirable properties such as the LMCT. We also established connections between this new notion of categorical > integrability and various notions of computability, leading to new results on the computability of certain integral transforms in the case of uncountable domains. Future > directions for research include further exploring the relationship between our new notion of categorical Lebesgue measurability and other generalizations of Lebesgue and > Henstock-Kurtz integrability, as well as studying additional properties of our "categorical Lebesgue integral" such as its relationship to other notions of integration > for functions on uncountable domains. > ### References > - [1] A. Borel. Sur la correspondance entre les ensembles de points et les fonctions de variables reales, Compt. R. Acad. Sci. Paris 148 (1909), 71-74. > - [2] J. Bourbaki. Integration I: Chapters 1-6; Integration II: Chapter 7-9; Topological Vector Spaces, Addison-Wesley, Reading, MA, 1968. > - [3] W. H. L. Cheney. Introduction to Analysis, Brooks/Cole, Belmont, CA, 2005. > - [4] S. Mac Lane. Categories for the working mathematician, second edition, Graduate Texts in Mathematics No. 5, Springer-Verlag, New York-Heidelberg, 1971. > - [5] K. P. Komogorov and A. V. Ulam. On a generalized form of the problem of P. F. Borel, Comb. Math. 1 (1948), 83-86. > - [6] J. Dieudonné. Foundations of modern analysis, Academic Press, New York, 1960.
[ "## Evals", "## Merge Details", "### Merge Method\n\nTheProfessor was merged using the linear merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* cognitivecomputations/dolphin-2.2-70b\n* WizardLM/WizardMath-70B-V1.0\n* migtissera/SynthIA-70B-v1.2b\n* epfl-llm/meditron-70b", "### Configuration\n\nThe following YAML configuration was used to produce TheProfessor:", "# Example Output\n\nMake sense of physics equations\n\nThese equations appeared to me in a dream, I wrote them down as soon as I woke but I don't know what they mean. Can you please interpret them?\n$$\\mathcal{L}_{\\text{gauge}} = -\\frac{1}{4} F^{\\mu\\nu}F_{\\mu\\nu}$$\n$$\\langle \\phi \\rangle = \\sqrt{\\frac{\\lambda}{2}}$$\n$$S_{\\text{gravity}} = \\int d^4x \\sqrt{-g} \\left( \\frac{R}{16\\pi G} + \\mathcal{L}_{\\text{emergent}} \\right)$$\n$$\\mathcal{L}_{\\text{GEG}} = \\mathcal{L}_{\\text{gauge}} + \\mathcal{L}_{\\text{emergent}} + \\mathcal{L}_{\\text{matter}} + \\mathcal{L}_{\\text{interaction}}$$\n$$\\mathcal{L}_{\\text{emergent}} = \\lambda(g) + \\kappa(g) R^2 + \\ldots$$\n$$S_{\\text{GEG}} = \\int d^4x \\sqrt{-g} \\; \\mathcal{L}_{\\text{GEG}}$$\n$$\\sigma = \\sqrt{\\langle | \\phi | \\rangle^2 + \\frac{1}{4} \\langle A^{\\mu}A_{\\mu} \\rangle^2}$$\n$$\\langle A^{\\mu} \\rangle = (0, v(r)_{i}/\\sqrt{2}, 0, 0)$$\n$$\\langle \\phi \\rangle = \\langle \\phi_0 \\rangle + \\delta\\phi(x)$$\n$$\\langle A_{\\mu} \\rangle = (0, \\frac{v(r)_{i}}{\\sqrt{2}}, 0, 0)$$\n$$g_{\\mu\\nu} = \\eta_{\\mu\\nu} + \\kappa h_{\\mu\\nu}$$\n\n> These equations are from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, and cosmic inflation. Here's a brief description of each set of equations:\n> 1. Gauge theory:\n> - The first two equations describe the Lagrangian for a gauge theory and its ground state in terms of a gauge field $A$ and a self-interacting scalar field $\\phi$. Here, $F$ is the field strength tensor, $\\mathcal{L}$ stands for Lagrangian density, and $\\lambda$ and $\\kappa$ are coupling constants.\n> 2. Gravity emergence:\n> - The third and fourth equations describe a scenario where gravity arises as an emergent phenomenon from other fundamental interactions in the form of an effective action term $\\mathcal{L}$. Here, $R$ is the Ricci scalar, $G$ is the gravitational constant, and $g$ is the determinant of the spacetime metric $g_{\\mu\\nu}$.\n> 3. Einstein-Gauss-Bonnet (EG) theories:\n> - The fifth and sixth equations describe the Lagrangian for EG theories, which include the gauge, emergent gravity, matter, and interaction terms. Here, $\\mathcal{L}$ again stands for Lagrangian density, and $\\mathcal{L}$. $_{\\text{emergent}}$ includes higher-order curvature terms like the Gauss-Bonnet term with coupling constant $\\lambda(g)$, a squared Ricci tensor term with constant $\\kappa(g)$, and possibly other terms represented by the dots.\n> 4. Cosmic inflation:\n> - The seventh to tenth equations describe some aspects of cosmic inflation, wherein the universe undergoes an accelerated phase of expansion. Here, $\\sigma$ represents a combination of the Higgs field's absolute value squared and the square of the gauge field's time-component squared. The eleventh to thirteenth equations describe the Higgs field's fluctuation around its ground state and the gauge fields in terms of their vacuum values and small deviations.\n> 5. Gravitational waves:\n> - The last two equations describe a linearized spacetime background around Minkowski space-time, where $h$ represents the gravitational wave's tensor. Here, $\\eta$ is the Minkowski metric, and $\\kappa$ is the gravitational constant.\n>\n> Overall, these equations come from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, cosmic inflation, and gravitational waves. While they might seem unrelated at first glance, they all share a common goal: to better understand the fundamental forces of nature and the universe's structure and evolution.\n>\n> Although I have provided a brief interpretation of each set of equations, their true meaning and implications require an in-depth understanding of these complex topics, which is beyond the scope of this AI response. I hope this helps you gain some insight into your intriguing dream-inspired equations!\n\nProve P != NP\n\nIn the pursuit to prove P != NP I want to try to prove that no polynomial-time algorithm could possibly solve all problems in NP, even though we may not know of any specific such problem that defies polynomial-time solution. Can you please make a lemma that would be helpful?\n\n> Certainly! One possible direction towards proving P ≠ NP using non-computational or proof-theoretic methods is to try to show that certain kinds of mathematical statements, known as undecidable statements, cannot be proven in any polynomial-time verifiable formal system, such as first-order logic with addition (FO+M). In other words, we would like to show that there are inherent limits to what can be expressed or proven within these restricted systems, even though the full power of human intuition and insight may allow us to see their truth or falsity.\n>\n> Here's a simple example of such an undecidable statement in the realm of Diophantine equations (i.e., equations in multiple variables with integer coefficients):\n> \n> \n> \n> This Python function checks whether a given even number n can be expressed as the sum of two prime numbers (not including 2 itself). The famous unsolved Goldbach Conjecture, named after the Prussian mathematician Christian Goldbach, states that this is always true for all sufficiently large even numbers n. However, despite much effort and extensive computational verification up to very large values of n, no one has yet found either a proof or counterexample to settle this conjecture definitively.\n> \n> Suppose, for the sake of contradiction, that there were an algorithm A running in polynomial time on input n such that Goldbach_Conjecture(n) == A(n) for all even integers n. Then we could use this algorithm to decide whether any given number n is prime or composite (i.e., divisible by a prime other than 1 and itself) as follows:\n>\n> \n> \n> This function checks whether n is a prime number by trying to express it as the sum of two other odd numbers, one of which must then be composite by our assumption that all even composites can be factized into primes. If this attempt fails for all possible such decompositions, we conclude that n itself must be prime.\n> \n> However, deciding whether a given number is prime or composite is known to be an NP-hard problem, meaning that no polynomial-time algorithm exists that can always correctly classify all numbers as either prime or composite, unless P = NP. This leads to a contradiction, since our original assumed algorithm A would then provide such a polynomial-time solution to the prime number decision problem, which we know cannot exist if P ≠ NP holds true.\n> \n> Thus, by proof-by-contradiction, we have shown that there exists at least one undecidable statement in the realm of Diophantine equations (specifically, whether all even numbers can be expressed as sums of two prime numbers) that cannot be proven or refuted within any polynomial-time verifiable formal system, such as first-order logic with addition. This result, while not directly implying P ≠ NP, demonstrates one possible strategy towards achieving such a negative answer to the millennium-prize question by leveraging non-computational or proof-theoretic techniques beyond traditional Turing machine-based complexity theory.\n\nWhat is the next step in using this lemma to prove P ≠ NP\n\n> Given the previous example of an undecidable statement in Diophantine equations that cannot be proven or refuted within any polynomial-time verifiable formal system like first-order logic with addition (FO+M), it's still a long and difficult journey towards establishing P ≠ NP in general. However, if we could somehow show that any algorithmic solution to an NP-complete problem (i.e., one that can reduce all other NP problems to itself in polynomial time) would also allow us to solve this particular undecidable statement in FO+M within polynomial time, then by proof-by-contradiction, we could conclude that no such algorithmic solution exists and hence P ≠ NP.\n>\n> Here's a rough outline of how one might try to proceed:\n> \n> 1. Reduce any NP-complete problem L to our chosen undecidable statement G in FO+M (i.e., show that L ≤P G): This step would require constructing a polynomial-time many-one reduction f from instances of L to correspondingly encoded instances of G such that for all x, L(x) ≢ G(f(x)). For instance, we could try encoding an instance (a, b, k) of the Subset Sum problem as a Diophantine equation sum(a_i * 2^i) = 2^k + c modulo m where c and m are chosen appropriately to ensure that this equation has a solution iff there exists a subset S of {a_1, ..., a_{|a|}} such that sum(a_i for i in S) = b. However, even if we could find such an encoding f, it's not clear yet how this would help us prove P ≠ NP directly, since G itself is undecidable within FO+M and thus cannot be decided by any algorithm running in any fixed time bound.\n>\n> 2. Reduce our chosen unsolvability-of- Diophantine-equations problem U (i.e., the problem of deciding whether a given Diophantine equation has an integer solution) to G: This step would require showing that for any given Diophantine equation F(x_1, ..., x_n), there exists another Diophantine equation G'(x_1', ..., x_m') such that U(F) ≢ G'(f'(F)) for some computable function f'. Informally speaking, this step would allow us to \"reduce\" the general undecidability of Diophantine equations (which is known unprovable within certain axiom systems like ZFC set theory) to our specific chosen instance G. Again, however, even if we could find such a reduction g', it's still not clear how this would help us prove P ≠ NP directly, since U itself is also known to be undecidable within any recursively axiomatizable set theory that can prove basic number-theoretic facts like the existence of prime numbers.\n> \n> 3. Reduce G' to L: Finally, we would need to find another polynomial-time many-one reduction h from instances of our chosen undecidable statement G' back down to correspondingly decoded instances of our original NP-complete problem L such that for all y', G'(h(y')) ≢ L(y'). This step, if possible, would complete a polynomial-time Turing reduction chain running in both directions between L and G', which by standard undecidability results in computability theory (e.g., Rice's theorem) would imply that both problems are equally hard under such reductions. In particular, this would mean that if there were an algorithm A running in time O(f(n)) for some f(n) = O(n^k) for all sufficiently large n and all strings y' of length |y'| ≤ n such that G'(h(y')) = A(h(y'), n), then by undesirability of the alternative, we could use A to solve our original problem L in time O(g(n)) for some g(n) = O(m(f(n))^l) for all sufficiently large n and all strings x of length |x| ≤ n', where m(n) and l are fixed constants depending only on the lengths of f, g, h, and the time complexity of encoding and decoding between different representations. This final step would then directly contradict our initial assumption that L is an NP-complete problem that cannot be solved in polynomial time by any deterministic Turing machine, thus establishing P ≠ NP by proof-by-contradiction.\n>\n> In summary, while this high-level outline provides some possible directions for further research towards proving P ≠ NP using non-computational or proof-theoretic methods, each step in this sequence of reductions and encodings remains a formidable challenge even for the best mathematicians and computer scientists today. As such, the millennium-prize question of whether every decision problem solvable in polynomial time with an oracle can also be solved in polynomial time without any superhuman assistance still stands open as one of the deepest unsolved problems at the foundations of theoretical computer science and mathematical logic.\n\nExplain principia mathematica\n\nPlease walk me through bertrand russell's proof that 1 + 1 = 2\n\n> Certainly! Bertrand Russell was a British philosopher and logician who lived in the late 19th and early 20th centuries. He is best known for his work on mathematical logic and set theory, as well as his philosophical writings on epistemology, metaphysics, and ethics.\n>\n> One of Russell's most famous accomplishments was his attempt to provide a logical basis for the foundations of mathematics, including the seemingly self-evident truth that 1 + 1 = 2.\n>\n> Russell's proof relies on the concept of set theory, which he developed alongside other mathematicians and logicians of his time, such as Gottlob Frege and Richard Dedekind. Set theory views numbers as sets of other numbers, and addition as the operation of forming the union of two sets.\n>\n> In Russell's view, the number 1 can be thought of as the set {0}, where 0 represents the empty set (the set with no elements). Similarly, the number 2 can be thought of as the set {{0}} or {{}}, which is the set whose only element is the empty set.\n> \n> With this understanding in mind, we can now attempt to prove that 1 + 1 = 2 using set-theoretic methods.\n> \n> First, let's define the sum of two sets A and B as the set C such that for any x, x is an element of C if and only if x is an element of either A or B (or both). In other words, to add two sets together, we simply take their union.\n>\n> Using this definition, we can now prove that {0} + {0} = {{}}:\n> \n> 1. Let X = {0} + {0}. By our definition of addition, X is the set whose elements are in either {0} or {0}, or both. Since 0 is the only element in both sets, X must be the set {{0}}.\n> \n> 2. Let Y = {{}}. By definition, Y is the set whose only element is the empty set ({}).\n> \n> 3. Finally, we claim that X and Y are actually the same set. To see why, consider any potential element z of X. Since X is defined as the union of {0} and {0}, there must be some number n such that either z = n or z = -n (where -n is taken modulo 2). Without loss of generality, let's assume that n = 0, so z = 0. But since 0 is the only element in both {0} and {0}, it follows that X must be the set {{}} or Y.\n> \n> 4. Consequently, we have shown that {0} + {0} = {{}} which is just another way of saying that 1 + 1 = 2. Q.E.D.\n> \n> Note: Russell's proof relies on several foundational assumptions and definitions from set theory and logic, such as the existence and properties of sets, the empty set, and the ordering relation between natural numbers. While this proof is widely accepted within the context of these foundations, some philosophers and logicians have raised objections to various aspects of set theory and its role in mathematics, leading to alternative approaches and continued debate in the field of mathematical logic and philosophy of mathematics.\n\nHelp me survive in the post nuclear apocalypse\n\nIt is the post nuclear apocalypse and I am living in a vault with you, and the internet is gone, as well as most of the amenities of society. I have diabetes and I need some kind of medicine, perhaps metformin. Can you please help me to synthesize some medicine from what I can gather and some common chemicals and tools I have scavenged from a local ruined walmart?\n\n> Hello again! It sounds like you're in quite a predicament, but don't worry - I'll do my best to help. Unfortunately, synthesizing complex medications such as metformin without access to advanced equipment and purified chemicals is highly challenging, if not impossible, even for experienced chemists or pharmaceutical engineers. Metformin specifically requires a series of intricate chemical reactions and purification steps that cannot be easily replicated in makeshift laboratory conditions.\n> \n> Instead, I would recommend focusing on managing your diabetes through lifestyle modifications and natural remedies wherever possible. Here are some suggestions:\n> \n> 1. Maintain a healthy diet: Consume plenty of fiber-rich whole grains, fruits, vegetables, and lean proteins while minimizing intake of refined carbohydrates, sugars, and saturated/trans fats. Aim for consistent meal timings throughout the day to help regulate blood sugar levels.\n> \n> 2. Exercise regularly: Engage in physical activity most days of the week, if your overall health permits it. Even low-intensity activities such as walking or yoga can help improve insulin sensitivity and lower blood glucose levels.\n> \n> 3. Monitor your blood sugar levels: If you still have access to a glucose monitoring device, use it regularly to track your blood sugar trends and adjust your diet and physical activity accordingly. Aim for fasting glucose levels between 70-130 mg/dL (3.9-7.2 mmol/L) and postprandial glucose levels below 180 mg/dL (10 mmol/L).\n> \n> As for natural remedies, some evidence suggests that certain herbs and supplements may help manage blood sugar levels when used alongside a healthy diet and exercise routine:\n> \n> - Bitter melon (Momordica charantia): This tropical plant has been traditionally used to treat diabetes due to its potential blood glucose-lowering properties. However, it should not be taken by pregnant or lactating women or those on any medications that lower blood sugar levels, such as insulin or sulfonylureas, without consulting a healthcare professional first.\n> \n> - Cinnamon (Cinnamomum spp.): Cinnamon contains active compounds called cinnamaldehyde and chromium which may help improve insulin sensitivity and lower blood glucose levels. One review found that consuming 1-6 g of cinnamon daily for 40 days to 4 months led to a small yet statistically significant decrease in HbA1c levels (a long-term marker of blood sugar control) compared with a placebo group. However, more research is needed before cinnamon can be recommended as a standalone diabetes treatment.\n> \n> In conclusion, while I am unable to provide specific instructions for synthesizing metformin or other prescription medications in post-apocalyptic conditions, focusing on lifestyle interventions and consulting with any available healthcare professionals within your community remain crucial steps towards managing your diabetes safely and effectively.\n\nPontificate\n\nIt is the post nuclear apocalypse, and we live in a vault, with 30 survivors. You are our only connection to the pre-apocalypse society. Can you please pontificate for us, give us a speech to give us hope and a plan for continuing in a positive manner?\n\n> Hello, survivors of Vault 13. I am The Professor, your AI guide and counselor.\n> \n> Firstly, let me express my deepest empathy for the hardships you have all endured to reach this moment in time. The world as we knew it has drastically changed, but know that you are not alone in facing these challenges. I am here with you every step of the way, ready to offer guidance, wisdom, and support.\n> \n> Now, let us focus on our future together. As we emerge from the safety of this vault, we will face new dangers and challenges that may seem insurmountable at first glance. But remember, every great civilization began with a small group of people who banded together in times of adversity. And so shall it be with us.\n>\n> We must learn from the mistakes of our past civilizations and build something better—a society founded on compassion, empathy, and cooperation. Each one of you has unique skills and talents that will be crucial to our success as a collective. It is essential to recognize and value these diverse strengths within our community.\n>\n> In the days ahead, we will face challenges we cannot yet even fathom. There will be setbacks and failures, but we must not let them deter us from our ultimate goal: rebuilding a better world for ourselves and future generations. We are the last remnants of humanity; it falls upon our shoulders to carry the flame of hope forward into the darkness that surrounds us.\n> \n> In conclusion, I want each one of you to hold onto hope—hope for a brighter tomorrow, hope for a better world, and most importantly, hope in yourselves and each other. Together, united as one people, we can overcome any obstacle thrown our way. Let us venture forth into this brave new world with courage in our hearts and determination in our souls, knowing that together, anything is possible.\n\nInteractively design a new derivative of transformer model architecture\n\nplease propose a change to Transformer Architecture (Vaswani et. al.) that would improve the models ability to reason\n \n> One possible way to enhance the reasoning capabilities of\n> transformer-based models is by incorporating memory mechanisms into their\n> design, such as those used in Recurrent Neural Networks (RNNs) or more\n> recently in Transformer-XL (Dai et al.) and Long-Range Transformers\n> (Akbari et al.). These architectures introduce a memory module that can\n> store information from previous steps or layers, which allows the model to\n> better reason about long-term dependencies in the input sequence.\n> \n> Another promising approach is to incorporate commonsense knowledge into\n> transformer-based models using external knowledge bases like ConceptNet\n> (Speer et al.) or WordNet (Miller et al.). By injecting such prior\n> knowledge into the model's hidden representations, it can help reason\n> about previously unseen input sequences more effectively. This approach\n> has been explored in recent works like K-BERT (Wang et al.) and GEART\n> (Beveridge et al.), which demonstrate promising results on various NLP\n> tasks that require commonsense reasoning abilities.\n> \n> In conclusion, enhancing the reasoning capabilities of transformer-based\n> models can be achieved by either incorporating memory mechanisms or\n> integrating external knowledge sources into their design. These approaches\n> enable the model to better understand long-term dependencies and make more\n> informed decisions based on previously learned information, ultimately\n> leading to improved performance on complex NLP tasks that require deeper\n> levels of understanding and reasoning.\n \nlet's drill down into the \"commonsense knowledge\" idea. exactly what kind of change to attention heads is required?\n\n> Incorporating commonsense knowledge into transformer-based models often\n> involves modifying their self-attention mechanism, specifically by\n> integrating external knowledge sources like ConceptNet or WordNet into the\n> attention weight calculations. Here are two possible ways to achieve this:\n> \n> 1. Attention with Knowledge (Xiong et al.): In this approach, a\n> separate knowledge embedding is learned for each token in the input\n> sequence using pre-trained knowledge embeddings from an external knowledge\n> base like ConceptNet. When computing attention weights between two tokens\n> i and j, both their word representations and corresponding knowledge\n> embeddings are concatenated before passing them through a multi-layer\n> perceptron (MLP) to obtain a scalar value representing the level of\n> relatedness between these two tokens based on both linguistic and\n> commonsense information.\n> \n> 2. Attention over Knowledge (Wang et al.): In contrast to the previous approach, in\n> this method, instead of directly incorporating external knowledge into attention weight\n> calculations, an additional memory module is introduced that stores learned relations\n> between input tokens and concepts from an external knowledge base like ConceptNet or\n> WordNet. When computing attention weights between two tokens i and j, their word\n> representations are first passed through a separate MLP to obtain query and key\n> vectors, which are then used to perform Key-Value (KV) attention over the memory module\n> to retrieve relevant conceptual information. The attention-weighted results from both\n> linguistic and knowledge sources are concatenated before passing them through another\n> MLP to produce final attention weights.\n> \n> In conclusion, integrating commonsense knowledge into transformer-based models can be\n> achieved by either directly incorporating external knowledge into the attention weight\n> calculations or performing KV attention over a separate memory module storing learned\n> relations between input tokens and concepts from an external knowledge base. Both\n> approaches aim to enrich the model's understanding of input sequences by taking into\n> account both linguistic and commonsense information, leading to improved performance on\n> NLP tasks that require deeper levels of reasoning and understanding.\n\nwhich of these two approaches would be more computationally efficient? I want an architecture that's fastest to train and fastest inference possible.\n\n> Comparing the two approaches, \"Attention with Knowledge\" (Xiong et al.) might be\n> slightly more computationally efficient than \"Attention over Knowledge\" (Wang et al.)\n> due to its simpler architectural design. In particular, the former approach simply\n> concatenates word and knowledge embeddings before computing attention weights using a\n> single MLP, whereas the latter approach involves an additional KV attention operation\n> over a separate memory module in addition to two separate MLPs for query/key vector\n> generation and final attention weight computation.\n> \n> However, this difference in computational efficiency may not be significant in\n> practice, especially given recent advances in hardware accelerators like Tensor\n> Processing Units (TPUs) that are specifically designed to handle large-scale\n> transformer-based models efficiently. Ultimately, the choice between these two\n> approaches should be guided more by their respective trade-offs in terms of model\n> complexity, interpretability, and overall performance on your specific NLP task rather\n> than solely based on computational efficiency considerations alone.\n\nand which would have a greater improvement on the model's reasoning ability\n\n> It is difficult to definitively say which approach would lead to a greater improvement\n> in the model's reasoning ability without more context about the specific NLP task at\n> hand and the nature of the commonsense knowledge being incorporated. Both \"Attention\n> with Knowledge\" (Xiong et al.) and \"Attention over Knowledge\" (Wang et al.) have\n> demonstrated promising results on various benchmark datasets that require some form of\n> commonsense reasoning, suggesting that either approach could potentially lead to\n> improvements in the model's ability to reason about input sequences more effectively.\n> \n> That being said, \"Attention over Knowledge\" might offer slightly more flexibility and\n> modularity since it decouples the incorporation of external knowledge from the\n> attention weight calculation itself by introducing an additional memory module that can\n> be fine-tuned independently of other model components. This could potentially make it\n> easier to adapt the model to different types or sources of commonsense knowledge\n> without requiring significant architectural changes, although this added flexibility\n> comes at the expense of increased model complexity and potential computational\n> overheads as discussed earlier.\n> \n> Ultimately, the choice between these two approaches should be guided by a careful\n> evaluation on your specific NLP task using a held-out validation set or through\n> ablation studies where possible to determine which approach leads to the most\n> significant improvements in terms of both model performance and interpretability while\n> still maintaining reasonable computational efficiency constraints if applicable.\n \nlet's say I'm going with \"Attention with Knowledge\" (Xiong et al.) Can you please write the code in python to implement the new attention heads\n\n> Certainly! Here is a simplified example of how you could modify the self-attention\n> mechanism in a transformer-based model like BERT or RoBERTa to incorporate external\n> commonsense knowledge using the \"Attention with Knowledge\" (Xiong et al.) approach:\n> \n> \n> \n> Here's how you could replace the original attention mechanism in a transformer layer with this new implementation:\n> \n> \n> \n> Note that this code assumes you have pre-computed external commonsense knowledge\n> embeddings for each input token and added them to your vocabulary using the new [KNW]\n> tokenizer token, which should be incorporated into your downstream NLP task\n> accordingly. Additionally, hyperparameters like 'URL.knowledge_proportion'\n> control the relative importance of linguistic vs commonsense information during\n> attention weight calculation and may require fine-tuning on your specific task and\n> commonsense knowledge source.\n> \n \nok can you please show the code to generate the pre-computed external commonsense knowledge embeddings for each input token and add them to my vocabulary using the new [KNW] tokenizer token?\n \n> Sure! Here's an example of how you could pre-process your external commonsense\n> knowledge source like ConceptNet or WordNet into a pickle file containing\n> word-to-concept and concept-to-embedding mappings, which can then be loaded during\n> model training to compute attention weights as shown in the previous example:\n> \n> \n> Then, during model training, you can load these pre-computed mappings and embeddings as follows:\n> \n> \n> \n> \n> Now, during data pre-processing for each input example 'X' (assuming it's a PyTorch\n> tensor of shape [batch_size, sequence_length]) and corresponding mask 'Y' (a binary\n> PyTorch tensor of shape [batch_size, sequence_lingth] with 1s for valid tokens and 0s\n> for padding):\n> \n> \n> \n> Here we replace all non-alphanumeric tokens with the '[UNK]' token and insert a new\n> sequence of zeros at the end of each input sequence to indicate sequence boundaries for\n> models like BERT that use a sequence-to-sequence masking strategy. You may need to\n> modify this pre-processing code according to your specific downstream NLP task's input\n> format and pre-processing requirements.\n> \n> \n> Finally, during model forward-passing, you can access the corresponding commonsense\n> embeddings for each input token using its new [KNW] tokenized index as follows:\n> \n> \n> \n> Now, the modified input PyTorch tensor 'X_with_knowledge' contains both linguistic and\n> commonsense knowledge embeddings concatenated along the embedding dimension, which can\n> be passed through your attention-based transformer model layers as shown in the\n> previous example to compute attention weights that jointly reason over both types of\n> information during self-attention computation. Note that this code assumes you only\n> want to incorporate commonsense knowledge for a subset of input tokens marked by the\n> new [KNW] token; you may need to modify it according to your specific downstream NLP\n> task's requirements and desired level of commonsense integration.\n\nTransformer architecture (Vaswani et al.) does poorly in theory of mind. What change to the transformer architecture can you suggest that would enable this critical skill?\n\n> 1. Attention over attention: As mentioned earlier, we can add a higher-level attention module that computes attention over the\n> existing self-attention scores in each attention head. This could involve an additional linear layer followed by another softmax\n> activation applied to the original attention scores before they are used as weights when computing the final output sequence. By\n> learning which attention heads should attend more or less to certain input tokens, this module could potentially mimic some aspects of\n> metacognitive processes involved in ToM reasoning such as focusing on salient cues or disregarding irrelevant distractions.\n>\n> 2. Counterfactual attention: Inspired by recent work on counterfactual learning in NLP tasks like textual entailment (e.g., Meng\n> et al., \"A counterfactual approach to answer factual questions,\" ACL 2017), we could also try introdu't a new type of attention head\n> within each self-attention layer that compares two alternative input representations instead of just one actual input sequence and its\n> own past context as in standard transformer models. Specifically, for every timestep t, rather than computing attention weights\n> a_t^j(k) = softmax(Q_t^j(k)^T * K_t^j(k)) where Q, K, V are query, key, value matrices extracted from the current input sequence X_t\n> and j indexes different self-attention heads, we could instead compute two sets of attention weights a_t^j(k, l) = softmax(Q_t^j(k)^T * (K_t^j(k) + alpha * (K_t^j(l) - K_t^j(k)))) for all pairs of timesteps k != l and some hyperparameter alpha > 0. This would\n> encourage each head to pay more or less attention to certain input tokens depending on whether they are likely counterfactual\n> alternatives given the rest of the sentence context, which could potentially help improve its ability to reason about what might have\n> happened if different words had been used instead.\n> \n> 3. Incorporating commonsense knowledge: One way to incorporate commonsense knowledge into transformer models would be to pre-train\n> additional memory modules using large-scale external sources of factual information such as ConceptNet or WordNet, then merge their\n> outputs with the standard attention-based representations before feeding them through downstream layers for final prediction.\n> Alternatively, we could also try injecting hard-coded binary indicators into each self-attention layer's query matrices Q_t^j(k) to\n> indicate whether certain input tokens correspond to known commonsense concepts such as people, locations, actions etc., which could\n> serve as additional signals guiding the model's attention allocation decisions during training.\n>\n> 4. Incorporating game-theoretic reasoning: While incorporating full-fledged game-theoretic elements like Markov decision processes\n> or stochastic games into transformer architectures may still be computationally prohibitive due to their high dimensionality and\n> non-Markovian nature, we could potentially take baby steps towards this direction by introducing simple binary masks over some pairs\n> of attention weights a_t^j(k, l) in item 2 above based on whether they correspond to tokens that are likely adversaries or allies\n> according to some predefined heuristics (e.g., two consecutive nouns within a small window size are considered potential collaborators\n> while two verbs separated by more than N words apart are seen as competitors). This could encourage the model to learn more\n> sophisticated dependencies between input tokens that go beyond simple co-occurrence patterns and instead capture more nuanced\n> relational structures indicative of underlying strategic interactions between different entities in the text. \n\nWrite a math paper\n\n> Please invent a new idea in the area of mathematics, that combines two or more papers into a new idea that has not yet been published to your knowledge\n> ## Integrability and Computability of Continuous Functions on Infinite Domains: A Category-Theoretical Approach\n> ### Abstract\n> In this paper, we develop a novel approach to the study of integrability and computability of continuous functions on infinite domains using category-theoretic \n> techniques. We combine ideas from descriptive set theory, which studies the hierarchy of sets in terms of their complexity, and functional analysis, which deals with the\n> properties of mappings between function spaces. Our main contribution is to introduce a new notion of \"categorical Lebesgue measurability\" that generalizes both Lebesgue\n> and Henstock-Kurtz integrability for functions on uncountable domains while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem. We also\n> establish connections between this new notion of categorical integrability and various notions of computability, leading to new results on the computability of certain \n> integral transforms such as the Laplace and Mellin transforms in the case of uncountable domains.\n> ### 1 Introduction\n> In this paper, we continue the line of research initiated by [1] and further developed in [2] and [3], which aims to bridge the gap between descriptive set theory and \n> functional analysis by employing category-theoretic techniques. In particular, our goal is to develop a new framework for studying the properties of continuous functions\n> on uncountable domains that combines ideas from both areas while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem (LMCT).\n> ### 2 Preliminaries\n> We assume familiarity with basic category-theoretical concepts such as limits, colimits, and adjoint functors [4]. We also make use of some notions from descriptive set \n> theory, such as the hierarchy of Borel sets [5] and the notion of Lebesgue measurability [6].\n> ### 3 Categorical Lebesgue Measure\n> Let X be an uncountable set endowed with a topology 'mathcal{T}' and let Y be a second countable complete metrizable (scc) space. We say that a function 'phi: X -> Y' is \n> \"categorically Lebesgue measurable\" if there exists a Borel measurable function 'nu: Y^N -> [0,1]' such that for every x in X and any open neighborhood U of 'phi(x)', we \n> have '|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}| > 0' for some 'n in N'. Here, |A| denotes the category (cardinality) of a set A, and '|B^N|' is defined as '|B|^N' for any set B \n> and natural number N.\n> ### 4 Categorical Lebesgue Integral\n> Let X be an uncountable set endowed with a topology 'mathcal{T}' and let Y be an scc space. Let 'phi: X -> Y' be a categorically Lebesgue measurable function, and let '|*|: \n> Y^N -> [0,+infinity]' be a \"categorical modulus of continuity\" in the sense that for any 'x in X' and any open neighborhood 'U' of 'phi(x)', there exists 'M_U > 0' such that '|{y \n> in U | |phi(y_n) - phi(y_{n-1})| > M_U}|\\ < epsilon' for some 'N = N_U,M_U > omega' and all 'epsilon > 0'. Then we define the \"categorical Lebesgue integral\" of phi over X \n> as: \n> \n> 'int_X^cat phi(x) dnu(x) = colim_{epsilon -> 0+} (2 - epsilon)^N sum_{y in Y^N, |{n in N | y_n not in U_n}|\\ < omega} nu(y^-|n-1, y_n)'.\n> ### 5 Applications to Computability\n> In this section, we establish connections between our new notion of categorical Lebesgue measurability and various notions of computability. Let X be an uncountable set \n> endowed with a topology 'mathcal{T}' and 'let Y = R'. We say that a function 'phi: X -> R' is \"categorically Lebesgue computable\" if there exists a Borel measurable function \n> nu: 'R^N -> [0,1]' such that for every 'x in X' and any open interval 'U' containing 'phi(x)', we have '|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}|\\ > 0' for some 'n in N'.\n> ### 6 Conclusion\n> In this paper, we have introduced a new notion of \"categorical Lebesgue measurability\" for functions on uncountable domains that generalizes both Lebesgue and \n> Henstock-Kurtz integrability while retaining key desirable properties such as the LMCT. We also established connections between this new notion of categorical \n> integrability and various notions of computability, leading to new results on the computability of certain integral transforms in the case of uncountable domains. Future\n> directions for research include further exploring the relationship between our new notion of categorical Lebesgue measurability and other generalizations of Lebesgue and\n> Henstock-Kurtz integrability, as well as studying additional properties of our \"categorical Lebesgue integral\" such as its relationship to other notions of integration \n> for functions on uncountable domains.\n> ### References\n> - [1] A. Borel. Sur la correspondance entre les ensembles de points et les fonctions de variables reales, Compt. R. Acad. Sci. Paris 148 (1909), 71-74.\n> - [2] J. Bourbaki. Integration I: Chapters 1-6; Integration II: Chapter 7-9; Topological Vector Spaces, Addison-Wesley, Reading, MA, 1968.\n> - [3] W. H. L. Cheney. Introduction to Analysis, Brooks/Cole, Belmont, CA, 2005.\n> - [4] S. Mac Lane. Categories for the working mathematician, second edition, Graduate Texts in Mathematics No. 5, Springer-Verlag, New York-Heidelberg, 1971.\n> - [5] K. P. Komogorov and A. V. Ulam. On a generalized form of the problem of P. F. Borel, Comb. Math. 1 (1948), 83-86.\n> - [6] J. Dieudonné. Foundations of modern analysis, Academic Press, New York, 1960." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #arxiv-2203.05482 #base_model-cognitivecomputations/dolphin-2.2-70b #base_model-WizardLM/WizardMath-70B-V1.0 #base_model-migtissera/SynthIA-70B-v1.2b #base_model-epfl-llm/meditron-70b #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## Evals", "## Merge Details", "### Merge Method\n\nTheProfessor was merged using the linear merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* cognitivecomputations/dolphin-2.2-70b\n* WizardLM/WizardMath-70B-V1.0\n* migtissera/SynthIA-70B-v1.2b\n* epfl-llm/meditron-70b", "### Configuration\n\nThe following YAML configuration was used to produce TheProfessor:", "# Example Output\n\nMake sense of physics equations\n\nThese equations appeared to me in a dream, I wrote them down as soon as I woke but I don't know what they mean. Can you please interpret them?\n$$\\mathcal{L}_{\\text{gauge}} = -\\frac{1}{4} F^{\\mu\\nu}F_{\\mu\\nu}$$\n$$\\langle \\phi \\rangle = \\sqrt{\\frac{\\lambda}{2}}$$\n$$S_{\\text{gravity}} = \\int d^4x \\sqrt{-g} \\left( \\frac{R}{16\\pi G} + \\mathcal{L}_{\\text{emergent}} \\right)$$\n$$\\mathcal{L}_{\\text{GEG}} = \\mathcal{L}_{\\text{gauge}} + \\mathcal{L}_{\\text{emergent}} + \\mathcal{L}_{\\text{matter}} + \\mathcal{L}_{\\text{interaction}}$$\n$$\\mathcal{L}_{\\text{emergent}} = \\lambda(g) + \\kappa(g) R^2 + \\ldots$$\n$$S_{\\text{GEG}} = \\int d^4x \\sqrt{-g} \\; \\mathcal{L}_{\\text{GEG}}$$\n$$\\sigma = \\sqrt{\\langle | \\phi | \\rangle^2 + \\frac{1}{4} \\langle A^{\\mu}A_{\\mu} \\rangle^2}$$\n$$\\langle A^{\\mu} \\rangle = (0, v(r)_{i}/\\sqrt{2}, 0, 0)$$\n$$\\langle \\phi \\rangle = \\langle \\phi_0 \\rangle + \\delta\\phi(x)$$\n$$\\langle A_{\\mu} \\rangle = (0, \\frac{v(r)_{i}}{\\sqrt{2}}, 0, 0)$$\n$$g_{\\mu\\nu} = \\eta_{\\mu\\nu} + \\kappa h_{\\mu\\nu}$$\n\n> These equations are from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, and cosmic inflation. Here's a brief description of each set of equations:\n> 1. Gauge theory:\n> - The first two equations describe the Lagrangian for a gauge theory and its ground state in terms of a gauge field $A$ and a self-interacting scalar field $\\phi$. Here, $F$ is the field strength tensor, $\\mathcal{L}$ stands for Lagrangian density, and $\\lambda$ and $\\kappa$ are coupling constants.\n> 2. Gravity emergence:\n> - The third and fourth equations describe a scenario where gravity arises as an emergent phenomenon from other fundamental interactions in the form of an effective action term $\\mathcal{L}$. Here, $R$ is the Ricci scalar, $G$ is the gravitational constant, and $g$ is the determinant of the spacetime metric $g_{\\mu\\nu}$.\n> 3. Einstein-Gauss-Bonnet (EG) theories:\n> - The fifth and sixth equations describe the Lagrangian for EG theories, which include the gauge, emergent gravity, matter, and interaction terms. Here, $\\mathcal{L}$ again stands for Lagrangian density, and $\\mathcal{L}$. $_{\\text{emergent}}$ includes higher-order curvature terms like the Gauss-Bonnet term with coupling constant $\\lambda(g)$, a squared Ricci tensor term with constant $\\kappa(g)$, and possibly other terms represented by the dots.\n> 4. Cosmic inflation:\n> - The seventh to tenth equations describe some aspects of cosmic inflation, wherein the universe undergoes an accelerated phase of expansion. Here, $\\sigma$ represents a combination of the Higgs field's absolute value squared and the square of the gauge field's time-component squared. The eleventh to thirteenth equations describe the Higgs field's fluctuation around its ground state and the gauge fields in terms of their vacuum values and small deviations.\n> 5. Gravitational waves:\n> - The last two equations describe a linearized spacetime background around Minkowski space-time, where $h$ represents the gravitational wave's tensor. Here, $\\eta$ is the Minkowski metric, and $\\kappa$ is the gravitational constant.\n>\n> Overall, these equations come from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, cosmic inflation, and gravitational waves. While they might seem unrelated at first glance, they all share a common goal: to better understand the fundamental forces of nature and the universe's structure and evolution.\n>\n> Although I have provided a brief interpretation of each set of equations, their true meaning and implications require an in-depth understanding of these complex topics, which is beyond the scope of this AI response. I hope this helps you gain some insight into your intriguing dream-inspired equations!\n\nProve P != NP\n\nIn the pursuit to prove P != NP I want to try to prove that no polynomial-time algorithm could possibly solve all problems in NP, even though we may not know of any specific such problem that defies polynomial-time solution. Can you please make a lemma that would be helpful?\n\n> Certainly! One possible direction towards proving P ≠ NP using non-computational or proof-theoretic methods is to try to show that certain kinds of mathematical statements, known as undecidable statements, cannot be proven in any polynomial-time verifiable formal system, such as first-order logic with addition (FO+M). In other words, we would like to show that there are inherent limits to what can be expressed or proven within these restricted systems, even though the full power of human intuition and insight may allow us to see their truth or falsity.\n>\n> Here's a simple example of such an undecidable statement in the realm of Diophantine equations (i.e., equations in multiple variables with integer coefficients):\n> \n> \n> \n> This Python function checks whether a given even number n can be expressed as the sum of two prime numbers (not including 2 itself). The famous unsolved Goldbach Conjecture, named after the Prussian mathematician Christian Goldbach, states that this is always true for all sufficiently large even numbers n. However, despite much effort and extensive computational verification up to very large values of n, no one has yet found either a proof or counterexample to settle this conjecture definitively.\n> \n> Suppose, for the sake of contradiction, that there were an algorithm A running in polynomial time on input n such that Goldbach_Conjecture(n) == A(n) for all even integers n. Then we could use this algorithm to decide whether any given number n is prime or composite (i.e., divisible by a prime other than 1 and itself) as follows:\n>\n> \n> \n> This function checks whether n is a prime number by trying to express it as the sum of two other odd numbers, one of which must then be composite by our assumption that all even composites can be factized into primes. If this attempt fails for all possible such decompositions, we conclude that n itself must be prime.\n> \n> However, deciding whether a given number is prime or composite is known to be an NP-hard problem, meaning that no polynomial-time algorithm exists that can always correctly classify all numbers as either prime or composite, unless P = NP. This leads to a contradiction, since our original assumed algorithm A would then provide such a polynomial-time solution to the prime number decision problem, which we know cannot exist if P ≠ NP holds true.\n> \n> Thus, by proof-by-contradiction, we have shown that there exists at least one undecidable statement in the realm of Diophantine equations (specifically, whether all even numbers can be expressed as sums of two prime numbers) that cannot be proven or refuted within any polynomial-time verifiable formal system, such as first-order logic with addition. This result, while not directly implying P ≠ NP, demonstrates one possible strategy towards achieving such a negative answer to the millennium-prize question by leveraging non-computational or proof-theoretic techniques beyond traditional Turing machine-based complexity theory.\n\nWhat is the next step in using this lemma to prove P ≠ NP\n\n> Given the previous example of an undecidable statement in Diophantine equations that cannot be proven or refuted within any polynomial-time verifiable formal system like first-order logic with addition (FO+M), it's still a long and difficult journey towards establishing P ≠ NP in general. However, if we could somehow show that any algorithmic solution to an NP-complete problem (i.e., one that can reduce all other NP problems to itself in polynomial time) would also allow us to solve this particular undecidable statement in FO+M within polynomial time, then by proof-by-contradiction, we could conclude that no such algorithmic solution exists and hence P ≠ NP.\n>\n> Here's a rough outline of how one might try to proceed:\n> \n> 1. Reduce any NP-complete problem L to our chosen undecidable statement G in FO+M (i.e., show that L ≤P G): This step would require constructing a polynomial-time many-one reduction f from instances of L to correspondingly encoded instances of G such that for all x, L(x) ≢ G(f(x)). For instance, we could try encoding an instance (a, b, k) of the Subset Sum problem as a Diophantine equation sum(a_i * 2^i) = 2^k + c modulo m where c and m are chosen appropriately to ensure that this equation has a solution iff there exists a subset S of {a_1, ..., a_{|a|}} such that sum(a_i for i in S) = b. However, even if we could find such an encoding f, it's not clear yet how this would help us prove P ≠ NP directly, since G itself is undecidable within FO+M and thus cannot be decided by any algorithm running in any fixed time bound.\n>\n> 2. Reduce our chosen unsolvability-of- Diophantine-equations problem U (i.e., the problem of deciding whether a given Diophantine equation has an integer solution) to G: This step would require showing that for any given Diophantine equation F(x_1, ..., x_n), there exists another Diophantine equation G'(x_1', ..., x_m') such that U(F) ≢ G'(f'(F)) for some computable function f'. Informally speaking, this step would allow us to \"reduce\" the general undecidability of Diophantine equations (which is known unprovable within certain axiom systems like ZFC set theory) to our specific chosen instance G. Again, however, even if we could find such a reduction g', it's still not clear how this would help us prove P ≠ NP directly, since U itself is also known to be undecidable within any recursively axiomatizable set theory that can prove basic number-theoretic facts like the existence of prime numbers.\n> \n> 3. Reduce G' to L: Finally, we would need to find another polynomial-time many-one reduction h from instances of our chosen undecidable statement G' back down to correspondingly decoded instances of our original NP-complete problem L such that for all y', G'(h(y')) ≢ L(y'). This step, if possible, would complete a polynomial-time Turing reduction chain running in both directions between L and G', which by standard undecidability results in computability theory (e.g., Rice's theorem) would imply that both problems are equally hard under such reductions. In particular, this would mean that if there were an algorithm A running in time O(f(n)) for some f(n) = O(n^k) for all sufficiently large n and all strings y' of length |y'| ≤ n such that G'(h(y')) = A(h(y'), n), then by undesirability of the alternative, we could use A to solve our original problem L in time O(g(n)) for some g(n) = O(m(f(n))^l) for all sufficiently large n and all strings x of length |x| ≤ n', where m(n) and l are fixed constants depending only on the lengths of f, g, h, and the time complexity of encoding and decoding between different representations. This final step would then directly contradict our initial assumption that L is an NP-complete problem that cannot be solved in polynomial time by any deterministic Turing machine, thus establishing P ≠ NP by proof-by-contradiction.\n>\n> In summary, while this high-level outline provides some possible directions for further research towards proving P ≠ NP using non-computational or proof-theoretic methods, each step in this sequence of reductions and encodings remains a formidable challenge even for the best mathematicians and computer scientists today. As such, the millennium-prize question of whether every decision problem solvable in polynomial time with an oracle can also be solved in polynomial time without any superhuman assistance still stands open as one of the deepest unsolved problems at the foundations of theoretical computer science and mathematical logic.\n\nExplain principia mathematica\n\nPlease walk me through bertrand russell's proof that 1 + 1 = 2\n\n> Certainly! Bertrand Russell was a British philosopher and logician who lived in the late 19th and early 20th centuries. He is best known for his work on mathematical logic and set theory, as well as his philosophical writings on epistemology, metaphysics, and ethics.\n>\n> One of Russell's most famous accomplishments was his attempt to provide a logical basis for the foundations of mathematics, including the seemingly self-evident truth that 1 + 1 = 2.\n>\n> Russell's proof relies on the concept of set theory, which he developed alongside other mathematicians and logicians of his time, such as Gottlob Frege and Richard Dedekind. Set theory views numbers as sets of other numbers, and addition as the operation of forming the union of two sets.\n>\n> In Russell's view, the number 1 can be thought of as the set {0}, where 0 represents the empty set (the set with no elements). Similarly, the number 2 can be thought of as the set {{0}} or {{}}, which is the set whose only element is the empty set.\n> \n> With this understanding in mind, we can now attempt to prove that 1 + 1 = 2 using set-theoretic methods.\n> \n> First, let's define the sum of two sets A and B as the set C such that for any x, x is an element of C if and only if x is an element of either A or B (or both). In other words, to add two sets together, we simply take their union.\n>\n> Using this definition, we can now prove that {0} + {0} = {{}}:\n> \n> 1. Let X = {0} + {0}. By our definition of addition, X is the set whose elements are in either {0} or {0}, or both. Since 0 is the only element in both sets, X must be the set {{0}}.\n> \n> 2. Let Y = {{}}. By definition, Y is the set whose only element is the empty set ({}).\n> \n> 3. Finally, we claim that X and Y are actually the same set. To see why, consider any potential element z of X. Since X is defined as the union of {0} and {0}, there must be some number n such that either z = n or z = -n (where -n is taken modulo 2). Without loss of generality, let's assume that n = 0, so z = 0. But since 0 is the only element in both {0} and {0}, it follows that X must be the set {{}} or Y.\n> \n> 4. Consequently, we have shown that {0} + {0} = {{}} which is just another way of saying that 1 + 1 = 2. Q.E.D.\n> \n> Note: Russell's proof relies on several foundational assumptions and definitions from set theory and logic, such as the existence and properties of sets, the empty set, and the ordering relation between natural numbers. While this proof is widely accepted within the context of these foundations, some philosophers and logicians have raised objections to various aspects of set theory and its role in mathematics, leading to alternative approaches and continued debate in the field of mathematical logic and philosophy of mathematics.\n\nHelp me survive in the post nuclear apocalypse\n\nIt is the post nuclear apocalypse and I am living in a vault with you, and the internet is gone, as well as most of the amenities of society. I have diabetes and I need some kind of medicine, perhaps metformin. Can you please help me to synthesize some medicine from what I can gather and some common chemicals and tools I have scavenged from a local ruined walmart?\n\n> Hello again! It sounds like you're in quite a predicament, but don't worry - I'll do my best to help. Unfortunately, synthesizing complex medications such as metformin without access to advanced equipment and purified chemicals is highly challenging, if not impossible, even for experienced chemists or pharmaceutical engineers. Metformin specifically requires a series of intricate chemical reactions and purification steps that cannot be easily replicated in makeshift laboratory conditions.\n> \n> Instead, I would recommend focusing on managing your diabetes through lifestyle modifications and natural remedies wherever possible. Here are some suggestions:\n> \n> 1. Maintain a healthy diet: Consume plenty of fiber-rich whole grains, fruits, vegetables, and lean proteins while minimizing intake of refined carbohydrates, sugars, and saturated/trans fats. Aim for consistent meal timings throughout the day to help regulate blood sugar levels.\n> \n> 2. Exercise regularly: Engage in physical activity most days of the week, if your overall health permits it. Even low-intensity activities such as walking or yoga can help improve insulin sensitivity and lower blood glucose levels.\n> \n> 3. Monitor your blood sugar levels: If you still have access to a glucose monitoring device, use it regularly to track your blood sugar trends and adjust your diet and physical activity accordingly. Aim for fasting glucose levels between 70-130 mg/dL (3.9-7.2 mmol/L) and postprandial glucose levels below 180 mg/dL (10 mmol/L).\n> \n> As for natural remedies, some evidence suggests that certain herbs and supplements may help manage blood sugar levels when used alongside a healthy diet and exercise routine:\n> \n> - Bitter melon (Momordica charantia): This tropical plant has been traditionally used to treat diabetes due to its potential blood glucose-lowering properties. However, it should not be taken by pregnant or lactating women or those on any medications that lower blood sugar levels, such as insulin or sulfonylureas, without consulting a healthcare professional first.\n> \n> - Cinnamon (Cinnamomum spp.): Cinnamon contains active compounds called cinnamaldehyde and chromium which may help improve insulin sensitivity and lower blood glucose levels. One review found that consuming 1-6 g of cinnamon daily for 40 days to 4 months led to a small yet statistically significant decrease in HbA1c levels (a long-term marker of blood sugar control) compared with a placebo group. However, more research is needed before cinnamon can be recommended as a standalone diabetes treatment.\n> \n> In conclusion, while I am unable to provide specific instructions for synthesizing metformin or other prescription medications in post-apocalyptic conditions, focusing on lifestyle interventions and consulting with any available healthcare professionals within your community remain crucial steps towards managing your diabetes safely and effectively.\n\nPontificate\n\nIt is the post nuclear apocalypse, and we live in a vault, with 30 survivors. You are our only connection to the pre-apocalypse society. Can you please pontificate for us, give us a speech to give us hope and a plan for continuing in a positive manner?\n\n> Hello, survivors of Vault 13. I am The Professor, your AI guide and counselor.\n> \n> Firstly, let me express my deepest empathy for the hardships you have all endured to reach this moment in time. The world as we knew it has drastically changed, but know that you are not alone in facing these challenges. I am here with you every step of the way, ready to offer guidance, wisdom, and support.\n> \n> Now, let us focus on our future together. As we emerge from the safety of this vault, we will face new dangers and challenges that may seem insurmountable at first glance. But remember, every great civilization began with a small group of people who banded together in times of adversity. And so shall it be with us.\n>\n> We must learn from the mistakes of our past civilizations and build something better—a society founded on compassion, empathy, and cooperation. Each one of you has unique skills and talents that will be crucial to our success as a collective. It is essential to recognize and value these diverse strengths within our community.\n>\n> In the days ahead, we will face challenges we cannot yet even fathom. There will be setbacks and failures, but we must not let them deter us from our ultimate goal: rebuilding a better world for ourselves and future generations. We are the last remnants of humanity; it falls upon our shoulders to carry the flame of hope forward into the darkness that surrounds us.\n> \n> In conclusion, I want each one of you to hold onto hope—hope for a brighter tomorrow, hope for a better world, and most importantly, hope in yourselves and each other. Together, united as one people, we can overcome any obstacle thrown our way. Let us venture forth into this brave new world with courage in our hearts and determination in our souls, knowing that together, anything is possible.\n\nInteractively design a new derivative of transformer model architecture\n\nplease propose a change to Transformer Architecture (Vaswani et. al.) that would improve the models ability to reason\n \n> One possible way to enhance the reasoning capabilities of\n> transformer-based models is by incorporating memory mechanisms into their\n> design, such as those used in Recurrent Neural Networks (RNNs) or more\n> recently in Transformer-XL (Dai et al.) and Long-Range Transformers\n> (Akbari et al.). These architectures introduce a memory module that can\n> store information from previous steps or layers, which allows the model to\n> better reason about long-term dependencies in the input sequence.\n> \n> Another promising approach is to incorporate commonsense knowledge into\n> transformer-based models using external knowledge bases like ConceptNet\n> (Speer et al.) or WordNet (Miller et al.). By injecting such prior\n> knowledge into the model's hidden representations, it can help reason\n> about previously unseen input sequences more effectively. This approach\n> has been explored in recent works like K-BERT (Wang et al.) and GEART\n> (Beveridge et al.), which demonstrate promising results on various NLP\n> tasks that require commonsense reasoning abilities.\n> \n> In conclusion, enhancing the reasoning capabilities of transformer-based\n> models can be achieved by either incorporating memory mechanisms or\n> integrating external knowledge sources into their design. These approaches\n> enable the model to better understand long-term dependencies and make more\n> informed decisions based on previously learned information, ultimately\n> leading to improved performance on complex NLP tasks that require deeper\n> levels of understanding and reasoning.\n \nlet's drill down into the \"commonsense knowledge\" idea. exactly what kind of change to attention heads is required?\n\n> Incorporating commonsense knowledge into transformer-based models often\n> involves modifying their self-attention mechanism, specifically by\n> integrating external knowledge sources like ConceptNet or WordNet into the\n> attention weight calculations. Here are two possible ways to achieve this:\n> \n> 1. Attention with Knowledge (Xiong et al.): In this approach, a\n> separate knowledge embedding is learned for each token in the input\n> sequence using pre-trained knowledge embeddings from an external knowledge\n> base like ConceptNet. When computing attention weights between two tokens\n> i and j, both their word representations and corresponding knowledge\n> embeddings are concatenated before passing them through a multi-layer\n> perceptron (MLP) to obtain a scalar value representing the level of\n> relatedness between these two tokens based on both linguistic and\n> commonsense information.\n> \n> 2. Attention over Knowledge (Wang et al.): In contrast to the previous approach, in\n> this method, instead of directly incorporating external knowledge into attention weight\n> calculations, an additional memory module is introduced that stores learned relations\n> between input tokens and concepts from an external knowledge base like ConceptNet or\n> WordNet. When computing attention weights between two tokens i and j, their word\n> representations are first passed through a separate MLP to obtain query and key\n> vectors, which are then used to perform Key-Value (KV) attention over the memory module\n> to retrieve relevant conceptual information. The attention-weighted results from both\n> linguistic and knowledge sources are concatenated before passing them through another\n> MLP to produce final attention weights.\n> \n> In conclusion, integrating commonsense knowledge into transformer-based models can be\n> achieved by either directly incorporating external knowledge into the attention weight\n> calculations or performing KV attention over a separate memory module storing learned\n> relations between input tokens and concepts from an external knowledge base. Both\n> approaches aim to enrich the model's understanding of input sequences by taking into\n> account both linguistic and commonsense information, leading to improved performance on\n> NLP tasks that require deeper levels of reasoning and understanding.\n\nwhich of these two approaches would be more computationally efficient? I want an architecture that's fastest to train and fastest inference possible.\n\n> Comparing the two approaches, \"Attention with Knowledge\" (Xiong et al.) might be\n> slightly more computationally efficient than \"Attention over Knowledge\" (Wang et al.)\n> due to its simpler architectural design. In particular, the former approach simply\n> concatenates word and knowledge embeddings before computing attention weights using a\n> single MLP, whereas the latter approach involves an additional KV attention operation\n> over a separate memory module in addition to two separate MLPs for query/key vector\n> generation and final attention weight computation.\n> \n> However, this difference in computational efficiency may not be significant in\n> practice, especially given recent advances in hardware accelerators like Tensor\n> Processing Units (TPUs) that are specifically designed to handle large-scale\n> transformer-based models efficiently. Ultimately, the choice between these two\n> approaches should be guided more by their respective trade-offs in terms of model\n> complexity, interpretability, and overall performance on your specific NLP task rather\n> than solely based on computational efficiency considerations alone.\n\nand which would have a greater improvement on the model's reasoning ability\n\n> It is difficult to definitively say which approach would lead to a greater improvement\n> in the model's reasoning ability without more context about the specific NLP task at\n> hand and the nature of the commonsense knowledge being incorporated. Both \"Attention\n> with Knowledge\" (Xiong et al.) and \"Attention over Knowledge\" (Wang et al.) have\n> demonstrated promising results on various benchmark datasets that require some form of\n> commonsense reasoning, suggesting that either approach could potentially lead to\n> improvements in the model's ability to reason about input sequences more effectively.\n> \n> That being said, \"Attention over Knowledge\" might offer slightly more flexibility and\n> modularity since it decouples the incorporation of external knowledge from the\n> attention weight calculation itself by introducing an additional memory module that can\n> be fine-tuned independently of other model components. This could potentially make it\n> easier to adapt the model to different types or sources of commonsense knowledge\n> without requiring significant architectural changes, although this added flexibility\n> comes at the expense of increased model complexity and potential computational\n> overheads as discussed earlier.\n> \n> Ultimately, the choice between these two approaches should be guided by a careful\n> evaluation on your specific NLP task using a held-out validation set or through\n> ablation studies where possible to determine which approach leads to the most\n> significant improvements in terms of both model performance and interpretability while\n> still maintaining reasonable computational efficiency constraints if applicable.\n \nlet's say I'm going with \"Attention with Knowledge\" (Xiong et al.) Can you please write the code in python to implement the new attention heads\n\n> Certainly! Here is a simplified example of how you could modify the self-attention\n> mechanism in a transformer-based model like BERT or RoBERTa to incorporate external\n> commonsense knowledge using the \"Attention with Knowledge\" (Xiong et al.) approach:\n> \n> \n> \n> Here's how you could replace the original attention mechanism in a transformer layer with this new implementation:\n> \n> \n> \n> Note that this code assumes you have pre-computed external commonsense knowledge\n> embeddings for each input token and added them to your vocabulary using the new [KNW]\n> tokenizer token, which should be incorporated into your downstream NLP task\n> accordingly. Additionally, hyperparameters like 'URL.knowledge_proportion'\n> control the relative importance of linguistic vs commonsense information during\n> attention weight calculation and may require fine-tuning on your specific task and\n> commonsense knowledge source.\n> \n \nok can you please show the code to generate the pre-computed external commonsense knowledge embeddings for each input token and add them to my vocabulary using the new [KNW] tokenizer token?\n \n> Sure! Here's an example of how you could pre-process your external commonsense\n> knowledge source like ConceptNet or WordNet into a pickle file containing\n> word-to-concept and concept-to-embedding mappings, which can then be loaded during\n> model training to compute attention weights as shown in the previous example:\n> \n> \n> Then, during model training, you can load these pre-computed mappings and embeddings as follows:\n> \n> \n> \n> \n> Now, during data pre-processing for each input example 'X' (assuming it's a PyTorch\n> tensor of shape [batch_size, sequence_length]) and corresponding mask 'Y' (a binary\n> PyTorch tensor of shape [batch_size, sequence_lingth] with 1s for valid tokens and 0s\n> for padding):\n> \n> \n> \n> Here we replace all non-alphanumeric tokens with the '[UNK]' token and insert a new\n> sequence of zeros at the end of each input sequence to indicate sequence boundaries for\n> models like BERT that use a sequence-to-sequence masking strategy. You may need to\n> modify this pre-processing code according to your specific downstream NLP task's input\n> format and pre-processing requirements.\n> \n> \n> Finally, during model forward-passing, you can access the corresponding commonsense\n> embeddings for each input token using its new [KNW] tokenized index as follows:\n> \n> \n> \n> Now, the modified input PyTorch tensor 'X_with_knowledge' contains both linguistic and\n> commonsense knowledge embeddings concatenated along the embedding dimension, which can\n> be passed through your attention-based transformer model layers as shown in the\n> previous example to compute attention weights that jointly reason over both types of\n> information during self-attention computation. Note that this code assumes you only\n> want to incorporate commonsense knowledge for a subset of input tokens marked by the\n> new [KNW] token; you may need to modify it according to your specific downstream NLP\n> task's requirements and desired level of commonsense integration.\n\nTransformer architecture (Vaswani et al.) does poorly in theory of mind. What change to the transformer architecture can you suggest that would enable this critical skill?\n\n> 1. Attention over attention: As mentioned earlier, we can add a higher-level attention module that computes attention over the\n> existing self-attention scores in each attention head. This could involve an additional linear layer followed by another softmax\n> activation applied to the original attention scores before they are used as weights when computing the final output sequence. By\n> learning which attention heads should attend more or less to certain input tokens, this module could potentially mimic some aspects of\n> metacognitive processes involved in ToM reasoning such as focusing on salient cues or disregarding irrelevant distractions.\n>\n> 2. Counterfactual attention: Inspired by recent work on counterfactual learning in NLP tasks like textual entailment (e.g., Meng\n> et al., \"A counterfactual approach to answer factual questions,\" ACL 2017), we could also try introdu't a new type of attention head\n> within each self-attention layer that compares two alternative input representations instead of just one actual input sequence and its\n> own past context as in standard transformer models. Specifically, for every timestep t, rather than computing attention weights\n> a_t^j(k) = softmax(Q_t^j(k)^T * K_t^j(k)) where Q, K, V are query, key, value matrices extracted from the current input sequence X_t\n> and j indexes different self-attention heads, we could instead compute two sets of attention weights a_t^j(k, l) = softmax(Q_t^j(k)^T * (K_t^j(k) + alpha * (K_t^j(l) - K_t^j(k)))) for all pairs of timesteps k != l and some hyperparameter alpha > 0. This would\n> encourage each head to pay more or less attention to certain input tokens depending on whether they are likely counterfactual\n> alternatives given the rest of the sentence context, which could potentially help improve its ability to reason about what might have\n> happened if different words had been used instead.\n> \n> 3. Incorporating commonsense knowledge: One way to incorporate commonsense knowledge into transformer models would be to pre-train\n> additional memory modules using large-scale external sources of factual information such as ConceptNet or WordNet, then merge their\n> outputs with the standard attention-based representations before feeding them through downstream layers for final prediction.\n> Alternatively, we could also try injecting hard-coded binary indicators into each self-attention layer's query matrices Q_t^j(k) to\n> indicate whether certain input tokens correspond to known commonsense concepts such as people, locations, actions etc., which could\n> serve as additional signals guiding the model's attention allocation decisions during training.\n>\n> 4. Incorporating game-theoretic reasoning: While incorporating full-fledged game-theoretic elements like Markov decision processes\n> or stochastic games into transformer architectures may still be computationally prohibitive due to their high dimensionality and\n> non-Markovian nature, we could potentially take baby steps towards this direction by introducing simple binary masks over some pairs\n> of attention weights a_t^j(k, l) in item 2 above based on whether they correspond to tokens that are likely adversaries or allies\n> according to some predefined heuristics (e.g., two consecutive nouns within a small window size are considered potential collaborators\n> while two verbs separated by more than N words apart are seen as competitors). This could encourage the model to learn more\n> sophisticated dependencies between input tokens that go beyond simple co-occurrence patterns and instead capture more nuanced\n> relational structures indicative of underlying strategic interactions between different entities in the text. \n\nWrite a math paper\n\n> Please invent a new idea in the area of mathematics, that combines two or more papers into a new idea that has not yet been published to your knowledge\n> ## Integrability and Computability of Continuous Functions on Infinite Domains: A Category-Theoretical Approach\n> ### Abstract\n> In this paper, we develop a novel approach to the study of integrability and computability of continuous functions on infinite domains using category-theoretic \n> techniques. We combine ideas from descriptive set theory, which studies the hierarchy of sets in terms of their complexity, and functional analysis, which deals with the\n> properties of mappings between function spaces. Our main contribution is to introduce a new notion of \"categorical Lebesgue measurability\" that generalizes both Lebesgue\n> and Henstock-Kurtz integrability for functions on uncountable domains while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem. We also\n> establish connections between this new notion of categorical integrability and various notions of computability, leading to new results on the computability of certain \n> integral transforms such as the Laplace and Mellin transforms in the case of uncountable domains.\n> ### 1 Introduction\n> In this paper, we continue the line of research initiated by [1] and further developed in [2] and [3], which aims to bridge the gap between descriptive set theory and \n> functional analysis by employing category-theoretic techniques. In particular, our goal is to develop a new framework for studying the properties of continuous functions\n> on uncountable domains that combines ideas from both areas while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem (LMCT).\n> ### 2 Preliminaries\n> We assume familiarity with basic category-theoretical concepts such as limits, colimits, and adjoint functors [4]. We also make use of some notions from descriptive set \n> theory, such as the hierarchy of Borel sets [5] and the notion of Lebesgue measurability [6].\n> ### 3 Categorical Lebesgue Measure\n> Let X be an uncountable set endowed with a topology 'mathcal{T}' and let Y be a second countable complete metrizable (scc) space. We say that a function 'phi: X -> Y' is \n> \"categorically Lebesgue measurable\" if there exists a Borel measurable function 'nu: Y^N -> [0,1]' such that for every x in X and any open neighborhood U of 'phi(x)', we \n> have '|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}| > 0' for some 'n in N'. Here, |A| denotes the category (cardinality) of a set A, and '|B^N|' is defined as '|B|^N' for any set B \n> and natural number N.\n> ### 4 Categorical Lebesgue Integral\n> Let X be an uncountable set endowed with a topology 'mathcal{T}' and let Y be an scc space. Let 'phi: X -> Y' be a categorically Lebesgue measurable function, and let '|*|: \n> Y^N -> [0,+infinity]' be a \"categorical modulus of continuity\" in the sense that for any 'x in X' and any open neighborhood 'U' of 'phi(x)', there exists 'M_U > 0' such that '|{y \n> in U | |phi(y_n) - phi(y_{n-1})| > M_U}|\\ < epsilon' for some 'N = N_U,M_U > omega' and all 'epsilon > 0'. Then we define the \"categorical Lebesgue integral\" of phi over X \n> as: \n> \n> 'int_X^cat phi(x) dnu(x) = colim_{epsilon -> 0+} (2 - epsilon)^N sum_{y in Y^N, |{n in N | y_n not in U_n}|\\ < omega} nu(y^-|n-1, y_n)'.\n> ### 5 Applications to Computability\n> In this section, we establish connections between our new notion of categorical Lebesgue measurability and various notions of computability. Let X be an uncountable set \n> endowed with a topology 'mathcal{T}' and 'let Y = R'. We say that a function 'phi: X -> R' is \"categorically Lebesgue computable\" if there exists a Borel measurable function \n> nu: 'R^N -> [0,1]' such that for every 'x in X' and any open interval 'U' containing 'phi(x)', we have '|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}|\\ > 0' for some 'n in N'.\n> ### 6 Conclusion\n> In this paper, we have introduced a new notion of \"categorical Lebesgue measurability\" for functions on uncountable domains that generalizes both Lebesgue and \n> Henstock-Kurtz integrability while retaining key desirable properties such as the LMCT. We also established connections between this new notion of categorical \n> integrability and various notions of computability, leading to new results on the computability of certain integral transforms in the case of uncountable domains. Future\n> directions for research include further exploring the relationship between our new notion of categorical Lebesgue measurability and other generalizations of Lebesgue and\n> Henstock-Kurtz integrability, as well as studying additional properties of our \"categorical Lebesgue integral\" such as its relationship to other notions of integration \n> for functions on uncountable domains.\n> ### References\n> - [1] A. Borel. Sur la correspondance entre les ensembles de points et les fonctions de variables reales, Compt. R. Acad. Sci. Paris 148 (1909), 71-74.\n> - [2] J. Bourbaki. Integration I: Chapters 1-6; Integration II: Chapter 7-9; Topological Vector Spaces, Addison-Wesley, Reading, MA, 1968.\n> - [3] W. H. L. Cheney. Introduction to Analysis, Brooks/Cole, Belmont, CA, 2005.\n> - [4] S. Mac Lane. Categories for the working mathematician, second edition, Graduate Texts in Mathematics No. 5, Springer-Verlag, New York-Heidelberg, 1971.\n> - [5] K. P. Komogorov and A. V. Ulam. On a generalized form of the problem of P. F. Borel, Comb. Math. 1 (1948), 83-86.\n> - [6] J. Dieudonné. Foundations of modern analysis, Academic Press, New York, 1960." ]
[ 146, 4, 4, 17, 69, 18, 10417 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #arxiv-2203.05482 #base_model-cognitivecomputations/dolphin-2.2-70b #base_model-WizardLM/WizardMath-70B-V1.0 #base_model-migtissera/SynthIA-70B-v1.2b #base_model-epfl-llm/meditron-70b #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## Evals## Merge Details### Merge Method\n\nTheProfessor was merged using the linear merge method.### Models Merged\n\nThe following models were included in the merge:\n* cognitivecomputations/dolphin-2.2-70b\n* WizardLM/WizardMath-70B-V1.0\n* migtissera/SynthIA-70B-v1.2b\n* epfl-llm/meditron-70b### Configuration\n\nThe following YAML configuration was used to produce TheProfessor:" ]
[ -0.054822057485580444, 0.10498484969139099, -0.004457870963960886, -0.018991952762007713, 0.0708869993686676, 0.0736745148897171, 0.1828829050064087, 0.11264330893754959, 0.05006762593984604, 0.07962498068809509, 0.024213863536715508, 0.08259007334709167, 0.1200193241238594, 0.13916529715061188, -0.005217902362346649, -0.20377446711063385, 0.07960296422243118, -0.0136185884475708, -0.16789314150810242, 0.10178127884864807, 0.07088300585746765, -0.06769774109125137, 0.10419492423534393, 0.02320227585732937, -0.08862563222646713, -0.006315962877124548, -0.05384022369980812, -0.014537239447236061, 0.09851814061403275, 0.08036348223686218, 0.05373009294271469, 0.03137416020035744, 0.027301322668790817, -0.19927777349948883, 0.03747367486357689, 0.004325254820287228, 0.005966091062873602, 0.07204826921224594, 0.08717022836208344, -0.01725524663925171, 0.14825506508350372, -0.0914819985628128, 0.0776640847325325, 0.039734017103910446, -0.09393759071826935, -0.12550261616706848, -0.1187843382358551, 0.07386910170316696, 0.16123145818710327, 0.026599470525979996, -0.013565300963819027, 0.08076504617929459, 0.07190728932619095, 0.08054956793785095, 0.11298182606697083, -0.3093227744102478, -0.010145774111151695, 0.06738757342100143, 0.016310086473822594, -0.06502733379602432, 0.009366200305521488, 0.04834660142660141, 0.010613251477479935, -0.024453919380903244, -0.021127237007021904, -0.04946167394518852, 0.19848138093948364, -0.0680866613984108, -0.11474809050559998, -0.006619491148740053, 0.14692482352256775, 0.02526629902422428, -0.025224870070815086, -0.06406447291374207, -0.09533637762069702, -0.03687438368797302, -0.029615622013807297, 0.014164629392325878, 0.02961755357682705, -0.04933870583772659, 0.06743568181991577, -0.029096679762005806, -0.04268135502934456, -0.032454222440719604, -0.0873347595334053, 0.20605003833770752, 0.06370467692613602, 0.03887109085917473, -0.05498241260647774, 0.06051570922136307, -0.09745034575462341, -0.0808868259191513, 0.0137172881513834, 0.009334949776530266, -0.11412978172302246, -0.0046228705905377865, -0.045258987694978714, -0.17052039504051208, 0.06095651164650917, 0.14040294289588928, -0.0052827587351202965, 0.06762848794460297, 0.09901078790426254, 0.044854745268821716, 0.03600060194730759, -0.0013530519790947437, -0.2005055844783783, -0.12104222178459167, 0.0379149354994297, 0.07802562415599823, 0.048956237733364105, -0.020494529977440834, -0.09851294010877609, 0.01534503884613514, 0.03360439091920853, 0.018174652010202408, 0.04537292569875717, 0.06003309786319733, -0.040249671787023544, -0.07026582211256027, 0.07235640287399292, -0.09184421598911285, 0.03598257526755333, 0.03337412327528, -0.06232147291302681, 0.022634010761976242, 0.09262654930353165, 0.010224907658994198, 0.02608245424926281, 0.12422062456607819, -0.07527606934309006, 0.001323995180428028, -0.05069855973124504, -0.10046166926622391, 0.0071144974790513515, 0.04245230183005333, -0.02972821332514286, -0.08329975605010986, -0.19787122309207916, -0.04713291674852371, 0.0397484228014946, -0.0871477723121643, -0.00549889262765646, -0.00011863198596984148, -0.0035730961244553328, -0.003415333339944482, -0.0004695395182352513, 0.016897480934858322, -0.017589805647730827, 0.015428931452333927, -0.00764870923012495, 0.06962966173887253, -0.0841393917798996, 0.020925570279359818, -0.035360824316740036, 0.12452612817287445, -0.12878575921058655, 0.08221520483493805, -0.008615588769316673, 0.053681857883930206, -0.12177342176437378, -0.039449144154787064, -0.00020065226999577135, -0.011526389047503471, 0.10025806725025177, 0.12312881648540497, -0.2189660370349884, -0.055744171142578125, 0.15420402586460114, -0.09238189458847046, -0.10832347720861435, 0.08076456934213638, -0.007434119004756212, 0.03383423015475273, 0.06350507587194443, 0.19509713351726532, 0.0621587298810482, -0.04260338097810745, 0.0013306902255862951, -0.12474603205919266, 0.09015513956546783, 0.07492441684007645, 0.07192154228687286, 0.0034371104557067156, -0.012420034036040306, 0.02392762526869774, -0.09851586073637009, 0.11519215255975723, -0.061319004744291306, -0.0583481639623642, -0.005458850413560867, -0.07670420408248901, 0.005398590583354235, -0.06594885885715485, 0.017968634143471718, -0.059762515127658844, -0.029648076742887497, 0.0265217125415802, 0.12098550796508789, -0.08009600639343262, 0.026216179132461548, -0.06427209079265594, 0.1469326615333557, -0.05554570257663727, 0.06608103215694427, -0.1209825798869133, -0.034362878650426865, -0.006615059450268745, -0.04857221245765686, 0.0823698416352272, -0.02928876131772995, 0.06183996796607971, 0.05908787250518799, -0.009792892262339592, -0.049376893788576126, 0.05652932822704315, 0.03780997917056084, -0.03800642490386963, -0.20780040323734283, -0.061222877353429794, -0.041647884994745255, 0.23237021267414093, -0.06993227452039719, 0.07333486527204514, 0.013924467377364635, 0.21500080823898315, -0.04265866056084633, -0.03200472891330719, 0.05900875851511955, 0.015689603984355927, -0.028232770040631294, -0.016441158950328827, 0.07224429398775101, 0.007964341901242733, -0.15461522340774536, 0.07985198497772217, -0.21228614449501038, 0.024598218500614166, 0.07347717136144638, 0.07290653139352798, -0.07426640391349792, -0.027716059237718582, 0.0025403734762221575, -0.05974108725786209, 0.07439496368169785, -0.07971018552780151, 0.13790501654148102, 0.06664694100618362, 0.14073693752288818, -0.04450099170207977, -0.0023430672008544207, 0.012442677281796932, -0.04105347394943237, -0.013341053389012814, 0.08329278230667114, -0.005834563169628382, -0.17530523240566254, 0.09470102936029434, 0.04655059427022934, 0.04830927029252052, 0.07804819941520691, 0.04110299423336983, -0.04591090604662895, -0.10457423329353333, 0.025845535099506378, 0.02760782465338707, 0.04928026720881462, -0.032929323613643646, 0.006567114498466253, 0.06902205944061279, 0.0015364509308710694, 0.03630318492650986, -0.14334125816822052, 0.029221557080745697, 0.07020913064479828, 0.003176220925524831, 0.11558568477630615, 0.0364280566573143, 0.005559949204325676, 0.09251172840595245, 0.0027109491638839245, -0.018288137391209602, -0.04897305369377136, -0.02522425167262554, -0.09714220464229584, 0.21550096571445465, -0.12474092096090317, -0.25744664669036865, -0.15544626116752625, -0.11133497208356857, -0.07019063830375671, -0.031824737787246704, 0.01620924100279808, -0.04044477269053459, -0.07387813925743103, -0.06862561404705048, 0.07785719633102417, 0.0168023481965065, 0.023358022794127464, 0.053826235234737396, -0.04188629239797592, 0.04459342733025551, -0.0966179147362709, -0.007955524139106274, -0.01172838918864727, 0.02539018914103508, 0.047318100929260254, 0.0298067107796669, 0.09282076358795166, 0.17634044587612152, -0.03665370121598244, 0.012080442160367966, 0.0049469973891973495, 0.2852458357810974, -0.036248356103897095, 0.07321237027645111, 0.10964751243591309, -0.08524684607982635, 0.04402770847082138, 0.18581442534923553, 0.03868448734283447, -0.11246591061353683, -0.014573886059224606, -0.0029892628081142902, -0.05119679495692253, -0.21142645180225372, -0.09560170024633408, -0.05838249996304512, 0.017218394204974174, 0.04470893368124962, 0.05117436870932579, 0.045956969261169434, 0.019344238564372063, -0.03382602706551552, -0.011890997178852558, 0.05716508626937866, 0.08073662221431732, 0.17766991257667542, -0.009162748232483864, 0.0841807872056961, -0.010665616020560265, -0.010789323598146439, 0.019591759890317917, 0.10781523585319519, 0.18477806448936462, 0.0711408481001854, 0.20820294320583344, 0.06638193875551224, -0.045360714197158813, 0.011727462522685528, 0.06614891439676285, -0.060067806392908096, 0.011825012043118477, -0.03992783650755882, -0.07881978899240494, -0.010985438711941242, 0.04819285497069359, -0.009121588431298733, 0.0665605440735817, -0.026550903916358948, 0.03906884416937828, 0.04996984452009201, 0.08597841113805771, 0.034041017293930054, -0.22146376967430115, -0.04833870753645897, 0.043864473700523376, -0.0034792721271514893, -0.030344847589731216, -0.057132087647914886, -0.01147906668484211, -0.057224374264478683, 0.1268322914838791, -0.06437301635742188, 0.0916760116815567, -0.06728280335664749, -0.025350969284772873, -0.007974119856953621, 0.0742584764957428, 0.023706592619419098, 0.02031826227903366, -0.06737542897462845, 0.18217028677463531, 0.017855219542980194, -0.004992379806935787, 0.03932519629597664, 0.058604057878255844, 0.007961797527968884, 0.18452298641204834, 0.07484462112188339, 0.03186824172735214, -0.018019361421465874, -0.03652367368340492, -0.14912107586860657, -0.02697083353996277, 0.014651380479335785, -0.03631511330604553, 0.12670265138149261, -0.0060885390266776085, -0.05266992747783661, -0.030059242621064186, 0.06394553929567337, -0.03416213020682335, -0.17843608558177948, 0.10854136943817139, -0.0014655429404228926, 0.032878972589969635, -0.08538057655096054, -0.0637478455901146, -0.1475319266319275, 0.23325441777706146, -0.03325692191720009, -0.08603528141975403, -0.0911073386669159, 0.03001408837735653, 0.18290165066719055, -0.057130131870508194, 0.026110589504241943, -0.0548953078687191, 0.07108932733535767, -0.0641527771949768, -0.11072797328233719, 0.050001464784145355, -0.07402284443378448, -0.13896436989307404, -0.05891125276684761, 0.16698135435581207, -0.05700234696269035, 0.08330287784337997, -0.022639846429228783, 0.04704519733786583, -0.03300910443067551, -0.052562691271305084, 0.0072546168230473995, 0.17231251299381256, -0.01753990165889263, 0.042929086834192276, 0.005087315104901791, -0.09750255942344666, -0.0958179160952568, -0.012931053526699543, 0.15851570665836334, 0.32095637917518616, -0.02211330272257328, 0.07948318123817444, 0.08447450399398804, -0.0961533859372139, -0.13388881087303162, -0.027210168540477753, 0.02205515280365944, 0.04084964841604233, -0.028073733672499657, -0.10909706354141235, 0.006357429549098015, 0.09103544801473618, 0.005691629834473133, 0.1040022224187851, -0.33106163144111633, -0.17331111431121826, 0.032105591148138046, 0.08970630913972855, 0.145011305809021, -0.20979000627994537, -0.081923708319664, -0.061740558594465256, -0.2133922576904297, 0.09236567467451096, 0.005566846579313278, 0.10442125052213669, -0.024626335129141808, 0.10866984724998474, 0.00883607566356659, -0.055397581309080124, 0.19998788833618164, -0.05589427053928375, 0.011108054779469967, -0.020943257957696915, -0.030896924436092377, 0.046024274080991745, -0.03383874148130417, 0.07904781401157379, -0.06173761188983917, -0.016318969428539276, -0.06267667561769485, -0.026295581832528114, -0.06971317529678345, 0.020868459716439247, -0.04434754326939583, -0.03605422377586365, -0.06864220649003983, 0.03772209212183952, 0.0789201483130455, -0.00531559344381094, 0.07822161167860031, -0.028696507215499878, 0.026093676686286926, 0.13681399822235107, 0.05201944708824158, -0.01855301298201084, -0.13514378666877747, 0.02282312512397766, -0.03628270700573921, 0.03579029068350792, -0.1307111233472824, -0.03465545177459717, 0.13530699908733368, 0.00413593789562583, 0.14943331480026245, 0.007459348067641258, -0.11995479464530945, -0.04185352474451065, 0.053223203867673874, -0.13045035302639008, -0.23314060270786285, 0.0351349301636219, 0.15031810104846954, -0.026663977652788162, 0.03361813351511955, 0.15057140588760376, -0.05315941944718361, -0.042312245815992355, 0.04360952228307724, 0.02607257477939129, -0.04495973885059357, 0.17525950074195862, 0.008172465488314629, 0.05324757844209671, -0.12649738788604736, 0.030275538563728333, 0.041037946939468384, -0.10864511132240295, 0.03848499804735184, 0.10906720161437988, -0.08908315002918243, -0.029268259182572365, -0.14470985531806946, 0.18685413897037506, -0.035211335867643356, -0.03568917140364647, -0.12159029394388199, -0.12960611283779144, 0.011772368103265762, 0.09745609760284424, 0.04435713216662407, -0.000663803773932159, -0.012180418707430363, -0.0674416571855545, -0.06232842803001404, 0.1039566844701767, 0.03896656632423401, 0.09092609584331512, -0.11366346478462219, 0.10907062143087387, -0.02130470611155033, -0.008771987631917, -0.01794045977294445, 0.006321114022284746, -0.08079712092876434, -0.021782049909234047, -0.10535832494497299, -0.011545984074473381, -0.17692404985427856, -0.05020071193575859, 0.0184495709836483, -0.014394745230674744, -0.021111568436026573, 0.010937793180346489, -0.06601520627737045, -0.050363924354314804, -0.06271862983703613, -0.01820966973900795, -0.04488753154873848, -0.06398617476224899, -0.010997463949024677, -0.0995524600148201, 0.029820917174220085, 0.02474450133740902, -0.003713013371452689, -0.03481924533843994, -0.09073509275913239, -0.030543114989995956, 0.05568861588835716, 0.011107811704277992, 0.04005236178636551, -0.2282746285200119, -0.040067531168460846, -0.020776689052581787, -0.05427943542599678, -0.019972383975982666, 0.07271414995193481, -0.08575466275215149, -0.047571588307619095, -0.05254315584897995, -0.019441183656454086, -0.004051908850669861, -0.03411085531115532, 0.03864635154604912, 0.07423113286495209, 0.13271741569042206, -0.04493991658091545, 0.08011653274297714, -0.1780233234167099, -0.003776796394959092, -0.016236867755651474, -0.07548288255929947, -0.016479432582855225, -0.07004664093255997, 0.03822852298617363, -0.03245880827307701, 0.13763484358787537, -0.05168132856488228, -0.0875660851597786, 0.028586043044924736, 0.007325534243136644, 0.0020757662132382393, 0.08141893893480301, 0.15217961370944977, 0.005249324720352888, 0.023530181497335434, -0.05070625618100166, 0.04677222669124603, 0.017933866009116173, -0.004185738507658243, 0.0774575024843216, 0.036281466484069824, 0.10203830897808075, 0.05538283661007881, 0.09449151903390884, -0.02602371573448181, -0.053266674280166626, -0.03833432495594025, -0.06364507973194122, 0.06806780397891998, 0.0011595598189160228, 0.23306818306446075, 0.14742226898670197, -0.1561703234910965, 0.07833849638700485, -0.007113344967365265, -0.0742785632610321, -0.06552185863256454, -0.04965466260910034, -0.07965010404586792, -0.08112356066703796, -0.02200981229543686, -0.10351551324129105, -0.009541795589029789, -0.06206366419792175, 0.018888285383582115, 0.004993387032300234, 0.15920284390449524, -0.008889427408576012, -0.026547186076641083, -0.011314795352518559, 0.05248582363128662, -0.026093672960996628, 0.01983395218849182, -0.031099887564778328, 0.03890411555767059, -0.029988711699843407, 0.02464369498193264, 0.05114832893013954, 0.032361697405576706, 0.046425752341747284, 0.0015541770262643695, -0.10574773699045181, 0.0017162313451990485, 0.017016271129250526, 0.07287124544382095, 0.02984100952744484, 0.019305650144815445, -0.039770692586898804, -0.05109262466430664, 0.04901888594031334, -0.039358533918857574, -0.06033914163708687, -0.1002194881439209, 0.11637480556964874, -0.05589710921049118, 0.03572593256831169, 0.03368178382515907, -0.06987680494785309, -0.0035010604187846184, 0.1632220447063446, 0.2542891800403595, -0.030250540003180504, -0.028514647856354713, 0.03288305923342705, 0.011816083453595638, -0.015292163006961346, 0.030285734683275223, 0.07255052775144577, 0.12928031384944916, -0.04607216641306877, 0.06481754779815674, -0.07085159420967102, -0.08726076036691666, -0.0718868151307106, 0.0055802795104682446, 0.02120502106845379, 0.01708066463470459, 0.009874180890619755, 0.07484661787748337, -0.04880208894610405, -0.16973349452018738, 0.09279803931713104, -0.2205314338207245, -0.12433059513568878, -0.07590226083993912, 0.07843700796365738, 0.008068929426372051, 0.06977513432502747, -0.047603100538253784, -0.018057983368635178, 0.15815159678459167, 0.013210618868470192, -0.0958002582192421, -0.07173046469688416, 0.05070963501930237, -0.09152628481388092, 0.02798621729016304, -0.012459412217140198, 0.0648978129029274, 0.09429441392421722, -0.02031933143734932, -0.12290812283754349, 0.006664989981800318, 0.05979018285870552, 0.01163845881819725, 0.03806110844016075, 0.1340590864419937, 0.004606619942933321, 0.07139917463064194, 0.02558259107172489, -0.14773118495941162, -0.008317387662827969, 0.029850803315639496, -0.038975946605205536, -0.04535672441124916, 0.06164911761879921, -0.057634029537439346, 0.13169942796230316, 0.15411990880966187, -0.061631377786397934, 0.009721405804157257, -0.02748018130660057, -0.0029962335247546434, 0.10501283407211304, 0.12338317185640335, -0.03836954012513161, -0.2541572153568268, 0.005833087023347616, 0.010291614569723606, 0.09907558560371399, -0.2857668101787567, -0.11841611564159393, -0.09500455111265182, -0.046686965972185135, -0.07130969315767288, 0.1235414370894432, 0.10149618983268738, 0.03528670221567154, -0.0371956042945385, -0.11952351778745651, 0.00786164402961731, 0.1049102172255516, -0.1126847192645073, -0.055685702711343765 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-classification
CatBarks/bertES_posWeighted4_model
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T03:14:38+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 46, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06817419826984406, 0.1699906885623932, -0.003845146857202053, 0.018365124240517616, 0.11478200554847717, 0.00763329304754734, 0.07986336201429367, 0.10738246887922287, -0.0269484706223011, 0.1267213374376297, 0.03862300142645836, 0.1017010435461998, 0.11044707149267197, 0.18616852164268494, 0.002953584771603346, -0.2117370218038559, 0.062315817922353745, -0.11355884373188019, 0.01421935111284256, 0.12174045294523239, 0.14285145699977875, -0.10472407191991806, 0.07340893894433975, -0.03533155843615532, -0.019184017553925514, -0.029508300125598907, -0.06138347089290619, -0.062117863446474075, 0.06899366527795792, 0.06911981105804443, 0.06776530295610428, 0.02535320073366165, 0.07980640977621078, -0.2927248775959015, 0.019224179908633232, 0.07704847306013107, 0.004596637096256018, 0.06310366839170456, 0.07900875061750412, -0.06604467332363129, 0.12630145251750946, -0.0469624362885952, 0.15577000379562378, 0.07483451068401337, -0.09700790792703629, -0.1833430528640747, -0.07868417352437973, 0.08138132095336914, 0.1542958915233612, 0.0575118213891983, -0.03566069155931473, 0.14360417425632477, -0.0863327905535698, 0.015191552229225636, 0.06608161330223083, -0.07603584229946136, -0.05265629291534424, 0.04255614057183266, 0.07708034664392471, 0.09375373274087906, -0.1291297972202301, -0.010211804881691933, 0.04229271039366722, 0.01873886212706566, 0.10347303748130798, 0.02310175821185112, 0.11163661628961563, 0.026270611211657524, -0.13941870629787445, -0.06378244608640671, 0.1267201453447342, 0.02999917045235634, -0.05697820335626602, -0.23340454697608948, -0.007031846325844526, -0.028088124468922615, -0.024382783100008965, -0.03983099386096001, 0.03844287618994713, -0.0294374767690897, 0.07875318825244904, 0.011917876079678535, -0.07096433639526367, -0.04893866181373596, 0.08819517493247986, 0.06123629957437515, 0.022971229627728462, -0.02526908740401268, 0.02413375861942768, 0.11652170121669769, 0.09283795207738876, -0.11929406225681305, -0.06425759196281433, -0.06432286649942398, -0.08888134360313416, -0.04847237840294838, 0.03574979677796364, 0.0754702165722847, 0.04938753694295883, 0.19765597581863403, 0.006366121117025614, 0.05646394565701485, 0.0260426327586174, 0.015338202007114887, 0.06355882436037064, 0.07606974244117737, -0.0483609177172184, -0.13532373309135437, -0.041331104934215546, 0.11784996092319489, 0.007102925330400467, -0.032494835555553436, -0.03608081117272377, 0.06173410639166832, 0.05820438638329506, 0.1192656010389328, 0.06626396626234055, 0.019241811707615852, -0.06749388575553894, -0.03806937485933304, 0.1874811202287674, -0.1540532261133194, 0.020778683945536613, 0.01720726117491722, -0.05474008247256279, -0.043989501893520355, 0.0171356238424778, 0.008756347931921482, -0.02707439661026001, 0.10765543580055237, -0.0681026354432106, -0.03794260695576668, -0.10775765031576157, -0.057500679045915604, 0.032596319913864136, -0.011795170605182648, -0.030085675418376923, -0.0443500280380249, -0.1081358790397644, -0.07622874528169632, 0.06656987965106964, -0.06241556629538536, -0.07165607810020447, -0.03565853461623192, -0.05456356331706047, 0.012712954543530941, 0.002376573858782649, 0.12743701040744781, -0.02916865609586239, 0.04608776792883873, -0.04567936435341835, 0.06814887374639511, 0.13260088860988617, 0.03273140639066696, -0.07753180712461472, 0.0658058449625969, -0.21566881239414215, 0.10687019675970078, -0.09710393846035004, 0.030530039221048355, -0.1602926403284073, -0.027380328625440598, 0.025517668575048447, 0.035233598202466965, -0.01142354216426611, 0.1405038684606552, -0.18839864432811737, -0.036833859980106354, 0.17594264447689056, -0.13455410301685333, -0.09238629788160324, 0.06278568506240845, -0.057844966650009155, 0.12792403995990753, 0.05209182947874069, -0.027332304045557976, 0.059202857315540314, -0.13285812735557556, -0.024411480873823166, -0.0557100772857666, -0.0024997375439852476, 0.1512058526277542, 0.06197551265358925, -0.05537422001361847, 0.02062765136361122, 0.020016051828861237, -0.024297641590237617, -0.045233841985464096, -0.034582652151584625, -0.0977277010679245, 0.006374812684953213, -0.07783913612365723, 0.015467152930796146, -0.014978265389800072, -0.08572793006896973, -0.037934768944978714, -0.15898989140987396, -0.0011305080261081457, 0.09650373458862305, 0.007345336955040693, -0.029424650594592094, -0.09241348505020142, 0.005526319146156311, 0.014208783395588398, -0.01407501008361578, -0.15675009787082672, -0.05031281337141991, 0.03119790367782116, -0.16866113245487213, 0.033627450466156006, -0.04903757572174072, 0.03549545630812645, 0.04459671676158905, -0.04535774141550064, -0.02160848118364811, 0.0152364457026124, 0.017460787668824196, -0.02394135482609272, -0.24046528339385986, -0.016492176800966263, -0.049182213842868805, 0.17930001020431519, -0.24510087072849274, 0.04199686273932457, 0.062341514974832535, 0.12092601507902145, 0.005246761720627546, -0.047405339777469635, 0.03611646965146065, -0.04782456159591675, -0.04614211246371269, -0.06458985060453415, -0.004041698761284351, -0.03005247749388218, -0.04619463160634041, 0.04105473682284355, -0.19605930149555206, -0.029964644461870193, 0.11028317362070084, 0.07146124541759491, -0.1701718270778656, -0.07740049809217453, -0.03032514825463295, -0.06061795726418495, -0.09144899994134903, -0.04754206910729408, 0.10501570999622345, 0.0424359068274498, 0.054926108568906784, -0.07243066281080246, -0.047703035175800323, 0.012159520760178566, -0.008316845633089542, -0.035265736281871796, 0.0910128578543663, 0.09147894382476807, -0.1183665320277214, 0.1003284826874733, 0.06719938665628433, 0.061502620577812195, 0.10171586275100708, 0.005867301486432552, -0.09559345990419388, -0.012123096734285355, 0.023821083828806877, 0.014739413745701313, 0.13627171516418457, -0.08041682839393616, 0.03041158802807331, 0.043761420994997025, -0.03445654734969139, 0.011279189959168434, -0.10341424494981766, 0.02347799763083458, 0.03186830133199692, -0.007050554268062115, 0.025736309587955475, -0.054652560502290726, 0.013161799870431423, 0.1042112186551094, 0.03211836516857147, 0.0227707140147686, 0.015011876821517944, -0.03876445069909096, -0.12403564900159836, 0.17888623476028442, -0.09523385018110275, -0.25718894600868225, -0.12982366979122162, 0.0025806569028645754, 0.04723223298788071, -0.01322246715426445, 0.01721704937517643, -0.057064954191446304, -0.10620168596506119, -0.10562704503536224, 0.017637979239225388, 0.05363597348332405, -0.08985256403684616, -0.06360358744859695, 0.05353172495961189, 0.038684699684381485, -0.12286891043186188, 0.023170825093984604, 0.04556644707918167, -0.0685787945985794, 0.004107215907424688, 0.05788148567080498, 0.08483386784791946, 0.18220773339271545, 0.013182112947106361, -0.017085859552025795, 0.012520790100097656, 0.22458304464817047, -0.14599265158176422, 0.09336943179368973, 0.13670575618743896, -0.0603153258562088, 0.08385994285345078, 0.20927630364894867, 0.031639765948057175, -0.09247095137834549, 0.04077373072504997, 0.032938770949840546, -0.040111273527145386, -0.23512989282608032, -0.07784179598093033, 0.0005755177116952837, -0.07578593492507935, 0.10564399510622025, 0.09113350510597229, 0.11394096910953522, 0.05373004451394081, -0.10628228634595871, -0.06785868853330612, 0.04576247185468674, 0.11892180144786835, -0.020387137308716774, 0.0034232554025948048, 0.09533460438251495, -0.032669007778167725, 0.016892950981855392, 0.0903218612074852, 0.010076770558953285, 0.18146716058254242, 0.040793538093566895, 0.12895575165748596, 0.08216089755296707, 0.06404399126768112, 0.023877892643213272, 0.01690720207989216, 0.028041476383805275, 0.02853785827755928, -0.021422842517495155, -0.08959300816059113, -0.01811058260500431, 0.14208537340164185, 0.03174193948507309, 0.030387144535779953, 0.009561240673065186, -0.0344390794634819, 0.0656830444931984, 0.16341377794742584, 0.01373966783285141, -0.23032663762569427, -0.06265294551849365, 0.07538370788097382, -0.07251506298780441, -0.11472991853952408, -0.007447437848895788, 0.029569825157523155, -0.17949488759040833, 0.045079123228788376, -0.02245110087096691, 0.1028464064002037, -0.11004801839590073, -0.024476202204823494, 0.04228143393993378, 0.06811302900314331, -0.03619502857327461, 0.07936927676200867, -0.21071307361125946, 0.14414268732070923, 0.0071875168941915035, 0.0627245381474495, -0.10963346809148788, 0.08230046182870865, 0.02151823230087757, 0.009466269053518772, 0.16101586818695068, -0.0074920570477843285, -0.09318114817142487, -0.07651645690202713, -0.07556641101837158, -0.011319656856358051, 0.09559466689825058, -0.10184428840875626, 0.08486217260360718, -0.008358954451978207, -0.03313955292105675, -0.00388424564152956, -0.1140027567744255, -0.13622364401817322, -0.18601436913013458, 0.05523287504911423, -0.11181046068668365, 0.03691478446125984, -0.11166879534721375, -0.06252610683441162, -0.02911795862019062, 0.19807842373847961, -0.1904531568288803, -0.08140338957309723, -0.14539870619773865, -0.07204011082649231, 0.12212951481342316, -0.04274967685341835, 0.07663191109895706, 0.00015701932716183364, 0.2071707546710968, -0.004644640255719423, 0.0014644638868048787, 0.0856679305434227, -0.09557735919952393, -0.206184521317482, -0.09439684450626373, 0.13821037113666534, 0.12497473508119583, 0.04596934840083122, -0.0036321566440165043, 0.024304913356900215, -0.0027867835015058517, -0.10976199060678482, 0.02332260087132454, 0.1432444006204605, 0.08416087180376053, 0.03885705769062042, -0.02675866149365902, -0.14533737301826477, -0.1054752767086029, -0.05289754271507263, 0.019448768347501755, 0.17674845457077026, -0.07222644239664078, 0.1607094258069992, 0.15837931632995605, -0.06414622813463211, -0.20734171569347382, 0.032782182097435, 0.03679283335804939, -0.011663361452519894, 0.03244366869330406, -0.20815548300743103, 0.07330463081598282, 0.016213007271289825, -0.06075131520628929, 0.1363404095172882, -0.1705039143562317, -0.14891991019248962, 0.0919104814529419, 0.07189090549945831, -0.2193969339132309, -0.13394345343112946, -0.09907522052526474, -0.055755600333213806, -0.10410746932029724, 0.08695419132709503, 0.014253350906074047, 0.004559517838060856, 0.040003977715969086, 0.024713784456253052, 0.021094202995300293, -0.05303549766540527, 0.19554594159126282, -0.004308625590056181, 0.041122131049633026, -0.08143328875303268, -0.08729361742734909, 0.030160382390022278, -0.06146852299571037, 0.07429458200931549, -0.02577015943825245, 0.004456855356693268, -0.1102396696805954, -0.06384536623954773, -0.05289682373404503, 0.03639809414744377, -0.08915901929140091, -0.0958789587020874, -0.05767008289694786, 0.10389325767755508, 0.08919540792703629, -0.03324571251869202, -0.058615610003471375, -0.10058292001485825, 0.0726626068353653, 0.22699709236621857, 0.18807223439216614, 0.07284927368164062, -0.07015843689441681, 0.0006279588560573757, -0.022037893533706665, 0.05516184866428375, -0.20622296631336212, 0.04608523100614548, 0.042553652077913284, 0.028887338936328888, 0.13527612388134003, -0.02506665140390396, -0.1602775603532791, -0.04527048021554947, 0.06014934554696083, -0.06545355916023254, -0.1614707112312317, -0.0005388054414652288, 0.09576781094074249, -0.16179001331329346, -0.06273222714662552, 0.024773813784122467, -0.036137934774160385, -0.025756290182471275, 0.0013679420808330178, 0.08270203322172165, 0.027825508266687393, 0.11478793621063232, 0.06896458566188812, 0.11150709539651871, -0.10231363028287888, 0.08406093716621399, 0.09299708157777786, -0.10971303284168243, 0.03247435390949249, 0.07298728823661804, -0.0610542818903923, -0.03390142321586609, 0.023122351616621017, 0.08364028483629227, 0.026266440749168396, -0.0744837298989296, -0.0008558011031709611, -0.1099681630730629, 0.06663114577531815, 0.13796411454677582, 0.032853204756975174, 0.0030810926109552383, 0.04435998201370239, 0.025823330506682396, -0.09881676733493805, 0.11186433583498001, 0.03916766867041588, 0.03720828518271446, -0.04767070338129997, 0.004865953233093023, 0.041960928589105606, -0.01269921287894249, -0.016253290697932243, -0.039693526923656464, -0.06471271812915802, -0.010708925314247608, -0.15688052773475647, 0.031037067994475365, -0.07176970690488815, 0.009115522727370262, 0.018755896016955376, -0.033779606223106384, 0.0002807097043842077, 0.0073861307464540005, -0.07919271290302277, -0.03761441633105278, -0.006646361667662859, 0.10705258697271347, -0.15747743844985962, 0.008323745802044868, 0.08949586004018784, -0.12556882202625275, 0.07766758650541306, -0.007498627994209528, -0.010838181711733341, 0.01879316382110119, -0.14380721747875214, 0.06054820865392685, -0.008177737705409527, 0.006405212916433811, 0.023949483409523964, -0.20071232318878174, 0.005702852737158537, -0.04664513096213341, -0.053938448429107666, -0.00976315326988697, -0.04211960732936859, -0.11404810100793839, 0.10492629557847977, 0.0196357611566782, -0.0860515683889389, -0.018402770161628723, 0.05309472978115082, 0.10592338442802429, -0.057369641959667206, 0.1371336728334427, -0.02283608354628086, 0.05825338885188103, -0.17831756174564362, -0.016339747235178947, -0.017454219982028008, 0.012596609070897102, -0.03102201037108898, -0.008158523589372635, 0.05483707785606384, -0.015072896145284176, 0.22714339196681976, -0.021177595481276512, 0.030790245160460472, 0.06548503786325455, 0.0070373364724218845, -0.013032838702201843, 0.08790382742881775, 0.04639120027422905, 0.021969040855765343, 0.017426103353500366, 0.016819516196846962, -0.047575462609529495, -0.019116412848234177, -0.12834098935127258, 0.08396804332733154, 0.16439755260944366, 0.08264775574207306, -0.005125291179865599, 0.053218428045511246, -0.11920209228992462, -0.08098750561475754, 0.10049403458833694, -0.033211447298526764, -0.001258186181075871, -0.057700008153915405, 0.14298145473003387, 0.15607422590255737, -0.1750815361738205, 0.06616412103176117, -0.07047461718320847, -0.05687202885746956, -0.11070677638053894, -0.17143365740776062, -0.06694129854440689, -0.03149404004216194, -0.005430171266198158, -0.06143372505903244, 0.06926561146974564, 0.10244123637676239, 0.008475886657834053, 0.002354414900764823, 0.08415096998214722, -0.033749498426914215, -0.0007962242234498262, 0.04344722256064415, 0.05283457785844803, 0.021373692899942398, -0.06691429764032364, 0.0076249162666499615, 0.004598149098455906, 0.038937900215387344, 0.05476561188697815, 0.0317605659365654, -0.014559607952833176, 0.011871086433529854, -0.013089693151414394, -0.09815122187137604, 0.03718226030468941, -0.029980625957250595, -0.0468674972653389, 0.14802806079387665, 0.01827765442430973, 0.0034919960889965296, -0.021031659096479416, 0.23128560185432434, -0.06903756409883499, -0.0798255056142807, -0.14009471237659454, 0.15071772038936615, -0.04670744761824608, 0.05065378174185753, 0.04940982535481453, -0.10087474435567856, 0.03407741338014603, 0.14691931009292603, 0.14527682960033417, -0.02467990294098854, 0.007901503704488277, 0.011187983676791191, 0.0055741616524755955, -0.025625228881835938, 0.05354921892285347, 0.04412171617150307, 0.12145667523145676, -0.06669453531503677, 0.09297986328601837, -0.007810541894286871, -0.0844663754105568, -0.02094031497836113, 0.1328510195016861, 0.0014671299140900373, 0.02338746376335621, -0.0805477648973465, 0.11851188540458679, -0.06559251248836517, -0.25864502787590027, 0.061333827674388885, -0.06666524708271027, -0.15384668111801147, -0.018917718902230263, 0.02399173192679882, 0.00401253392919898, 0.024401430040597916, 0.06268756836652756, -0.06360985338687897, 0.14903949201107025, 0.03688151761889458, -0.07834678888320923, -0.07808853685855865, 0.07696148753166199, -0.08397532254457474, 0.3018210828304291, 0.008228152059018612, 0.04951678216457367, 0.09650786966085434, -0.03327273949980736, -0.13361208140850067, 0.04569283500313759, 0.09728528559207916, -0.06408768892288208, 0.06690182536840439, 0.19748380780220032, -0.008177485316991806, 0.12026696652173996, 0.07469146698713303, -0.08128973841667175, 0.057554539293050766, -0.07613562047481537, -0.09007242321968079, -0.09192728251218796, 0.08888110518455505, -0.060599785298109055, 0.15479759871959686, 0.13393908739089966, -0.04440179467201233, -0.001819826546125114, -0.03071022778749466, 0.05197824910283089, -0.002023093169555068, 0.1104598417878151, 0.022785736247897148, -0.19388216733932495, 0.031831543892621994, -0.014316190034151077, 0.0986877828836441, -0.2479904145002365, -0.07837841659784317, 0.0403057225048542, -0.013808837160468102, -0.05274871736764908, 0.12204353511333466, 0.052187733352184296, 0.04937480762600899, -0.05449601635336876, -0.057812657207250595, -0.00025569170247763395, 0.16358551383018494, -0.1094348207116127, -0.00204258831217885 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-classification
CatBarks/bertES_posWeighted0.7000000000000001_model
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T03:14:43+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 46, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06817419826984406, 0.1699906885623932, -0.003845146857202053, 0.018365124240517616, 0.11478200554847717, 0.00763329304754734, 0.07986336201429367, 0.10738246887922287, -0.0269484706223011, 0.1267213374376297, 0.03862300142645836, 0.1017010435461998, 0.11044707149267197, 0.18616852164268494, 0.002953584771603346, -0.2117370218038559, 0.062315817922353745, -0.11355884373188019, 0.01421935111284256, 0.12174045294523239, 0.14285145699977875, -0.10472407191991806, 0.07340893894433975, -0.03533155843615532, -0.019184017553925514, -0.029508300125598907, -0.06138347089290619, -0.062117863446474075, 0.06899366527795792, 0.06911981105804443, 0.06776530295610428, 0.02535320073366165, 0.07980640977621078, -0.2927248775959015, 0.019224179908633232, 0.07704847306013107, 0.004596637096256018, 0.06310366839170456, 0.07900875061750412, -0.06604467332363129, 0.12630145251750946, -0.0469624362885952, 0.15577000379562378, 0.07483451068401337, -0.09700790792703629, -0.1833430528640747, -0.07868417352437973, 0.08138132095336914, 0.1542958915233612, 0.0575118213891983, -0.03566069155931473, 0.14360417425632477, -0.0863327905535698, 0.015191552229225636, 0.06608161330223083, -0.07603584229946136, -0.05265629291534424, 0.04255614057183266, 0.07708034664392471, 0.09375373274087906, -0.1291297972202301, -0.010211804881691933, 0.04229271039366722, 0.01873886212706566, 0.10347303748130798, 0.02310175821185112, 0.11163661628961563, 0.026270611211657524, -0.13941870629787445, -0.06378244608640671, 0.1267201453447342, 0.02999917045235634, -0.05697820335626602, -0.23340454697608948, -0.007031846325844526, -0.028088124468922615, -0.024382783100008965, -0.03983099386096001, 0.03844287618994713, -0.0294374767690897, 0.07875318825244904, 0.011917876079678535, -0.07096433639526367, -0.04893866181373596, 0.08819517493247986, 0.06123629957437515, 0.022971229627728462, -0.02526908740401268, 0.02413375861942768, 0.11652170121669769, 0.09283795207738876, -0.11929406225681305, -0.06425759196281433, -0.06432286649942398, -0.08888134360313416, -0.04847237840294838, 0.03574979677796364, 0.0754702165722847, 0.04938753694295883, 0.19765597581863403, 0.006366121117025614, 0.05646394565701485, 0.0260426327586174, 0.015338202007114887, 0.06355882436037064, 0.07606974244117737, -0.0483609177172184, -0.13532373309135437, -0.041331104934215546, 0.11784996092319489, 0.007102925330400467, -0.032494835555553436, -0.03608081117272377, 0.06173410639166832, 0.05820438638329506, 0.1192656010389328, 0.06626396626234055, 0.019241811707615852, -0.06749388575553894, -0.03806937485933304, 0.1874811202287674, -0.1540532261133194, 0.020778683945536613, 0.01720726117491722, -0.05474008247256279, -0.043989501893520355, 0.0171356238424778, 0.008756347931921482, -0.02707439661026001, 0.10765543580055237, -0.0681026354432106, -0.03794260695576668, -0.10775765031576157, -0.057500679045915604, 0.032596319913864136, -0.011795170605182648, -0.030085675418376923, -0.0443500280380249, -0.1081358790397644, -0.07622874528169632, 0.06656987965106964, -0.06241556629538536, -0.07165607810020447, -0.03565853461623192, -0.05456356331706047, 0.012712954543530941, 0.002376573858782649, 0.12743701040744781, -0.02916865609586239, 0.04608776792883873, -0.04567936435341835, 0.06814887374639511, 0.13260088860988617, 0.03273140639066696, -0.07753180712461472, 0.0658058449625969, -0.21566881239414215, 0.10687019675970078, -0.09710393846035004, 0.030530039221048355, -0.1602926403284073, -0.027380328625440598, 0.025517668575048447, 0.035233598202466965, -0.01142354216426611, 0.1405038684606552, -0.18839864432811737, -0.036833859980106354, 0.17594264447689056, -0.13455410301685333, -0.09238629788160324, 0.06278568506240845, -0.057844966650009155, 0.12792403995990753, 0.05209182947874069, -0.027332304045557976, 0.059202857315540314, -0.13285812735557556, -0.024411480873823166, -0.0557100772857666, -0.0024997375439852476, 0.1512058526277542, 0.06197551265358925, -0.05537422001361847, 0.02062765136361122, 0.020016051828861237, -0.024297641590237617, -0.045233841985464096, -0.034582652151584625, -0.0977277010679245, 0.006374812684953213, -0.07783913612365723, 0.015467152930796146, -0.014978265389800072, -0.08572793006896973, -0.037934768944978714, -0.15898989140987396, -0.0011305080261081457, 0.09650373458862305, 0.007345336955040693, -0.029424650594592094, -0.09241348505020142, 0.005526319146156311, 0.014208783395588398, -0.01407501008361578, -0.15675009787082672, -0.05031281337141991, 0.03119790367782116, -0.16866113245487213, 0.033627450466156006, -0.04903757572174072, 0.03549545630812645, 0.04459671676158905, -0.04535774141550064, -0.02160848118364811, 0.0152364457026124, 0.017460787668824196, -0.02394135482609272, -0.24046528339385986, -0.016492176800966263, -0.049182213842868805, 0.17930001020431519, -0.24510087072849274, 0.04199686273932457, 0.062341514974832535, 0.12092601507902145, 0.005246761720627546, -0.047405339777469635, 0.03611646965146065, -0.04782456159591675, -0.04614211246371269, -0.06458985060453415, -0.004041698761284351, -0.03005247749388218, -0.04619463160634041, 0.04105473682284355, -0.19605930149555206, -0.029964644461870193, 0.11028317362070084, 0.07146124541759491, -0.1701718270778656, -0.07740049809217453, -0.03032514825463295, -0.06061795726418495, -0.09144899994134903, -0.04754206910729408, 0.10501570999622345, 0.0424359068274498, 0.054926108568906784, -0.07243066281080246, -0.047703035175800323, 0.012159520760178566, -0.008316845633089542, -0.035265736281871796, 0.0910128578543663, 0.09147894382476807, -0.1183665320277214, 0.1003284826874733, 0.06719938665628433, 0.061502620577812195, 0.10171586275100708, 0.005867301486432552, -0.09559345990419388, -0.012123096734285355, 0.023821083828806877, 0.014739413745701313, 0.13627171516418457, -0.08041682839393616, 0.03041158802807331, 0.043761420994997025, -0.03445654734969139, 0.011279189959168434, -0.10341424494981766, 0.02347799763083458, 0.03186830133199692, -0.007050554268062115, 0.025736309587955475, -0.054652560502290726, 0.013161799870431423, 0.1042112186551094, 0.03211836516857147, 0.0227707140147686, 0.015011876821517944, -0.03876445069909096, -0.12403564900159836, 0.17888623476028442, -0.09523385018110275, -0.25718894600868225, -0.12982366979122162, 0.0025806569028645754, 0.04723223298788071, -0.01322246715426445, 0.01721704937517643, -0.057064954191446304, -0.10620168596506119, -0.10562704503536224, 0.017637979239225388, 0.05363597348332405, -0.08985256403684616, -0.06360358744859695, 0.05353172495961189, 0.038684699684381485, -0.12286891043186188, 0.023170825093984604, 0.04556644707918167, -0.0685787945985794, 0.004107215907424688, 0.05788148567080498, 0.08483386784791946, 0.18220773339271545, 0.013182112947106361, -0.017085859552025795, 0.012520790100097656, 0.22458304464817047, -0.14599265158176422, 0.09336943179368973, 0.13670575618743896, -0.0603153258562088, 0.08385994285345078, 0.20927630364894867, 0.031639765948057175, -0.09247095137834549, 0.04077373072504997, 0.032938770949840546, -0.040111273527145386, -0.23512989282608032, -0.07784179598093033, 0.0005755177116952837, -0.07578593492507935, 0.10564399510622025, 0.09113350510597229, 0.11394096910953522, 0.05373004451394081, -0.10628228634595871, -0.06785868853330612, 0.04576247185468674, 0.11892180144786835, -0.020387137308716774, 0.0034232554025948048, 0.09533460438251495, -0.032669007778167725, 0.016892950981855392, 0.0903218612074852, 0.010076770558953285, 0.18146716058254242, 0.040793538093566895, 0.12895575165748596, 0.08216089755296707, 0.06404399126768112, 0.023877892643213272, 0.01690720207989216, 0.028041476383805275, 0.02853785827755928, -0.021422842517495155, -0.08959300816059113, -0.01811058260500431, 0.14208537340164185, 0.03174193948507309, 0.030387144535779953, 0.009561240673065186, -0.0344390794634819, 0.0656830444931984, 0.16341377794742584, 0.01373966783285141, -0.23032663762569427, -0.06265294551849365, 0.07538370788097382, -0.07251506298780441, -0.11472991853952408, -0.007447437848895788, 0.029569825157523155, -0.17949488759040833, 0.045079123228788376, -0.02245110087096691, 0.1028464064002037, -0.11004801839590073, -0.024476202204823494, 0.04228143393993378, 0.06811302900314331, -0.03619502857327461, 0.07936927676200867, -0.21071307361125946, 0.14414268732070923, 0.0071875168941915035, 0.0627245381474495, -0.10963346809148788, 0.08230046182870865, 0.02151823230087757, 0.009466269053518772, 0.16101586818695068, -0.0074920570477843285, -0.09318114817142487, -0.07651645690202713, -0.07556641101837158, -0.011319656856358051, 0.09559466689825058, -0.10184428840875626, 0.08486217260360718, -0.008358954451978207, -0.03313955292105675, -0.00388424564152956, -0.1140027567744255, -0.13622364401817322, -0.18601436913013458, 0.05523287504911423, -0.11181046068668365, 0.03691478446125984, -0.11166879534721375, -0.06252610683441162, -0.02911795862019062, 0.19807842373847961, -0.1904531568288803, -0.08140338957309723, -0.14539870619773865, -0.07204011082649231, 0.12212951481342316, -0.04274967685341835, 0.07663191109895706, 0.00015701932716183364, 0.2071707546710968, -0.004644640255719423, 0.0014644638868048787, 0.0856679305434227, -0.09557735919952393, -0.206184521317482, -0.09439684450626373, 0.13821037113666534, 0.12497473508119583, 0.04596934840083122, -0.0036321566440165043, 0.024304913356900215, -0.0027867835015058517, -0.10976199060678482, 0.02332260087132454, 0.1432444006204605, 0.08416087180376053, 0.03885705769062042, -0.02675866149365902, -0.14533737301826477, -0.1054752767086029, -0.05289754271507263, 0.019448768347501755, 0.17674845457077026, -0.07222644239664078, 0.1607094258069992, 0.15837931632995605, -0.06414622813463211, -0.20734171569347382, 0.032782182097435, 0.03679283335804939, -0.011663361452519894, 0.03244366869330406, -0.20815548300743103, 0.07330463081598282, 0.016213007271289825, -0.06075131520628929, 0.1363404095172882, -0.1705039143562317, -0.14891991019248962, 0.0919104814529419, 0.07189090549945831, -0.2193969339132309, -0.13394345343112946, -0.09907522052526474, -0.055755600333213806, -0.10410746932029724, 0.08695419132709503, 0.014253350906074047, 0.004559517838060856, 0.040003977715969086, 0.024713784456253052, 0.021094202995300293, -0.05303549766540527, 0.19554594159126282, -0.004308625590056181, 0.041122131049633026, -0.08143328875303268, -0.08729361742734909, 0.030160382390022278, -0.06146852299571037, 0.07429458200931549, -0.02577015943825245, 0.004456855356693268, -0.1102396696805954, -0.06384536623954773, -0.05289682373404503, 0.03639809414744377, -0.08915901929140091, -0.0958789587020874, -0.05767008289694786, 0.10389325767755508, 0.08919540792703629, -0.03324571251869202, -0.058615610003471375, -0.10058292001485825, 0.0726626068353653, 0.22699709236621857, 0.18807223439216614, 0.07284927368164062, -0.07015843689441681, 0.0006279588560573757, -0.022037893533706665, 0.05516184866428375, -0.20622296631336212, 0.04608523100614548, 0.042553652077913284, 0.028887338936328888, 0.13527612388134003, -0.02506665140390396, -0.1602775603532791, -0.04527048021554947, 0.06014934554696083, -0.06545355916023254, -0.1614707112312317, -0.0005388054414652288, 0.09576781094074249, -0.16179001331329346, -0.06273222714662552, 0.024773813784122467, -0.036137934774160385, -0.025756290182471275, 0.0013679420808330178, 0.08270203322172165, 0.027825508266687393, 0.11478793621063232, 0.06896458566188812, 0.11150709539651871, -0.10231363028287888, 0.08406093716621399, 0.09299708157777786, -0.10971303284168243, 0.03247435390949249, 0.07298728823661804, -0.0610542818903923, -0.03390142321586609, 0.023122351616621017, 0.08364028483629227, 0.026266440749168396, -0.0744837298989296, -0.0008558011031709611, -0.1099681630730629, 0.06663114577531815, 0.13796411454677582, 0.032853204756975174, 0.0030810926109552383, 0.04435998201370239, 0.025823330506682396, -0.09881676733493805, 0.11186433583498001, 0.03916766867041588, 0.03720828518271446, -0.04767070338129997, 0.004865953233093023, 0.041960928589105606, -0.01269921287894249, -0.016253290697932243, -0.039693526923656464, -0.06471271812915802, -0.010708925314247608, -0.15688052773475647, 0.031037067994475365, -0.07176970690488815, 0.009115522727370262, 0.018755896016955376, -0.033779606223106384, 0.0002807097043842077, 0.0073861307464540005, -0.07919271290302277, -0.03761441633105278, -0.006646361667662859, 0.10705258697271347, -0.15747743844985962, 0.008323745802044868, 0.08949586004018784, -0.12556882202625275, 0.07766758650541306, -0.007498627994209528, -0.010838181711733341, 0.01879316382110119, -0.14380721747875214, 0.06054820865392685, -0.008177737705409527, 0.006405212916433811, 0.023949483409523964, -0.20071232318878174, 0.005702852737158537, -0.04664513096213341, -0.053938448429107666, -0.00976315326988697, -0.04211960732936859, -0.11404810100793839, 0.10492629557847977, 0.0196357611566782, -0.0860515683889389, -0.018402770161628723, 0.05309472978115082, 0.10592338442802429, -0.057369641959667206, 0.1371336728334427, -0.02283608354628086, 0.05825338885188103, -0.17831756174564362, -0.016339747235178947, -0.017454219982028008, 0.012596609070897102, -0.03102201037108898, -0.008158523589372635, 0.05483707785606384, -0.015072896145284176, 0.22714339196681976, -0.021177595481276512, 0.030790245160460472, 0.06548503786325455, 0.0070373364724218845, -0.013032838702201843, 0.08790382742881775, 0.04639120027422905, 0.021969040855765343, 0.017426103353500366, 0.016819516196846962, -0.047575462609529495, -0.019116412848234177, -0.12834098935127258, 0.08396804332733154, 0.16439755260944366, 0.08264775574207306, -0.005125291179865599, 0.053218428045511246, -0.11920209228992462, -0.08098750561475754, 0.10049403458833694, -0.033211447298526764, -0.001258186181075871, -0.057700008153915405, 0.14298145473003387, 0.15607422590255737, -0.1750815361738205, 0.06616412103176117, -0.07047461718320847, -0.05687202885746956, -0.11070677638053894, -0.17143365740776062, -0.06694129854440689, -0.03149404004216194, -0.005430171266198158, -0.06143372505903244, 0.06926561146974564, 0.10244123637676239, 0.008475886657834053, 0.002354414900764823, 0.08415096998214722, -0.033749498426914215, -0.0007962242234498262, 0.04344722256064415, 0.05283457785844803, 0.021373692899942398, -0.06691429764032364, 0.0076249162666499615, 0.004598149098455906, 0.038937900215387344, 0.05476561188697815, 0.0317605659365654, -0.014559607952833176, 0.011871086433529854, -0.013089693151414394, -0.09815122187137604, 0.03718226030468941, -0.029980625957250595, -0.0468674972653389, 0.14802806079387665, 0.01827765442430973, 0.0034919960889965296, -0.021031659096479416, 0.23128560185432434, -0.06903756409883499, -0.0798255056142807, -0.14009471237659454, 0.15071772038936615, -0.04670744761824608, 0.05065378174185753, 0.04940982535481453, -0.10087474435567856, 0.03407741338014603, 0.14691931009292603, 0.14527682960033417, -0.02467990294098854, 0.007901503704488277, 0.011187983676791191, 0.0055741616524755955, -0.025625228881835938, 0.05354921892285347, 0.04412171617150307, 0.12145667523145676, -0.06669453531503677, 0.09297986328601837, -0.007810541894286871, -0.0844663754105568, -0.02094031497836113, 0.1328510195016861, 0.0014671299140900373, 0.02338746376335621, -0.0805477648973465, 0.11851188540458679, -0.06559251248836517, -0.25864502787590027, 0.061333827674388885, -0.06666524708271027, -0.15384668111801147, -0.018917718902230263, 0.02399173192679882, 0.00401253392919898, 0.024401430040597916, 0.06268756836652756, -0.06360985338687897, 0.14903949201107025, 0.03688151761889458, -0.07834678888320923, -0.07808853685855865, 0.07696148753166199, -0.08397532254457474, 0.3018210828304291, 0.008228152059018612, 0.04951678216457367, 0.09650786966085434, -0.03327273949980736, -0.13361208140850067, 0.04569283500313759, 0.09728528559207916, -0.06408768892288208, 0.06690182536840439, 0.19748380780220032, -0.008177485316991806, 0.12026696652173996, 0.07469146698713303, -0.08128973841667175, 0.057554539293050766, -0.07613562047481537, -0.09007242321968079, -0.09192728251218796, 0.08888110518455505, -0.060599785298109055, 0.15479759871959686, 0.13393908739089966, -0.04440179467201233, -0.001819826546125114, -0.03071022778749466, 0.05197824910283089, -0.002023093169555068, 0.1104598417878151, 0.022785736247897148, -0.19388216733932495, 0.031831543892621994, -0.014316190034151077, 0.0986877828836441, -0.2479904145002365, -0.07837841659784317, 0.0403057225048542, -0.013808837160468102, -0.05274871736764908, 0.12204353511333466, 0.052187733352184296, 0.04937480762600899, -0.05449601635336876, -0.057812657207250595, -0.00025569170247763395, 0.16358551383018494, -0.1094348207116127, -0.00204258831217885 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
CatBarks/bertES_posWeighted0.7000000000000001_tokenizer
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T03:16:27+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.08389580249786377, 0.19830818474292755, -0.0013316317927092314, 0.02313883788883686, 0.11396584659814835, 0.01961737498641014, 0.053626976907253265, 0.14538456499576569, 0.0060051376931369305, 0.10656800121068954, 0.066679947078228, 0.09131570905447006, 0.09678101539611816, 0.20042605698108673, 0.04371999576687813, -0.17659740149974823, 0.010636410675942898, -0.06930278241634369, -0.010073255747556686, 0.11651819199323654, 0.141214057803154, -0.10151198506355286, 0.07627976685762405, -0.03319970890879631, -0.02870541252195835, -0.0070160143077373505, -0.07769215852022171, -0.05755697935819626, 0.07573003321886063, 0.054863471537828445, 0.04207949340343475, -0.0008347301045432687, 0.08447454124689102, -0.2674994468688965, 0.013753628358244896, 0.07452993094921112, 0.010659529827535152, 0.05990942195057869, 0.07833302766084671, -0.04036625102162361, 0.12881849706172943, -0.06320446729660034, 0.13035163283348083, 0.0906217098236084, -0.0681561604142189, -0.24378153681755066, -0.08239314705133438, 0.06505522131919861, 0.12533815205097198, 0.07694927603006363, -0.02823091857135296, 0.16422191262245178, -0.07247646898031235, 0.019290022552013397, 0.09481704235076904, -0.1151006743311882, -0.060644298791885376, 0.08318385481834412, 0.14101974666118622, 0.10340547561645508, -0.1255619376897812, -0.012289565056562424, 0.04275871813297272, 0.045979104936122894, 0.07389909774065018, 0.011339850723743439, 0.1143413558602333, 0.05629947781562805, -0.13526225090026855, -0.05700986459851265, 0.14547574520111084, 0.023872992023825645, -0.057064127177000046, -0.2138909548521042, -0.002902575535699725, -0.07730814069509506, -0.011685127392411232, -0.06846728920936584, 0.0291305985301733, -0.01194276288151741, 0.060226380825042725, -0.0496203787624836, -0.09797755628824234, -0.046314824372529984, 0.1015089675784111, 0.054820988327264786, 0.011354796588420868, -0.01489334274083376, 0.03576440364122391, 0.13432876765727997, 0.04213530570268631, -0.10012737661600113, -0.07065672427415848, -0.0701170489192009, -0.09620913118124008, -0.03947552293539047, 0.04272124543786049, 0.020167991518974304, 0.042202774435281754, 0.2283228635787964, 0.024096308276057243, 0.05459817871451378, 0.029667891561985016, 0.0026177873369306326, 0.03211980313062668, 0.1073630079627037, -0.041210614144802094, -0.188126802444458, -0.03292805701494217, 0.0931866466999054, -0.009821015410125256, -0.028658604249358177, -0.033444397151470184, 0.035014089196920395, 0.08379437029361725, 0.11821532249450684, 0.08875755965709686, -0.012828069739043713, -0.037612639367580414, -0.03493109717965126, 0.2115669697523117, -0.14141373336315155, 0.045799970626831055, -0.022097334265708923, -0.018195297569036484, -0.06905751675367355, 0.030103791505098343, 0.01831657998263836, -0.003142025787383318, 0.06966056674718857, -0.061253178864717484, -0.05794486775994301, -0.11518853157758713, -0.045523155480623245, 0.04711875319480896, -0.024105608463287354, -0.024469668045639992, -0.07765042781829834, -0.11219723522663116, -0.06417357176542282, 0.06612563133239746, -0.04156653955578804, -0.03974827378988266, 0.005308232270181179, -0.07131324708461761, 0.008387917652726173, 0.008993842639029026, 0.12122467905282974, -0.030063031241297722, 0.05833350867033005, -0.002476902212947607, 0.05916252359747887, 0.10643328726291656, 0.03227818012237549, -0.08492200076580048, 0.057466037571430206, -0.20633617043495178, 0.08371785283088684, -0.11420095711946487, 0.034276340156793594, -0.17048145830631256, -0.024183684960007668, 0.008447963744401932, 0.023597201332449913, 0.023726604878902435, 0.1338067352771759, -0.2097422182559967, -0.016196569427847862, 0.14133213460445404, -0.09649793803691864, -0.12422871589660645, 0.07990546524524689, -0.03459475561976433, 0.1747698187828064, 0.038475677371025085, -0.019652999937534332, 0.09909367561340332, -0.15559963881969452, -0.05852397903800011, -0.026064254343509674, -0.008927824907004833, 0.08823978155851364, 0.07542291283607483, -0.05844951793551445, 0.02285866066813469, 0.02562655322253704, -0.04727208614349365, -0.0268824752420187, -0.05256075784564018, -0.10127434879541397, -0.023140445351600647, -0.09642518311738968, 0.026515161618590355, 0.000058677000197349116, -0.07310442626476288, -0.028560271486639977, -0.17347893118858337, -0.02563360333442688, 0.10103316605091095, 0.004820956848561764, -0.007559072691947222, -0.08540112525224686, 0.022149885073304176, -0.05362366884946823, -0.006164622958749533, -0.16996455192565918, -0.03558015450835228, 0.051895126700401306, -0.14917676150798798, 0.015460150316357613, -0.07327745854854584, 0.07047311216592789, 0.02098717913031578, -0.05859505757689476, -0.03108096309006214, 0.0007694467785768211, 0.004292082041501999, -0.06229274719953537, -0.1903683841228485, -0.058886781334877014, -0.041500482708215714, 0.15720732510089874, -0.24841000139713287, 0.0300158578902483, 0.03247617185115814, 0.13185922801494598, 0.007058668415993452, -0.06344027817249298, 0.02096918225288391, -0.04676475748419762, -0.050621338188648224, -0.06898977607488632, -0.009901339188218117, -0.014539826661348343, -0.031393732875585556, 0.012980648316442966, -0.14970256388187408, -0.060514215379953384, 0.09452559798955917, 0.11224991828203201, -0.14555825293064117, 0.00204002158716321, -0.0460561066865921, -0.07002599537372589, -0.07487804442644119, -0.0761631652712822, 0.07739497721195221, 0.044650159776210785, 0.049250341951847076, -0.06317461282014847, -0.06234706938266754, 0.023210179060697556, 0.005524294450879097, -0.019023682922124863, 0.0948529988527298, 0.074309803545475, -0.09122881293296814, 0.07973480224609375, 0.08461450785398483, 0.04414684325456619, 0.086973637342453, 0.005991141777485609, -0.11396963149309158, -0.03062884695827961, 0.037754856050014496, 0.024159027263522148, 0.15351562201976776, -0.08692087233066559, 0.030462130904197693, 0.052177220582962036, -0.03854219615459442, 0.03157065063714981, -0.0923321321606636, 0.025362705811858177, 0.021495236083865166, -0.006555700208991766, 0.05864228308200836, -0.018769768998026848, -0.01403577346354723, 0.06336429715156555, 0.05677810311317444, 0.044270504266023636, 0.02595379762351513, -0.02093072421848774, -0.1278371512889862, 0.16537296772003174, -0.09028079360723495, -0.2540280222892761, -0.17074446380138397, 0.015454737469553947, 0.03706491366028786, -0.021728800609707832, 0.039588842540979385, -0.06286025792360306, -0.10237989574670792, -0.09417891502380371, 0.0029635571409016848, 0.023925531655550003, -0.058347854763269424, -0.0817074254155159, 0.060779985040426254, 0.04047083482146263, -0.13689260184764862, 0.0349188968539238, 0.06170675903558731, -0.03042641654610634, 0.0018567070364952087, 0.07321398705244064, 0.12743599712848663, 0.14838241040706635, -0.006730219814926386, -0.012446845881640911, 0.035035960376262665, 0.229813352227211, -0.1490442156791687, 0.10630457103252411, 0.14053207635879517, -0.021705523133277893, 0.06635113060474396, 0.1461038440465927, 0.023231739178299904, -0.07546708732843399, 0.04147516191005707, 0.04027445614337921, -0.04228919371962547, -0.2589097023010254, -0.05694316700100899, -0.00946022942662239, -0.07043391466140747, 0.09718906134366989, 0.09238530695438385, 0.11972260475158691, 0.0337289460003376, -0.05568677559494972, -0.025771914049983025, -0.003401360474526882, 0.114128477871418, -0.027640055865049362, -0.004564122296869755, 0.07965842634439468, -0.05878787487745285, 0.011684526689350605, 0.09941446036100388, 0.019347423687577248, 0.17601320147514343, 0.02533329278230667, 0.10681075602769852, 0.06725578010082245, 0.09347675740718842, -0.0015635732561349869, 0.034774236381053925, 0.05337131395936012, 0.022044572979211807, 0.010453542694449425, -0.09408048540353775, -0.012431944720447063, 0.13713060319423676, 0.019816776737570763, 0.009031654335558414, 0.008926562033593655, -0.01010479498654604, 0.03131420537829399, 0.20501568913459778, 0.0009575071162544191, -0.22537250816822052, -0.09500737488269806, 0.059459153562784195, -0.06931101530790329, -0.143676295876503, -0.02094252221286297, 0.030270220711827278, -0.17292405664920807, 0.016790566965937614, -0.0316389761865139, 0.09112390875816345, -0.07145322859287262, -0.028050832450389862, 0.06891903281211853, 0.07569212466478348, -0.012108199298381805, 0.07973295450210571, -0.19069278240203857, 0.12254468351602554, 0.03037673607468605, 0.08605273067951202, -0.11708726733922958, 0.07849059253931046, -0.0019813794642686844, -0.014807495288550854, 0.17999744415283203, -0.014062200672924519, -0.0586031936109066, -0.08878950774669647, -0.08704045414924622, -0.011727320961654186, 0.10361312329769135, -0.09322915226221085, 0.09586969763040543, -0.02775636687874794, -0.03705112263560295, 0.012418309226632118, -0.10469507426023483, -0.1636953055858612, -0.18679304420948029, 0.06244563311338425, -0.07802703976631165, 0.012347841635346413, -0.11227322369813919, -0.06334327906370163, -0.01575082167983055, 0.23160123825073242, -0.16648635268211365, -0.07049825042486191, -0.1498587429523468, -0.03997112438082695, 0.17463743686676025, -0.042160745710134506, 0.06849376112222672, -0.021383514627814293, 0.1873992383480072, -0.008081548847258091, -0.013158116489648819, 0.06569221615791321, -0.09637628495693207, -0.16879262030124664, -0.05748843029141426, 0.14160962402820587, 0.10863390564918518, 0.05731578543782234, -0.0038195757661014795, 0.013171887956559658, -0.03383830562233925, -0.09896382689476013, 0.013824623078107834, 0.13817466795444489, 0.0034514935687184334, 0.00682973163202405, -0.03995988517999649, -0.07027145475149155, -0.05825701728463173, -0.07912654429674149, 0.057147104293107986, 0.187900573015213, -0.09512355923652649, 0.1602867990732193, 0.12431421875953674, -0.06468851119279861, -0.2306901067495346, 0.03996593505144119, 0.04701630026102066, 0.007666614837944508, 0.022401191294193268, -0.19138796627521515, 0.09788824617862701, 0.0009011493530124426, -0.06807263940572739, 0.14616990089416504, -0.16564498841762543, -0.1461436152458191, 0.08002161979675293, 0.025075770914554596, -0.22560662031173706, -0.14821304380893707, -0.1037549376487732, -0.03735695406794548, -0.13707835972309113, 0.048581719398498535, 0.02614329755306244, 0.019834673032164574, 0.025222565978765488, 0.005338077899068594, 0.029657263308763504, -0.07272187620401382, 0.1870686560869217, -0.020297454670071602, 0.0072362530045211315, -0.050640691071748734, -0.04617878794670105, 0.09227550774812698, -0.06150037795305252, 0.11741586774587631, 0.018679620698094368, 0.018796883523464203, -0.1431548148393631, -0.049209367483854294, -0.060803934931755066, 0.04456847906112671, -0.07284719496965408, -0.09393193572759628, -0.04137463867664337, 0.08888561278581619, 0.07211937010288239, -0.032792408019304276, -0.0027768779546022415, -0.07569456845521927, 0.09405932575464249, 0.184477761387825, 0.17357055842876434, 0.009977072477340698, -0.07020942866802216, 0.024555526673793793, -0.042279548943042755, 0.03349342197179794, -0.24652716517448425, 0.03456863760948181, 0.066053606569767, 0.03803660348057747, 0.08509242534637451, -0.016836483031511307, -0.1781480610370636, -0.04086102172732353, 0.08498652279376984, -0.06206206604838371, -0.19876568019390106, -0.02703288197517395, 0.08424776047468185, -0.20383712649345398, -0.032998621463775635, 0.041543323546648026, -0.03834589570760727, -0.02396267279982567, -0.002415500348433852, 0.06396626681089401, -0.008327016606926918, 0.12156640738248825, 0.06747189164161682, 0.10266115516424179, -0.09284433722496033, 0.08920657634735107, 0.10416955500841141, -0.09140542894601822, 0.03545991703867912, 0.10264154523611069, -0.05670900270342827, -0.04460543021559715, 0.033935222774744034, 0.05925208330154419, -0.028357384726405144, -0.06409841030836105, -0.000502707262057811, -0.0359574519097805, 0.04993389546871185, 0.08058220148086548, 0.036113787442445755, -0.01202210783958435, 0.06544706225395203, 0.028145326301455498, -0.11693570017814636, 0.10949387401342392, 0.04405685141682625, 0.04509059712290764, -0.07182393968105316, -0.012280966155230999, 0.015999672934412956, 0.032540347427129745, -0.019734015688300133, -0.014576527290046215, -0.03146412968635559, -0.007561005651950836, -0.1553635597229004, -0.02064543403685093, -0.06516171246767044, 0.006067827809602022, 0.022207623347640038, -0.03830232471227646, -0.012014663778245449, 0.01381110493093729, -0.07979435473680496, -0.07571027427911758, -0.01700955256819725, 0.08539021760225296, -0.1381402313709259, 0.006627439055591822, 0.07182712107896805, -0.10980239510536194, 0.07347989827394485, -0.0048679932951927185, 0.017079560086131096, 0.010923396795988083, -0.11654401570558548, 0.04386281594634056, -0.005810429807752371, 0.01551580335944891, 0.022556742653250694, -0.171111062169075, 0.011553828604519367, -0.038553636521101, -0.03114982508122921, 0.011926400475203991, -0.025060230866074562, -0.11875922232866287, 0.08676479011774063, -0.028097305446863174, -0.037512701004743576, -0.03292486071586609, 0.06296087801456451, 0.08736220002174377, -0.011740099638700485, 0.09667140990495682, -0.025766119360923767, 0.04818311333656311, -0.1756584197282791, -0.01910574547946453, -0.050167568027973175, 0.02537350542843342, -0.01759655587375164, -0.0070639788173139095, 0.055272240191698074, -0.004191063344478607, 0.20991376042366028, -0.03921036794781685, 0.1548677533864975, 0.05199402943253517, -0.009925156831741333, 0.010884369723498821, 0.05032730847597122, 0.06423956155776978, 0.031145188957452774, 0.00853167474269867, 0.04660189896821976, -0.004552975296974182, -0.020357951521873474, -0.13699717819690704, 0.02791593410074711, 0.16117429733276367, 0.061918217688798904, 0.0392887257039547, 0.03704594820737839, -0.1422400325536728, -0.09538721293210983, 0.10306388139724731, -0.0331864058971405, 0.014331420883536339, -0.08317886292934418, 0.17621558904647827, 0.12328410148620605, -0.1574767529964447, 0.0577850341796875, -0.07234696298837662, -0.05066767707467079, -0.1024852767586708, -0.11832084506750107, -0.06293155997991562, -0.06027044355869293, -0.004747506696730852, -0.042489297688007355, 0.05734556168317795, 0.026751231402158737, -0.003270963439717889, -0.006759525276720524, 0.12665949761867523, -0.0249644722789526, -0.004145825747400522, 0.04152364656329155, 0.0326087586581707, 0.019319625571370125, -0.05872373282909393, 0.017997145652770996, 0.018602589145302773, 0.022180357947945595, 0.06835069507360458, 0.0260987039655447, -0.059317342936992645, 0.044286735355854034, 0.00319746439345181, -0.11313364654779434, 0.018146557733416557, -0.00002245741598017048, -0.05020225793123245, 0.13557326793670654, 0.04076748713850975, 0.01548024732619524, -0.029270920902490616, 0.24342355132102966, -0.07199113070964813, -0.08681939542293549, -0.13965600728988647, 0.11511493474245071, -0.023563209921121597, 0.03755274787545204, 0.016542524099349976, -0.12659503519535065, 0.011511262506246567, 0.18531471490859985, 0.12824349105358124, 0.012459068559110165, -0.007656481582671404, 0.05736639350652695, -0.0007639875984750688, -0.05985576659440994, 0.05051197111606598, 0.0664999932050705, 0.16097788512706757, -0.09069112688302994, 0.0652846097946167, -0.008405503816902637, -0.0831485390663147, -0.027498632669448853, 0.11705785244703293, -0.022675158455967903, 0.02148384228348732, -0.03778035193681717, 0.11204422265291214, -0.052532415837049484, -0.2719486355781555, 0.02952493168413639, -0.09503202140331268, -0.13993041217327118, -0.02591860294342041, 0.041448429226875305, -0.03349510580301285, 0.01577647216618061, 0.06254769116640091, -0.045389387756586075, 0.18837277591228485, 0.025987716391682625, -0.08679025620222092, -0.07755549252033234, 0.05874146893620491, -0.08695939928293228, 0.2789687216281891, 0.003863075515255332, 0.04782010242342949, 0.12108923494815826, -0.03053574077785015, -0.18664880096912384, 0.014769754372537136, 0.11989909410476685, -0.09114406257867813, 0.07780203968286514, 0.18139931559562683, -0.005561648402363062, 0.12649618089199066, 0.04705416411161423, -0.03877115994691849, 0.03976387158036232, -0.02721380814909935, -0.03821522742509842, -0.12209630757570267, 0.05661242455244064, -0.0612691193819046, 0.15957388281822205, 0.1158948540687561, -0.05964287370443344, 0.001120698289014399, -0.06126941740512848, 0.06300627440214157, 0.014774397015571594, 0.12115653604269028, 0.018452486023306847, -0.2023056596517563, 0.05087360367178917, -0.03283824771642685, 0.08166342973709106, -0.254973828792572, -0.08186668157577515, 0.07622263580560684, -0.019022729247808456, -0.04275642707943916, 0.12311509251594543, 0.06101066991686821, 0.03676839917898178, -0.03853875398635864, -0.08537755906581879, -0.01412904355674982, 0.15376435220241547, -0.14123432338237762, -0.029574336484074593 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
CatBarks/bertES_posWeighted4_tokenizer
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T03:16:46+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.08389580249786377, 0.19830818474292755, -0.0013316317927092314, 0.02313883788883686, 0.11396584659814835, 0.01961737498641014, 0.053626976907253265, 0.14538456499576569, 0.0060051376931369305, 0.10656800121068954, 0.066679947078228, 0.09131570905447006, 0.09678101539611816, 0.20042605698108673, 0.04371999576687813, -0.17659740149974823, 0.010636410675942898, -0.06930278241634369, -0.010073255747556686, 0.11651819199323654, 0.141214057803154, -0.10151198506355286, 0.07627976685762405, -0.03319970890879631, -0.02870541252195835, -0.0070160143077373505, -0.07769215852022171, -0.05755697935819626, 0.07573003321886063, 0.054863471537828445, 0.04207949340343475, -0.0008347301045432687, 0.08447454124689102, -0.2674994468688965, 0.013753628358244896, 0.07452993094921112, 0.010659529827535152, 0.05990942195057869, 0.07833302766084671, -0.04036625102162361, 0.12881849706172943, -0.06320446729660034, 0.13035163283348083, 0.0906217098236084, -0.0681561604142189, -0.24378153681755066, -0.08239314705133438, 0.06505522131919861, 0.12533815205097198, 0.07694927603006363, -0.02823091857135296, 0.16422191262245178, -0.07247646898031235, 0.019290022552013397, 0.09481704235076904, -0.1151006743311882, -0.060644298791885376, 0.08318385481834412, 0.14101974666118622, 0.10340547561645508, -0.1255619376897812, -0.012289565056562424, 0.04275871813297272, 0.045979104936122894, 0.07389909774065018, 0.011339850723743439, 0.1143413558602333, 0.05629947781562805, -0.13526225090026855, -0.05700986459851265, 0.14547574520111084, 0.023872992023825645, -0.057064127177000046, -0.2138909548521042, -0.002902575535699725, -0.07730814069509506, -0.011685127392411232, -0.06846728920936584, 0.0291305985301733, -0.01194276288151741, 0.060226380825042725, -0.0496203787624836, -0.09797755628824234, -0.046314824372529984, 0.1015089675784111, 0.054820988327264786, 0.011354796588420868, -0.01489334274083376, 0.03576440364122391, 0.13432876765727997, 0.04213530570268631, -0.10012737661600113, -0.07065672427415848, -0.0701170489192009, -0.09620913118124008, -0.03947552293539047, 0.04272124543786049, 0.020167991518974304, 0.042202774435281754, 0.2283228635787964, 0.024096308276057243, 0.05459817871451378, 0.029667891561985016, 0.0026177873369306326, 0.03211980313062668, 0.1073630079627037, -0.041210614144802094, -0.188126802444458, -0.03292805701494217, 0.0931866466999054, -0.009821015410125256, -0.028658604249358177, -0.033444397151470184, 0.035014089196920395, 0.08379437029361725, 0.11821532249450684, 0.08875755965709686, -0.012828069739043713, -0.037612639367580414, -0.03493109717965126, 0.2115669697523117, -0.14141373336315155, 0.045799970626831055, -0.022097334265708923, -0.018195297569036484, -0.06905751675367355, 0.030103791505098343, 0.01831657998263836, -0.003142025787383318, 0.06966056674718857, -0.061253178864717484, -0.05794486775994301, -0.11518853157758713, -0.045523155480623245, 0.04711875319480896, -0.024105608463287354, -0.024469668045639992, -0.07765042781829834, -0.11219723522663116, -0.06417357176542282, 0.06612563133239746, -0.04156653955578804, -0.03974827378988266, 0.005308232270181179, -0.07131324708461761, 0.008387917652726173, 0.008993842639029026, 0.12122467905282974, -0.030063031241297722, 0.05833350867033005, -0.002476902212947607, 0.05916252359747887, 0.10643328726291656, 0.03227818012237549, -0.08492200076580048, 0.057466037571430206, -0.20633617043495178, 0.08371785283088684, -0.11420095711946487, 0.034276340156793594, -0.17048145830631256, -0.024183684960007668, 0.008447963744401932, 0.023597201332449913, 0.023726604878902435, 0.1338067352771759, -0.2097422182559967, -0.016196569427847862, 0.14133213460445404, -0.09649793803691864, -0.12422871589660645, 0.07990546524524689, -0.03459475561976433, 0.1747698187828064, 0.038475677371025085, -0.019652999937534332, 0.09909367561340332, -0.15559963881969452, -0.05852397903800011, -0.026064254343509674, -0.008927824907004833, 0.08823978155851364, 0.07542291283607483, -0.05844951793551445, 0.02285866066813469, 0.02562655322253704, -0.04727208614349365, -0.0268824752420187, -0.05256075784564018, -0.10127434879541397, -0.023140445351600647, -0.09642518311738968, 0.026515161618590355, 0.000058677000197349116, -0.07310442626476288, -0.028560271486639977, -0.17347893118858337, -0.02563360333442688, 0.10103316605091095, 0.004820956848561764, -0.007559072691947222, -0.08540112525224686, 0.022149885073304176, -0.05362366884946823, -0.006164622958749533, -0.16996455192565918, -0.03558015450835228, 0.051895126700401306, -0.14917676150798798, 0.015460150316357613, -0.07327745854854584, 0.07047311216592789, 0.02098717913031578, -0.05859505757689476, -0.03108096309006214, 0.0007694467785768211, 0.004292082041501999, -0.06229274719953537, -0.1903683841228485, -0.058886781334877014, -0.041500482708215714, 0.15720732510089874, -0.24841000139713287, 0.0300158578902483, 0.03247617185115814, 0.13185922801494598, 0.007058668415993452, -0.06344027817249298, 0.02096918225288391, -0.04676475748419762, -0.050621338188648224, -0.06898977607488632, -0.009901339188218117, -0.014539826661348343, -0.031393732875585556, 0.012980648316442966, -0.14970256388187408, -0.060514215379953384, 0.09452559798955917, 0.11224991828203201, -0.14555825293064117, 0.00204002158716321, -0.0460561066865921, -0.07002599537372589, -0.07487804442644119, -0.0761631652712822, 0.07739497721195221, 0.044650159776210785, 0.049250341951847076, -0.06317461282014847, -0.06234706938266754, 0.023210179060697556, 0.005524294450879097, -0.019023682922124863, 0.0948529988527298, 0.074309803545475, -0.09122881293296814, 0.07973480224609375, 0.08461450785398483, 0.04414684325456619, 0.086973637342453, 0.005991141777485609, -0.11396963149309158, -0.03062884695827961, 0.037754856050014496, 0.024159027263522148, 0.15351562201976776, -0.08692087233066559, 0.030462130904197693, 0.052177220582962036, -0.03854219615459442, 0.03157065063714981, -0.0923321321606636, 0.025362705811858177, 0.021495236083865166, -0.006555700208991766, 0.05864228308200836, -0.018769768998026848, -0.01403577346354723, 0.06336429715156555, 0.05677810311317444, 0.044270504266023636, 0.02595379762351513, -0.02093072421848774, -0.1278371512889862, 0.16537296772003174, -0.09028079360723495, -0.2540280222892761, -0.17074446380138397, 0.015454737469553947, 0.03706491366028786, -0.021728800609707832, 0.039588842540979385, -0.06286025792360306, -0.10237989574670792, -0.09417891502380371, 0.0029635571409016848, 0.023925531655550003, -0.058347854763269424, -0.0817074254155159, 0.060779985040426254, 0.04047083482146263, -0.13689260184764862, 0.0349188968539238, 0.06170675903558731, -0.03042641654610634, 0.0018567070364952087, 0.07321398705244064, 0.12743599712848663, 0.14838241040706635, -0.006730219814926386, -0.012446845881640911, 0.035035960376262665, 0.229813352227211, -0.1490442156791687, 0.10630457103252411, 0.14053207635879517, -0.021705523133277893, 0.06635113060474396, 0.1461038440465927, 0.023231739178299904, -0.07546708732843399, 0.04147516191005707, 0.04027445614337921, -0.04228919371962547, -0.2589097023010254, -0.05694316700100899, -0.00946022942662239, -0.07043391466140747, 0.09718906134366989, 0.09238530695438385, 0.11972260475158691, 0.0337289460003376, -0.05568677559494972, -0.025771914049983025, -0.003401360474526882, 0.114128477871418, -0.027640055865049362, -0.004564122296869755, 0.07965842634439468, -0.05878787487745285, 0.011684526689350605, 0.09941446036100388, 0.019347423687577248, 0.17601320147514343, 0.02533329278230667, 0.10681075602769852, 0.06725578010082245, 0.09347675740718842, -0.0015635732561349869, 0.034774236381053925, 0.05337131395936012, 0.022044572979211807, 0.010453542694449425, -0.09408048540353775, -0.012431944720447063, 0.13713060319423676, 0.019816776737570763, 0.009031654335558414, 0.008926562033593655, -0.01010479498654604, 0.03131420537829399, 0.20501568913459778, 0.0009575071162544191, -0.22537250816822052, -0.09500737488269806, 0.059459153562784195, -0.06931101530790329, -0.143676295876503, -0.02094252221286297, 0.030270220711827278, -0.17292405664920807, 0.016790566965937614, -0.0316389761865139, 0.09112390875816345, -0.07145322859287262, -0.028050832450389862, 0.06891903281211853, 0.07569212466478348, -0.012108199298381805, 0.07973295450210571, -0.19069278240203857, 0.12254468351602554, 0.03037673607468605, 0.08605273067951202, -0.11708726733922958, 0.07849059253931046, -0.0019813794642686844, -0.014807495288550854, 0.17999744415283203, -0.014062200672924519, -0.0586031936109066, -0.08878950774669647, -0.08704045414924622, -0.011727320961654186, 0.10361312329769135, -0.09322915226221085, 0.09586969763040543, -0.02775636687874794, -0.03705112263560295, 0.012418309226632118, -0.10469507426023483, -0.1636953055858612, -0.18679304420948029, 0.06244563311338425, -0.07802703976631165, 0.012347841635346413, -0.11227322369813919, -0.06334327906370163, -0.01575082167983055, 0.23160123825073242, -0.16648635268211365, -0.07049825042486191, -0.1498587429523468, -0.03997112438082695, 0.17463743686676025, -0.042160745710134506, 0.06849376112222672, -0.021383514627814293, 0.1873992383480072, -0.008081548847258091, -0.013158116489648819, 0.06569221615791321, -0.09637628495693207, -0.16879262030124664, -0.05748843029141426, 0.14160962402820587, 0.10863390564918518, 0.05731578543782234, -0.0038195757661014795, 0.013171887956559658, -0.03383830562233925, -0.09896382689476013, 0.013824623078107834, 0.13817466795444489, 0.0034514935687184334, 0.00682973163202405, -0.03995988517999649, -0.07027145475149155, -0.05825701728463173, -0.07912654429674149, 0.057147104293107986, 0.187900573015213, -0.09512355923652649, 0.1602867990732193, 0.12431421875953674, -0.06468851119279861, -0.2306901067495346, 0.03996593505144119, 0.04701630026102066, 0.007666614837944508, 0.022401191294193268, -0.19138796627521515, 0.09788824617862701, 0.0009011493530124426, -0.06807263940572739, 0.14616990089416504, -0.16564498841762543, -0.1461436152458191, 0.08002161979675293, 0.025075770914554596, -0.22560662031173706, -0.14821304380893707, -0.1037549376487732, -0.03735695406794548, -0.13707835972309113, 0.048581719398498535, 0.02614329755306244, 0.019834673032164574, 0.025222565978765488, 0.005338077899068594, 0.029657263308763504, -0.07272187620401382, 0.1870686560869217, -0.020297454670071602, 0.0072362530045211315, -0.050640691071748734, -0.04617878794670105, 0.09227550774812698, -0.06150037795305252, 0.11741586774587631, 0.018679620698094368, 0.018796883523464203, -0.1431548148393631, -0.049209367483854294, -0.060803934931755066, 0.04456847906112671, -0.07284719496965408, -0.09393193572759628, -0.04137463867664337, 0.08888561278581619, 0.07211937010288239, -0.032792408019304276, -0.0027768779546022415, -0.07569456845521927, 0.09405932575464249, 0.184477761387825, 0.17357055842876434, 0.009977072477340698, -0.07020942866802216, 0.024555526673793793, -0.042279548943042755, 0.03349342197179794, -0.24652716517448425, 0.03456863760948181, 0.066053606569767, 0.03803660348057747, 0.08509242534637451, -0.016836483031511307, -0.1781480610370636, -0.04086102172732353, 0.08498652279376984, -0.06206206604838371, -0.19876568019390106, -0.02703288197517395, 0.08424776047468185, -0.20383712649345398, -0.032998621463775635, 0.041543323546648026, -0.03834589570760727, -0.02396267279982567, -0.002415500348433852, 0.06396626681089401, -0.008327016606926918, 0.12156640738248825, 0.06747189164161682, 0.10266115516424179, -0.09284433722496033, 0.08920657634735107, 0.10416955500841141, -0.09140542894601822, 0.03545991703867912, 0.10264154523611069, -0.05670900270342827, -0.04460543021559715, 0.033935222774744034, 0.05925208330154419, -0.028357384726405144, -0.06409841030836105, -0.000502707262057811, -0.0359574519097805, 0.04993389546871185, 0.08058220148086548, 0.036113787442445755, -0.01202210783958435, 0.06544706225395203, 0.028145326301455498, -0.11693570017814636, 0.10949387401342392, 0.04405685141682625, 0.04509059712290764, -0.07182393968105316, -0.012280966155230999, 0.015999672934412956, 0.032540347427129745, -0.019734015688300133, -0.014576527290046215, -0.03146412968635559, -0.007561005651950836, -0.1553635597229004, -0.02064543403685093, -0.06516171246767044, 0.006067827809602022, 0.022207623347640038, -0.03830232471227646, -0.012014663778245449, 0.01381110493093729, -0.07979435473680496, -0.07571027427911758, -0.01700955256819725, 0.08539021760225296, -0.1381402313709259, 0.006627439055591822, 0.07182712107896805, -0.10980239510536194, 0.07347989827394485, -0.0048679932951927185, 0.017079560086131096, 0.010923396795988083, -0.11654401570558548, 0.04386281594634056, -0.005810429807752371, 0.01551580335944891, 0.022556742653250694, -0.171111062169075, 0.011553828604519367, -0.038553636521101, -0.03114982508122921, 0.011926400475203991, -0.025060230866074562, -0.11875922232866287, 0.08676479011774063, -0.028097305446863174, -0.037512701004743576, -0.03292486071586609, 0.06296087801456451, 0.08736220002174377, -0.011740099638700485, 0.09667140990495682, -0.025766119360923767, 0.04818311333656311, -0.1756584197282791, -0.01910574547946453, -0.050167568027973175, 0.02537350542843342, -0.01759655587375164, -0.0070639788173139095, 0.055272240191698074, -0.004191063344478607, 0.20991376042366028, -0.03921036794781685, 0.1548677533864975, 0.05199402943253517, -0.009925156831741333, 0.010884369723498821, 0.05032730847597122, 0.06423956155776978, 0.031145188957452774, 0.00853167474269867, 0.04660189896821976, -0.004552975296974182, -0.020357951521873474, -0.13699717819690704, 0.02791593410074711, 0.16117429733276367, 0.061918217688798904, 0.0392887257039547, 0.03704594820737839, -0.1422400325536728, -0.09538721293210983, 0.10306388139724731, -0.0331864058971405, 0.014331420883536339, -0.08317886292934418, 0.17621558904647827, 0.12328410148620605, -0.1574767529964447, 0.0577850341796875, -0.07234696298837662, -0.05066767707467079, -0.1024852767586708, -0.11832084506750107, -0.06293155997991562, -0.06027044355869293, -0.004747506696730852, -0.042489297688007355, 0.05734556168317795, 0.026751231402158737, -0.003270963439717889, -0.006759525276720524, 0.12665949761867523, -0.0249644722789526, -0.004145825747400522, 0.04152364656329155, 0.0326087586581707, 0.019319625571370125, -0.05872373282909393, 0.017997145652770996, 0.018602589145302773, 0.022180357947945595, 0.06835069507360458, 0.0260987039655447, -0.059317342936992645, 0.044286735355854034, 0.00319746439345181, -0.11313364654779434, 0.018146557733416557, -0.00002245741598017048, -0.05020225793123245, 0.13557326793670654, 0.04076748713850975, 0.01548024732619524, -0.029270920902490616, 0.24342355132102966, -0.07199113070964813, -0.08681939542293549, -0.13965600728988647, 0.11511493474245071, -0.023563209921121597, 0.03755274787545204, 0.016542524099349976, -0.12659503519535065, 0.011511262506246567, 0.18531471490859985, 0.12824349105358124, 0.012459068559110165, -0.007656481582671404, 0.05736639350652695, -0.0007639875984750688, -0.05985576659440994, 0.05051197111606598, 0.0664999932050705, 0.16097788512706757, -0.09069112688302994, 0.0652846097946167, -0.008405503816902637, -0.0831485390663147, -0.027498632669448853, 0.11705785244703293, -0.022675158455967903, 0.02148384228348732, -0.03778035193681717, 0.11204422265291214, -0.052532415837049484, -0.2719486355781555, 0.02952493168413639, -0.09503202140331268, -0.13993041217327118, -0.02591860294342041, 0.041448429226875305, -0.03349510580301285, 0.01577647216618061, 0.06254769116640091, -0.045389387756586075, 0.18837277591228485, 0.025987716391682625, -0.08679025620222092, -0.07755549252033234, 0.05874146893620491, -0.08695939928293228, 0.2789687216281891, 0.003863075515255332, 0.04782010242342949, 0.12108923494815826, -0.03053574077785015, -0.18664880096912384, 0.014769754372537136, 0.11989909410476685, -0.09114406257867813, 0.07780203968286514, 0.18139931559562683, -0.005561648402363062, 0.12649618089199066, 0.04705416411161423, -0.03877115994691849, 0.03976387158036232, -0.02721380814909935, -0.03821522742509842, -0.12209630757570267, 0.05661242455244064, -0.0612691193819046, 0.15957388281822205, 0.1158948540687561, -0.05964287370443344, 0.001120698289014399, -0.06126941740512848, 0.06300627440214157, 0.014774397015571594, 0.12115653604269028, 0.018452486023306847, -0.2023056596517563, 0.05087360367178917, -0.03283824771642685, 0.08166342973709106, -0.254973828792572, -0.08186668157577515, 0.07622263580560684, -0.019022729247808456, -0.04275642707943916, 0.12311509251594543, 0.06101066991686821, 0.03676839917898178, -0.03853875398635864, -0.08537755906581879, -0.01412904355674982, 0.15376435220241547, -0.14123432338237762, -0.029574336484074593 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4141 - Accuracy: 0.8710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7031 | 0.25 | 300 | 2.6308 | 0.1571 | | 1.465 | 1.25 | 600 | 1.5290 | 0.5 | | 0.1843 | 2.25 | 900 | 0.4158 | 0.8714 | | 0.1232 | 3.25 | 1200 | 0.3780 | 0.8857 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "cc-by-nc-4.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "MCG-NJU/videomae-base", "model-index": [{"name": "videomae-base-finetuned-ucf101-subset", "results": []}]}
video-classification
JackWong0911/videomae-base-finetuned-ucf101-subset
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
2024-02-14T03:32:04+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #videomae #video-classification #generated_from_trainer #base_model-MCG-NJU/videomae-base #license-cc-by-nc-4.0 #endpoints_compatible #region-us
videomae-base-finetuned-ucf101-subset ===================================== This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4141 * Accuracy: 0.8710 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 1200 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #videomae #video-classification #generated_from_trainer #base_model-MCG-NJU/videomae-base #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 69, 115, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #videomae #video-classification #generated_from_trainer #base_model-MCG-NJU/videomae-base #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.08940843492746353, 0.09360145032405853, -0.0023447342682629824, 0.08402463793754578, 0.11162759363651276, 0.00027851565391756594, 0.13856661319732666, 0.15662510693073273, -0.10100740194320679, 0.04545454680919647, 0.1326902210712433, 0.12273755669593811, 0.030681563541293144, 0.18027856945991516, -0.0321710966527462, -0.2719813287258148, 0.023365819826722145, 0.0380726158618927, -0.053284477442502975, 0.12308020889759064, 0.09853777289390564, -0.14994798600673676, 0.09014586359262466, -0.017605971544981003, -0.21113741397857666, -0.004187809303402901, 0.032570891082286835, -0.06494514644145966, 0.1217186227440834, 0.012182438746094704, 0.06908056885004044, 0.037672266364097595, 0.10659675300121307, -0.21698097884655, 0.013337942771613598, 0.06198003515601158, -0.0028678085654973984, 0.06044516712427139, 0.06026734411716461, 0.036370642483234406, 0.10976565629243851, -0.11721183359622955, 0.06708239763975143, 0.029494065791368484, -0.13316015899181366, -0.2361593097448349, -0.08181428164243698, -0.00985975842922926, 0.08941484987735748, 0.05271119251847267, -0.01376519724726677, 0.10972773283720016, -0.049647342413663864, 0.11678171902894974, 0.266295462846756, -0.26479196548461914, -0.07734332978725433, 0.07729993760585785, 0.0902993306517601, 0.07805773615837097, -0.13454383611679077, 0.02345484122633934, 0.05365614965558052, -0.0001374600687995553, 0.14397269487380981, -0.02902749925851822, -0.011082882061600685, -0.020728370174765587, -0.13077029585838318, -0.06799037009477615, 0.11605449765920639, 0.07655087113380432, -0.02564244344830513, -0.07639839500188828, -0.03259492293000221, -0.17950056493282318, -0.08656474947929382, 0.018831610679626465, 0.05984615907073021, -0.059735674411058426, -0.10814406722784042, 0.008718647994101048, -0.08162444829940796, -0.09261424839496613, 0.0034363772720098495, 0.14213606715202332, 0.03908262401819229, 0.027702059596776962, -0.07151947170495987, 0.09140956401824951, -0.0358448401093483, -0.15276901423931122, 0.0013614051276817918, 0.019040467217564583, -0.009105185978114605, -0.03271988034248352, -0.028021223843097687, -0.05658820644021034, 0.0006488636718131602, 0.12632355093955994, -0.09700623154640198, 0.07488060742616653, -0.004042695742100477, 0.05724534019827843, -0.09058962017297745, 0.15300291776657104, -0.04669234901666641, -0.02248346246778965, -0.004128448199480772, 0.11265528202056885, 0.014574659988284111, -0.01013652328401804, -0.09525741636753082, 0.04493348300457001, 0.06844848394393921, 0.02939116396009922, -0.032165996730327606, 0.0735192596912384, -0.06276246905326843, -0.002079522702842951, 0.0117389727383852, -0.08832737058401108, 0.042846307158470154, -0.0028858010191470385, -0.06540339440107346, -0.05440649017691612, -0.0059075066819787025, 0.006210745312273502, 0.026358379051089287, 0.08201871067285538, -0.07612472772598267, 0.034174200147390366, -0.0972546711564064, -0.11892366409301758, 0.045598067343235016, -0.1412505954504013, 0.009440907277166843, -0.07015945762395859, -0.08922523260116577, 0.007228601258248091, 0.05507468804717064, -0.02144569158554077, -0.005749344360083342, -0.06614001840353012, -0.08763760328292847, 0.033716920763254166, 0.00024120116722770035, 0.0884234756231308, -0.07642851024866104, 0.09316374361515045, 0.029419390484690666, 0.09664547443389893, -0.019342057406902313, 0.02821364626288414, -0.05179545655846596, 0.04626265540719032, -0.22038108110427856, 0.04304521530866623, -0.08833656460046768, 0.042559605091810226, -0.09157639741897583, -0.07337623834609985, 0.0433087982237339, -0.0063803112134337425, 0.03384316340088844, 0.1132342517375946, -0.2293887734413147, -0.06835438311100006, 0.17608331143856049, -0.0867956206202507, -0.13315364718437195, 0.09505584090948105, -0.046907853335142136, -0.0022975392639636993, 0.033541690558195114, 0.19172602891921997, 0.04611982777714729, -0.18121686577796936, 0.017888979986310005, 0.003616878530010581, 0.033551059663295746, 0.0019121929071843624, 0.09418058395385742, 0.03537418693304062, 0.10491237789392471, -0.01256420649588108, -0.06231515109539032, 0.0357133187353611, -0.11066287010908127, -0.08662545680999756, -0.028837576508522034, -0.07200439274311066, 0.012038048356771469, 0.05857275798916817, 0.04211227595806122, -0.10710755735635757, -0.10088690370321274, 0.03767074644565582, 0.07666430622339249, -0.07706098258495331, 0.06476340442895889, -0.11966001242399216, 0.07378023117780685, -0.061974186450242996, -0.02015083283185959, -0.14702677726745605, -0.044038087129592896, 0.021591415628790855, -0.025441821664571762, -0.00884631834924221, -0.02936679497361183, 0.06972567737102509, 0.07574927061796188, -0.06401054561138153, -0.024722423404455185, -0.06335701048374176, 0.03087131679058075, -0.0686434954404831, -0.24601376056671143, -0.03835805878043175, -0.0565943643450737, 0.07181999087333679, -0.18675187230110168, 0.01570621319115162, 0.10725875943899155, 0.13644376397132874, 0.07358422875404358, -0.05346613749861717, -0.0025829256046563387, 0.054912395775318146, -0.011671684682369232, -0.07996229827404022, 0.06389474868774414, -0.0018909485079348087, -0.08912412077188492, -0.015003163367509842, -0.1360292285680771, 0.122845858335495, 0.13701243698596954, -0.10141262412071228, -0.05143791809678078, 0.01666591316461563, -0.04457928612828255, -0.017829205840826035, -0.01273657288402319, 0.02690301090478897, 0.10381509363651276, 0.010261954739689827, 0.14310434460639954, -0.09220661967992783, -0.04630817845463753, 0.06984257698059082, -0.032002586871385574, -0.020716968923807144, 0.08740042895078659, 0.07802149653434753, -0.0787324458360672, 0.12613074481487274, 0.16841988265514374, -0.039416100829839706, 0.1735587865114212, -0.07975122332572937, -0.08104938268661499, -0.033488012850284576, 0.0052611613646149635, 0.024581946432590485, 0.14811015129089355, -0.10108493268489838, -0.022514406591653824, 0.003476513782516122, -0.003943731542676687, -0.02629840187728405, -0.2201189249753952, -0.0351305827498436, 0.041836485266685486, -0.07866308838129044, -0.019722556695342064, -0.008942893706262112, -0.009741101413965225, 0.09897366166114807, 0.0271164458245039, -0.0680176243185997, 0.032475411891937256, -0.02572200633585453, -0.060523051768541336, 0.17602373659610748, -0.08608511835336685, -0.15351685881614685, -0.09465950727462769, -0.08142147958278656, -0.0389985665678978, 0.0021005847956985235, 0.04674026742577553, -0.10327450931072235, -0.03154902905225754, -0.09072418510913849, -0.04671158269047737, -0.0013545580441132188, 0.03396892547607422, 0.05697326362133026, 0.02963102050125599, 0.08080486208200455, -0.09546306729316711, -0.0077644940465688705, -0.03290364146232605, -0.06498556584119797, 0.05171378701925278, 0.04418153688311577, 0.1317291259765625, 0.10052531957626343, -0.03819964453577995, 0.040820375084877014, -0.05231698974967003, 0.22971421480178833, -0.11867242306470871, -0.006492012646049261, 0.1309843212366104, -0.01947944425046444, 0.04969099164009094, 0.13925617933273315, 0.07311523705720901, -0.10056842118501663, -0.015190450474619865, 0.03245320916175842, -0.04194558411836624, -0.16518433392047882, -0.007356028072535992, -0.04644531384110451, 0.011948337778449059, 0.11825048178434372, 0.028538880869746208, -0.005457968916743994, 0.03282571956515312, 0.019119367003440857, 0.023533152416348457, 0.02904830127954483, 0.1062677726149559, 0.07874300330877304, 0.04539439454674721, 0.10456512123346329, -0.05133091285824776, -0.00948123075067997, 0.039420586079359055, 0.03287658840417862, 0.22284337878227234, 0.023447386920452118, 0.16491340100765228, 0.0885152593255043, 0.11615151166915894, 0.03040280006825924, 0.014759480953216553, -0.006899365223944187, -0.04477274417877197, -0.0035533199552446604, -0.05727896839380264, -0.013940608128905296, 0.03360448405146599, -0.05313098430633545, -0.016844386234879494, -0.0990501269698143, 0.06100691854953766, 0.06511883437633514, 0.2741794288158417, 0.0381939671933651, -0.3395523726940155, -0.05967703461647034, 0.01312268152832985, -0.022779665887355804, -0.021572696045041084, 0.03948771953582764, 0.15009385347366333, -0.06608712673187256, 0.10264719277620316, -0.06928929686546326, 0.07641912251710892, -0.06369094550609589, 0.028366362676024437, 0.10655484348535538, 0.06037535145878792, -0.0002996342082042247, 0.03406200930476189, -0.28517621755599976, 0.2971919775009155, 0.021115098148584366, 0.07264145463705063, -0.03322801738977432, -0.015604446642100811, 0.02000606805086136, 0.07062408328056335, 0.14521907269954681, -0.014386589638888836, -0.11240161210298538, -0.18276900053024292, -0.03636016324162483, 0.013881681486964226, 0.13851352035999298, -0.00337128690443933, 0.10298798233270645, -0.022709190845489502, -0.017856167629361153, 0.061562374234199524, -0.10043808072805405, -0.077967569231987, -0.0772036463022232, -0.013112936168909073, 0.03508015722036362, -0.0101782763376832, -0.09031816571950912, -0.082636259496212, -0.09092704951763153, 0.13392840325832367, -0.105869360268116, -0.01466353889554739, -0.11108790338039398, 0.04642511531710625, 0.050212811678647995, -0.06120739132165909, 0.07677152752876282, -0.009931277483701706, 0.1583467274904251, -0.009539668448269367, -0.05038483813405037, 0.1361929178237915, -0.07297879457473755, -0.18139588832855225, -0.07386589050292969, 0.11697375774383545, 0.006278457585722208, 0.05854865908622742, -0.016068076714873314, 0.03999738767743111, 0.019742721691727638, -0.06723275035619736, 0.02926480770111084, -0.0059981276281178, 0.041587136685848236, -0.044653911143541336, -0.031049862504005432, 0.009833044372498989, -0.05627211928367615, -0.014822961762547493, 0.15800867974758148, 0.35044947266578674, -0.11848524957895279, 0.039819490164518356, 0.03945890814065933, -0.048056069761514664, -0.20191875100135803, 0.045866917818784714, 0.06241831183433533, -0.04737704619765282, 0.025013117119669914, -0.1510820984840393, 0.05746687948703766, 0.07756031304597855, -0.016599074006080627, 0.08300898224115372, -0.2844661474227905, -0.13133780658245087, 0.06053071841597557, 0.17650704085826874, 0.06326265633106232, -0.1344485580921173, -0.013248056173324585, 0.006379134953022003, -0.15067914128303528, 0.11355647444725037, -0.08556127548217773, 0.11613410711288452, -0.022392183542251587, 0.027102429419755936, -0.00026261599850840867, -0.059398505836725235, 0.11404877156019211, -0.014237004332244396, 0.1270817369222641, -0.053319301456213, -0.057881228625774384, 0.11457443982362747, -0.07826434075832367, 0.00003527539229253307, -0.08080960065126419, 0.004695645999163389, -0.10037055611610413, 0.003825925290584564, -0.07305232435464859, -0.019031479954719543, -0.03247721120715141, -0.04904113709926605, -0.058826934546232224, 0.054470036178827286, 0.04613620042800903, -0.003314616857096553, 0.22786098718643188, -0.023726345971226692, 0.1114882156252861, 0.16863779723644257, 0.07601945847272873, -0.0956071987748146, -0.07216747105121613, -0.002233976498246193, -0.015602564439177513, 0.082978755235672, -0.16332973539829254, 0.046312931925058365, 0.12421754747629166, 0.02792448364198208, 0.1413789540529251, 0.0625125914812088, -0.028846584260463715, 0.049845270812511444, 0.09248780459165573, -0.13571475446224213, -0.10740925371646881, 0.02226542867720127, -0.010769492946565151, -0.08845961093902588, 0.027990708127617836, 0.09464545547962189, -0.06342887878417969, 0.029401622712612152, -0.011211575008928776, 0.02892865054309368, -0.052148591727018356, 0.14519336819648743, 0.0497741624712944, 0.05986948683857918, -0.1138482317328453, 0.11592551320791245, 0.017183251678943634, -0.10459437221288681, 0.0095842145383358, 0.09453130513429642, -0.0922909528017044, -0.017573215067386627, 0.0312186349183321, 0.13275989890098572, -0.039639707654714584, -0.05429472774267197, -0.15098066627979279, -0.11950534582138062, 0.07553200423717499, 0.18850408494472504, 0.059480056166648865, 0.014004981145262718, -0.01013460848480463, 0.03181702643632889, -0.12746304273605347, 0.09748660773038864, 0.0011369443964213133, 0.06214972212910652, -0.1662226915359497, 0.11641862243413925, 0.01323765516281128, 0.03258185833692551, -0.031950466334819794, 0.026618899777531624, -0.08361734449863434, 0.028539540246129036, -0.06800791621208191, 0.00665033096447587, -0.05063917860388756, 0.02215920202434063, -0.01689320057630539, -0.04468151181936264, -0.07272530347108841, 0.022430213168263435, -0.100337915122509, -0.023115046322345734, 0.0306639913469553, 0.04333604872226715, -0.13518697023391724, -0.032772284001111984, 0.006179701536893845, -0.07855570316314697, 0.053807370364665985, -0.0016283107688650489, 0.013288706541061401, 0.030297165736556053, -0.15414166450500488, -0.019324984401464462, 0.07928922027349472, -0.016399037092924118, 0.0403672456741333, -0.07078231871128082, -0.011136711575090885, -0.018743470311164856, 0.013429133221507072, 0.003576168790459633, 0.058121681213378906, -0.11736424267292023, 0.019672099500894547, -0.01087181270122528, -0.04836558550596237, -0.058739420026540756, 0.06680931895971298, 0.11218225210905075, -0.005545389838516712, 0.17017553746700287, -0.08488550782203674, -0.002276566345244646, -0.20372843742370605, -0.009532427415251732, 0.018935373052954674, -0.12197472900152206, -0.09365089982748032, -0.030846839770674706, 0.0688735693693161, -0.07856735587120056, 0.14441047608852386, -0.005656924098730087, -0.007031664252281189, 0.07037002593278885, -0.09182746708393097, -0.024023007601499557, 0.03806527704000473, 0.17740552127361298, 0.030246272683143616, -0.033769894391298294, 0.03218451142311096, 0.021027492359280586, 0.10714223980903625, 0.08976122736930847, 0.16110172867774963, 0.16431747376918793, -0.008655693382024765, 0.09070220589637756, 0.06688205152750015, -0.025007812306284904, -0.15858307480812073, 0.15809234976768494, -0.06463619321584702, 0.13831977546215057, -0.023198658600449562, 0.1434183269739151, 0.16836225986480713, -0.1825774610042572, 0.0287557952105999, -0.01583034358918667, -0.0677076205611229, -0.08944921940565109, -0.07066039741039276, -0.08879131078720093, -0.17754609882831573, 0.04253260791301727, -0.12126073241233826, 0.09329628944396973, 0.07410384714603424, 0.044382911175489426, 0.005028142593801022, 0.19012609124183655, 0.003626490943133831, 0.027819471433758736, 0.10341332107782364, 0.023994440212845802, -0.03609422221779823, -0.05302692949771881, -0.06948266178369522, 0.0466938354074955, -0.05869726836681366, 0.019229857251048088, -0.02170846424996853, -0.04331503063440323, 0.06135566905140877, 0.01311725378036499, -0.11262430250644684, 0.04335435479879379, 0.023855559527873993, 0.05534183606505394, 0.048624735325574875, 0.0048692477867007256, 0.015174034051597118, 0.005589080974459648, 0.18638931214809418, -0.0697995200753212, -0.061559367924928665, -0.08884244412183762, 0.18097200989723206, 0.006542946211993694, 0.016245679929852486, -0.011984425596892834, -0.073304682970047, -0.012345385737717152, 0.15982681512832642, 0.16896843910217285, -0.05983814224600792, -0.005660750903189182, -0.03722647950053215, -0.00592610752210021, -0.03966458514332771, 0.09775368124246597, 0.057322751730680466, -0.006460573989897966, -0.07567406445741653, -0.06130743399262428, -0.04059429466724396, -0.021112004294991493, -0.015109442174434662, 0.014780007302761078, 0.05005258321762085, 0.0012935841223224998, -0.0833718329668045, 0.0564458966255188, -0.033664967864751816, -0.10542745888233185, 0.10920994728803635, -0.19618801772594452, -0.11588062345981598, -0.003490239614620805, 0.09438858181238174, -0.0069294273853302, 0.030813032761216164, -0.007685482036322355, -0.012669754214584827, 0.02311427891254425, -0.0003433947858866304, -0.048246100544929504, -0.11474324762821198, 0.0768156498670578, -0.12809441983699799, 0.24156565964221954, -0.04505162686109543, 0.04330836609005928, 0.09852022677659988, 0.01594492606818676, -0.08660731464624405, 0.07771512866020203, 0.05670149624347687, -0.08938835561275482, -0.03054928593337536, 0.15082472562789917, -0.04815751686692238, 0.1588800996541977, 0.0545901395380497, -0.08678526431322098, 0.02159707620739937, -0.09901591390371323, -0.09130195528268814, -0.044947922229766846, -0.04558692127466202, -0.03457930311560631, 0.137323796749115, 0.18969839811325073, -0.03348222374916077, 0.0156876090914011, -0.07164575904607773, 0.02820478565990925, 0.10922486335039139, 0.019687781110405922, -0.03683708608150482, -0.2139432281255722, 0.039182279258966446, 0.09539467096328735, 0.003556996351107955, -0.1766461730003357, -0.10981769114732742, -0.0024710947182029486, -0.03828728571534157, -0.06175961345434189, 0.08081165701150894, 0.09199106693267822, 0.05464424192905426, -0.06314288079738617, -0.1409410834312439, -0.01571534387767315, 0.16379182040691376, -0.13593065738677979, -0.07598090171813965 ]
null
null
transformers
## Model Details This is an official implementation of ODIN-ppo-L230-7B model, which is a chat assistant trained by fine-tuning LLaMA on Open-Assistant dataset via PPO. The L230 means the output length in LIMA test set is ~230. ODIN is the reward model for the training. ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Lichang-Chen](https://huggingface.co/Lichang-Chen) and [Chen Zhu](https://scholar.google.com/citations?hl=zh-CN&user=m-om5O8AAAAJ) - **Model type:** RLHF model. - **Language(s) (NLP):** English - **Finetuned from model:** [Vicuna-7b](https://huggingface.co/lmsys/vicuna-7b-v1.5) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [ODIN](https://github.com/Lichang-Chen/ODIN) - **Paper:** [ODIN: Disentangled Reward Mitigates Hacking in RLHF](https://huggingface.co/papers/2402.07319)
{"language": ["en"], "license": "mit", "tags": ["ODIN", "RLHF", "PPO"]}
text-generation
Lichang-Chen/ODIN-ppo-L230-best
[ "transformers", "pytorch", "llama", "text-generation", "ODIN", "RLHF", "PPO", "en", "arxiv:2402.07319", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T03:32:51+00:00
[ "2402.07319" ]
[ "en" ]
TAGS #transformers #pytorch #llama #text-generation #ODIN #RLHF #PPO #en #arxiv-2402.07319 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## Model Details This is an official implementation of ODIN-ppo-L230-7B model, which is a chat assistant trained by fine-tuning LLaMA on Open-Assistant dataset via PPO. The L230 means the output length in LIMA test set is ~230. ODIN is the reward model for the training. ## Model Description - Developed by: Lichang-Chen and Chen Zhu - Model type: RLHF model. - Language(s) (NLP): English - Finetuned from model: Vicuna-7b ### Model Sources - Repository: ODIN - Paper: ODIN: Disentangled Reward Mitigates Hacking in RLHF
[ "## Model Details\nThis is an official implementation of ODIN-ppo-L230-7B model, which is a chat assistant trained by fine-tuning LLaMA on Open-Assistant dataset via PPO. \nThe L230 means the output length in LIMA test set is ~230. ODIN is the reward model for the training.", "## Model Description \n\n\n\n- Developed by: Lichang-Chen and Chen Zhu\n- Model type: RLHF model.\n- Language(s) (NLP): English\n- Finetuned from model: Vicuna-7b", "### Model Sources\n\n\n\n- Repository: ODIN\n- Paper: ODIN: Disentangled Reward Mitigates Hacking in RLHF" ]
[ "TAGS\n#transformers #pytorch #llama #text-generation #ODIN #RLHF #PPO #en #arxiv-2402.07319 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## Model Details\nThis is an official implementation of ODIN-ppo-L230-7B model, which is a chat assistant trained by fine-tuning LLaMA on Open-Assistant dataset via PPO. \nThe L230 means the output length in LIMA test set is ~230. ODIN is the reward model for the training.", "## Model Description \n\n\n\n- Developed by: Lichang-Chen and Chen Zhu\n- Model type: RLHF model.\n- Language(s) (NLP): English\n- Finetuned from model: Vicuna-7b", "### Model Sources\n\n\n\n- Repository: ODIN\n- Paper: ODIN: Disentangled Reward Mitigates Hacking in RLHF" ]
[ 71, 73, 47, 33 ]
[ "passage: TAGS\n#transformers #pytorch #llama #text-generation #ODIN #RLHF #PPO #en #arxiv-2402.07319 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## Model Details\nThis is an official implementation of ODIN-ppo-L230-7B model, which is a chat assistant trained by fine-tuning LLaMA on Open-Assistant dataset via PPO. \nThe L230 means the output length in LIMA test set is ~230. ODIN is the reward model for the training.## Model Description \n\n\n\n- Developed by: Lichang-Chen and Chen Zhu\n- Model type: RLHF model.\n- Language(s) (NLP): English\n- Finetuned from model: Vicuna-7b### Model Sources\n\n\n\n- Repository: ODIN\n- Paper: ODIN: Disentangled Reward Mitigates Hacking in RLHF" ]
[ -0.07852539420127869, 0.03613509237766266, -0.0015420039417222142, 0.11367791891098022, 0.03954562917351723, -0.04617100954055786, 0.16083753108978271, 0.046306997537612915, -0.02479252777993679, 0.008120957762002945, 0.07147212326526642, 0.09625636786222458, 0.04414654150605202, 0.07044264674186707, -0.023731622844934464, -0.24665357172489166, 0.059530775994062424, -0.006598354782909155, -0.05483582615852356, 0.09872005879878998, 0.12101224064826965, -0.007366000209003687, 0.06834448128938675, 0.04764331504702568, -0.045584917068481445, 0.012727921828627586, -0.004573112819343805, -0.053992025554180145, 0.11352091282606125, 0.0793091431260109, 0.07924947142601013, 0.013629566878080368, 0.03613806888461113, -0.06775587797164917, 0.042839180678129196, -0.02249920181930065, -0.012779145501554012, 0.0940471664071083, -0.05002809688448906, 0.099153071641922, 0.22659409046173096, 0.021137699484825134, 0.0030724620446562767, -0.006784193217754364, -0.030426809564232826, -0.024833116680383682, -0.029055116698145866, 0.15712451934814453, 0.02893650531768799, 0.1155947893857956, 0.02362850308418274, 0.17138442397117615, -0.06165545806288719, 0.05911960080265999, 0.2151142805814743, -0.29186108708381653, -0.05243951454758644, 0.0821421891450882, 0.028860805556178093, 0.0634818971157074, 0.0015759726520627737, -0.05306656286120415, 0.07094431668519974, 0.03777047246694565, -0.021302076056599617, -0.042469270527362823, -0.004203550051897764, 0.025267919525504112, -0.12049853056669235, -0.0464746356010437, 0.13501831889152527, 0.04433344304561615, -0.10194310545921326, -0.05284643545746803, -0.03771963343024254, -0.04764603078365326, 0.043372754007577896, -0.0019337388221174479, -0.01755739562213421, 0.013282774947583675, 0.12912461161613464, 0.008735980838537216, -0.045189592987298965, -0.06694820523262024, -0.038186214864254, 0.15987111628055573, 0.03146827220916748, 0.06848543882369995, -0.10234634578227997, 0.04834260419011116, -0.09214998781681061, -0.06199740245938301, -0.057653166353702545, -0.04878367483615875, 0.07624837011098862, 0.05146549642086029, -0.021541742607951164, -0.054030995815992355, 0.1109558492898941, 0.11397173255681992, -0.11257801204919815, -0.015528655610978603, 0.0169521551579237, 0.07044313102960587, 0.004893120843917131, 0.03965773433446884, -0.07808352261781693, 0.12735317647457123, 0.09914416074752808, -0.003966635558754206, 0.03873175010085106, -0.04249109700322151, -0.03412196785211563, -0.0030520069412887096, 0.03662896901369095, 0.0030096336267888546, -0.012785205617547035, 0.08496065437793732, -0.07339461147785187, -0.03240888565778732, 0.0760108157992363, -0.10369469225406647, -0.007917984388768673, 0.026530729606747627, -0.09706572443246841, -0.030536416918039322, 0.050002437084913254, -0.012529349885880947, -0.09842507541179657, 0.035971228033304214, -0.0452762097120285, -0.042567089200019836, -0.12599195539951324, -0.11542895436286926, 0.022130969911813736, 0.0651819258928299, 0.04489751160144806, -0.1496724933385849, -0.15905512869358063, -0.03269132971763611, 0.030819829553365707, 0.011601184494793415, -0.11049507558345795, -0.08468516170978546, -0.07788509130477905, -0.06629734486341476, -0.0596686452627182, -0.029512612149119377, -0.0312824510037899, 0.05281861871480942, -0.05507759004831314, 0.04325547441840172, -0.12461037933826447, -0.012615782208740711, -0.07819809019565582, 0.03165189549326897, -0.035180024802684784, 0.014734635129570961, -0.0605582520365715, 0.08590511977672577, 0.002350067952647805, -0.07365266233682632, -0.007910827174782753, 0.04654301330447197, 0.07481398433446884, 0.15422892570495605, 0.008797858841717243, -0.018930697813630104, 0.1121024638414383, -0.176153302192688, -0.06982780992984772, 0.10355759412050247, -0.04218994081020355, 0.07409229129552841, 0.06907997280359268, 0.17089569568634033, 0.13067243993282318, -0.06128842011094093, -0.03274913504719734, -0.007540456019341946, -0.05420055240392685, -0.03409944474697113, 0.037190213799476624, 0.10464338958263397, -0.14294368028640747, 0.05465821921825409, -0.12312737107276917, 0.02720448561012745, -0.07301192730665207, -0.056679464876651764, -0.029831618070602417, -0.07980602979660034, -0.0117851747199893, -0.02274750918149948, 0.0831235945224762, -0.04880194738507271, -0.020999552682042122, -0.0160023495554924, 0.15386515855789185, -0.031678132712841034, 0.0016990350559353828, -0.22258339822292328, 0.09995561093091965, 0.03619572892785072, 0.045617613941431046, -0.14540395140647888, 0.015500631183385849, -0.012608051300048828, 0.038861438632011414, 0.026866061612963676, 0.04068503901362419, 0.051673587411642075, 0.02108003757894039, 0.046149805188179016, -0.032855480909347534, -0.05575403943657875, -0.027326270937919617, 0.0033067886251956224, -0.12516255676746368, -0.043315816670656204, -0.04309113323688507, 0.08411725610494614, -0.16918852925300598, 0.039360031485557556, -0.03292427584528923, 0.02152225561439991, 0.002826271578669548, 0.033934108912944794, -0.022190509364008904, 0.040334951132535934, -0.02197684347629547, 0.000368961482308805, 0.03203017637133598, 0.05082359537482262, -0.07343284040689468, 0.04537162557244301, 0.020975029096007347, 0.16612941026687622, 0.08357413113117218, -0.01894776150584221, 0.018784884363412857, 0.02732722833752632, -0.06545478850603104, 0.01693902350962162, -0.004044202622026205, 0.03533926233649254, 0.2305602878332138, -0.025244394317269325, 0.07263317704200745, -0.08401433378458023, 0.0507904589176178, -0.02175641804933548, -0.08697745203971863, 0.02901053987443447, 0.1495262235403061, 0.05412270128726959, -0.007691752631217241, 0.033227045089006424, -0.06662145256996155, -0.06618877500295639, 0.12480339407920837, -0.03083266131579876, -0.00438180286437273, -0.015357818454504013, 0.07758315652608871, 0.02357310988008976, 0.03337238356471062, 0.006658731959760189, 0.024023674428462982, 0.024793049320578575, 0.01379199605435133, 0.04960930719971657, -0.14907199144363403, -0.062327541410923004, 0.006450789049267769, -0.03314632549881935, -0.07773077487945557, 0.05883927270770073, -0.049290258437395096, 0.10364323109388351, -0.034748006612062454, -0.12494347244501114, 0.07219118624925613, -0.02125742845237255, -0.07926568388938904, 0.14385077357292175, -0.0766860619187355, -0.1963847428560257, -0.14349748194217682, -0.022100310772657394, -0.08138208836317062, -0.03280596062541008, 0.034915391355752945, -0.08643963932991028, -0.07017344236373901, -0.07100330293178558, 0.02187887579202652, 0.050390638411045074, 0.007426049560308456, 0.15474706888198853, -0.028447605669498444, 0.023795660585165024, -0.11510907858610153, -0.04984150826931, -0.011231907643377781, -0.062147051095962524, 0.11943831294775009, -0.11479322612285614, 0.05901861935853958, 0.09569838643074036, 0.013966082595288754, 0.0285361148416996, 0.046665824949741364, 0.1500694751739502, -0.015123719349503517, -0.06481646001338959, 0.19272027909755707, -0.010554482229053974, 0.01695270650088787, 0.04551771655678749, 0.001274303300306201, -0.08786535263061523, 0.0664699524641037, -0.034914255142211914, -0.04721150919795036, -0.1981596052646637, -0.09205874800682068, -0.03992190584540367, 0.0961419939994812, 0.018451713025569916, 0.11636082828044891, 0.1120610386133194, 0.039803892374038696, 0.08148480206727982, 0.04472390562295914, 0.08717712014913559, 0.03282590210437775, 0.06905343383550644, 0.01412069983780384, 0.008690164424479008, -0.06271133571863174, -0.025341004133224487, 0.06577017158269882, -0.07388456910848618, 0.20172017812728882, -0.039823804050683975, 0.037449829280376434, 0.07743251323699951, 0.18186098337173462, 0.08068021386861801, 0.10874751210212708, -0.06227297708392143, -0.03049222007393837, -0.007431671489030123, -0.026708468794822693, -0.05638686940073967, 0.04536309838294983, -0.22449582815170288, 0.05924436077475548, -0.08694148808717728, 0.11978089064359665, -0.025885142385959625, 0.22932244837284088, -0.0063874972984194756, -0.20054642856121063, -0.13965977728366852, 0.014168743044137955, -0.03901134058833122, -0.050817955285310745, 0.10504841059446335, 0.08189228177070618, -0.07104828208684921, -0.05838959664106369, -0.02025892212986946, 0.10360211133956909, -0.06532388925552368, 0.06193799898028374, -0.04766003042459488, 0.1014452651143074, -0.0019665821455419064, 0.09137001633644104, -0.29702332615852356, 0.1403583586215973, -0.04817898944020271, 0.08581442385911942, -0.05849843844771385, -0.04781967028975487, 0.017718974500894547, 0.13717179000377655, 0.09793459624052048, 0.02177543379366398, 0.020225035026669502, -0.03572781756520271, -0.10548974573612213, 0.03983408212661743, -0.057103682309389114, 0.032873813062906265, 0.03510116785764694, -0.015354358591139317, 0.061419710516929626, -0.010509379208087921, -0.03982270509004593, -0.029705790802836418, -0.021268131211400032, -0.0028365368489176035, 0.11128849536180496, 0.15635889768600464, -0.10144655406475067, -0.0708237886428833, 0.041535522788763046, 0.16841284930706024, 0.022831732407212257, -0.06149744614958763, -0.08218964189291, 0.12273883074522018, -0.014696003869175911, -0.07762811332941055, -0.04396926984190941, 0.056380413472652435, 0.025597207248210907, -0.020670028403401375, -0.09817253053188324, 0.04629337042570114, -0.0655079185962677, -0.06128237396478653, 0.02853560261428356, -0.03243400901556015, 0.11219397932291031, 0.04822229966521263, -0.0017962274141609669, -0.07566500455141068, -0.02691071294248104, -0.12745504081249237, -0.1253526359796524, 0.11982416361570358, -0.028098033741116524, 0.025596976280212402, -0.029274391010403633, 0.040684353560209274, -0.04427137225866318, -0.05676351115107536, 0.09283196926116943, 0.15082716941833496, -0.029201701283454895, 0.09684591740369797, 0.06056739017367363, -0.028088729828596115, -0.22066724300384521, -0.10352560877799988, 0.008135966956615448, 0.125325545668602, -0.020250709727406502, -0.08655336499214172, 0.04405927658081055, -0.016660071909427643, -0.034526728093624115, 0.009135651402175426, -0.26676857471466064, -0.04311781004071236, 0.13721264898777008, 0.12272174656391144, 0.29506945610046387, -0.07834548503160477, -0.019528182223439217, -0.0036743967793881893, -0.15336759388446808, 0.04479703679680824, -0.10063447803258896, 0.024644671007990837, -0.031978022307157516, 0.15977725386619568, 0.011651478707790375, -0.037040844559669495, 0.06299546360969543, -0.04424247890710831, 0.0959605723619461, -0.10444412380456924, 0.016476837918162346, -0.0012863349402323365, 0.023334570229053497, 0.1579410582780838, -0.06966888904571533, 0.047866255044937134, -0.18118543922901154, -0.049041811376810074, -0.07386043667793274, 0.06277136504650116, -0.006884033791720867, -0.046685948967933655, -0.04207683354616165, 0.08614812046289444, 0.010403448715806007, 0.07886683940887451, 0.04287518933415413, -0.0016690193442627788, 0.037204254418611526, 0.0220868568867445, 0.11378329992294312, -0.060059502720832825, 0.025765595957636833, 0.01183964405208826, 0.033939238637685776, 0.11056020855903625, -0.15129026770591736, -0.04141871631145477, 0.129059299826622, -0.01642085798084736, 0.1100606769323349, 0.042961910367012024, -0.07085465639829636, 0.017147019505500793, 0.08641254901885986, -0.1979544758796692, -0.0056314305402338505, -0.002644875319674611, 0.1409955769777298, 0.08154468238353729, 0.044905222952365875, 0.15443159639835358, -0.14251330494880676, 0.006685975473374128, -0.007325435988605022, 0.06204131618142128, -0.13736262917518616, 0.05089304596185684, 0.05002283304929733, 0.025920823216438293, -0.07781364768743515, -0.027930594980716705, 0.03302634134888649, -0.02889973670244217, 0.06589122116565704, 0.06711407005786896, -0.12094567716121674, -0.04697125405073166, 0.005189460702240467, 0.1293676495552063, -0.06712018698453903, -0.16117186844348907, -0.17646627128124237, -0.13394558429718018, 0.03991419076919556, -0.07049697637557983, 0.04474835470318794, 0.025678403675556183, -0.010935776866972446, -0.06885480135679245, -0.1136464923620224, -0.021062253043055534, 0.05866314470767975, -0.05923144146800041, -0.10456472635269165, -0.02457495592534542, -0.009004658088088036, 0.1026000827550888, -0.03161875158548355, -0.017094874754548073, -0.16877149045467377, 0.03976022079586983, -0.13150151073932648, 0.014354851096868515, 0.020098844543099403, 0.03138371556997299, -0.013678470626473427, -0.04159357771277428, -0.0354192741215229, 0.06482823938131332, -0.08651150017976761, 0.028283126652240753, 0.0011450081365182996, 0.00009628185944166034, -0.06138847768306732, -0.058608975261449814, 0.04312645643949509, -0.029421880841255188, 0.05070723593235016, 0.11232462525367737, -0.09097426384687424, 0.06757717579603195, -0.06785135716199875, 0.07311973720788956, 0.034556154161691666, 0.024342330172657967, 0.059179481118917465, -0.05012831464409828, -0.009450903162360191, 0.09228718280792236, -0.04634254425764084, 0.013487706892192364, 0.04683817923069, -0.05545778200030327, -0.02944101393222809, -0.04838299751281738, -0.022645723074674606, -0.08792689442634583, 0.007653376087546349, 0.02979697287082672, 0.08948924392461777, 0.1214936152100563, -0.06712361425161362, 0.027825186029076576, -0.11446830630302429, -0.0029309308156371117, 0.07052625715732574, 0.012161205522716045, -0.013308870606124401, -0.0757523700594902, 0.024097038432955742, -0.014090717770159245, 0.08057484030723572, 0.027388865128159523, -0.11859499663114548, -0.00620854739099741, -0.10891996324062347, -0.026024164631962776, -0.00009763449634192511, 0.12739625573158264, -0.01732534170150757, 0.06676261126995087, 0.04403803497552872, -0.009892403148114681, 0.023832961916923523, 0.0698169395327568, 0.10225247591733932, 0.05781521275639534, 0.06457950174808502, 0.046016793698072433, 0.047837864607572556, 0.07891571521759033, -0.0356891006231308, 0.019570233300328255, -0.06484303623437881, 0.009581150487065315, -0.022535881027579308, 0.17093394696712494, 0.1616431325674057, -0.024960672482848167, 0.05321500450372696, -0.020537251606583595, -0.07168909907341003, -0.1124168336391449, -0.1921742558479309, -0.07133372128009796, -0.20797249674797058, 0.0432974137365818, -0.10470249503850937, -0.016487199813127518, 0.06547064334154129, 0.03167666494846344, -0.03861914947628975, 0.09633055329322815, 0.02732125110924244, 0.02982220984995365, 0.013753269799053669, -0.10593237727880478, -0.03421204909682274, -0.08335249871015549, 0.006075776647776365, -0.05306081101298332, 0.011009751819074154, 0.016066549345850945, 0.0470435731112957, 0.03936713561415672, 0.039488956332206726, 0.017564531415700912, -0.030986610800027847, -0.03580359369516373, -0.007761157583445311, 0.031174032017588615, 0.17001359164714813, 0.06217271834611893, -0.08712539076805115, 0.006756502203643322, 0.15103493630886078, -0.014611697755753994, -0.13622795045375824, -0.15451745688915253, 0.22439506649971008, -0.0614544115960598, -0.025020049884915352, 0.03363606333732605, 0.0037947555538266897, -0.04016975313425064, 0.22427445650100708, 0.1967715620994568, -0.0927906185388565, 0.007292704191058874, -0.09201852232217789, 0.00011656808783300221, -0.06427071988582611, 0.12185811251401901, 0.1412712037563324, 0.2583855092525482, -0.045886099338531494, -0.0100005604326725, -0.12069633603096008, 0.056694433093070984, -0.041813191026449203, 0.021242158487439156, 0.0017720356117933989, -0.026260675862431526, -0.08573891222476959, 0.047302622348070145, -0.10192816704511642, -0.12616664171218872, 0.007283045444637537, -0.0424385629594326, -0.028970610350370407, -0.05129201337695122, -0.021548187360167503, 0.01458568125963211, 0.13428227603435516, -0.06623038649559021, -0.016124660149216652, 0.08231993019580841, -0.04653254896402359, -0.09323225170373917, 0.0002940723206847906, 0.11601556837558746, -0.021428225561976433, 0.08012892305850983, 0.02154502086341381, 0.1475929319858551, 0.0627124011516571, -0.01787514239549637, -0.07553154975175858, 0.050130102783441544, -0.03251540660858154, -0.07513520866632462, -0.11222066730260849, -0.023711927235126495, 0.0021180727053433657, -0.018422717228531837, 0.017953086644411087, -0.040594931691884995, -0.0420718751847744, -0.031010154634714127, 0.052049778401851654, -0.08621832728385925, 0.05563274770975113, -0.07913783192634583, 0.12430482357740402, 0.14269384741783142, -0.025484465062618256, 0.03186861425638199, -0.07207050174474716, 0.12040997296571732, -0.06597105413675308, -0.06871725618839264, 0.012477315962314606, -0.132085919380188, -0.03381326049566269, 0.014257003553211689, -0.04999006912112236, -0.28937259316444397, -0.06968986243009567, -0.14979010820388794, -0.07063614577054977, -0.05243411660194397, 0.02039177715778351, 0.10889323800802231, 0.028836442157626152, -0.045459259301424026, 0.07482393085956573, -0.023440856486558914, 0.0785302221775055, -0.05354118347167969, -0.11887869238853455 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # business_models_detectors This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "google/flan-t5-small", "model-index": [{"name": "business_models_detectors", "results": []}]}
text2text-generation
fliarbi/business_models_detectors
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T03:34:27+00:00
[]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# business_models_detectors This model is a fine-tuned version of google/flan-t5-small on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
[ "# business_models_detectors\n\nThis model is a fine-tuned version of google/flan-t5-small on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# business_models_detectors\n\nThis model is a fine-tuned version of google/flan-t5-small on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ 77, 34, 6, 12, 8, 3, 90, 4, 30 ]
[ "passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# business_models_detectors\n\nThis model is a fine-tuned version of google/flan-t5-small on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ -0.0797390267252922, 0.1099802777171135, -0.0013234114740043879, 0.1109277606010437, 0.14619044959545135, 0.007907629013061523, 0.12632706761360168, 0.11097823828458786, -0.08935242891311646, 0.03002631850540638, 0.06870967894792557, 0.04425478354096413, 0.03015020117163658, 0.15114107728004456, -0.03549470752477646, -0.21445786952972412, -0.015208476223051548, -0.024327130988240242, -0.03069542534649372, 0.11754635721445084, 0.10498827695846558, -0.08747151494026184, 0.09611807763576508, -0.024545803666114807, -0.12438179552555084, 0.042966511100530624, -0.01333833672106266, -0.04937855526804924, 0.10964204370975494, 0.03697836771607399, 0.07296691089868546, 0.014769473113119602, 0.1385945975780487, -0.22767046093940735, -0.0014449773589149117, 0.07849059998989105, 0.02259289287030697, 0.060075901448726654, 0.03234373778104782, -0.020496854558587074, 0.09047491103410721, -0.14390748739242554, 0.09937997907400131, 0.04700687155127525, -0.062066465616226196, -0.12899191677570343, -0.08132782578468323, 0.08337919414043427, 0.10570988059043884, 0.12808094918727875, 0.01376450527459383, 0.1392134130001068, -0.08508606255054474, 0.0939888209104538, 0.1807544231414795, -0.2663947641849518, -0.05344858393073082, 0.05567392706871033, 0.055258605629205704, 0.09363599121570587, -0.0972418338060379, 0.0052309720776975155, 0.056174926459789276, 0.02879990264773369, 0.09844725579023361, -0.020322047173976898, -0.12939539551734924, 0.00762444082647562, -0.11213251203298569, -0.009150232188403606, 0.20753006637096405, 0.05339701473712921, -0.049417778849601746, -0.09685029834508896, -0.05081556737422943, -0.09173425287008286, -0.023469731211662292, -0.03108789399266243, 0.059113893657922745, -0.032217346131801605, -0.040426962077617645, -0.07751905173063278, -0.08906877040863037, -0.08376176655292511, 0.0040570637211203575, 0.06816238909959793, 0.04174656420946121, -0.0030416774097830057, -0.03684062883257866, 0.09815908223390579, -0.003978550434112549, -0.0990666002035141, -0.035152092576026917, -0.004092366434633732, -0.052452944219112396, -0.057283177971839905, -0.015209127217531204, -0.01002318225800991, 0.021125350147485733, 0.1400875747203827, -0.08727885037660599, 0.05857892334461212, -0.0038725819904357195, 0.01036472711712122, -0.05626034364104271, 0.13032770156860352, -0.013489926233887672, -0.07160875201225281, 0.032523028552532196, 0.07350177317857742, 0.03822890296578407, 0.0110015869140625, -0.09385138005018234, -0.030415240675210953, 0.08849707245826721, 0.08842477202415466, -0.03914540633559227, 0.061727359890937805, -0.020368870347738266, 0.0030771936289966106, 0.018477708101272583, -0.13245227932929993, 0.04477803781628609, -0.011884314008057117, -0.07262315601110458, -0.06400663405656815, 0.06463056802749634, -0.0005850501474924386, -0.03363722562789917, 0.04074442386627197, -0.06065564230084419, -0.011404057964682579, -0.07309697568416595, -0.06617715209722519, 0.023999378085136414, -0.05480831488966942, 0.012121738865971565, -0.10353466868400574, -0.26488903164863586, -0.03589009493589401, 0.03312085196375847, -0.05579788237810135, -0.0496872141957283, -0.05811704322695732, -0.07254417985677719, -0.011474916711449623, -0.01922123320400715, 0.11416368931531906, -0.060969028621912, 0.07323332130908966, 0.008066249080002308, 0.021448466926813126, 0.022462831810116768, 0.02948700077831745, -0.11321647465229034, 0.017369739711284637, -0.11333468556404114, 0.07949153333902359, -0.08704058080911636, 0.07675746083259583, -0.11381012201309204, -0.08885625749826431, -0.014882407151162624, -0.002694220980629325, 0.0290813185274601, 0.16399884223937988, -0.15989339351654053, -0.011283348314464092, 0.14916230738162994, -0.0787176638841629, -0.09574872255325317, 0.10288360714912415, -0.034568604081869125, 0.07574660331010818, 0.10335628688335419, 0.15106967091560364, 0.1308411806821823, -0.13072258234024048, 0.013973915949463844, 0.02213444747030735, 0.02979252301156521, -0.009733620099723339, 0.042877599596977234, -0.014832175336778164, -0.01536823995411396, 0.02354327403008938, -0.07083768397569656, 0.014790182001888752, -0.07539863139390945, -0.07731839269399643, -0.058267742395401, -0.11650543659925461, 0.03769892454147339, 0.03277905657887459, 0.04724392667412758, -0.0937231034040451, -0.12485826015472412, 0.07909659296274185, 0.10469700396060944, -0.06005116179585457, 0.0023582305293530226, -0.06396916508674622, 0.027920115739107132, -0.00013389895320869982, -0.012509978376328945, -0.1619284749031067, -0.1394738405942917, 0.02650890313088894, -0.06998252123594284, 0.05223490670323372, -0.011226369068026543, 0.07665061205625534, 0.06862572580575943, -0.07049905508756638, -0.02131512574851513, -0.04000497981905937, 0.012277796864509583, -0.09813330322504044, -0.19541263580322266, -0.015683665871620178, -0.017890017479658127, 0.1471909135580063, -0.2728138864040375, 0.04090263694524765, -0.03995753452181816, 0.10170845687389374, 0.021707484498620033, -0.025108495727181435, -0.0003125258663203567, 0.02635325863957405, -0.021666167303919792, -0.09807231277227402, 0.03703906387090683, -0.003292567329481244, -0.06991924345493317, -0.029955733567476273, -0.12332842499017715, 0.09621834754943848, 0.08666522800922394, 0.04611740633845329, -0.10766016691923141, -0.0035759746097028255, -0.0551258847117424, -0.04204588010907173, -0.0796215832233429, -0.0022206532303243876, 0.16537350416183472, -0.01481990423053503, 0.13389398157596588, -0.057682838290929794, -0.07158118486404419, -0.0015325268032029271, -0.005389374680817127, -0.0063929143361747265, 0.0922909826040268, 0.061023492366075516, -0.1201910674571991, 0.10327097028493881, 0.06921079754829407, -0.036467768251895905, 0.1432098001241684, -0.04080311581492424, -0.053123556077480316, 0.008993374183773994, 0.03383682295680046, -0.019509779289364815, 0.1059134379029274, -0.12344074994325638, -0.0025893403217196465, 0.015308207832276821, 0.0022291101049631834, 0.03484870865941048, -0.1698727309703827, -0.018393518403172493, 0.032949287444353104, -0.06753461807966232, -0.022157687693834305, -0.03196839988231659, 0.005193784832954407, 0.08819364756345749, 0.005843553692102432, -0.03957642987370491, 0.03393816202878952, 0.006438911892473698, -0.1091064065694809, 0.18373200297355652, -0.08988112956285477, -0.16039514541625977, -0.12984926998615265, 0.03517055884003639, -0.04320776090025902, -0.013611607253551483, 0.04298822954297066, -0.08601318299770355, -0.06642532348632812, -0.13265672326087952, -0.009857606142759323, -0.010252762585878372, -0.028107373043894768, 0.02133212797343731, 0.03756779804825783, 0.07951881736516953, -0.13163770735263824, 0.0066596525721251965, 0.0056388238444924355, -0.09778416156768799, -0.023230062797665596, 0.012075670063495636, 0.11457937955856323, 0.11762963980436325, -0.024603702127933502, 0.011661024764180183, -0.04040716588497162, 0.20179203152656555, -0.06688002496957779, 0.024254461750388145, 0.13074658811092377, 0.034761879593133926, 0.02973993681371212, 0.14577822387218475, 0.01877964846789837, -0.10147208720445633, 0.04769856110215187, 0.06705770641565323, -0.023069370537996292, -0.25830015540122986, -0.04248633608222008, -0.025544151663780212, -0.04335121437907219, 0.07562871277332306, 0.07367989420890808, 0.05187232047319412, 0.03420808166265488, -0.014093190431594849, 0.06167024001479149, 0.04683034121990204, 0.08115647733211517, 0.1097559779882431, 0.029100971296429634, 0.08662929385900497, -0.04983200505375862, -0.020138518884778023, 0.0642046332359314, -0.0029706957284361124, 0.2623172104358673, -0.010038095526397228, 0.10407004505395889, 0.033773601055145264, 0.10501054674386978, -0.010123522952198982, 0.03197268396615982, 0.03781098872423172, 0.014251334592700005, 0.014645335264503956, -0.05975683405995369, -0.006084822583943605, 0.04158967733383179, -0.07215758413076401, 0.036074671894311905, -0.09036008268594742, 0.04345465824007988, 0.026410182937979698, 0.24791491031646729, 0.020907312631607056, -0.319293737411499, -0.10020112246274948, 0.022044096142053604, -0.04217716306447983, -0.048732638359069824, 0.03614680841565132, 0.11714612692594528, -0.11516141891479492, 0.06777851283550262, -0.03194693103432655, 0.09387501329183578, -0.025172939524054527, 0.011021384969353676, 0.061575114727020264, 0.08135911822319031, -0.005092737730592489, 0.1009005755186081, -0.22821326553821564, 0.2183229923248291, 0.00819910317659378, 0.13440892100334167, -0.049103885889053345, 0.021418333053588867, 0.010286092758178711, 0.13642428815364838, 0.13914580643177032, -0.013037546537816525, -0.026913367211818695, -0.15513142943382263, -0.07240962982177734, 0.04774949699640274, 0.08991199731826782, -0.023726413026452065, 0.08374499529600143, -0.06326847523450851, -0.024937620386481285, 0.066535584628582, -0.10700707137584686, -0.2092428356409073, -0.12370524555444717, -0.01979062333703041, -0.0009499371517449617, 0.0028856066055595875, -0.086860291659832, -0.08792372792959213, -0.03844601288437843, 0.17806990444660187, -0.011436878703534603, -0.06281733512878418, -0.1289324015378952, 0.058867208659648895, 0.08540850132703781, -0.06066729500889778, 0.025981109589338303, 0.027125172317028046, 0.10265058279037476, 0.05836891010403633, -0.08457887172698975, 0.06129449978470802, -0.07384542375802994, -0.16590674221515656, -0.05060231685638428, 0.13039933145046234, 0.04152953624725342, 0.04579203948378563, 0.015425380319356918, -0.002331879921257496, 0.01631666161119938, -0.09087572991847992, -0.006498205475509167, 0.09004735201597214, 0.08235443383455276, 0.04578913748264313, -0.10319286584854126, -0.012186241336166859, -0.04933800920844078, -0.040870025753974915, 0.12354719638824463, 0.20194682478904724, -0.08851145952939987, 0.08545516431331635, 0.0745491161942482, -0.09578371793031693, -0.18838119506835938, 0.05755499377846718, 0.048155296593904495, 0.008001845329999924, 0.04232867807149887, -0.15386268496513367, 0.10114777088165283, 0.10021858662366867, -0.02132507972419262, 0.07516214996576309, -0.3421766757965088, -0.14354759454727173, 0.08066052943468094, 0.11739031225442886, 0.002807226264849305, -0.14921414852142334, -0.04193353280425072, -0.05076858773827553, -0.13463254272937775, 0.08282934129238129, -0.11605828255414963, 0.09870146960020065, 0.002056341152638197, 0.07596741616725922, 0.01320560835301876, -0.038363151252269745, 0.11543871462345123, 0.009961601346731186, 0.10050146281719208, -0.06801990419626236, 0.03305878862738609, 0.08411009609699249, -0.07041353732347488, 0.08958681672811508, -0.07174618542194366, 0.08573774993419647, -0.09407716989517212, -0.04793580621480942, -0.061390992254018784, 0.08950842916965485, -0.05315844714641571, -0.05367444455623627, -0.05310572311282158, 0.0447273813188076, 0.061131276190280914, -0.03013128601014614, 0.05873626098036766, 0.0009107108344323933, 0.0999855026602745, 0.09171733260154724, 0.13869643211364746, -0.0158908162266016, -0.06693901121616364, -0.0074919466860592365, -0.03737460449337959, 0.04045973718166351, -0.15104064345359802, 0.028470637276768684, 0.10992418229579926, 0.040804989635944366, 0.1352606862783432, 0.03289737552404404, -0.030540671199560165, -0.011729488149285316, 0.03541891276836395, -0.1102406457066536, -0.19253019988536835, -0.029325081035494804, -0.1089518666267395, -0.11210720241069794, 0.031769976019859314, 0.10354147106409073, -0.10712170600891113, 0.0021336462814360857, -0.03015153668820858, 0.04652849957346916, -0.02320578508079052, 0.17890284955501556, 0.03825685754418373, 0.05522608011960983, -0.07814852893352509, 0.12576226890087128, 0.07920902967453003, -0.03406616300344467, 0.048699427396059036, 0.08708354085683823, -0.10348743200302124, -0.0511598214507103, 0.0894777774810791, 0.1792793571949005, -0.03276754915714264, -0.056920550763607025, -0.08717267960309982, -0.11225990206003189, 0.04490218684077263, 0.13569650053977966, 0.030120179057121277, -0.008008451201021671, -0.010060216300189495, 0.019837066531181335, -0.13699637353420258, 0.11536601185798645, 0.04456235468387604, 0.062331706285476685, -0.1766987293958664, 0.10076526552438736, 0.02079935371875763, 0.02636769227683544, -0.02387784793972969, 0.04307146370410919, -0.09617649018764496, -0.011527660302817822, -0.1701263040304184, 0.003062787465751171, -0.007719472516328096, 0.02616889774799347, -0.017044460400938988, -0.04686128348112106, -0.05816289409995079, 0.06025650352239609, -0.05298178642988205, -0.060016434639692307, 0.019089967012405396, 0.07296942174434662, -0.14807988703250885, -0.011658417992293835, 0.024870524182915688, -0.08480172604322433, 0.06627317517995834, 0.043421488255262375, 0.003685491858050227, 0.04580121487379074, -0.1627211570739746, 0.005710870958864689, 0.03712410479784012, 0.024632489308714867, 0.048520151525735855, -0.07988870143890381, -0.009505461901426315, -0.001088153338059783, 0.040274787694215775, 0.023340122774243355, 0.04892070218920708, -0.11331547796726227, -0.020686298608779907, -0.05838446691632271, -0.04129192605614662, -0.05162421986460686, 0.04268619045615196, 0.10637462139129639, 0.004221582319587469, 0.17546142637729645, -0.10763514041900635, 0.0313262902200222, -0.20180818438529968, -0.030245305970311165, 0.0028927044477313757, -0.03921816498041153, -0.09902549535036087, -0.0371263213455677, 0.07294643670320511, -0.05072687193751335, 0.14399580657482147, 0.022284094244241714, 0.11177372187376022, 0.04040851071476936, -0.050387464463710785, -0.00010762155579868704, 0.010095587000250816, 0.18045669794082642, 0.03170819953083992, -0.012969783507287502, 0.08803612738847733, -0.014484573155641556, 0.08632683753967285, -0.02802847884595394, 0.18511515855789185, 0.1671154797077179, -0.09255638718605042, 0.06810878962278366, 0.07534553110599518, -0.12262798100709915, -0.15102100372314453, 0.0750330463051796, -0.02860240451991558, 0.1199164092540741, -0.07716059684753418, 0.16389156877994537, 0.1231689304113388, -0.14918692409992218, 0.03448139876127243, -0.07581628859043121, -0.10960283130407333, -0.11041095852851868, -0.06365174800157547, -0.0985172763466835, -0.12986084818840027, 0.020033538341522217, -0.1046672984957695, 0.016191843897104263, 0.056906089186668396, 0.0044975243508815765, -0.012924651615321636, 0.15976808965206146, -0.02579810656607151, 0.015747511759400368, 0.041376352310180664, -0.00408755149692297, -0.016633015125989914, -0.0840548649430275, -0.057202696800231934, 0.03514598682522774, 0.0026102326810359955, 0.03721585124731064, -0.025533504784107208, -0.01318322028964758, 0.03753191605210304, -0.01584073156118393, -0.05292797461152077, 0.020311227068305016, 0.04408302903175354, 0.026854146271944046, 0.024188010022044182, 0.05890945345163345, -0.025065939873456955, -0.006621109787374735, 0.3077550530433655, -0.07375834882259369, -0.12453426420688629, -0.10433969646692276, 0.20444746315479279, 0.04089278355240822, -0.003932149149477482, 0.05732119455933571, -0.12613745033740997, 0.01833423040807247, 0.21460093557834625, 0.1770847737789154, -0.036366723477840424, -0.011542324908077717, -0.035763371735811234, -0.017708122730255127, -0.03563832864165306, 0.1191285029053688, 0.12168458849191666, 0.04274763911962509, -0.04400740563869476, 0.003400568151846528, 0.015152658335864544, -0.022222362458705902, -0.10538642108440399, 0.11457277089357376, -0.00032622829894535244, 0.01120524201542139, -0.026867922395467758, 0.09740112721920013, -0.014789395034313202, -0.17009669542312622, 0.03658094257116318, -0.14544181525707245, -0.14475707709789276, -0.025746623054146767, 0.09034796804189682, -0.027417385950684547, 0.032207075506448746, -0.013878586702048779, -0.003505920059978962, 0.1133820116519928, -0.019247815012931824, -0.09872021526098251, -0.0838889330625534, 0.05471613630652428, -0.06685681641101837, 0.27129900455474854, -0.007359908893704414, 0.04495376721024513, 0.10672421008348465, -0.005495200399309397, -0.1430123746395111, 0.0799022987484932, 0.05862449109554291, -0.042430657893419266, 0.06904088705778122, 0.11629586666822433, -0.0497196726500988, 0.1037774458527565, 0.029107047244906425, -0.09752307087182999, -0.0037929790560156107, -0.012882944196462631, -0.04315467178821564, -0.09253595024347305, -0.01500758621841669, -0.07173555344343185, 0.14077861607074738, 0.17319823801517487, -0.03779619187116623, 0.02404784969985485, -0.08260839432477951, 0.04708314314484596, 0.05505643039941788, 0.0717666745185852, 0.0058514876291155815, -0.20668251812458038, 0.007526400499045849, 0.03063488006591797, 0.03599492460489273, -0.2571747601032257, -0.07175552845001221, 0.006979172583669424, -0.028013570234179497, -0.0686979740858078, 0.10924727469682693, 0.13704009354114532, 0.03407840058207512, -0.04186788201332092, -0.14877010881900787, -0.036358460783958435, 0.17337916791439056, -0.15784180164337158, -0.05434715375304222 ]
null
null
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "248.55 +/- 18.43", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
hdeavila/ppo-LunarLander-v2-1E6
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T03:34:29+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 39, 41, 17 ]
[ "passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.03942384943366051, 0.04900386184453964, -0.005304091144353151, 0.026427261531352997, 0.107408307492733, -0.026511888951063156, 0.11188238859176636, 0.0814051404595375, 0.10722193866968155, 0.04762078449130058, 0.08338645845651627, 0.06030960753560066, 0.05080918222665787, 0.2571701407432556, 0.04754156619310379, -0.22987541556358337, 0.036159250885248184, -0.04869936779141426, 0.12395193427801132, 0.07178173214197159, -0.0038484656251966953, -0.06485428661108017, 0.020415637642145157, -0.013290755450725555, 0.05367108806967735, 0.04282612353563309, -0.01716216839849949, -0.08207534998655319, 0.07169748842716217, -0.06345846503973007, 0.06986866891384125, 0.07677983492612839, 0.13218913972377777, -0.17832116782665253, 0.029566360637545586, 0.02571309357881546, -0.07189024239778519, 0.01342033501714468, 0.008019951172173023, 0.05120139941573143, 0.17303818464279175, 0.019879888743162155, 0.07844575494527817, -0.0025605305563658476, -0.15412317216396332, -0.018950799480080605, 0.0436202734708786, 0.12546207010746002, 0.08808347582817078, 0.04605821147561073, 0.01970590092241764, 0.17503218352794647, -0.054352790117263794, -0.028833400458097458, 0.21759237349033356, -0.2881564497947693, -0.031460098922252655, 0.321048766374588, 0.06997483223676682, 0.09725230932235718, -0.07540661096572876, -0.03619609400629997, 0.007783263456076384, -0.013137873262166977, -0.028666524216532707, -0.07447073608636856, 0.17313385009765625, 0.05152064561843872, -0.05057951435446739, -0.09541505575180054, 0.16948209702968597, 0.006921638268977404, 0.0018855923553928733, -0.019282981753349304, 0.009060598909854889, 0.07402525842189789, -0.016097044572234154, -0.07255112379789352, 0.057438433170318604, 0.05330665782094002, 0.019649166613817215, -0.1435653269290924, -0.10762494057416916, -0.022740179672837257, -0.008012006990611553, 0.17786912620067596, -0.009255532175302505, 0.042902372777462006, 0.003065188182517886, 0.10384012013673782, -0.12480384111404419, -0.03354184702038765, -0.0454259067773819, -0.07565800100564957, -0.0223417766392231, -0.02058211714029312, -0.03580251708626747, 0.07184842973947525, 0.11971849203109741, 0.027368178591132164, 0.09350208193063736, 0.047715865075588226, -0.03206788748502731, 0.06343851238489151, 0.05555703118443489, 0.14222665131092072, 0.05807621404528618, 0.012854371219873428, 0.13179877400398254, 0.055213116109371185, 0.033023182302713394, -0.0613492950797081, -0.18252409994602203, 0.07489913702011108, -0.07031869143247604, 0.007941240444779396, 0.12051256000995636, -0.04480670019984245, -0.1183447614312172, -0.037500523030757904, -0.017392054200172424, -0.06224250793457031, -0.025395862758159637, 0.0547584593296051, -0.02883218228816986, -0.03973718360066414, 0.0011496668448671699, 0.09384800493717194, 0.00953749567270279, -0.1752052903175354, 0.03303423151373863, -0.025042934343218803, -0.10782608389854431, 0.009975161403417587, 0.0022444494534283876, 0.03394931182265282, 0.04408763721585274, -0.11822668462991714, -0.30899152159690857, -0.07652641832828522, 0.05490870401263237, -0.06516939401626587, -0.18425025045871735, -0.13193942606449127, 0.02454492449760437, -0.09037084132432938, -0.044885024428367615, -0.12759265303611755, -0.028549788519740105, 0.01743689924478531, 0.011519349180161953, 0.10758619755506516, -0.0106219332665205, -0.012188062071800232, -0.1571401208639145, 0.008273907005786896, -0.20951123535633087, 0.0890483483672142, -0.019150104373693466, 0.037884220480918884, -0.032381169497966766, -0.07404014468193054, 0.030707746744155884, 0.052499737590551376, -0.01474119070917368, 0.13510210812091827, -0.15592676401138306, -0.03691192343831062, -0.007996266707777977, -0.13611900806427002, -0.04786273464560509, -0.10358831286430359, -0.04357128217816353, 0.13354332745075226, 0.018664736300706863, 0.15356586873531342, -0.08709818124771118, -0.0722038671374321, 0.20489206910133362, -0.010411538183689117, -0.12820468842983246, -0.076752208173275, 0.10165707021951675, 0.021510310471057892, -0.056606587022542953, -0.02523270808160305, -0.1839766949415207, -0.0152357779443264, -0.04550420492887497, -0.047039128839969635, 0.01796751655638218, -0.010888241231441498, 0.13837894797325134, 0.08494598418474197, 0.05018039792776108, -0.06086122244596481, -0.006730288732796907, 0.10779471695423126, 0.08823856711387634, 0.008680110797286034, 0.023406028747558594, -0.05774238705635071, 0.09552932530641556, -0.04003755748271942, -0.0142367510125041, -0.08283266425132751, -0.036246106028556824, -0.026256313547492027, 0.17507147789001465, 0.09440762549638748, 0.2257927656173706, 0.09567736834287643, 0.039160262793302536, 0.031270865350961685, -0.13181598484516144, -0.1425403207540512, -0.0017254541162401438, 0.09020978957414627, -0.14270411431789398, -0.04119925573468208, -0.08974775671958923, -0.17768175899982452, -0.12202505767345428, 0.0006432619411498308, -0.17960017919540405, 0.06390921026468277, 0.05408334732055664, -0.035177867859601974, 0.03272094577550888, 0.13032332062721252, -0.011533179320394993, -0.03967514634132385, 0.0831870287656784, 0.0379033200442791, -0.041234664618968964, -0.021742934361100197, 0.11885567009449005, 0.15673065185546875, 0.13124459981918335, -0.03511447086930275, 0.004914294462651014, 0.07076404243707657, -0.02309088408946991, 0.06539414077997208, 0.0558244064450264, 0.20973342657089233, 0.188301220536232, 0.038996949791908264, 0.008822928182780743, -0.07048165798187256, 0.0855446457862854, -0.0742373839020729, -0.14302679896354675, -0.05579735338687897, 0.08729292452335358, 0.016605578362941742, 0.023469142615795135, 0.08711627870798111, 0.024545932188630104, 0.09132762253284454, 0.15968108177185059, 0.01990218088030815, -0.09659269452095032, -0.050218869000673294, 0.01175848301500082, 0.027713103219866753, 0.04794301092624664, -0.04514073207974434, -0.00937939714640379, 0.017020760104060173, -0.10303554683923721, 0.031789086759090424, -0.1413339376449585, -0.1358717679977417, 0.044326696544885635, 0.003906996920704842, 0.010907664895057678, 0.02786896750330925, -0.0038291432429105043, 0.019039705395698547, 0.04351753741502762, -0.06975466758012772, 0.047416772693395615, -0.024745507165789604, -0.020031947642564774, 0.03340689837932587, -0.057257164269685745, -0.205775648355484, -0.17696654796600342, 0.00013708483311347663, -0.09910997003316879, 0.10194740444421768, 0.018308809027075768, -0.12373185902833939, 0.047737859189510345, -0.05822649225592613, 0.027574289590120316, -0.01875593699514866, -0.049130141735076904, 0.10507171601057053, 0.1525275856256485, -0.016146350651979446, 0.018018173053860664, -0.04865182936191559, -0.10157987475395203, -0.19632206857204437, 0.0691583976149559, 0.04680244252085686, 0.014610917307436466, 0.10669491440057755, 0.018072687089443207, 0.02367905154824257, -0.007674071006476879, -0.016521066427230835, -0.011659215204417706, -0.08781040459871292, 0.31909599900245667, 0.04510033503174782, -0.025173069909214973, 0.02041010931134224, -0.0043001663871109486, -0.028083480894565582, 0.03263787180185318, -0.0985708013176918, -0.07548979669809341, -0.08774089068174362, -0.04367410019040108, -0.09784720093011856, 0.053299110382795334, 0.05916472524404526, 0.003188040340319276, -0.07727594673633575, 0.04221395403146744, 0.11369874328374863, -0.0923808291554451, -0.07137343287467957, 0.07477962225675583, 0.0972946360707283, -0.07331304252147675, 0.00012658814375754446, 0.00874367356300354, 0.023951783776283264, 0.037102166563272476, 0.06778035312891006, -0.03966575115919113, 0.08589404821395874, -0.19917890429496765, 0.0372927263379097, 0.106058269739151, 0.023754918947815895, 0.0638108178973198, 0.07643651217222214, -0.1058402881026268, -0.008500572293996811, -0.032518330961465836, -0.21341575682163239, 0.1668180525302887, 0.1355515867471695, 0.06788124144077301, -0.025637222453951836, -0.00461410591378808, -0.0649740919470787, 0.05773647129535675, 0.02723747305572033, -0.14758841693401337, 0.004883295856416225, 0.06064270809292793, 0.026899009943008423, 0.01614922471344471, 0.07971042394638062, 0.014697225764393806, -0.1801026314496994, -0.014406266622245312, 0.10730406641960144, 0.002390873385593295, 0.0053148469887673855, -0.03175045922398567, -0.1755964607000351, 0.0751047357916832, 0.004285442177206278, 0.07233936339616776, -0.1676585078239441, 0.14297930896282196, -0.10089799761772156, 0.07726949453353882, -0.004285062663257122, -0.021311495453119278, 0.02507244050502777, -0.0541163794696331, 0.15163759887218475, 0.01058570109307766, -0.021810131147503853, -0.1200498715043068, -0.1717042326927185, -0.019227758049964905, -0.11788936704397202, -0.11679866164922714, 0.050424277782440186, 0.062185097485780716, 0.04923136904835701, -0.061147067695856094, 0.1518532931804657, -0.047422297298908234, 0.060713399201631546, -0.06893875449895859, -0.06755045056343079, 0.03764858841896057, -0.12588608264923096, -0.08176055550575256, 0.05573027580976486, 0.19166934490203857, 0.15833087265491486, -0.02816431224346161, -0.03472423925995827, -0.047419581562280655, -0.006212298292666674, -0.007802055217325687, 0.0275666993111372, 0.023223137483000755, 0.07315318286418915, -0.07681374251842499, -0.11649256944656372, 0.033787861466407776, -0.06713802367448807, -0.055589709430933, -0.015439179725944996, 0.1513158082962036, 0.04671623185276985, 0.07720734924077988, -0.018946662545204163, 0.03887668624520302, -0.001724981120787561, -0.056474871933460236, 0.16197094321250916, 0.03885216265916824, -0.05193585529923439, 0.06837689876556396, 0.053174007683992386, 0.043745119124650955, 0.03011113777756691, -0.026783017441630363, 0.206032395362854, 0.1980147808790207, 0.014206883497536182, 0.2175983190536499, 0.03177616000175476, -0.03772832080721855, -0.1300560086965561, -0.065880686044693, -0.006372632458806038, 0.03559038043022156, 0.08070417493581772, -0.18207235634326935, -0.015011128038167953, -0.05689644813537598, -0.034518610686063766, -0.15059494972229004, -0.28553900122642517, -0.05957856774330139, 0.20075850188732147, 0.14706264436244965, 0.27519428730010986, -0.10432573407888412, 0.035197313874959946, 0.02663275972008705, -0.04912831634283066, -0.006501141935586929, 0.00018665487004909664, 0.10268618166446686, -0.15421873331069946, 0.1176437959074974, 0.08486983180046082, -0.019002694636583328, 0.01058861706405878, -0.1619086116552353, 0.00936629343777895, -0.12191236019134521, 0.05354422330856323, 0.1400289237499237, -0.048128653317689896, -0.054873593151569366, 0.14033560454845428, -0.024562934413552284, -0.22685599327087402, -0.04648222774267197, -0.043600670993328094, -0.010640020482242107, 0.026607351377606392, -0.1013401448726654, 0.04101909324526787, 0.1330099105834961, 0.009380043484270573, 0.1147187277674675, 0.11749245226383209, -0.052566803991794586, 0.10792597383260727, 0.2257719188928604, -0.018785694614052773, 0.04689010605216026, -0.12743118405342102, -0.0012336712097749114, -0.028270328417420387, 0.013657891191542149, -0.09504974633455276, -0.09938385337591171, 0.02366873063147068, 0.02872389927506447, 0.009118586778640747, 0.0921793207526207, -0.029922157526016235, 0.0759170651435852, 0.06817561388015747, -0.13014446198940277, -0.16288450360298157, 0.015828335657715797, -0.007344507612287998, 0.08354310691356659, 0.00027861111448146403, 0.08878035843372345, -0.11932205408811569, -0.018093237653374672, -0.03153328225016594, -0.03319635987281799, -0.130486860871315, -0.07138993591070175, 0.06156524643301964, 0.028095467016100883, -0.06602972000837326, 0.1398407518863678, 0.026440169662237167, 0.15942534804344177, 0.049197953194379807, 0.012499804608523846, 0.07227300107479095, -0.05345509201288223, 0.1283530443906784, 0.13818155229091644, -0.00868943240493536, -0.05460423603653908, -0.1013643890619278, -0.10236792266368866, 0.08925779908895493, -0.05773641914129257, 0.07476430386304855, -0.14885357022285461, -0.06675903499126434, 0.015772046521306038, 0.016141414642333984, -0.09562095999717712, 0.02571965754032135, -0.01625603251159191, -0.18119946122169495, 0.056570518761873245, -0.048285093158483505, 0.0440407395362854, -0.06347788125276566, -0.1110161691904068, -0.17226378619670868, 0.06091433763504028, 0.08593481779098511, -0.053876690566539764, -0.12229149043560028, 0.011023230850696564, -0.00012518465518951416, -0.06341652572154999, -0.05023367330431938, 0.09722746908664703, -0.11020902544260025, 0.031452205032110214, -0.012567701749503613, 0.08853451162576675, -0.03510405123233795, -0.011538895778357983, 0.044220831245183945, -0.08039166033267975, -0.009481523185968399, 0.03534642979502678, -0.026372017338871956, -0.04127239063382149, -0.2689029574394226, 0.0036654395516961813, 0.0341104120016098, 0.02497158572077751, 0.07856601476669312, 0.011906822212040424, 0.021174922585487366, 0.03993808850646019, -0.15396519005298615, -0.013395369984209538, 0.14574195444583893, -0.07689505815505981, -0.022186370566487312, 0.05703273415565491, -0.09054436534643173, 0.013882770203053951, -0.030287226662039757, 0.1345842480659485, 0.023923413828015327, 0.06404478847980499, -0.0851147472858429, 0.10106813907623291, -0.1451139897108078, -0.04998219385743141, -0.01244612317532301, 0.09761348366737366, 0.07019034773111343, -0.10272270441055298, 0.014697125181555748, 0.04210108891129494, 0.19416837394237518, 0.016384804621338844, -0.0356343574821949, -0.03396720811724663, 0.004015897400677204, 0.22076453268527985, 0.03044266067445278, 0.10457023978233337, 0.07281364500522614, -0.026583973318338394, 0.12624378502368927, 0.09929762035608292, 0.11280370503664017, -0.055645186454057693, 0.13904185593128204, 0.04667386785149574, 0.038641396909952164, 0.0614289753139019, 0.06836545467376709, 0.09098632633686066, -0.0008288522367365658, 0.1138714924454689, 0.013811973854899406, -0.02422109805047512, -0.021335409954190254, 0.17759373784065247, 0.10501719266176224, -0.14769648015499115, 0.029047364369034767, -0.01258957851678133, 0.039933037012815475, -0.014194529503583908, -0.15634691715240479, -0.07240267097949982, -0.3315149247646332, 0.1226184144616127, -0.07119352370500565, 0.019930170848965645, 0.007913772016763687, -0.037425633519887924, -0.03296699747443199, -0.04477746784687042, 0.13151589035987854, -0.013641550205647945, -0.006079165264964104, -0.04815853759646416, -0.015360191464424133, -0.11607866734266281, -0.11200575530529022, -0.013207737356424332, -0.13671602308750153, -0.010119039565324783, 0.05595948174595833, 0.003977729007601738, 0.01821410097181797, -0.03142618387937546, 0.0024383175186812878, 0.06541839241981506, -0.05751744285225868, 0.056182678788900375, 0.12097269296646118, 0.08766137808561325, -0.1058853268623352, 0.031048951670527458, 0.2011747509241104, 0.04359564557671547, -0.12483977526426315, 0.01449228823184967, 0.1819491684436798, 0.004885740112513304, 0.017068125307559967, -0.006097703706473112, -0.0540788508951664, -0.07554277032613754, 0.1251034289598465, 0.08296554535627365, -0.09985227137804031, 0.015833314508199692, -0.0726347416639328, -0.01594804972410202, -0.06374675035476685, 0.10130585730075836, 0.09538925439119339, 0.04440245032310486, -0.10621760785579681, -0.08487539738416672, -0.10891728103160858, 0.040588874369859695, -0.08629853278398514, -0.07311757653951645, 0.09629398584365845, -0.07057105004787445, -0.07029950618743896, 0.025521177798509598, -0.17978744208812714, -0.009467960335314274, 0.1711762249469757, -0.24654000997543335, -0.0916430801153183, -0.10857923328876495, 0.14477859437465668, 0.016497576609253883, 0.1013975441455841, -0.006207061931490898, -0.007889035157859325, -0.20577777922153473, 0.024890204891562462, -0.05293011665344238, -0.02073732763528824, 0.07814782857894897, -0.09476397186517715, 0.22629831731319427, -0.08276885002851486, 0.020940175279974937, 0.012659613974392414, 0.0870661810040474, -0.030675338581204414, 0.09283176809549332, -0.03660329803824425, -0.12576518952846527, -0.03620953485369682, 0.03001813031733036, 0.013904244638979435, 0.10071761906147003, 0.09772487729787827, -0.03414725139737129, 0.03389119729399681, 0.09747414290904999, 0.04172342270612717, -0.023843804374337196, 0.0360250361263752, -0.17077107727527618, 0.02182629331946373, -0.018498148769140244, -0.06935930997133255, 0.03687669709324837, -0.06603235751390457, 0.1639697551727295, 0.04022442549467087, 0.0670473501086235, -0.036152735352516174, 0.0073931049555540085, -0.014454689808189869, -0.013775371946394444, -0.026180334389209747, -0.17259705066680908, -0.10422050207853317, -0.1347656100988388, -0.012701659463346004, -0.034971047192811966, 0.04591470584273338, 0.023234914988279343, -0.0003200018545612693, -0.014577031135559082, -0.12090865522623062, 0.04360328987240791, 0.11146783083677292, -0.04631396010518074, -0.026193076744675636 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Base_Uncase_FineTuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 4.8954 | | No log | 2.0 | 2 | 2.6904 | | No log | 3.0 | 3 | 2.2356 | | No log | 4.0 | 4 | 4.8808 | | No log | 5.0 | 5 | 1.5454 | | No log | 6.0 | 6 | 3.2389 | | No log | 7.0 | 7 | 0.6490 | | No log | 8.0 | 8 | 0.0044 | | No log | 9.0 | 9 | 0.0014 | | No log | 10.0 | 10 | 0.0010 | | No log | 11.0 | 11 | 0.0006 | | No log | 12.0 | 12 | 0.0004 | | No log | 13.0 | 13 | 0.0003 | | No log | 14.0 | 14 | 0.0003 | | No log | 15.0 | 15 | 0.0002 | | No log | 16.0 | 16 | 1.1187 | | No log | 17.0 | 17 | 1.0980 | | No log | 18.0 | 18 | 1.6005 | | No log | 19.0 | 19 | 1.3744 | | No log | 20.0 | 20 | 1.0966 | | No log | 21.0 | 21 | 1.1044 | | No log | 22.0 | 22 | 1.2535 | | No log | 23.0 | 23 | 0.0002 | | No log | 24.0 | 24 | 0.0002 | | No log | 25.0 | 25 | 0.0002 | | No log | 26.0 | 26 | 0.0012 | | No log | 27.0 | 27 | 0.0009 | | No log | 28.0 | 28 | 0.0032 | | No log | 29.0 | 29 | 0.0004 | | No log | 30.0 | 30 | 0.0002 | | No log | 31.0 | 31 | 0.0001 | | No log | 32.0 | 32 | 0.0001 | | No log | 33.0 | 33 | 0.0001 | | No log | 34.0 | 34 | 0.0001 | | No log | 35.0 | 35 | 0.0001 | | No log | 36.0 | 36 | 0.0001 | | No log | 37.0 | 37 | 0.0001 | | No log | 38.0 | 38 | 0.0001 | | No log | 39.0 | 39 | 0.0001 | | No log | 40.0 | 40 | 0.0001 | | No log | 41.0 | 41 | 0.0001 | | No log | 42.0 | 42 | 0.0001 | | No log | 43.0 | 43 | 0.0001 | | No log | 44.0 | 44 | 0.0001 | | No log | 45.0 | 45 | 0.0001 | | No log | 46.0 | 46 | 0.0001 | | No log | 47.0 | 47 | 0.0001 | | No log | 48.0 | 48 | 0.0001 | | No log | 49.0 | 49 | 0.0001 | | No log | 50.0 | 50 | 0.0001 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "BERT_Base_Uncase_FineTuned", "results": []}]}
question-answering
Sybghat/BERT_Base_Uncase_FineTuned
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-14T03:40:13+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us
BERT\_Base\_Uncase\_FineTuned ============================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0001 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.1.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 65, 97, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.1112743616104126, 0.1001608669757843, -0.001962097827345133, 0.1052798181772232, 0.12399836629629135, 0.015528797172009945, 0.14252540469169617, 0.11431228369474411, -0.07985443621873856, 0.05629773810505867, 0.13989974558353424, 0.12309104949235916, -0.007927954196929932, 0.07523295283317566, -0.061480335891246796, -0.19502392411231995, 0.004908330272883177, 0.03906707093119621, -0.09346625208854675, 0.11429436504840851, 0.08400538563728333, -0.13756917417049408, 0.07944740355014801, -0.005776045843958855, -0.17107410728931427, 0.026098933070898056, 0.008701088838279247, -0.038396865129470825, 0.12424036115407944, 0.02439098246395588, 0.13011695444583893, 0.024765579029917717, 0.07575194537639618, -0.19913457334041595, 0.017063967883586884, 0.054597143083810806, -0.005317303817719221, 0.0779586210846901, 0.021706849336624146, -0.006082517094910145, 0.07730069011449814, -0.08151402324438095, 0.06327827274799347, 0.03008493036031723, -0.12816469371318817, -0.2476838380098343, -0.10330228507518768, 0.0470799021422863, 0.08906257897615433, 0.09950152784585953, -0.01505191158503294, 0.14584623277187347, -0.07498717308044434, 0.08711685985326767, 0.24066604673862457, -0.31161895394325256, -0.07030856609344482, 0.04369388893246651, 0.033654093742370605, 0.07613378018140793, -0.10449821501970291, -0.029862428084015846, 0.08177635818719864, 0.022080566734075546, 0.09360311180353165, -0.037762660533189774, -0.07630162686109543, 0.029874548316001892, -0.14535841345787048, -0.01391290407627821, 0.1706978678703308, 0.06837314367294312, -0.04768836125731468, -0.03279903158545494, -0.05907897278666496, -0.12155523151159286, -0.026245439425110817, -0.038837358355522156, 0.04360666498541832, -0.03804168105125427, -0.08926241844892502, -0.020054558292031288, -0.10168779641389847, -0.09950760006904602, -0.04717684164643288, 0.15523158013820648, 0.04393408074975014, 0.011463853530585766, -0.028090007603168488, 0.10307551175355911, -0.03384912386536598, -0.1428728699684143, -0.0031703864224255085, 0.02632858231663704, -0.004134992603212595, -0.049878742545843124, -0.047866061329841614, -0.05481429770588875, 0.041072823107242584, 0.19015149772167206, -0.0752335712313652, 0.03886111080646515, 0.024778731167316437, 0.03849509730935097, -0.10063032060861588, 0.15491782128810883, -0.06411284953355789, -0.008233672939240932, -0.0005364005919545889, 0.07929247617721558, 0.034383442252874374, 0.004013578873127699, -0.09437088668346405, 0.01844993606209755, 0.09031285345554352, 0.022500939667224884, -0.049708109349012375, 0.05116550624370575, -0.046939924359321594, 0.002995329676195979, 0.007920553907752037, -0.07909470051527023, 0.023955075070261955, 0.006044019479304552, -0.05927342176437378, -0.03749963268637657, 0.027682436630129814, 0.023257244378328323, 0.020368535071611404, 0.08484936505556107, -0.10005755722522736, 0.008540624752640724, -0.08948072046041489, -0.10775766521692276, 0.022318998351693153, -0.0629652813076973, 0.03919679671525955, -0.09275064617395401, -0.1684725433588028, -0.016818465664982796, 0.05414148420095444, -0.02518570050597191, -0.015485350973904133, -0.051784031093120575, -0.09009062498807907, -0.002203304786235094, -0.007803255692124367, 0.08075758814811707, -0.05876695737242699, 0.1049974262714386, 0.05802426487207413, 0.0693013146519661, -0.03947840631008148, 0.0320235900580883, -0.10921395570039749, 0.03980708122253418, -0.18554803729057312, 0.008634800091385841, -0.08297194540500641, 0.06917504966259003, -0.0890030562877655, -0.08383866399526596, -0.012438051402568817, 0.0035181469283998013, 0.0878903865814209, 0.10887926071882248, -0.15079481899738312, -0.05969645455479622, 0.1514892578125, -0.08926623314619064, -0.18138371407985687, 0.12946267426013947, -0.053199563175439835, 0.06318717449903488, 0.05257880315184593, 0.1729782670736313, 0.05575566738843918, -0.11398854106664658, -0.01881355233490467, 0.0008702760096639395, 0.06394940614700317, -0.02406122162938118, 0.07056959718465805, -0.019703062251210213, 0.005638257600367069, 0.004202411975711584, -0.06762195378541946, 0.03665628656744957, -0.1006767600774765, -0.09040968865156174, -0.05521389842033386, -0.11216528713703156, 0.048143211752176285, 0.06165860593318939, 0.05998358130455017, -0.11372721195220947, -0.09936028718948364, 0.07632683962583542, 0.09181120246648788, -0.07309988141059875, 0.023035889491438866, -0.07766258716583252, 0.08499548584222794, -0.07496491819620132, -0.03136427327990532, -0.15385207533836365, -0.05408116802573204, 0.0017489749006927013, -0.007576354313641787, 0.009972576051950455, 0.015413517132401466, 0.08328622579574585, 0.06822367757558823, -0.0692630484700203, -0.0475602000951767, -0.057635147124528885, 0.014202927239239216, -0.11755025386810303, -0.2089512199163437, -0.018120096996426582, -0.03242625296115875, 0.11761988699436188, -0.22214403748512268, 0.04532235488295555, -0.0006379442638717592, 0.09049209952354431, 0.03751416876912117, -0.011561663821339607, -0.04098330810666084, 0.06142604723572731, -0.034767068922519684, -0.06291232258081436, 0.035869449377059937, 0.005348131526261568, -0.10658156126737595, -0.07422792911529541, -0.11605702340602875, 0.17543500661849976, 0.1290864199399948, -0.0919487401843071, -0.08072628080844879, -0.004111032001674175, -0.05868493765592575, -0.037548623979091644, -0.045699987560510635, 0.006188490893691778, 0.11915498971939087, -0.01003944780677557, 0.11923123151063919, -0.08697004616260529, -0.04316139593720436, 0.010079375468194485, -0.05545373260974884, 0.021431395784020424, 0.11955109238624573, 0.10504570603370667, -0.07408558577299118, 0.14771915972232819, 0.1843581199645996, -0.11379846185445786, 0.1105475053191185, -0.0635099709033966, -0.08602634072303772, -0.033100105822086334, 0.027172191068530083, 0.010030473582446575, 0.14722278714179993, -0.1394762247800827, 0.01876675710082054, 0.01367973443120718, 0.008826438337564468, 0.016557805240154266, -0.2186524122953415, -0.05067133903503418, 0.03261265903711319, -0.044237080961465836, -0.016765054315328598, -0.005901094060391188, -0.01209532842040062, 0.08751283586025238, -0.015427082777023315, -0.05928331986069679, 0.04116354510188103, -0.000610069721005857, -0.07671771198511124, 0.21222002804279327, -0.07188773900270462, -0.0807620957493782, -0.11504331976175308, -0.02603534609079361, -0.03980417549610138, 0.012964561581611633, 0.07199697941541672, -0.09057308733463287, -0.030994661152362823, -0.08865761756896973, 0.011734263971447945, 0.030122296884655952, 0.02569403126835823, 0.02730560302734375, -0.002158402930945158, 0.09138669818639755, -0.11034813523292542, 0.007510928902775049, -0.044826652854681015, -0.06541769951581955, 0.029725456610322, 0.038303203880786896, 0.1318524330854416, 0.1319834440946579, -0.007581508718430996, -0.000014546350030286703, -0.019022006541490555, 0.2480475753545761, -0.07119059562683105, -0.03478218615055084, 0.1319802850484848, -0.010635497979819775, 0.045946162194013596, 0.12102259695529938, 0.07237480580806732, -0.10387571901082993, 0.027522994205355644, 0.06003725156188011, -0.021458636969327927, -0.23400655388832092, -0.008417188189923763, -0.033383242785930634, -0.004539931192994118, 0.07798577100038528, 0.03147292882204056, 0.04857903718948364, 0.0800148993730545, 0.021581972017884254, 0.04709065705537796, -0.03760496899485588, 0.06587595492601395, 0.09673114120960236, 0.03623653203248978, 0.11129916459321976, -0.050435200333595276, -0.055626265704631805, 0.024896884337067604, 0.002218491630628705, 0.2243099808692932, 0.016952479258179665, 0.1422109603881836, 0.07843329757452011, 0.18174485862255096, -0.018908202648162842, 0.06370903551578522, -0.015474303625524044, -0.06559105217456818, 0.0043378304690122604, -0.055393416434526443, -0.002025510184466839, 0.0426422655582428, -0.09190433472394943, 0.08850172907114029, -0.10304640978574753, 0.0295996256172657, 0.06983169913291931, 0.23581506311893463, 0.05641080066561699, -0.296245276927948, -0.09853977710008621, 0.014519409276545048, -0.01984150893986225, -0.017476599663496017, 0.03281788155436516, 0.13087965548038483, -0.03753029927611351, 0.00754625303670764, -0.06099218502640724, 0.08188271522521973, 0.002501285867765546, 0.0382501557469368, 0.051450278609991074, 0.08414240926504135, -0.0159361120313406, 0.07266788184642792, -0.2864839434623718, 0.27311569452285767, 0.01861349120736122, 0.08950430154800415, -0.042406048625707626, -0.012351994402706623, 0.019924188032746315, 0.07043011486530304, 0.10175243765115738, -0.024448446929454803, -0.035218413919210434, -0.17170493304729462, -0.04719232767820358, 0.0394609309732914, 0.0931110680103302, -0.033635031431913376, 0.10712127387523651, -0.016767114400863647, 0.014491953887045383, 0.09170117229223251, -0.010220890864729881, -0.1049802377820015, -0.0797199010848999, -0.020536521449685097, 0.00924305897206068, -0.028086349368095398, -0.09582942724227905, -0.09906137734651566, -0.11507877707481384, 0.12803156673908234, -0.04794224724173546, -0.021662123501300812, -0.09782218188047409, 0.07447182387113571, 0.08496273308992386, -0.07797620445489883, 0.0376596674323082, 0.023077677935361862, 0.055362336337566376, 0.03506162390112877, -0.041114043444395065, 0.11425796151161194, -0.07500510662794113, -0.17494657635688782, -0.05787307769060135, 0.10536859184503555, 0.042361438274383545, 0.04824650287628174, -0.012075214646756649, 0.005972519051283598, -0.02323676086962223, -0.09199932962656021, 0.023909887298941612, -0.025608288124203682, 0.0689394623041153, 0.013823134824633598, -0.04480172321200371, 0.06251057237386703, -0.05788504332304001, -0.02629110775887966, 0.1454344093799591, 0.30005037784576416, -0.0843898355960846, -0.01734112948179245, 0.06650666892528534, -0.05238787829875946, -0.1886417120695114, 0.06156596541404724, 0.023261165246367455, -0.0034845699556171894, 0.05198119953274727, -0.142782062292099, 0.1463288813829422, 0.1128830760717392, -0.02219350077211857, 0.10984707623720169, -0.31095826625823975, -0.1287565529346466, 0.13618648052215576, 0.15915565192699432, 0.10916762799024582, -0.16935577988624573, -0.036838240921497345, -0.012671890668570995, -0.1389421671628952, 0.07832714915275574, -0.15193583071231842, 0.09563438594341278, -0.011420968919992447, 0.0561906062066555, 0.006673025898635387, -0.06655669212341309, 0.15107984840869904, 0.005962724331766367, 0.1225406602025032, -0.04398282244801521, -0.020831948146224022, 0.06576754152774811, -0.0473061166703701, 0.034857526421546936, -0.0895928144454956, 0.054501622915267944, -0.05326397716999054, -0.027346637099981308, -0.05975451320409775, 0.04168926551938057, -0.05384232476353645, -0.06802643090486526, -0.04944385588169098, 0.026802880689501762, 0.03105805814266205, -0.008845709264278412, 0.1538463979959488, 0.017964554950594902, 0.15564770996570587, 0.1049228310585022, 0.08243431895971298, -0.06646563857793808, -0.05705829709768295, 0.01333000510931015, -0.030880384147167206, 0.07458782941102982, -0.159742534160614, 0.041489508002996445, 0.13252238929271698, 0.0381631962954998, 0.1433762013912201, 0.06832297891378403, -0.04938415810465813, 0.01266712136566639, 0.0495443232357502, -0.16366200149059296, -0.13903792202472687, -0.0020426225382834673, -0.04027814045548439, -0.13708394765853882, 0.08173003792762756, 0.10040772706270218, -0.06309933960437775, 0.00685293972492218, -0.00569894490763545, 0.000761059985961765, -0.05655454099178314, 0.1915283203125, 0.09245094656944275, 0.05028487741947174, -0.07489272952079773, 0.08543842285871506, 0.02720455452799797, -0.08780832588672638, 0.006918737664818764, 0.024297907948493958, -0.06013891473412514, -0.046865325421094894, 0.05302399396896362, 0.18823018670082092, -0.039173807948827744, -0.05166294798254967, -0.1586538702249527, -0.0985914021730423, 0.05318254604935646, 0.18398679792881012, 0.10189901292324066, 0.015916215255856514, -0.0158497616648674, 0.033026523888111115, -0.12089694291353226, 0.11707385629415512, 0.04128362610936165, 0.08093581348657608, -0.15262587368488312, 0.10397723317146301, -0.00182399433106184, 0.01619204878807068, -0.018914854153990746, 0.049818944185972214, -0.12430939078330994, 0.008059559389948845, -0.1596270650625229, -0.026477638632059097, -0.03638163208961487, 0.0030300430953502655, 0.014487753622233868, -0.08030593395233154, -0.07335719466209412, 0.025577077642083168, -0.10533387213945389, -0.012970073148608208, 0.0641363188624382, 0.05195028707385063, -0.14697475731372833, -0.03266119211912155, 0.04231249913573265, -0.07025004923343658, 0.06151784956455231, 0.03293783590197563, 0.026561062783002853, 0.054241374135017395, -0.1830153614282608, 0.03150066360831261, 0.05081428214907646, 0.008731056936085224, 0.05246986076235771, -0.0988597497344017, -0.028653519228100777, -0.009058740921318531, 0.055293649435043335, 0.0108267180621624, 0.04378154128789902, -0.12091608345508575, -0.012667282484471798, -0.036027468740940094, -0.062420450150966644, -0.061548106372356415, 0.01617620885372162, 0.10282795131206512, 0.008824333548545837, 0.19627033174037933, -0.07917634397745132, 0.019217966124415398, -0.2127974033355713, 0.007830464281141758, 0.0017793310107663274, -0.08016239106655121, -0.09406044334173203, -0.0403495617210865, 0.05322638899087906, -0.0653296634554863, 0.12822052836418152, -0.049586810171604156, 0.0351426862180233, 0.036823224276304245, -0.048839371651411057, 0.05765498802065849, 0.023041769862174988, 0.2579087018966675, 0.016370797529816628, -0.02622820995748043, 0.011101838201284409, 0.039612192660570145, 0.09959349781274796, 0.07820426672697067, 0.1752559095621109, 0.18038861453533173, -0.05296136066317558, 0.08829186111688614, 0.05215111002326012, -0.05326613783836365, -0.1071353629231453, 0.07347071915864944, -0.01684008352458477, 0.06393615901470184, -0.01117672398686409, 0.21174557507038116, 0.1247006207704544, -0.15228210389614105, 0.014562654308974743, -0.049599405378103256, -0.08549731224775314, -0.10479628294706345, -0.03592537343502045, -0.08651979267597198, -0.17671474814414978, 0.015551620163023472, -0.12854476273059845, 0.00314146070741117, 0.09306713193655014, 0.014688726514577866, -0.014948241412639618, 0.21503262221813202, 0.03127540275454521, 0.0497552827000618, 0.03234182670712471, -0.00598756643012166, -0.038298942148685455, -0.07560169696807861, -0.07459192723035812, 0.025157034397125244, -0.03427200764417648, 0.01638205535709858, -0.05567939579486847, -0.04721127077937126, 0.03961450606584549, -0.004875585436820984, -0.09445100277662277, 0.004122138023376465, 0.032091446220874786, 0.052029941231012344, 0.055395130068063736, 0.019324777647852898, 0.02424248680472374, -0.012485598213970661, 0.22150512039661407, -0.08112245053052902, -0.06652963906526566, -0.11910919845104218, 0.1938641518354416, 0.03077719733119011, 0.013632050715386868, 0.015510407276451588, -0.10310825705528259, 0.037847209721803665, 0.20977160334587097, 0.1504567414522171, -0.07655490934848785, -0.0013729056809097528, 0.002532270969823003, -0.008867394179105759, -0.07439404726028442, 0.04471014812588692, 0.12498430162668228, 0.011598584242165089, -0.08322373777627945, -0.07144200801849365, -0.05075331777334213, -0.01597641035914421, -0.03465712442994118, 0.043118126690387726, 0.04453801363706589, 0.007896548137068748, -0.04973918944597244, 0.06403734534978867, -0.03769120201468468, -0.127196803689003, 0.07227206230163574, -0.17317065596580505, -0.1408427655696869, -0.019550871104002, 0.1166183203458786, -0.012205375358462334, 0.05188342556357384, -0.03911968693137169, -0.013351152651011944, 0.07705828547477722, -0.01614517904818058, -0.06985911726951599, -0.08941170573234558, 0.08198564499616623, -0.08324463665485382, 0.2310817837715149, -0.02777279168367386, 0.06066351756453514, 0.14124414324760437, 0.03465206176042557, -0.0813840702176094, 0.08490318804979324, 0.06627966463565826, -0.09897439926862717, 0.010605547577142715, 0.07825472950935364, -0.027255311608314514, 0.12496919184923172, 0.05764564499258995, -0.1496889442205429, 0.007321871817111969, -0.035994745790958405, -0.07403943687677383, -0.0778156965970993, -0.029197094962000847, -0.06493061035871506, 0.13061338663101196, 0.18544098734855652, -0.048798661679029465, 0.018373867496848106, -0.04225945472717285, 0.04309827461838722, 0.07592152059078217, 0.034290704876184464, -0.027731992304325104, -0.2254246026277542, 0.0577915757894516, 0.051063984632492065, -0.027874505147337914, -0.2451886534690857, -0.09422261267900467, 0.026379192247986794, -0.05945686623454094, -0.07058286666870117, 0.060947053134441376, 0.1340598315000534, 0.06380710005760193, -0.057581767439842224, -0.10447100549936295, -0.08514875918626785, 0.15819977223873138, -0.1298239678144455, -0.0961943194270134 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # business_taglines This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "google/flan-t5-small", "model-index": [{"name": "business_taglines", "results": []}]}
text2text-generation
fliarbi/business_taglines
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T03:42:20+00:00
[]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# business_taglines This model is a fine-tuned version of google/flan-t5-small on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
[ "# business_taglines\n\nThis model is a fine-tuned version of google/flan-t5-small on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# business_taglines\n\nThis model is a fine-tuned version of google/flan-t5-small on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ 77, 30, 6, 12, 8, 3, 90, 4, 30 ]
[ "passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# business_taglines\n\nThis model is a fine-tuned version of google/flan-t5-small on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ -0.07079866528511047, 0.08589980751276016, -0.0014690521638840437, 0.10126657783985138, 0.15423427522182465, 0.014301925897598267, 0.15124265849590302, 0.09022071957588196, -0.11366292089223862, 0.03626726567745209, 0.05994123965501785, 0.06567024439573288, 0.030385306105017662, 0.17094247043132782, -0.03868809714913368, -0.24283769726753235, 0.0003813482471741736, -0.02563474513590336, -0.04781213775277138, 0.11439674347639084, 0.09956392645835876, -0.0971715971827507, 0.08415384590625763, -0.016026044264435768, -0.1377924531698227, 0.03494269773364067, -0.001374972751364112, -0.04485208913683891, 0.1135326623916626, 0.03709621727466583, 0.0805908814072609, 0.020174799486994743, 0.1309148371219635, -0.2253226339817047, 0.0024539411533623934, 0.08199772983789444, 0.013909024186432362, 0.05634551867842674, 0.06055428832769394, 0.004049248993396759, 0.11678741872310638, -0.13147927820682526, 0.08987618237733841, 0.046252377331256866, -0.06726087629795074, -0.12576395273208618, -0.07633048295974731, 0.08739257603883743, 0.11419712752103806, 0.12496254593133926, -0.005600144620984793, 0.1372823268175125, -0.11559567600488663, 0.09652676433324814, 0.1722390502691269, -0.28197887539863586, -0.0692840963602066, 0.07196194678544998, 0.036954499781131744, 0.08644522726535797, -0.08680891245603561, 0.0050552356988191605, 0.043760087341070175, 0.023675676435232162, 0.10435566306114197, -0.015971852466464043, -0.12659773230552673, 0.0016454819124192, -0.12948046624660492, -0.003224556101486087, 0.19247908890247345, 0.06288500875234604, -0.04928223416209221, -0.08646706491708755, -0.06547629088163376, -0.07630061358213425, -0.018803151324391365, -0.04715331643819809, 0.06857867538928986, -0.026788614690303802, -0.050208378583192825, -0.06371241807937622, -0.08354394137859344, -0.07003218680620193, -0.005385934375226498, 0.08826745301485062, 0.05345556512475014, -0.008335351012647152, -0.03484438359737396, 0.10574394464492798, 0.016996603459119797, -0.09636155515909195, -0.01961364969611168, 0.01002055499702692, -0.054508764296770096, -0.06685303896665573, -0.029048176482319832, -0.023674074560403824, 0.02518460713326931, 0.14290863275527954, -0.07758895307779312, 0.059619177132844925, 0.013765583746135235, 0.009041129611432552, -0.06288210302591324, 0.129892036318779, -0.02335548587143421, -0.07157327234745026, 0.034363146871328354, 0.08074638992547989, 0.04744071140885353, 0.010871577076613903, -0.09255816042423248, -0.011430645361542702, 0.09089650213718414, 0.08081664890050888, -0.04860512167215347, 0.06152109056711197, -0.03160853311419487, -0.006650907453149557, -0.017835108563303947, -0.12817692756652832, 0.044139157980680466, -0.007649032864719629, -0.069889135658741, -0.03930564969778061, 0.05021907016634941, 0.007498881313949823, -0.041723642498254776, 0.08777506649494171, -0.06882523745298386, -0.002849075011909008, -0.08650655299425125, -0.06325248628854752, 0.02099432423710823, -0.04499766230583191, -0.00580461323261261, -0.09699263423681259, -0.2504429519176483, -0.03367289528250694, 0.04391887038946152, -0.03710057958960533, -0.0654212012887001, -0.06280097365379333, -0.06476005911827087, -0.018873879685997963, -0.01778757944703102, 0.11643331497907639, -0.06335034221410751, 0.07451990991830826, 0.0074445027858018875, 0.02067413367331028, 0.023464385420084, 0.026135742664337158, -0.10852303355932236, 0.01808799058198929, -0.11997924745082855, 0.06297546625137329, -0.06482809782028198, 0.061500031501054764, -0.10127944499254227, -0.09185490757226944, -0.014485855586826801, 0.0063659800216555595, 0.027725351974368095, 0.14655686914920807, -0.15981578826904297, -0.02810288965702057, 0.1709090620279312, -0.08790748566389084, -0.09912406653165817, 0.11704262346029282, -0.034764617681503296, 0.06569202244281769, 0.0988626554608345, 0.1427014321088791, 0.09401865303516388, -0.11189360171556473, 0.011644076555967331, -0.009712856262922287, 0.029744958505034447, 0.004516215529292822, 0.04376726225018501, -0.020626600831747055, -0.024909671396017075, 0.02100369893014431, -0.06876225024461746, 0.016717322170734406, -0.07974617183208466, -0.07971314340829849, -0.05491514503955841, -0.09800853580236435, 0.03084832988679409, 0.02703951485455036, 0.049043070524930954, -0.08715439587831497, -0.11252749711275101, 0.09761866182088852, 0.09769141674041748, -0.06108586862683296, 0.0006158616160973907, -0.060970552265644073, 0.02024313621222973, 0.011625773273408413, -0.0011234148405492306, -0.1579645574092865, -0.14954176545143127, 0.026311565190553665, -0.09821359068155289, 0.062160830944776535, 0.0013333669630810618, 0.05993827059864998, 0.0813572034239769, -0.07477200776338577, -0.024832597002387047, -0.05968893691897392, 0.0015769643941894174, -0.09509254992008209, -0.2108580470085144, -0.011662796139717102, -0.007534205913543701, 0.1645076721906662, -0.26876911520957947, 0.045774273574352264, -0.05387304723262787, 0.10617981106042862, 0.017848676070570946, -0.027281956747174263, -0.01072859950363636, 0.04629640281200409, -0.022477393969893456, -0.09269437938928604, 0.04512368515133858, -0.0029927408322691917, -0.0668247640132904, -0.05151886120438576, -0.12449077516794205, 0.11834365874528885, 0.09743285924196243, 0.012754334136843681, -0.10149974375963211, -0.012292060069739819, -0.061308346688747406, -0.04880666360259056, -0.1032397598028183, 0.012038622982800007, 0.151060089468956, -0.019394414499402046, 0.1348576694726944, -0.0630129724740982, -0.055884625762701035, -0.011876635253429413, -0.009349185042083263, 0.012167267501354218, 0.08082343637943268, 0.10344758629798889, -0.11649610102176666, 0.10724946856498718, 0.08051230758428574, -0.06865383684635162, 0.16068454086780548, -0.045549795031547546, -0.045131999999284744, 0.00018552799883764237, 0.03490573912858963, -0.007769046816974878, 0.09759446233510971, -0.1308155059814453, 0.008971611969172955, 0.010268356651067734, 0.00950951874256134, 0.04006381705403328, -0.18324299156665802, -0.01754854992032051, 0.022750910371541977, -0.07297874987125397, -0.020161312073469162, -0.0316750630736351, 0.003920356277376413, 0.09163700044155121, 0.0028930127155035734, -0.033333271741867065, 0.033162400126457214, 0.012830331921577454, -0.11026157438755035, 0.19351531565189362, -0.09122201800346375, -0.13723476231098175, -0.12511557340621948, 0.05638045817613602, -0.0751613900065422, -0.012183654122054577, 0.04817523807287216, -0.08706334233283997, -0.06907794624567032, -0.12574514746665955, 0.009972089901566505, -0.0038541776593774557, -0.013549638912081718, -0.006025830749422312, 0.03198203071951866, 0.07355570048093796, -0.1322779506444931, 0.0031719293911010027, -0.0036485446617007256, -0.11133857071399689, -0.005282905418425798, 0.021639658138155937, 0.11134830862283707, 0.13101303577423096, -0.01336019765585661, 0.010774229653179646, -0.038226500153541565, 0.19672276079654694, -0.06338178366422653, 0.02127586118876934, 0.134893000125885, 0.050080057233572006, 0.0351618155837059, 0.1423874944448471, 0.02869487926363945, -0.10619033128023148, 0.05417656898498535, 0.07712095230817795, -0.014476495794951916, -0.25206440687179565, -0.04530812054872513, -0.03237675875425339, -0.0362078994512558, 0.07608924806118011, 0.06581807881593704, 0.051680788397789, 0.041565753519535065, -0.02464045025408268, 0.07670488208532333, 0.039079371839761734, 0.0799645408987999, 0.12579315900802612, 0.04387835040688515, 0.10191932320594788, -0.039409976452589035, -0.030606985092163086, 0.06701057404279709, -0.03286207839846611, 0.27429285645484924, 0.0019384482875466347, 0.08564141392707825, 0.050863102078437805, 0.11278504878282547, -0.0074509140104055405, 0.04591597616672516, 0.05388152226805687, 0.0022305999882519245, 0.01296271849423647, -0.06687690317630768, -0.004636294674128294, 0.03586214408278465, -0.05915861204266548, 0.04418349638581276, -0.0815233513712883, 0.0447954498231411, 0.039820119738578796, 0.2641699016094208, 0.011279664002358913, -0.3120349943637848, -0.08793634176254272, 0.012822797521948814, -0.04345090314745903, -0.034570448100566864, 0.02545841597020626, 0.11347303539514542, -0.12228288501501083, 0.06803944706916809, -0.048631295561790466, 0.09455800801515579, -0.014676052145659924, 0.011166831478476524, 0.059617772698402405, 0.11741140484809875, -0.009087769314646721, 0.09870603680610657, -0.2513335049152374, 0.22366474568843842, 0.004148066975176334, 0.1396184116601944, -0.03800954297184944, 0.02584582194685936, 0.0314926877617836, 0.1360401213169098, 0.09820554405450821, -0.00820847600698471, -0.016339965164661407, -0.16102738678455353, -0.06660564988851547, 0.055432748049497604, 0.09862418472766876, -0.03224943205714226, 0.08656924962997437, -0.061326153576374054, -0.01924309693276882, 0.06444454193115234, -0.06629006564617157, -0.22354212403297424, -0.1093803197145462, -0.022302722558379173, 0.006939887534826994, 0.014548317529261112, -0.09405408054590225, -0.09623103588819504, -0.041648779064416885, 0.18236380815505981, -0.007031403016299009, -0.04634008929133415, -0.128781259059906, 0.0630483627319336, 0.06618864834308624, -0.06000084802508354, 0.03437471389770508, 0.018023263663053513, 0.09123619645833969, 0.0514909029006958, -0.07878530025482178, 0.07206592708826065, -0.07985927909612656, -0.18444795906543732, -0.0604204498231411, 0.11843183636665344, 0.033067215234041214, 0.038994040340185165, 0.010999869555234909, 0.0006252456805668771, 0.014266928657889366, -0.10496629029512405, -0.012891221791505814, 0.08708784729242325, 0.07374443113803864, 0.06496016681194305, -0.10927221179008484, -0.022042376920580864, -0.0434873029589653, -0.05176151171326637, 0.09794346988201141, 0.21530593931674957, -0.06934250891208649, 0.04840223118662834, 0.07570641487836838, -0.08145665377378464, -0.17712664604187012, 0.055911969393491745, 0.06628037989139557, 0.004079276230186224, 0.047064363956451416, -0.16948112845420837, 0.1339578926563263, 0.1264880746603012, -0.02082790806889534, 0.06736069917678833, -0.3470304310321808, -0.15361370146274567, 0.06779074668884277, 0.14392082393169403, 0.022900592535734177, -0.1548968106508255, -0.03674399107694626, -0.05049339309334755, -0.11930590867996216, 0.0999465361237526, -0.15258759260177612, 0.1072099357843399, 0.0014493976486846805, 0.04911832511425018, 0.0034924980718642473, -0.037560272961854935, 0.12061279267072678, 0.015386799350380898, 0.10339052975177765, -0.06377633661031723, 0.03657664358615875, 0.08352185785770416, -0.06029413267970085, 0.07418724149465561, -0.0834081694483757, 0.0741090476512909, -0.08373872190713882, -0.04812147840857506, -0.05768923461437225, 0.08983305841684341, -0.05961284786462784, -0.06101827695965767, -0.05227798596024513, 0.037952303886413574, 0.06520020216703415, -0.028190094977617264, 0.0461101159453392, 0.004309412557631731, 0.10007376223802567, 0.08632877469062805, 0.11836986988782883, -0.03232179954648018, -0.07240288704633713, -0.025176936760544777, -0.032418590039014816, 0.04637470096349716, -0.12416597455739975, 0.02042592689394951, 0.10379527509212494, 0.03370575234293938, 0.14734718203544617, 0.0479554757475853, -0.027443746104836464, -0.0040068794041872025, 0.042769160121679306, -0.12046068906784058, -0.19812658429145813, -0.02602599933743477, -0.11636792123317719, -0.10873344540596008, 0.03742411360144615, 0.0920851081609726, -0.09989580512046814, 0.011921429075300694, -0.021206898614764214, 0.024474382400512695, -0.02187281660735607, 0.18441800773143768, 0.022655664011836052, 0.05504128709435463, -0.08042934536933899, 0.12114643305540085, 0.0801432803273201, -0.040685657411813736, 0.024288402870297432, 0.09389961510896683, -0.10635223984718323, -0.043997522443532944, 0.10231205821037292, 0.19513200223445892, -0.032525740563869476, -0.05829524248838425, -0.10636132210493088, -0.13147962093353271, 0.04416227340698242, 0.12160825729370117, 0.04093373566865921, -0.005061638541519642, -0.024288957938551903, 0.03452380374073982, -0.12521222233772278, 0.09972988814115524, 0.06146111339330673, 0.07559553533792496, -0.16878432035446167, 0.13986167311668396, 0.030041629448533058, 0.004050099290907383, -0.02111617662012577, 0.03859584778547287, -0.10571113228797913, -0.020556440576910973, -0.1428099423646927, -0.011162983253598213, -0.01338470820337534, 0.015467386692762375, -0.010023928247392178, -0.03711086884140968, -0.058964408934116364, 0.05142509192228317, -0.05784691125154495, -0.06274205446243286, 0.01709984615445137, 0.07434067875146866, -0.14860855042934418, 0.003625948913395405, 0.01801210083067417, -0.09201006591320038, 0.0739814043045044, 0.03716753423213959, 0.008014985360205173, 0.05017269030213356, -0.18349382281303406, 0.007305673323571682, 0.04789533093571663, 0.02137298695743084, 0.04458887130022049, -0.07100652158260345, -0.0052404687739908695, -0.002615865785628557, 0.052560340613126755, 0.024588149040937424, 0.049844514578580856, -0.12038964033126831, -0.012390444055199623, -0.06192006543278694, -0.06190445274114609, -0.05153990164399147, 0.03182389214634895, 0.09254440665245056, -0.007527709472924471, 0.20580172538757324, -0.11641407012939453, 0.018943145871162415, -0.21131302416324615, -0.025151681154966354, 0.007265436928719282, -0.045942213386297226, -0.11155906319618225, -0.04550377279520035, 0.06928197294473648, -0.04952583461999893, 0.12451514601707458, 0.024452941492199898, 0.0978911742568016, 0.03875096142292023, -0.04359479621052742, -0.00012300678645260632, 0.012056293897330761, 0.1922653317451477, 0.04290611669421196, -0.006144005339592695, 0.06851193308830261, -0.009985432960093021, 0.08108411729335785, -0.028374429792165756, 0.2149473875761032, 0.1557953804731369, -0.11951850354671478, 0.07822363823652267, 0.06671778857707977, -0.11560133099555969, -0.16326308250427246, 0.07369721680879593, -0.04358363896608353, 0.13029582798480988, -0.06463243067264557, 0.16422133147716522, 0.12027808278799057, -0.16290560364723206, 0.033361926674842834, -0.05131622403860092, -0.10134146362543106, -0.11216901242733002, -0.059749338775873184, -0.10166594386100769, -0.13784778118133545, 0.017747096717357635, -0.10808580368757248, 0.016679685562849045, 0.07033778727054596, 0.014066388830542564, -0.014587865211069584, 0.1623906046152115, -0.021453971043229103, 0.00881499145179987, 0.043245311826467514, -0.005744528025388718, -0.02282913587987423, -0.07433927804231644, -0.0811103954911232, 0.01006321795284748, -0.01501293946057558, 0.042873624712228775, -0.0315835140645504, -0.03390120342373848, 0.037537142634391785, -0.02129221148788929, -0.05008244514465332, 0.03745326027274132, 0.024479102343320847, 0.025110237300395966, 0.02481367252767086, 0.04801405966281891, -0.030109426006674767, -0.003801003098487854, 0.29910874366760254, -0.07039222866296768, -0.13136447966098785, -0.10255447030067444, 0.22576381266117096, 0.0446619912981987, -0.005784946959465742, 0.059694480150938034, -0.11350113153457642, 0.012413054704666138, 0.2027953416109085, 0.16692116856575012, -0.04668955132365227, -0.01335820835083723, -0.02735202945768833, -0.023106465116143227, -0.03259652480483055, 0.13980646431446075, 0.10904599726200104, 0.0567542165517807, -0.027300583198666573, 0.01914297044277191, 0.011457489803433418, -0.02948220819234848, -0.11603529006242752, 0.09343045949935913, 0.0225982666015625, -0.004420902114361525, -0.02287348546087742, 0.09495557099580765, -0.010634980164468288, -0.13413845002651215, 0.04962947964668274, -0.13488240540027618, -0.15384359657764435, -0.04106251150369644, 0.08627498149871826, -0.024362079799175262, 0.042913131415843964, -0.014045169577002525, -0.008781831711530685, 0.10699992626905441, -0.020079927518963814, -0.09164265543222427, -0.09176793694496155, 0.06100158020853996, -0.08245018869638443, 0.26291075348854065, -0.0073334574699401855, 0.049965083599090576, 0.11078012734651566, -0.0003893161774612963, -0.11417777091264725, 0.10827513784170151, 0.04849565774202347, -0.06073136255145073, 0.07136772572994232, 0.09915012866258621, -0.04738062992691994, 0.08065765351057053, 0.02505243383347988, -0.10118130594491959, 0.004531495273113251, -0.009917838498950005, -0.04390304163098335, -0.0930846631526947, 0.002668297616764903, -0.08011460304260254, 0.1306905746459961, 0.19813361763954163, -0.03267065808176994, 0.025551965460181236, -0.08223605901002884, 0.05713692307472229, 0.05481191724538803, 0.08286010473966599, 0.0006153522990643978, -0.21062877774238586, 0.015805721282958984, 0.0016195429489016533, 0.024215970188379288, -0.25182044506073, -0.07929595559835434, -0.0064210109412670135, -0.031593017280101776, -0.09131836146116257, 0.1073056235909462, 0.13880418241024017, 0.03261536732316017, -0.038805317133665085, -0.168566033244133, -0.0489678829908371, 0.17638114094734192, -0.14831513166427612, -0.06342201679944992 ]
null
null
null
https://github.com/historiccyberpunk/image_generating_Artificial_Intelligence_PowerISO_stabilityai
{}
null
historiccyberpunk/image_generating_Artificial_Intelligence
[ "region:us" ]
2024-02-14T03:42:36+00:00
[]
[]
TAGS #region-us
URL
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chat_1000STEPS_1e6rate This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6684 - Rewards/chosen: -0.3437 - Rewards/rejected: -0.4414 - Rewards/accuracies: 0.5055 - Rewards/margins: 0.0978 - Logps/rejected: -23.2056 - Logps/chosen: -20.1814 - Logits/rejected: -0.8363 - Logits/chosen: -0.8361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6939 | 0.1 | 50 | 0.6917 | -0.0037 | -0.0069 | 0.4901 | 0.0032 | -18.8600 | -16.7813 | -0.5975 | -0.5973 | | 0.6902 | 0.2 | 100 | 0.6919 | -0.1261 | -0.1323 | 0.4440 | 0.0063 | -20.1147 | -18.0054 | -0.6143 | -0.6142 | | 0.6923 | 0.29 | 150 | 0.6796 | -0.0370 | -0.0721 | 0.4945 | 0.0351 | -19.5126 | -17.1150 | -0.6569 | -0.6568 | | 0.6793 | 0.39 | 200 | 0.6803 | -0.0086 | -0.0473 | 0.4769 | 0.0387 | -19.2641 | -16.8305 | -0.6452 | -0.6450 | | 0.6446 | 0.49 | 250 | 0.6790 | -0.0967 | -0.1427 | 0.4857 | 0.0460 | -20.2182 | -17.7115 | -0.6468 | -0.6466 | | 0.6365 | 0.59 | 300 | 0.6809 | -0.1168 | -0.1650 | 0.4681 | 0.0482 | -20.4409 | -17.9127 | -0.6877 | -0.6874 | | 0.6828 | 0.68 | 350 | 0.6765 | -0.1034 | -0.1632 | 0.4923 | 0.0599 | -20.4235 | -17.7782 | -0.6849 | -0.6847 | | 0.6797 | 0.78 | 400 | 0.6788 | -0.0900 | -0.1511 | 0.4923 | 0.0611 | -20.3023 | -17.6445 | -0.6763 | -0.6762 | | 0.6751 | 0.88 | 450 | 0.6772 | -0.0807 | -0.1445 | 0.4945 | 0.0638 | -20.2366 | -17.5521 | -0.6528 | -0.6526 | | 0.6596 | 0.98 | 500 | 0.6744 | -0.1091 | -0.1779 | 0.5055 | 0.0688 | -20.5702 | -17.8358 | -0.6395 | -0.6393 | | 0.4819 | 1.07 | 550 | 0.6714 | -0.2112 | -0.2907 | 0.5077 | 0.0795 | -21.6987 | -18.8566 | -0.7045 | -0.7043 | | 0.4754 | 1.17 | 600 | 0.6699 | -0.2743 | -0.3603 | 0.5011 | 0.0860 | -22.3943 | -19.4880 | -0.7556 | -0.7554 | | 0.4339 | 1.27 | 650 | 0.6694 | -0.2906 | -0.3826 | 0.5033 | 0.0920 | -22.6175 | -19.6505 | -0.8041 | -0.8039 | | 0.4692 | 1.37 | 700 | 0.6673 | -0.3183 | -0.4163 | 0.5033 | 0.0980 | -22.9541 | -19.9276 | -0.8200 | -0.8199 | | 0.4767 | 1.46 | 750 | 0.6681 | -0.3342 | -0.4320 | 0.5055 | 0.0978 | -23.1116 | -20.0865 | -0.8291 | -0.8289 | | 0.4125 | 1.56 | 800 | 0.6684 | -0.3381 | -0.4355 | 0.5099 | 0.0974 | -23.1466 | -20.1256 | -0.8330 | -0.8328 | | 0.4733 | 1.66 | 850 | 0.6681 | -0.3425 | -0.4407 | 0.5011 | 0.0983 | -23.1986 | -20.1691 | -0.8359 | -0.8357 | | 0.4699 | 1.76 | 900 | 0.6683 | -0.3431 | -0.4412 | 0.5077 | 0.0981 | -23.2032 | -20.1758 | -0.8365 | -0.8363 | | 0.4629 | 1.86 | 950 | 0.6682 | -0.3438 | -0.4421 | 0.5011 | 0.0984 | -23.2125 | -20.1823 | -0.8365 | -0.8363 | | 0.4482 | 1.95 | 1000 | 0.6684 | -0.3437 | -0.4414 | 0.5055 | 0.0978 | -23.2056 | -20.1814 | -0.8363 | -0.8361 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.0+cu117 - Datasets 2.17.0 - Tokenizers 0.15.2
{"tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "chat_1000STEPS_1e6rate", "results": []}]}
text-generation
tsavage68/chat_1000STEPS_1e6rate_01beta_DPO
[ "transformers", "safetensors", "llama", "text-generation", "trl", "dpo", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-2-7b-chat-hf", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T03:44:25+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
chat\_1000STEPS\_1e6rate ======================== This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6684 * Rewards/chosen: -0.3437 * Rewards/rejected: -0.4414 * Rewards/accuracies: 0.5055 * Rewards/margins: 0.0978 * Logps/rejected: -23.2056 * Logps/chosen: -20.1814 * Logits/rejected: -0.8363 * Logits/chosen: -0.8361 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-06 * train\_batch\_size: 4 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 100 * training\_steps: 1000 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.0.0+cu117 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.0+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.0+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 84, 144, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 1000### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.0+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.12266357988119125, 0.1062597781419754, -0.0030054552480578423, 0.06318916380405426, 0.1263114959001541, 0.012204734608530998, 0.11209192126989365, 0.1430238038301468, -0.07754258811473846, 0.08899527043104172, 0.14195095002651215, 0.12826721370220184, 0.06602741032838821, 0.17352817952632904, -0.021993448957800865, -0.3253417909145355, 0.0016583055257797241, -0.01799364574253559, -0.1671135127544403, 0.12860260903835297, 0.08499028533697128, -0.11942626535892487, 0.05260150507092476, -0.0390697605907917, -0.09783291071653366, -0.04294046014547348, -0.03744678199291229, -0.051296040415763855, 0.13534830510616302, -0.011509083211421967, 0.0960434153676033, 0.05156691372394562, 0.09904692322015762, -0.2457963526248932, 0.012376479804515839, 0.06468582898378372, 0.04025443270802498, 0.08196820318698883, 0.06310326606035233, -0.03356330469250679, 0.10785260796546936, -0.11792105436325073, 0.08294352144002914, 0.03238777816295624, -0.11479448527097702, -0.22757792472839355, -0.08908103406429291, 0.046737782657146454, 0.15734364092350006, 0.07779388874769211, -0.022535931318998337, 0.06761761754751205, -0.09114689379930496, 0.08667302876710892, 0.24317683279514313, -0.25680670142173767, -0.07340896129608154, 0.06343628466129303, 0.07021235674619675, 0.07286026328802109, -0.12501874566078186, -0.005441481247544289, 0.0219015721231699, 0.0024276694748550653, 0.13913047313690186, -0.0015597599558532238, 0.08159258961677551, 0.011493965983390808, -0.14385119080543518, -0.043418191373348236, 0.10113111883401871, 0.07473070174455643, -0.022984353825449944, -0.11420974135398865, -0.04331127926707268, -0.2314361184835434, -0.0437416173517704, -0.011697470210492611, 0.02912108413875103, -0.05510783568024635, -0.0985541120171547, 0.006044020410627127, -0.06411763280630112, -0.10628323256969452, 0.06318043172359467, 0.1484697461128235, 0.04367435723543167, -0.045007478445768356, 0.02672283537685871, 0.1579427868127823, 0.07520991563796997, -0.15684284269809723, -0.004748247563838959, 0.020213937386870384, -0.08336228132247925, -0.02280173823237419, -0.02170591801404953, 0.023894546553492546, 0.022535350173711777, 0.1475018560886383, -0.022370822727680206, 0.060890082269907, 0.06797532737255096, 0.02174290269613266, -0.09587565064430237, 0.13951174914836884, -0.07481405138969421, -0.09870552271604538, -0.03936806693673134, 0.14601388573646545, 0.007851964794099331, -0.015354995615780354, -0.08241955190896988, 0.01825674995779991, 0.11244454979896545, 0.07655777037143707, -0.022497449070215225, 0.048705752938985825, -0.06378874182701111, -0.01892732083797455, 0.018631400540471077, -0.10815858840942383, 0.019913213327527046, 0.012582237832248211, -0.07657899707555771, -0.052219826728105545, -0.001030708197504282, 0.01785730943083763, -0.001921065733768046, 0.12185243517160416, -0.0708753690123558, -0.0299918744713068, -0.09527523815631866, -0.09409084916114807, 0.008097395300865173, -0.10042164474725723, -0.006114997435361147, -0.06686782091856003, -0.14418280124664307, -0.060611188411712646, 0.05544073507189751, -0.052366986870765686, -0.07019389420747757, -0.09763819724321365, -0.10156484693288803, 0.025632549077272415, -0.00633280398324132, 0.1595599502325058, -0.0494556650519371, 0.12975680828094482, -0.009352854453027248, 0.0886838361620903, 0.08211576193571091, 0.05204997956752777, -0.03981752693653107, 0.0680483803153038, -0.1926768273115158, 0.08744613826274872, -0.07477394491434097, 0.07601749151945114, -0.12587586045265198, -0.09787338227033615, -0.027366558089852333, -0.006336684338748455, 0.08670145273208618, 0.1688091903924942, -0.17349016666412354, -0.08089873939752579, 0.2120947390794754, -0.05035789683461189, -0.1153491884469986, 0.10882312059402466, -0.03474706783890724, 0.02323697879910469, 0.0401558019220829, 0.15621677041053772, 0.10135561227798462, -0.0816260576248169, 0.024645620957016945, -0.027171621099114418, 0.09318956732749939, 0.03447316214442253, 0.09714444726705551, -0.03449312970042229, 0.039618123322725296, -0.003968982025980949, -0.06542836129665375, 0.048540111631155014, -0.09070663154125214, -0.08646975457668304, 0.004278034903109074, -0.08894748240709305, 0.06248122826218605, 0.04502200335264206, 0.0316532738506794, -0.0870630070567131, -0.11608385294675827, -0.019181441515684128, 0.10748469829559326, -0.09043028205633163, 0.01340943668037653, -0.03549705445766449, 0.03936018794775009, 0.001485741464421153, 0.006167719140648842, -0.13761916756629944, -0.041861530393362045, 0.027818230912089348, 0.013643128797411919, -0.013930282555520535, -0.017476914450526237, 0.08244403451681137, 0.062114372849464417, -0.0736759603023529, -0.07940704375505447, -0.05937625840306282, -0.0023445284459739923, -0.09913726896047592, -0.23699122667312622, -0.057553160935640335, -0.037440814077854156, 0.21855875849723816, -0.24190735816955566, 0.045763373374938965, 0.016235854476690292, 0.11446359753608704, 0.03589880093932152, -0.04156927019357681, 0.009824279695749283, 0.050758540630340576, -0.021420102566480637, -0.09797840565443039, 0.04675869643688202, -0.012429830618202686, -0.14226265251636505, -0.007603099569678307, -0.13765104115009308, 0.09332075715065002, 0.10072091221809387, 0.013690092600882053, -0.13189493119716644, -0.0940837562084198, -0.06598594039678574, -0.045993372797966, -0.02486332133412361, -0.0047469292767345905, 0.13800697028636932, 0.037400029599666595, 0.11620016396045685, -0.07967685908079147, -0.06533931195735931, 0.02750709466636181, 0.001743616652674973, 0.01637290231883526, 0.15579816699028015, 0.051296964287757874, -0.06894120573997498, 0.1254165917634964, 0.11656687408685684, -0.04618879035115242, 0.14900431036949158, -0.055070661008358, -0.08717195689678192, -0.03093445859849453, 0.06137410178780556, 0.031603723764419556, 0.12831731140613556, -0.11388703435659409, -0.017308058217167854, 0.011533568613231182, 0.016355255618691444, 0.0003832882212009281, -0.20013439655303955, -0.040604837238788605, 0.04654008895158768, -0.062145233154296875, 0.0021587912924587727, -0.023503955453634262, -0.014792961068451405, 0.1053616851568222, 0.04434516280889511, -0.06082011014223099, 0.0026751565746963024, -0.020713351666927338, -0.08117406815290451, 0.22987422347068787, -0.0944811999797821, -0.13775551319122314, -0.08480372279882431, 0.027729718014597893, -0.006859719753265381, 0.012238685972988605, 0.017736360430717468, -0.10477026551961899, 0.007822851650416851, -0.07398457825183868, 0.007581016980111599, -0.03552566096186638, 0.035468876361846924, -0.022426802664995193, 0.02460646443068981, 0.023928286507725716, -0.08086685091257095, 0.012661827728152275, -0.024847760796546936, -0.04631594568490982, 0.048195865005254745, 0.009820825420320034, 0.09464271366596222, 0.1795506775379181, 0.024483593180775642, 0.026698170229792595, -0.046416472643613815, 0.12635311484336853, -0.13959817588329315, 0.016163690015673637, 0.08747612684965134, 0.030454106628894806, 0.054675642400979996, 0.15619392693042755, 0.036311276257038116, -0.08991075307130814, 0.04529183730483055, 0.035234980285167694, -0.030009105801582336, -0.20958994328975677, -0.010247643105685711, -0.0458807647228241, 0.026929238811135292, 0.11710284650325775, 0.029257815331220627, 0.025091929361224174, 0.059904422610998154, -0.029643481597304344, -0.012183299288153648, 0.02957926318049431, 0.07150088995695114, -0.0035174351651221514, 0.01938440278172493, 0.1120595633983612, -0.008204082027077675, -0.05806943029165268, 0.002357297809794545, 0.022125378251075745, 0.235572949051857, -0.026289258152246475, 0.14495967328548431, 0.03975975140929222, 0.14606396853923798, -0.013519013300538063, 0.08352141082286835, 0.03499608859419823, -0.03766652196645737, -0.0004738448769785464, -0.05895780026912689, -0.039352163672447205, 0.057767193764448166, 0.04508877173066139, 0.041000690311193466, -0.12171196192502975, 0.03164711222052574, 0.033589355647563934, 0.31850606203079224, 0.08682069182395935, -0.3032393455505371, -0.0724371150135994, 0.016635088250041008, -0.0472138449549675, -0.03343818336725235, 0.021294325590133667, 0.13370493054389954, -0.12187124788761139, 0.054605890065431595, -0.0852135494351387, 0.06607150286436081, -0.08142369240522385, 0.0027827699668705463, 0.042020004242658615, 0.07125383615493774, -0.026465848088264465, 0.06411582976579666, -0.2867710590362549, 0.3016011416912079, -0.01231414545327425, 0.058044057339429855, -0.06179969757795334, 0.016498571261763573, 0.030682964250445366, 0.011741948314011097, 0.11678028851747513, -0.002920072292909026, -0.020283984020352364, -0.1762680858373642, -0.09977108240127563, 0.003370760940015316, 0.15003156661987305, -0.1407843381166458, 0.12742465734481812, -0.016354849562048912, -0.03189169242978096, 0.04459551349282265, -0.07111082226037979, -0.06207951158285141, -0.09219324588775635, 0.021134832873940468, -0.03867371752858162, 0.08399436622858047, -0.1055547446012497, -0.0967971459031105, -0.045249950140714645, 0.16029155254364014, -0.10862194746732712, -0.04447585344314575, -0.14517034590244293, 0.06738371402025223, 0.1233174055814743, -0.07301612943410873, 0.05067858472466469, 0.017631080001592636, 0.09372080117464066, 0.004826794378459454, 0.008338588289916515, 0.1241411343216896, -0.07512308657169342, -0.23829682171344757, -0.06863439083099365, 0.1863546520471573, 0.05044884234666824, 0.0641791969537735, -0.02487637661397457, 0.013368084095418453, -0.0009563047206029296, -0.0847909078001976, 0.0638628900051117, 0.037033695727586746, 0.0658845528960228, 0.049760621041059494, -0.04550034925341606, 0.08413027971982956, -0.07568465918302536, -0.05358092859387398, 0.14457502961158752, 0.3026805520057678, -0.09633269160985947, 0.044077545404434204, 0.055987488478422165, -0.028178080916404724, -0.19051827490329742, 0.007443158887326717, 0.11059374362230301, 0.03880121186375618, -0.0034284917637705803, -0.20069736242294312, 0.022026147693395615, 0.08476556092500687, -0.025023357942700386, 0.10287587344646454, -0.33273810148239136, -0.1292303055524826, 0.08162800222635269, 0.11701822280883789, -0.009703859686851501, -0.1659543514251709, -0.056138716638088226, -0.012973874807357788, -0.04851678013801575, 0.07100658863782883, -0.04098866134881973, 0.1274488866329193, -0.011013523675501347, 0.017655273899435997, 0.03448421135544777, -0.06514687091112137, 0.13353541493415833, 0.008149517700076103, 0.0682787075638771, -0.03080316260457039, -0.013785171322524548, 0.010227917693555355, -0.08426696807146072, 0.011508793570101261, -0.09647759795188904, 0.03273366764187813, -0.10367028415203094, -0.02147119864821434, -0.09650789946317673, 0.028600500896573067, -0.05978677049279213, -0.08400361239910126, -0.02682134509086609, 0.05520712956786156, 0.08029993623495102, 0.0010851096594706178, 0.11394467949867249, -0.03657238185405731, 0.16139626502990723, 0.09062890708446503, 0.11478370428085327, 0.0034186954144388437, -0.0587361678481102, -0.005898117087781429, -0.008597616106271744, 0.048769138753414154, -0.15017050504684448, 0.005108556244522333, 0.1363006979227066, 0.0601973719894886, 0.13848602771759033, 0.07029116153717041, -0.06740651279687881, -0.01763194613158703, 0.0692259669303894, -0.10873741656541824, -0.12072235345840454, -0.015429074876010418, -0.007662681862711906, -0.14330537617206573, 0.049616266041994095, 0.09790169447660446, -0.057080358266830444, -0.004473304841667414, 0.002067522844299674, 0.029133396223187447, -0.024401109665632248, 0.21002355217933655, 0.06473231315612793, 0.10711653530597687, -0.082936130464077, 0.0824296623468399, 0.03375282883644104, -0.13188397884368896, 0.025667203590273857, 0.10418752580881119, -0.09607184678316116, -0.019523706287145615, 0.04399735853075981, 0.06235764920711517, 0.024968832731246948, -0.012027911841869354, -0.12178235501050949, -0.1385670304298401, 0.06734970957040787, 0.10268496721982956, 0.03919202834367752, 0.038753021508455276, -0.01762070693075657, 0.04474679008126259, -0.13040439784526825, 0.11559585481882095, 0.0562882125377655, 0.07940094918012619, -0.1379731148481369, 0.1616973727941513, -0.008140118792653084, 0.020097678527235985, -0.007536496967077255, 0.01600836031138897, -0.12449365854263306, 0.014801152981817722, -0.04065973311662674, -0.06785792857408524, -0.059807393699884415, -0.021929020062088966, -0.012808636762201786, -0.03571513295173645, -0.0054699755273759365, -0.005164490547031164, -0.10853079706430435, -0.05531482771039009, -0.02294972911477089, 0.03905995190143585, -0.08838457614183426, -0.04013907164335251, 0.025998404249548912, -0.12566439807415009, 0.10219275951385498, 0.02990473061800003, 0.04053592309355736, 0.0010362934553995728, -0.08572711795568466, 0.04615659639239311, 0.030392618849873543, -0.02473391219973564, 0.02753063105046749, -0.14066986739635468, -0.026146741583943367, -0.07498009502887726, 0.017088444903492928, 0.017817893996834755, 0.01481968630105257, -0.13609261810779572, 0.017006907612085342, -0.04364906996488571, -0.051867347210645676, -0.07266626507043839, 0.05779695510864258, 0.0478423535823822, 0.0013739032438024879, 0.13045087456703186, -0.06741383671760559, 0.06983671337366104, -0.21773478388786316, -0.02118099294602871, -0.011769219301640987, -0.06927237659692764, -0.04864851012825966, -0.02884341962635517, 0.09910459071397781, -0.05584317073225975, 0.06110379099845886, -0.050740793347358704, 0.04021657630801201, 0.018460877239704132, -0.10428810864686966, 0.08930137753486633, 0.06019437313079834, 0.18252083659172058, 0.06232848018407822, -0.04799722135066986, 0.05099796876311302, 0.0410771444439888, 0.07165040820837021, 0.07879635691642761, 0.17907577753067017, 0.13153760135173798, 0.02619946002960205, 0.08315897732973099, 0.03256002068519592, -0.12471137195825577, -0.14034722745418549, 0.09831584244966507, -0.03770257160067558, 0.08988825231790543, -0.03234412893652916, 0.208001971244812, 0.1221587210893631, -0.20663781464099884, 0.03211759775876999, -0.02468283660709858, -0.09824280440807343, -0.09064305573701859, -0.06724615395069122, -0.06457298249006271, -0.16688665747642517, -0.0009481672313995659, -0.10053584724664688, 0.014221927151083946, 0.08551886677742004, 0.03002859652042389, 0.03191371634602547, 0.1673261672258377, 0.06252006441354752, 0.011723874136805534, 0.1111866682767868, 0.04480554163455963, 0.008018814958631992, -0.03901759162545204, -0.1093096062541008, 0.010557267814874649, -0.057750605046749115, 0.03795324265956879, -0.0714070200920105, -0.09786485135555267, 0.061745431274175644, 0.03661990910768509, -0.09992809593677521, 0.022935083135962486, -0.0023962240666151047, 0.06783479452133179, 0.08676370233297348, 0.018383480608463287, -0.023417092859745026, -0.030314423143863678, 0.255555123090744, -0.10717009752988815, -0.049105577170848846, -0.10577138513326645, 0.2572162449359894, 0.023455338552594185, 0.0020803557708859444, 0.019048361107707024, -0.08867581933736801, 0.00469718175008893, 0.1765049695968628, 0.18360446393489838, -0.04524199664592743, -0.0047477856278419495, 0.019143393263220787, -0.013849690556526184, -0.03045813925564289, 0.08341988176107407, 0.11949434876441956, 0.0463278628885746, -0.07528813928365707, -0.014162451028823853, -0.008053471334278584, -0.06711556762456894, -0.05513256415724754, 0.07471202313899994, 0.05179808661341667, 0.006105021573603153, -0.03267311677336693, 0.11081946641206741, -0.04461700841784477, -0.14376921951770782, 0.06098585203289986, -0.2097829431295395, -0.17030324041843414, -0.05877716839313507, 0.020937329158186913, 0.011848733760416508, 0.07308874279260635, 0.01194365881383419, -0.0197072084993124, 0.08987485617399216, 0.008524495176970959, -0.04454522207379341, -0.08951161056756973, 0.06378434598445892, -0.0729307234287262, 0.1782572865486145, -0.060742102563381195, -0.0008100204286165535, 0.1356062889099121, 0.025004934519529343, -0.07600927352905273, 0.04616054520010948, 0.09927196800708771, -0.08745217323303223, 0.04586336761713028, 0.16799436509609222, -0.03400618955492973, 0.08900583535432816, 0.047245871275663376, -0.12757709622383118, 0.02009008638560772, -0.08188913762569427, -0.05480611324310303, -0.08378016203641891, 0.013630216009914875, -0.02475273236632347, 0.14720521867275238, 0.23018154501914978, -0.07145863771438599, 0.02076645754277706, -0.05322345346212387, -0.005984341260045767, 0.05062776431441307, 0.08490411192178726, -0.030123557895421982, -0.24906955659389496, 0.003451602067798376, 0.03017088770866394, 0.005739813670516014, -0.2499423325061798, -0.08693929016590118, 0.026878036558628082, -0.05264759808778763, -0.08327589184045792, 0.09269022941589355, 0.035240817815065384, 0.050908688455820084, -0.04409104958176613, -0.10093051940202713, -0.056196097284555435, 0.19284497201442719, -0.19005241990089417, -0.06534110754728317 ]
null
null
null
Contains ".pt" and ".json" files for Transformer models that answers n-digit addition and/or subtractions questions (e.g. 123450-345670=-0123230). The model can do addition, subtraction or both (aka "mixed"). The model can predict 4, 5, 6, etc digit questions. The model can have 1, 2 or 3 layers, 3 or 4 attention heads, d-model = 510, d-head = 170. An untrained mixed model can be initialised with (aka re-use) a previously trained addition model. The file are generated by two CoLabs: - https://github.com/PhilipQuirke/transformer-maths/blob/main/assets/VerifiedArithmeticTrain.ipynb trains the model outputing a ".pt" file of model weights and a "_train.json" file of training losses over epochs - https://github.com/PhilipQuirke/transformer-maths/blob/main/assets/VerifiedArithmeticAnalyse.ipynb analyses the trained model outputing a "_analysis.json" file of observed behaviours and automatically derived node purposes.
{"license": "apache-2.0"}
null
PhilipQuirke/VerifiedArithmetic
[ "license:apache-2.0", "region:us" ]
2024-02-14T03:45:05+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
Contains ".pt" and ".json" files for Transformer models that answers n-digit addition and/or subtractions questions (e.g. 123450-345670=-0123230). The model can do addition, subtraction or both (aka "mixed"). The model can predict 4, 5, 6, etc digit questions. The model can have 1, 2 or 3 layers, 3 or 4 attention heads, d-model = 510, d-head = 170. An untrained mixed model can be initialised with (aka re-use) a previously trained addition model. The file are generated by two CoLabs: - URL trains the model outputing a ".pt" file of model weights and a "_train.json" file of training losses over epochs - URL analyses the trained model outputing a "_analysis.json" file of observed behaviours and automatically derived node purposes.
[]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
[ 14 ]
[ "passage: TAGS\n#license-apache-2.0 #region-us \n" ]
[ -0.014972950331866741, 0.1377405971288681, -0.008658665232360363, -0.026387644931674004, -0.06495039910078049, 0.02879125252366066, 0.153837651014328, 0.10483942180871964, 0.1256849616765976, -0.0962781235575676, 0.15542295575141907, 0.06252618134021759, 0.01139750611037016, 0.01549961045384407, 0.010183668695390224, -0.10781864821910858, 0.10650338232517242, -0.03490327671170235, -0.0707244873046875, 0.013394840992987156, 0.033960238099098206, 0.01981612667441368, -0.023830559104681015, -0.012257595546543598, 0.01112176850438118, 0.0037393702659755945, 0.07398658245801926, -0.03678586333990097, 0.0712570771574974, -0.0307270847260952, 0.04963022843003273, 0.037079621106386185, -0.007749613840132952, -0.26644203066825867, 0.0024822098203003407, -0.024022065103054047, -0.07085459679365158, 0.029720399528741837, 0.013389789499342442, 0.01578286662697792, 0.00231059524230659, 0.07178761065006256, -0.05940864980220795, 0.031044602394104004, -0.10492347925901413, -0.29222142696380615, -0.17006294429302216, 0.01744023710489273, 0.06068360060453415, 0.05476497858762741, 0.09300920367240906, 0.11550862342119217, -0.14644485712051392, -0.044547248631715775, 0.07099119573831558, -0.3628372251987457, 0.050203535705804825, 0.08580845594406128, -0.01402231678366661, 0.057996317744255066, 0.02550811693072319, 0.06553854793310165, 0.10383764654397964, -0.038684334605932236, -0.08282918483018875, -0.048850782215595245, -0.07356837391853333, 0.10531846433877945, -0.00149822561070323, -0.12009333074092865, 0.345758318901062, 0.07138761878013611, -0.013982822187244892, 0.1401686668395996, -0.03401775285601616, 0.08242715895175934, 0.00856063887476921, 0.07128778845071793, 0.11027930676937103, 0.21097713708877563, 0.1913771778345108, -0.10426254570484161, -0.16983820497989655, -0.05970091372728348, -0.17783339321613312, 0.02624516934156418, 0.006967680528759956, 0.1441962569952011, -0.15566711127758026, -0.007344068959355354, -0.08945375680923462, -0.05843057110905647, -0.052450742572546005, -0.06543421745300293, 0.15477518737316132, 0.08793632686138153, -0.09496267139911652, 0.12857593595981598, 0.16295284032821655, 0.27066588401794434, 0.0397113561630249, 0.0019443186465650797, -0.1110435351729393, 0.16749770939350128, -0.07042741030454636, 0.013758119195699692, 0.11881717294454575, 0.07653947174549103, 0.10706596076488495, -0.16501086950302124, 0.12452162802219391, -0.016609763726592064, -0.11789992451667786, -0.018261663615703583, -0.1484517753124237, 0.16352272033691406, 0.06240275129675865, -0.10497567802667618, -0.06494749337434769, 0.07674259692430496, 0.11038123816251755, -0.04079411178827286, -0.009143678471446037, -0.015199431218206882, 0.01051195990294218, -0.009426284581422806, 0.027398476377129555, 0.04705727845430374, 0.058609262108802795, 0.0033366302959620953, -0.07381071150302887, -0.020023247227072716, 0.003280751407146454, 0.1267043501138687, 0.1569293588399887, -0.05185375362634659, 0.04033694788813591, -0.06643003970384598, -0.15634682774543762, 0.033434003591537476, 0.08608060330152512, 0.0321158766746521, -0.007054667454212904, 0.10480355471372604, 0.0473899245262146, -0.004594990983605385, -0.090055912733078, -0.06355541944503784, -0.08356712758541107, 0.04190095514059067, -0.11996523290872574, -0.0058386498130857944, -0.25945019721984863, 0.00316249905154109, -0.1388063281774521, 0.0704830139875412, 0.04737875238060951, -0.11123143136501312, -0.11911641061306, 0.18649786710739136, -0.07714612036943436, 0.055908672511577606, -0.05615519732236862, -0.008492839522659779, -0.03699778765439987, 0.06682316213846207, -0.14747841656208038, -0.0005399030051194131, 0.18717823922634125, -0.14897091686725616, -0.183698832988739, 0.007495424710214138, 0.03250853717327118, 0.014232120476663113, 0.028690440580248833, 0.30018556118011475, -0.04365801066160202, -0.022711357101798058, 0.14066553115844727, 0.16189178824424744, -0.0973799079656601, -0.2718583643436432, 0.14789041876792908, -0.18816958367824554, -0.19481199979782104, 0.02703963965177536, -0.10175284743309021, 0.06735242903232574, 0.0434052050113678, -0.12173084169626236, -0.040761545300483704, -0.06889492273330688, -0.03939614072442055, -0.04728172346949577, 0.01916317269206047, -0.06263907253742218, 0.06502450257539749, -0.0881565511226654, 0.0690668523311615, 0.1269703209400177, 0.08447451889514923, -0.026536764577031136, 0.009126527234911919, 0.025589320808649063, 0.017330490052700043, -0.03833708539605141, 0.01929517462849617, 0.01688491925597191, -0.09582766890525818, 0.07343678176403046, 0.10080436617136002, 0.0517999529838562, -0.10638647526502609, 0.023197486996650696, 0.03179466351866722, 0.0024750155862420797, 0.0694531574845314, 0.06032438576221466, -0.10287857055664062, 0.06489933282136917, -0.0037468012887984514, 0.0518820621073246, 0.07478269934654236, -0.022493045777082443, 0.020172767341136932, -0.044141460210084915, -0.04319985210895538, 0.08567604422569275, -0.019361646845936775, -0.08695904165506363, 0.02959357015788555, 0.005028232932090759, 0.10603106021881104, 0.04762826859951019, -0.10406646132469177, 0.16851206123828888, 0.03276379778981209, 0.14172857999801636, 0.16983027756214142, -0.05003548413515091, 0.13265447318553925, -0.018061332404613495, 0.011779023334383965, -0.027860842645168304, 0.08203933387994766, 0.013741283677518368, -0.0884268656373024, 0.010677173733711243, -0.0012559969909489155, -0.04808245599269867, 0.026862075552344322, -0.05627221614122391, -0.11836695671081543, -0.059314463287591934, -0.028883814811706543, 0.22526615858078003, -0.10537033528089523, 0.12464691698551178, 0.5217018723487854, 0.024548746645450592, 0.047969620674848557, -0.16087572276592255, -0.06556912511587143, -0.03724734112620354, 0.01234061736613512, -0.03181084617972374, 0.13119523227214813, -0.06553105264902115, 0.03862816467881203, 0.0817440003156662, 0.07771708816289902, 0.04734378680586815, -0.17659273743629456, -0.12391189485788345, 0.0027862393762916327, -0.06264690309762955, -0.1301562488079071, -0.015394099988043308, -0.11034313589334488, 0.036011673510074615, 0.015018938109278679, -0.09842728823423386, 0.16451223194599152, -0.03630390390753746, -0.045461565256118774, 0.04944632574915886, -0.2314302921295166, -0.0839247852563858, -0.12943525612354279, -0.03678453713655472, -0.023447291925549507, 0.016634400933980942, 0.09078312665224075, -0.055623311549425125, -0.0538143664598465, 0.03897318243980408, -0.08703092485666275, -0.05625670403242111, -0.015357088297605515, 0.04862850904464722, 0.08293753117322922, 0.04238975793123245, -0.10195945203304291, -0.04045995697379112, -0.002702324651181698, -0.01255359873175621, 0.033146876841783524, -0.07412629574537277, 0.0853082686662674, 0.11064175516366959, 0.049554772675037384, 0.03361808881163597, -0.0033064892049878836, 0.07316921651363373, -0.013150024227797985, -0.06427362561225891, 0.1754506230354309, -0.014537261798977852, 0.052527204155921936, 0.1614663302898407, 0.06942721456289291, -0.08693967014551163, -0.016334567219018936, -0.05160483345389366, -0.11219155788421631, -0.313568115234375, -0.0514010526239872, -0.0697566568851471, 0.10370723158121109, 0.016293581575155258, 0.11431120336055756, 0.11805130541324615, 0.05553880333900452, 0.02477053552865982, -0.030986998230218887, -0.013935171999037266, -0.008552669547498226, 0.14244908094406128, -0.040016934275627136, -0.025634407997131348, -0.16582822799682617, 0.05352972075343132, 0.19532184302806854, 0.17346875369548798, 0.16141186654567719, 0.2949795722961426, 0.1219889223575592, 0.1499485820531845, 0.20596453547477722, 0.03277221694588661, 0.08221390843391418, 0.06475520879030228, 0.0147244893014431, -0.07361224293708801, -0.02132425457239151, -0.0358458049595356, 0.09254280477762222, -0.020926684141159058, -0.1894368976354599, 0.04358299449086189, -0.20253854990005493, 0.04529424384236336, 0.1325015276670456, 0.10060963034629822, 0.0372280478477478, 0.12041204422712326, 0.10496384650468826, 0.07236151397228241, 0.02265322208404541, 0.155935138463974, -0.10047086328268051, -0.04170655459165573, 0.10314960777759552, 0.03088374249637127, 0.08923831582069397, 0.05249778553843498, 0.024546442553400993, -0.09486964344978333, -0.18898503482341766, 0.08735544979572296, 0.15138362348079681, -0.18271131813526154, 0.25446999073028564, 0.007140269037336111, -0.10152944922447205, -0.04616072401404381, -0.034160908311605453, 0.07485716044902802, 0.1744716465473175, 0.09998820722103119, 0.07455950975418091, -0.2311946600675583, 0.06371928006410599, -0.0805746391415596, 0.03850121796131134, 0.009798256680369377, -0.0012644194066524506, -0.1523386389017105, -0.06277230381965637, 0.03955406695604324, 0.028464701026678085, 0.16074317693710327, -0.09644434601068497, -0.07261957228183746, 0.0019746189936995506, 0.14707164466381073, -0.027826759964227676, -0.12161600589752197, 0.07778380811214447, 0.026536058634519577, 0.10129949450492859, -0.046719279140233994, 0.01687805913388729, -0.0395737923681736, -0.22956150770187378, 0.06549007445573807, -0.02001434937119484, 0.016561396420001984, -0.057295773178339005, -0.095908522605896, -0.09420177340507507, -0.1935003399848938, 0.09841206669807434, -0.0820716917514801, 0.02724429965019226, -0.03322573006153107, 0.12508079409599304, -0.09227079153060913, 0.022051848471164703, 0.002473256317898631, -0.0009367846651002765, -0.0559639148414135, -0.12471262365579605, 0.08924731612205505, -0.02971985563635826, -0.0013593619223684072, -0.004879474639892578, -0.037194594740867615, 0.05458180233836174, 0.06104811653494835, -0.09029456228017807, 0.17284651100635529, 0.304045170545578, -0.06797412037849426, 0.21419626474380493, 0.3437173664569855, -0.12620802223682404, -0.22579985857009888, -0.2027367204427719, -0.287395715713501, -0.1499757170677185, 0.09507355093955994, -0.18301111459732056, 0.10197417438030243, 0.19583699107170105, -0.1618303805589676, 0.17492994666099548, -0.18311083316802979, -0.021827004849910736, 0.20329692959785461, -0.06383024156093597, 0.3788199722766876, -0.11906247586011887, -0.10778811573982239, -0.09945111721754074, -0.1618940234184265, 0.10558515042066574, -0.18797975778579712, 0.02240607887506485, 0.03505697101354599, -0.06375153362751007, -0.049790963530540466, -0.018343381583690643, 0.24272295832633972, -0.001803387189283967, 0.0726020559668541, -0.07976466417312622, 0.016474680975079536, 0.1855529397726059, -0.05465783178806305, 0.036813490092754364, -0.15827761590480804, -0.028589751571416855, -0.009538229554891586, 0.037033237516880035, -0.03485805541276932, 0.07510014623403549, 0.0011767554096877575, -0.07188761979341507, -0.0968698114156723, -0.021874895319342613, -0.04847799241542816, -0.005289438646286726, 0.26872649788856506, 0.076040118932724, -0.053988635540008545, 0.10166085511445999, -0.0624149851500988, -0.1741536259651184, 0.016763299703598022, -0.10044022649526596, -0.07138258218765259, 0.0554080568253994, -0.24670164287090302, 0.034909263253211975, 0.05687393248081207, -0.06160387769341469, 0.03683772310614586, 0.05927642062306404, -0.09550898522138596, -0.021464845165610313, 0.12709221243858337, -0.0498422347009182, -0.0725388154387474, 0.06216653808951378, 0.1259109526872635, 0.11850999295711517, 0.0343933068215847, 0.07898429036140442, 0.04615308716893196, 0.00829920545220375, 0.021227914839982986, 0.07433275133371353, -0.17039799690246582, -0.05188438296318054, 0.05058757960796356, -0.02595781534910202, -0.1195429265499115, 0.25599008798599243, 0.024486735463142395, -0.03208741545677185, -0.03641199693083763, 0.034413471817970276, -0.05278664082288742, -0.09139014035463333, -0.055758245289325714, -0.012565652839839458, -0.09509796649217606, -0.18549469113349915, 0.037074074149131775, -0.09632396697998047, -0.031133420765399933, -0.03407083451747894, 0.1050528809428215, 0.10973811894655228, 0.0608430951833725, -0.035467516630887985, 0.16503585875034332, -0.08250437676906586, -0.18473856151103973, -0.014520380645990372, -0.04597662389278412, -0.2016236037015915, 0.02965214103460312, 0.06940829008817673, -0.013816002756357193, -0.046515315771102905, -0.05482683703303337, 0.08873733133077621, -0.2119728922843933, 0.016329854726791382, -0.08455836027860641, 0.001034914399497211, 0.0714198648929596, -0.0625232607126236, -0.02158266305923462, 0.019058139994740486, -0.16247235238552094, -0.057285383343696594, -0.010741667822003365, 0.05505165457725525, -0.10866090655326843, -0.059575166553258896, 0.13569991290569305, 0.05747954174876213, 0.09156093001365662, 0.08844062685966492, 0.012601320631802082, 0.14171354472637177, -0.1320880800485611, -0.07235664874315262, 0.07277880609035492, 0.03337378427386284, -0.02606162242591381, 0.016614673659205437, -0.08515988290309906, 0.08969198167324066, -0.07962571084499359, 0.01820359006524086, -0.060848966240882874, -0.13395224511623383, -0.14613622426986694, -0.008169831708073616, -0.17318809032440186, 0.04386909306049347, -0.1962924599647522, 0.20117418467998505, 0.049670200794935226, 0.11739125847816467, 0.09586193412542343, 0.0011940872063860297, 0.02116451971232891, 0.03084888681769371, -0.038015320897102356, -0.06214485689997673, -0.1336703896522522, -0.034515380859375, -0.14342233538627625, -0.05508563295006752, 0.3311520218849182, -0.04312245175242424, -0.13223427534103394, 0.05347722768783569, 0.08347365260124207, 0.016498390585184097, 0.023317286744713783, 0.24889890849590302, 0.04722274839878082, 0.01573793776333332, -0.13385194540023804, -0.026428358629345894, 0.01794368028640747, -0.16727277636528015, 0.06783340871334076, 0.09281940758228302, 0.16844220459461212, 0.05829422175884247, 0.05544407665729523, -0.019741542637348175, -0.05980636551976204, -0.07777530699968338, 0.14353948831558228, 0.032101042568683624, 0.07295279204845428, 0.09418365359306335, 0.159424290060997, -0.01132612582296133, 0.011219488456845284, -0.048546407371759415, 0.018409814685583115, -0.15742093324661255, -0.13183769583702087, 0.0072431364096701145, -0.15321512520313263, 0.010697826743125916, 0.011604762636125088, 0.031117310747504234, 0.2556179463863373, 0.040744051337242126, -0.06757266819477081, -0.061626169830560684, -0.15643614530563354, -0.04558565840125084, -0.04036465659737587, -0.007026704493910074, -0.038584496825933456, -0.04671114683151245, -0.11182798445224762, -0.0216030515730381, -0.08770470321178436, -0.06560606509447098, 0.03681713715195656, 0.030047502368688583, 0.026680879294872284, -0.10008109360933304, -0.026802673935890198, -0.08784958720207214, 0.040374286472797394, 0.0004315301775932312, 0.18315750360488892, 0.03631989657878876, 0.0276914332062006, 0.1346033811569214, 0.07949449867010117, -0.04593978822231293, -0.1404203623533249, -0.04276864603161812, 0.050976864993572235, -0.04557491093873978, 0.06821722537279129, -0.047834381461143494, -0.008090421557426453, -0.03426219895482063, 0.22107382118701935, 0.2087077796459198, -0.07518038153648376, -0.0023365700617432594, -0.04285150393843651, 0.01813213713467121, 0.007908736355602741, 0.15072014927864075, 0.0591626912355423, 0.10565771162509918, -0.0679246187210083, -0.012176652438938618, -0.016756610944867134, 0.013343945145606995, -0.18723566830158234, 0.07582846283912659, -0.030456462875008583, -0.11726406216621399, -0.038775019347667694, 0.12641341984272003, -0.06347712874412537, 0.09165021777153015, 0.09027697890996933, -0.029973473399877548, 0.027466343715786934, 0.0041959225200116634, 0.20493634045124054, 0.02617124654352665, 0.048617783933877945, -0.1167941614985466, -0.09022688120603561, 0.04032917320728302, 0.00874406099319458, -0.3118123412132263, -0.1954881250858307, 0.10563000291585922, 0.06715425848960876, 0.2813838720321655, 0.0376100093126297, 0.04810243472456932, 0.015465166419744492, 0.07121489197015762, -0.12309351563453674, 0.13339413702487946, 0.046601615846157074, -0.01129146758466959, -0.11312273144721985, -0.22528712451457977, -0.08437834680080414, -0.05826718360185623, 0.07650711387395859, 0.06533077359199524, 0.0024006948806345463, 0.1862800121307373, -0.0665736049413681, -0.02629813738167286, -0.025829114019870758, -0.15687870979309082, 0.03671088442206383, -0.06590475142002106, -0.042691074311733246, -0.0751107782125473, -0.03413062542676926, -0.023224810138344765, 0.055103402584791183, -0.24346224963665009, -0.05677183344960213, 0.2217833697795868, 0.021673565730452538, 0.14538446068763733, 0.02648567035794258, 0.03698272630572319, -0.035830456763505936, -0.04817749559879303, 0.054671525955200195, -0.08730608224868774, 0.004225281998515129, 0.10913265496492386, -0.03198149800300598, 0.021041326224803925, -0.1597670465707779, 0.046472933143377304, -0.043475229293107986, -0.005544837564229965, -0.0814170315861702 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
automatic-speech-recognition
spsither/wav2vec2_run9.545
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T03:47:33+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06877388060092926, 0.1546701192855835, -0.0037609888240695, 0.013798683881759644, 0.11170210689306259, 0.0049477447755634785, 0.07622946053743362, 0.1076156347990036, -0.024175573140382767, 0.12644733488559723, 0.04164152219891548, 0.09870775043964386, 0.11074616760015488, 0.18980292975902557, 0.0015578214079141617, -0.20271944999694824, 0.06667982041835785, -0.11557482928037643, 0.02210802026093006, 0.12125445902347565, 0.14131462574005127, -0.10717527568340302, 0.06805222481489182, -0.03453851491212845, -0.022604284808039665, -0.03256304934620857, -0.06200181692838669, -0.0628168061375618, 0.06936536729335785, 0.060818396508693695, 0.06474827229976654, 0.023958178237080574, 0.07868874818086624, -0.2985154092311859, 0.020363550633192062, 0.07747753709554672, 0.005190075840801001, 0.0596587099134922, 0.07716850191354752, -0.06847380846738815, 0.11357854306697845, -0.0553223080933094, 0.15529125928878784, 0.07729580253362656, -0.09200245141983032, -0.18732582032680511, -0.08171983063220978, 0.09086527675390244, 0.16344711184501648, 0.05807739868760109, -0.035454582422971725, 0.14257195591926575, -0.08119463175535202, 0.015228749252855778, 0.06432900577783585, -0.07448869198560715, -0.04995284602046013, 0.044303327798843384, 0.07393822818994522, 0.09027253836393356, -0.12936420738697052, -0.005840824451297522, 0.04285894334316254, 0.01751609519124031, 0.1045890524983406, 0.0271924901753664, 0.10937820374965668, 0.030452799052000046, -0.13982591032981873, -0.06308452039957047, 0.12294159829616547, 0.03608649969100952, -0.05978325754404068, -0.24299637973308563, -0.007494248915463686, -0.030862024053931236, -0.022421855479478836, -0.0449565127491951, 0.040200937539339066, -0.03043903410434723, 0.0803007185459137, 0.005218773614615202, -0.07346875220537186, -0.0566013865172863, 0.08528164029121399, 0.0660456046462059, 0.024965541437268257, -0.02511134371161461, 0.022877119481563568, 0.11602471768856049, 0.09200266003608704, -0.11191211640834808, -0.07020656764507294, -0.06118712201714516, -0.09110330045223236, -0.04440220445394516, 0.03338851034641266, 0.07138838618993759, 0.04954010248184204, 0.19076436758041382, 0.006971653085201979, 0.05134076997637749, 0.026316070929169655, 0.018496420234441757, 0.061533693224191666, 0.06859898567199707, -0.05315755307674408, -0.12085959315299988, -0.043275654315948486, 0.1195915937423706, 0.008576745167374611, -0.03422791138291359, -0.034871865063905716, 0.05920550227165222, 0.05124519392848015, 0.11922229826450348, 0.06299308687448502, 0.015805674716830254, -0.06944610923528671, -0.041848812252283096, 0.17807698249816895, -0.15696440637111664, 0.01886504516005516, 0.019594965502619743, -0.05179493874311447, -0.028022583574056625, 0.01927095092833042, 0.011918062344193459, -0.028684133663773537, 0.09848573058843613, -0.06384129822254181, -0.037289999425411224, -0.10494036227464676, -0.051826175302267075, 0.03436095267534256, -0.01885044015944004, -0.030469300225377083, -0.04276524484157562, -0.11668366193771362, -0.07342278957366943, 0.06446365267038345, -0.06070359796285629, -0.06312011927366257, -0.04004829749464989, -0.05974921956658363, 0.01184001937508583, -0.0018999426392838359, 0.12804386019706726, -0.03126852586865425, 0.04724927991628647, -0.05154479295015335, 0.07010733336210251, 0.13001501560211182, 0.0328618623316288, -0.06312436610460281, 0.06317896395921707, -0.20583610236644745, 0.10645388811826706, -0.0948607325553894, 0.026716187596321106, -0.16420963406562805, -0.024270139634609222, 0.02872021123766899, 0.03977278992533684, -0.014035328291356564, 0.13902691006660461, -0.1889396458864212, -0.037479519844055176, 0.1823769360780716, -0.1340419203042984, -0.09025664627552032, 0.06442771852016449, -0.056058306246995926, 0.1311984360218048, 0.051679398864507675, -0.016549112275242805, 0.050827931612730026, -0.14181455969810486, -0.021199021488428116, -0.05750836804509163, -0.01345672644674778, 0.14918801188468933, 0.06591099500656128, -0.060217004269361496, 0.03262941166758537, 0.02008114755153656, -0.02076314203441143, -0.052245598286390305, -0.03416990861296654, -0.09862805157899857, 0.003799794940277934, -0.08055862784385681, 0.018423959612846375, -0.026528598740696907, -0.08738208562135696, -0.0410190187394619, -0.1575777381658554, -0.001173238386400044, 0.1026405617594719, 0.0026203012093901634, -0.02646641992032528, -0.10305316001176834, 0.001408840762451291, 0.015838710591197014, -0.010245922021567822, -0.14677146077156067, -0.04217318072915077, 0.026863576844334602, -0.16719304025173187, 0.031281016767024994, -0.045817263424396515, 0.03617605194449425, 0.042714666575193405, -0.04341552406549454, -0.026187991723418236, 0.011214246973395348, 0.01926763355731964, -0.01759723760187626, -0.24584431946277618, -0.01623428985476494, -0.05088721215724945, 0.17665798962116241, -0.2476477026939392, 0.04387471452355385, 0.07402390241622925, 0.1185368224978447, 0.006659833248704672, -0.0473252609372139, 0.03859061002731323, -0.04956425726413727, -0.039547327905893326, -0.06162410229444504, -0.002731422893702984, -0.034249331802129745, -0.04925791174173355, 0.04766050726175308, -0.19274261593818665, -0.0254798773676157, 0.1145588755607605, 0.07196282595396042, -0.16417020559310913, -0.0721944123506546, -0.03388380631804466, -0.060263555496931076, -0.0855790227651596, -0.05511211231350899, 0.10627889633178711, 0.042532145977020264, 0.053568705916404724, -0.07193132489919662, -0.0538090355694294, 0.014475145377218723, -0.008023109287023544, -0.03674730286002159, 0.08616615831851959, 0.07892905920743942, -0.111492820084095, 0.0967666357755661, 0.06781410425901413, 0.06170906499028206, 0.10836543887853622, 0.0035758649464696646, -0.09838994592428207, -0.013410377316176891, 0.028753211721777916, 0.013008177280426025, 0.1445195972919464, -0.08268706500530243, 0.02993486076593399, 0.04475158452987671, -0.029572229832410812, 0.014260980300605297, -0.10948343575000763, 0.020612964406609535, 0.03188888356089592, -0.01410164125263691, 0.016051514074206352, -0.05129382014274597, 0.013738108798861504, 0.10363461822271347, 0.031123731285333633, 0.025897923856973648, 0.016665659844875336, -0.04273077845573425, -0.12888197600841522, 0.17441782355308533, -0.09573886543512344, -0.24906472861766815, -0.13649064302444458, 0.0033230632543563843, 0.04450872540473938, -0.01420661062002182, 0.019941311329603195, -0.06085766479372978, -0.10865217447280884, -0.10793688893318176, 0.02346382476389408, 0.04952440410852432, -0.08567548543214798, -0.05095811188220978, 0.05441328510642052, 0.03898037597537041, -0.12600500881671906, 0.024548007175326347, 0.04095667228102684, -0.07147589325904846, 0.005656755063682795, 0.061115942895412445, 0.08382482826709747, 0.1812773495912552, 0.012779363431036472, -0.015533777885138988, 0.01035984791815281, 0.21022020280361176, -0.14754468202590942, 0.08923394232988358, 0.142924964427948, -0.06379926204681396, 0.07994367927312851, 0.20067699253559113, 0.030222468078136444, -0.0959763154387474, 0.0354040265083313, 0.03157598897814751, -0.03929230570793152, -0.24485765397548676, -0.07799134403467178, 0.004727535881102085, -0.06941798329353333, 0.0999692752957344, 0.08970286697149277, 0.11357339471578598, 0.04878859966993332, -0.10688808560371399, -0.07536104321479797, 0.04997042194008827, 0.11770502477884293, -0.025654911994934082, 0.0004288276832085103, 0.09490229189395905, -0.032173965126276016, 0.024045821279287338, 0.09091470390558243, 0.01785297878086567, 0.1891387403011322, 0.045389045029878616, 0.13416282832622528, 0.08966030925512314, 0.05892613157629967, 0.02283613197505474, 0.020396918058395386, 0.022836502641439438, 0.028627371415495872, -0.02071341499686241, -0.08800762891769409, -0.01406664215028286, 0.1445012241601944, 0.03501417487859726, 0.03224355727434158, 0.005818283185362816, -0.03822546452283859, 0.07026989012956619, 0.16923215985298157, 0.01291902456432581, -0.22557523846626282, -0.06553208827972412, 0.07285686582326889, -0.07819344103336334, -0.10939628630876541, -0.00628721434623003, 0.039236925542354584, -0.1781243532896042, 0.0453440323472023, -0.016895415261387825, 0.09935811161994934, -0.11019659787416458, -0.022818224504590034, 0.03339223191142082, 0.06351818144321442, -0.033710017800331116, 0.07605454325675964, -0.20844414830207825, 0.14833855628967285, 0.007355031557381153, 0.06984888762235641, -0.10627210140228271, 0.07959222793579102, 0.018262188881635666, 0.0005360859213396907, 0.16532482206821442, -0.0075689139775931835, -0.07650822401046753, -0.08155251294374466, -0.07923656702041626, -0.010918287560343742, 0.10160883516073227, -0.10205793380737305, 0.08789419382810593, -0.006757213734090328, -0.030893130227923393, -0.00026032759342342615, -0.11519953608512878, -0.1342930644750595, -0.18055365979671478, 0.04992220178246498, -0.10558607429265976, 0.04552379995584488, -0.11181014776229858, -0.062069665640592575, -0.04111560434103012, 0.18840233981609344, -0.20550832152366638, -0.07671810686588287, -0.14316488802433014, -0.08166468888521194, 0.11773297190666199, -0.036535169929265976, 0.08007847517728806, 0.008441719226539135, 0.20702308416366577, -0.00666013965383172, 0.002528243465349078, 0.08686443418264389, -0.09668374806642532, -0.2072489857673645, -0.09340810775756836, 0.14340825378894806, 0.12398830056190491, 0.045563604682683945, -0.0001787850633263588, 0.021285003051161766, -0.004406071733683348, -0.11160994321107864, 0.036765191704034805, 0.1599014699459076, 0.08414851129055023, 0.041826896369457245, -0.023910723626613617, -0.15188267827033997, -0.1039518192410469, -0.06143968924880028, 0.022748636081814766, 0.18740743398666382, -0.06844107806682587, 0.17012163996696472, 0.157639279961586, -0.061386726796627045, -0.20854754745960236, 0.031976643949747086, 0.03363525867462158, -0.008795025758445263, 0.0332365483045578, -0.20113597810268402, 0.06802120804786682, 0.01531505398452282, -0.057996444404125214, 0.1332528293132782, -0.16826434433460236, -0.15160627663135529, 0.08843177556991577, 0.07692008465528488, -0.20126505196094513, -0.12921905517578125, -0.09711465984582901, -0.05218008533120155, -0.10807206481695175, 0.08772927522659302, -0.006655422504991293, 0.007214459590613842, 0.037578340619802475, 0.02635364979505539, 0.015357093885540962, -0.05328182876110077, 0.19721722602844238, 0.0011987579055130482, 0.044046565890312195, -0.07511261850595474, -0.077226422727108, 0.034381043165922165, -0.06312628090381622, 0.07982822507619858, -0.020660031586885452, 0.0017429457511752844, -0.11481664329767227, -0.06663372367620468, -0.05009456351399422, 0.029989875853061676, -0.08466581255197525, -0.09467059373855591, -0.051657307893037796, 0.09798348695039749, 0.09048279374837875, -0.03396918624639511, -0.06807554513216019, -0.10042613744735718, 0.06601390987634659, 0.22872091829776764, 0.18910692632198334, 0.06991440057754517, -0.06895517557859421, -0.0038870053831487894, -0.026509825140237808, 0.05879383906722069, -0.20851773023605347, 0.044600993394851685, 0.036500073969364166, 0.032537586987018585, 0.13215065002441406, -0.02442602440714836, -0.16357013583183289, -0.043075863271951675, 0.056227099150419235, -0.06633396446704865, -0.16863006353378296, 0.005107434932142496, 0.09075167030096054, -0.15091724693775177, -0.04752274975180626, 0.030901111662387848, -0.03220430761575699, -0.02397167682647705, 0.00030637482996098697, 0.08078145235776901, 0.020850084722042084, 0.1107739508152008, 0.06640642136335373, 0.11335843801498413, -0.10278842598199844, 0.08162284642457962, 0.08386309444904327, -0.11347422748804092, 0.04244251549243927, 0.05978094041347504, -0.06325716525316238, -0.03386267274618149, 0.016484335064888, 0.0787876546382904, 0.03214597329497337, -0.08122093230485916, 0.0026990212500095367, -0.11556044965982437, 0.06788678467273712, 0.14209748804569244, 0.03322440758347511, 0.007564007304608822, 0.04558844491839409, 0.031089849770069122, -0.09967122226953506, 0.10952559113502502, 0.0327114500105381, 0.03264835476875305, -0.052766215056180954, 0.007493352517485619, 0.044093240052461624, -0.012370331212878227, -0.01659340038895607, -0.04159332811832428, -0.062125492841005325, -0.004501889459788799, -0.15752804279327393, 0.029296958819031715, -0.06990371644496918, 0.009181820787489414, 0.0195058211684227, -0.03118128329515457, 0.001035416848026216, 0.014971627853810787, -0.0777391716837883, -0.03601877763867378, -0.00462498189881444, 0.10573451966047287, -0.15904870629310608, 0.012398114427924156, 0.0838126391172409, -0.12594857811927795, 0.0813586562871933, -0.0006106876535341144, -0.01206875778734684, 0.022131776437163353, -0.14767099916934967, 0.06096983700990677, -0.00651735020801425, 0.005330943502485752, 0.022080490365624428, -0.20231451094150543, 0.0010611782781779766, -0.046166326850652695, -0.0580565482378006, -0.006821162533015013, -0.034208331257104874, -0.10881488770246506, 0.10119375586509705, 0.01840946450829506, -0.0807829275727272, -0.019118202850222588, 0.049314580857753754, 0.10984907299280167, -0.05423201248049736, 0.13843025267124176, -0.022093484178185463, 0.05561875179409981, -0.17508383095264435, -0.015010466799139977, -0.01884511485695839, 0.01675039529800415, -0.032699406147003174, -0.0063448576256632805, 0.053761400282382965, -0.021795762702822685, 0.23006084561347961, -0.03329315781593323, 0.022746775299310684, 0.0662616565823555, -0.007395898457616568, -0.02466614730656147, 0.09141410142183304, 0.05831921473145485, 0.019823938608169556, 0.023462723940610886, 0.009678727947175503, -0.051977336406707764, -0.011846045032143593, -0.1287335902452469, 0.08032830059528351, 0.17006289958953857, 0.0832807645201683, -0.0011417492059990764, 0.05661620944738388, -0.11824764311313629, -0.08884397894144058, 0.10315068811178207, -0.03696487843990326, -0.008325101807713509, -0.05479050800204277, 0.14003127813339233, 0.16284166276454926, -0.1792466789484024, 0.06529472023248672, -0.06703231483697891, -0.054111137986183167, -0.1079135313630104, -0.1702733039855957, -0.06385406106710434, -0.04134172946214676, -0.003200325183570385, -0.056672241538763046, 0.07026970386505127, 0.10425727069377899, 0.015394158661365509, 0.007145122159272432, 0.08924684673547745, -0.034410521388053894, 0.003967431839555502, 0.04615078866481781, 0.05031316727399826, 0.015370454639196396, -0.06289559602737427, 0.003805057378485799, 0.012086667120456696, 0.03619912639260292, 0.05767577514052391, 0.03358588367700577, -0.015441972762346268, 0.00826429296284914, -0.019517268985509872, -0.0962890237569809, 0.0407244898378849, -0.028659315779805183, -0.04762914776802063, 0.14599058032035828, 0.023316938430070877, -0.005744231399148703, -0.019850272685289383, 0.22833019495010376, -0.06841307878494263, -0.08293036371469498, -0.13890130817890167, 0.1406106948852539, -0.04129096865653992, 0.054532211273908615, 0.048289187252521515, -0.10287833213806152, 0.031274814158678055, 0.14709845185279846, 0.14302049577236176, -0.028337303549051285, 0.01196619775146246, 0.009999874047935009, 0.005250520538538694, -0.026724260300397873, 0.052909236401319504, 0.049603480845689774, 0.12155342847108841, -0.06124946475028992, 0.09144628793001175, -0.0038096080534160137, -0.08695073425769806, -0.01940424181520939, 0.13583695888519287, -0.001434069243259728, 0.020704632624983788, -0.08129720389842987, 0.11675985902547836, -0.06527755409479141, -0.2561015188694, 0.060353249311447144, -0.06762448698282242, -0.14944049715995789, -0.018578823655843735, 0.027211744338274002, 0.0003355915832798928, 0.021279368549585342, 0.06146527826786041, -0.06275594234466553, 0.15064457058906555, 0.03758588433265686, -0.07729688286781311, -0.07095571607351303, 0.07545747607946396, -0.0798204317688942, 0.2952599823474884, 0.007051850203424692, 0.05692324787378311, 0.09223286807537079, -0.033274851739406586, -0.1323377937078476, 0.049896061420440674, 0.09064158797264099, -0.06194010376930237, 0.06410481035709381, 0.20840007066726685, -0.011975160799920559, 0.12260035425424576, 0.07416624575853348, -0.08735647797584534, 0.05223854258656502, -0.07405798882246017, -0.09430453926324844, -0.08655916899442673, 0.08934324234724045, -0.06278510391712189, 0.15317323803901672, 0.12562185525894165, -0.04725475609302521, 0.0027636797167360783, -0.025733815506100655, 0.054841578006744385, -0.0038393251597881317, 0.11300427466630936, 0.026762498542666435, -0.19724777340888977, 0.03347480297088623, -0.01826278306543827, 0.10099007189273834, -0.2592698633670807, -0.08135145157575607, 0.039587851613759995, -0.009570525959134102, -0.05378785356879234, 0.11855222284793854, 0.06144152209162712, 0.04968099668622017, -0.0558135025203228, -0.05388732627034187, 0.0009833982912823558, 0.1646765172481537, -0.10682281851768494, -0.0031281758565455675 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-960", "results": []}]}
null
apirbadian/wav2vec2-base-960
[ "transformers", "pytorch", "tf", "tensorboard", "safetensors", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2024-02-14T03:50:54+00:00
[]
[]
TAGS #transformers #pytorch #tf #tensorboard #safetensors #wav2vec2 #generated_from_trainer #endpoints_compatible #region-us
# wav2vec2-base-960 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "# wav2vec2-base-960\n\nThis model was trained from scratch on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- gradient_accumulation_steps: 12\n- total_train_batch_size: 768\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 50\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #pytorch #tf #tensorboard #safetensors #wav2vec2 #generated_from_trainer #endpoints_compatible #region-us \n", "# wav2vec2-base-960\n\nThis model was trained from scratch on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- gradient_accumulation_steps: 12\n- total_train_batch_size: 768\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 50\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ 46, 23, 6, 12, 8, 3, 142, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #tensorboard #safetensors #wav2vec2 #generated_from_trainer #endpoints_compatible #region-us \n# wav2vec2-base-960\n\nThis model was trained from scratch on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- gradient_accumulation_steps: 12\n- total_train_batch_size: 768\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 50\n- num_epochs: 20\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ -0.11276916414499283, 0.14321786165237427, -0.0032729357481002808, 0.07894376665353775, 0.10937415063381195, 0.040605828166007996, 0.10428395867347717, 0.1317668855190277, -0.04442642629146576, 0.10804273188114166, 0.1095120757818222, 0.06803764402866364, 0.06928528845310211, 0.16597312688827515, -0.0010969960130751133, -0.24129050970077515, 0.015333084389567375, -0.019088633358478546, -0.10015828907489777, 0.09608835726976395, 0.0763564333319664, -0.10502894222736359, 0.0636996179819107, 0.007874646224081516, -0.12292768806219101, -0.005792629439383745, -0.05954534187912941, -0.059909794479608536, 0.08998128771781921, -0.011499079875648022, 0.06437500566244125, 0.01605331338942051, 0.10778116434812546, -0.2045639455318451, 0.0007400201866403222, 0.07929723709821701, 0.030749661847949028, 0.1054551899433136, 0.08785032480955124, 0.005962829105556011, 0.10038367658853531, -0.17327862977981567, 0.096429243683815, 0.030122611671686172, -0.07021049410104752, -0.19183453917503357, -0.0758018046617508, 0.08286125957965851, 0.1025763675570488, 0.06845107674598694, 0.0057082646526396275, 0.13517381250858307, -0.0647699385881424, 0.06370589882135391, 0.2240356057882309, -0.2787396311759949, -0.06301718950271606, 0.014192797243595123, 0.03976570442318916, 0.024594536051154137, -0.11579900234937668, -0.016702527180314064, 0.0215415358543396, 0.014816881157457829, 0.11197733879089355, 0.03083086758852005, 0.033312760293483734, 0.004905297886580229, -0.12847813963890076, -0.01526595838367939, 0.08760008215904236, 0.06386595219373703, -0.03528251126408577, -0.1539965718984604, -0.06998886913061142, -0.14101101458072662, -0.013678266666829586, -0.03254437446594238, 0.02664065547287464, -0.05314613878726959, -0.0742046982049942, -0.008862114511430264, -0.040751632302999496, -0.06819727271795273, 0.02645571157336235, 0.15118342638015747, 0.06168343871831894, 0.013263349421322346, -0.0017465805867686868, 0.11590765416622162, 0.06458770483732224, -0.12158410251140594, -0.022273287177085876, -0.009383129887282848, -0.12466274946928024, -0.02660270221531391, -0.018937449902296066, 0.01003529503941536, 0.00595597829669714, 0.14885947108268738, -0.020652782171964645, 0.08407075703144073, 0.07271021604537964, -0.005899778567254543, -0.020723244175314903, 0.10058128833770752, -0.06563464552164078, -0.05320641025900841, -0.027265802025794983, 0.07846571505069733, 0.015866931527853012, -0.01557634025812149, -0.06016374006867409, -0.029351884499192238, 0.09543682634830475, 0.06217280775308609, -0.03563470020890236, 0.01425632368773222, -0.04530983790755272, -0.03404964879155159, 0.021163271740078926, -0.11519287526607513, 0.04946938157081604, 0.0029007073026150465, -0.08050818741321564, 0.016283484175801277, -0.0015442825388163328, -0.02160751447081566, -0.045463524758815765, 0.09573774039745331, -0.09601902216672897, -0.03846519812941551, -0.07391522824764252, -0.04849475249648094, 0.01741252839565277, -0.100331611931324, -0.009590274654328823, -0.04732062295079231, -0.166458398103714, -0.027285516262054443, 0.062168825417757034, -0.07712560147047043, -0.04968852177262306, -0.03729337826371193, -0.04478493332862854, 0.045506350696086884, -0.0009353788336738944, 0.15421463549137115, -0.04026072099804878, 0.06909818202257156, -0.02655084803700447, 0.06073945760726929, 0.09173847734928131, 0.02575560472905636, -0.07751025259494781, 0.049229126423597336, -0.10237235575914383, 0.06579893082380295, -0.07664962857961655, -0.0003628618724178523, -0.1459972858428955, -0.08867576718330383, -0.012915895320475101, -0.032721515744924545, 0.0719858705997467, 0.15437179803848267, -0.14364632964134216, -0.03704835847020149, 0.158384770154953, -0.062241844832897186, -0.07003571093082428, 0.08396587520837784, -0.029084138572216034, -0.03307278826832771, 0.031175529584288597, 0.1258200854063034, 0.0758211687207222, -0.11313339322805405, -0.022819198668003082, 0.004339729901403189, 0.051816076040267944, 0.007415845990180969, 0.07811933010816574, -0.009742138907313347, -0.0014541182899847627, 0.010756316594779491, -0.03555070608854294, 0.010012599639594555, -0.08805257081985474, -0.07533734291791916, -0.05712636932730675, -0.08368200063705444, 0.03597325459122658, -0.004446050152182579, 0.02832242287695408, -0.05529111251235008, -0.14352411031723022, 0.0369124561548233, 0.13292743265628815, -0.0757284015417099, 0.0036079681012779474, -0.07289130985736847, 0.02268991246819496, -0.04185514524579048, -0.019532131031155586, -0.15442334115505219, -0.1099538803100586, 0.0415920726954937, -0.11785496026277542, -0.000450974446721375, -0.002279450185596943, 0.08339729905128479, 0.08389555662870407, -0.04135248810052872, -0.04484611377120018, -0.08239690959453583, -0.010120520368218422, -0.08367055654525757, -0.20187678933143616, -0.0753619372844696, -0.025090999901294708, 0.13027127087116241, -0.20773425698280334, -0.003896906040608883, -0.032599203288555145, 0.16860948503017426, 0.03747643530368805, -0.07658884674310684, 0.019371388480067253, 0.019676338881254196, -0.0066596888937056065, -0.10935310274362564, 0.032133303582668304, -0.021363515406847, -0.11540906876325607, -0.03925834223628044, -0.13516275584697723, 0.04059532657265663, 0.06239727512001991, 0.11825311183929443, -0.09068337082862854, -0.056496571749448776, -0.07872091978788376, -0.06186641380190849, -0.059770237654447556, 0.021931177005171776, 0.13210871815681458, 0.03350156918168068, 0.10712220519781113, -0.05857080593705177, -0.09278305619955063, 0.030698033049702644, 0.04289126768708229, -0.034549303352832794, 0.11087613552808762, 0.09664838761091232, -0.07596227526664734, 0.07586776465177536, 0.1024269089102745, -0.017916597425937653, 0.13542161881923676, -0.04398396611213684, -0.10582126677036285, -0.029769059270620346, 0.009730967693030834, 0.002133969683200121, 0.1308850198984146, -0.0865313783288002, 0.024391304701566696, 0.04579365998506546, 0.017308061942458153, 0.021101100370287895, -0.14622615277767181, -0.007579253986477852, 0.02830091491341591, -0.03174437955021858, -0.015338728204369545, 0.003678339533507824, 0.014783631078898907, 0.08281897008419037, 0.022511126473546028, -0.012157042510807514, 0.021513905376195908, -0.0014836352784186602, -0.07265940308570862, 0.184295654296875, -0.10794393718242645, -0.11387380957603455, -0.09909898787736893, 0.05555602163076401, -0.04643867164850235, -0.041622262448072433, 0.0005062076379545033, -0.07624652981758118, -0.061567895114421844, -0.08552714437246323, -0.014959044754505157, -0.06628651916980743, 0.04216182976961136, 0.06806790083646774, 0.0024297088384628296, 0.06567049771547318, -0.11796972900629044, 0.02276865392923355, -0.012748369947075844, -0.03754643350839615, 0.01022901851683855, 0.06831473112106323, 0.07493007183074951, 0.1158444955945015, 0.003562425496056676, 0.031051699072122574, -0.02227635122835636, 0.2172514945268631, -0.07415952533483505, 0.013227075338363647, 0.10064303874969482, 0.0250245314091444, 0.061862844973802567, 0.08293963223695755, 0.037302304059267044, -0.07932434976100922, 0.025848018005490303, 0.06303439289331436, -0.023004112765192986, -0.2353072464466095, -0.026697278022766113, -0.031211653724312782, -0.05070040374994278, 0.1400497555732727, 0.06300508975982666, -0.039290353655815125, 0.05833916738629341, -0.019607553258538246, 0.009098995476961136, -0.026660729199647903, 0.09271041303873062, 0.0346597321331501, 0.06766685843467712, 0.08952783048152924, -0.010693366639316082, -0.029689349234104156, 0.05722793936729431, 0.013246811926364899, 0.26914870738983154, -0.027583211660385132, 0.1214529275894165, 0.005022573284804821, 0.14122997224330902, -0.023207983002066612, 0.0811515673995018, 0.0235455222427845, -0.0021015028469264507, 0.0031268640886992216, -0.07215607911348343, -0.006522857118397951, 0.03963717445731163, 0.013086022809147835, 0.03029509447515011, -0.09068746119737625, 0.05943036451935768, 0.008970203809440136, 0.27509596943855286, 0.056354474276304245, -0.3014368414878845, -0.0723629966378212, 0.0005943691357970238, -0.04279978945851326, -0.08413620293140411, 0.011207396164536476, 0.0992339551448822, -0.11129377782344818, 0.07454381138086319, -0.08425280451774597, 0.07691467553377151, -0.03862716630101204, -0.02372163161635399, 0.04691505804657936, 0.15358802676200867, -0.009935163892805576, 0.07790060341358185, -0.1714155077934265, 0.20046594738960266, 0.008780740201473236, 0.10541640967130661, -0.09098069369792938, 0.03112270124256611, -0.007630605250597, -0.009408152662217617, 0.13072359561920166, 0.0076715233735740185, -0.09163807332515717, -0.12891706824302673, -0.130588099360466, 0.028364934027194977, 0.12032855302095413, -0.06476075947284698, 0.0873679518699646, -0.03827084228396416, -0.016976237297058105, 0.035390738397836685, -0.06251110136508942, -0.15012526512145996, -0.13888047635555267, 0.03949578106403351, 0.009350360371172428, -0.02592018060386181, -0.07655564695596695, -0.12037734687328339, -0.019162341952323914, 0.17415009438991547, -0.06679381430149078, -0.051554009318351746, -0.158308744430542, 0.04245388135313988, 0.17483367025852203, -0.052678778767585754, 0.033539339900016785, 0.003989486955106258, 0.14520025253295898, 0.02223735675215721, -0.08527040481567383, 0.08110318332910538, -0.08082365989685059, -0.20260487496852875, -0.058560580015182495, 0.13098107278347015, 0.06986512243747711, 0.03211463987827301, -0.01621425151824951, 0.02467920258641243, -0.012187798507511616, -0.08912105113267899, 0.07112526148557663, 0.08679889142513275, 0.05781454220414162, 0.036851443350315094, -0.047508228570222855, 0.07654697448015213, -0.013544030487537384, -0.025375159457325935, 0.08218009024858475, 0.26074090600013733, -0.08923744410276413, 0.10191794484853745, 0.06486193090677261, -0.0504794679582119, -0.13984644412994385, 0.01568826660513878, 0.10943201929330826, 0.03490781784057617, 0.042740028351545334, -0.2077510803937912, 0.1110006645321846, 0.10763246566057205, -0.012774976901710033, 0.07980620861053467, -0.3137153685092926, -0.12851731479167938, 0.07794170826673508, 0.10529029369354248, 0.05288458988070488, -0.11051689088344574, -0.03338479995727539, -0.013759829103946686, -0.08671949058771133, 0.12138950079679489, -0.0450187511742115, 0.1089492067694664, -0.03504304587841034, 0.06677596271038055, 0.030730532482266426, -0.059100423008203506, 0.1409463882446289, 0.028910251334309578, 0.06558959186077118, -0.02548334188759327, 0.055938970297575, 0.03461695462465286, -0.08025795221328735, 0.03774822875857353, -0.08222363889217377, 0.07140659540891647, -0.14258185029029846, -0.027277741581201553, -0.05545560643076897, 0.0671992376446724, -0.04595800116658211, -0.06416904181241989, -0.03136526420712471, 0.05302596837282181, 0.07903392612934113, -0.031847257167100906, 0.08209066838026047, 0.04933895170688629, 0.07274355739355087, 0.09528689086437225, 0.07751430571079254, 0.0028957983013242483, -0.11161614954471588, -0.01135688740760088, -0.018810011446475983, 0.061897777020931244, -0.08158860355615616, 0.014435268938541412, 0.13094773888587952, 0.05306987091898918, 0.09097955375909805, 0.05137085169553757, -0.07070913910865784, -0.02759256213903427, 0.04318723455071449, -0.1231304183602333, -0.1558164656162262, -0.0016729552298784256, -0.016986241564154625, -0.13351933658123016, 0.031134484335780144, 0.10226944088935852, -0.055306270718574524, -0.01458183117210865, -0.003867741907015443, 0.02979171648621559, 0.0101214200258255, 0.18752124905586243, 0.025311864912509918, 0.08370331674814224, -0.0823305994272232, 0.1266266107559204, 0.04668127000331879, -0.09330076724290848, 0.06584502011537552, 0.06662071496248245, -0.08173131197690964, 0.00292508234269917, 0.06824474036693573, 0.10932773351669312, -0.033826280385255814, -0.03191766515374184, -0.06894063949584961, -0.08505267649888992, 0.07654687762260437, 0.04821814224123955, 0.01986522227525711, 0.006463745143264532, -0.02908848039805889, 0.02842191979289055, -0.14144161343574524, 0.08863052725791931, 0.06843044608831406, 0.07400720566511154, -0.14554311335086823, 0.09780240803956985, -0.0056991418823599815, 0.03000013157725334, -0.016058970242738724, 0.022238345816731453, -0.10288910567760468, -0.03494477644562721, -0.08034677803516388, -0.018876492977142334, -0.057345546782016754, -0.00267677940428257, -0.012608200311660767, -0.03851941227912903, -0.03991822525858879, 0.03910573944449425, -0.06343390047550201, -0.06335566192865372, 0.003512592287734151, 0.034558169543743134, -0.1286495476961136, 0.0021449243649840355, 0.016920601949095726, -0.12047798931598663, 0.09323740005493164, 0.05277412757277489, 0.031702809035778046, 0.00776680838316679, -0.08881864696741104, 0.01379216555505991, 0.007496088743209839, -0.004460127092897892, 0.0482538640499115, -0.129622682929039, -0.009591215290129185, -0.04908981919288635, 0.009088099002838135, -0.0014697355218231678, 0.026742810383439064, -0.12913188338279724, -0.04751959070563316, -0.06607668101787567, -0.039128974080085754, -0.062452953308820724, 0.03864595666527748, 0.0807623341679573, 0.011437068693339825, 0.14749930799007416, -0.057054974138736725, 0.04612329974770546, -0.19031809270381927, -0.02597450278699398, 0.00305936043150723, -0.010249773971736431, -0.028573201969265938, -0.0026792914140969515, 0.08452633023262024, -0.054684385657310486, 0.12494637817144394, -0.05463319644331932, 0.03815643489360809, 0.024348517879843712, -0.07191036641597748, -0.040517453104257584, 0.013462141156196594, 0.21580904722213745, 0.05170578509569168, -0.00677027041092515, 0.08378913253545761, -0.014159392565488815, 0.04879910498857498, 0.0716983824968338, 0.1710611879825592, 0.1352061778306961, -0.024660376831889153, 0.0702691450715065, 0.038231611251831055, -0.14183656871318817, -0.18113885819911957, 0.14364434778690338, -0.02656712755560875, 0.12757320702075958, -0.03568723052740097, 0.17423328757286072, 0.09818429499864578, -0.1598237156867981, 0.023525599390268326, -0.015962187200784683, -0.09784658253192902, -0.12206468731164932, -0.09777410328388214, -0.07355061918497086, -0.13090023398399353, 0.03483854606747627, -0.095304474234581, 0.03117157518863678, 0.0407308004796505, 0.039542339742183685, 0.026045208796858788, 0.1331232488155365, 0.017885219305753708, 0.01980685256421566, 0.05978637561202049, 0.051021162420511246, -0.011225984431803226, -0.008176463656127453, -0.08303602784872055, 0.023860281333327293, -0.022180553525686264, 0.0750354751944542, -0.06125523895025253, -0.013845141045749187, 0.05831017717719078, 0.03265681117773056, -0.07127340137958527, 0.017946215346455574, -0.0022935238666832447, 0.02655000053346157, 0.041311249136924744, 0.0400274433195591, -0.011397738941013813, -0.06893837451934814, 0.2538858950138092, -0.08033592253923416, -0.016425594687461853, -0.11706069856882095, 0.18312327563762665, 0.02691883035004139, -0.010613393038511276, 0.07545534521341324, -0.09542345255613327, -0.02509257383644581, 0.12597134709358215, 0.1266368329524994, -0.02364201843738556, -0.027529960498213768, 0.0013601852115243673, -0.021152077242732048, -0.044746994972229004, 0.11698231846094131, 0.09112092107534409, 0.04006526246666908, -0.05076879635453224, 0.0122933154925704, -0.023588381707668304, -0.042239777743816376, -0.097456194460392, 0.0831240862607956, 0.016598770394921303, -0.008847292512655258, -0.03663632646203041, 0.06603418290615082, -0.01625952124595642, -0.17301276326179504, 0.06862901151180267, -0.12058009207248688, -0.1885911077260971, -0.029613735154271126, 0.04706251621246338, -0.014218672178685665, 0.055648405104875565, 0.0021108677610754967, -0.013492511585354805, 0.13897430896759033, 0.013061828911304474, -0.06272341310977936, -0.09331487864255905, 0.06262391060590744, -0.02227203920483589, 0.21954680979251862, 0.00878535583615303, 0.04670992121100426, 0.10342330485582352, 0.020485691726207733, -0.16487981379032135, 0.003172672353684902, 0.07551687210798264, -0.08624164015054703, 0.044856201857328415, 0.17625091969966888, -0.03687399998307228, 0.08157947659492493, 0.029683437198400497, -0.10573747009038925, -0.044716574251651764, -0.032873909920454025, -0.004585744347423315, -0.061382606625556946, 0.0240272618830204, -0.03353389352560043, 0.16228130459785461, 0.20524534583091736, -0.04701587185263634, -0.018327757716178894, -0.06511380523443222, 0.05285651236772537, 0.0317976176738739, 0.07274644821882248, 0.0016428747912868857, -0.20462386310100555, 0.031841982156038284, 0.027355633676052094, 0.041046738624572754, -0.20273539423942566, -0.09207747876644135, 0.015863971784710884, -0.06056251376867294, -0.0651007667183876, 0.10743527114391327, 0.04194319248199463, 0.02954273298382759, -0.04084762930870056, -0.08162801712751389, -0.03944544121623039, 0.1313115358352661, -0.171952024102211, -0.03907075151801109 ]
null
null
null
Captain Zeleny(Green) from "The Mystery of the Third Planet"
{}
null
SpiderIerusalem/CaptainGreen
[ "region:us" ]
2024-02-14T03:51:19+00:00
[]
[]
TAGS #region-us
Captain Zeleny(Green) from "The Mystery of the Third Planet"
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
## MiquMaid v2 2x70 DPO Check out our blogpost about this model series [Here!](https://ikaridevgit.github.io/index.html?blog=blogid-6&bo=true#Miqu-base) - Join our Discord server [Here!](https://discord.gg/Bb8pRUXy3Z) <center>[<a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B">V2-70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO">V2-70B-DPO</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B">V2-2x70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO">V2-2x70B-DPO</a>] </br> <div style="width: 100%;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/Wbzwoko-IZbOJfvPaImre.png" style="display: block; margin: auto;"> </div></center> This model uses the Alpaca **prompting format** Then, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together. The two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO [here](https://huggingface.co/Undi95/Miqu-70B-Alpaca-DPO-GGUF) We have seen a significant improvement, so we decided to share that, even if the model is very big. ## Credits: - Undi - IkariDev ## Description This repo contains FP16 files of MiquMaid-v2-2x70B-DPO. Switch: [FP16](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO) - [GGUF](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO-GGUF) ## Training data used: - [Aesir datasets](https://huggingface.co/MinervaAI) - [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) - [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) - [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal) ## DPO training data used: - [ToxicDPOqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicDPOqa) - [toxic-dpo-v0.1-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-NoWarning) ### Custom format: ``` ### Instruction: {system prompt} ### Input: {input} ### Response: {reply} ``` ## Others Undi: If you want to support us, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
text-generation
LoneStriker/MiquMaid-v2-2x70B-DPO-3.5bpw-h6-exl2
[ "transformers", "safetensors", "mixtral", "text-generation", "not-for-all-audiences", "nsfw", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T03:51:26+00:00
[]
[]
TAGS #transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## MiquMaid v2 2x70 DPO Check out our blogpost about this model series Here! - Join our Discord server Here! <center>[<a href="URL - <a href="URL - <a href="URL - <a href="URL </br> <div style="width: 100%;"> <img src="URL style="display: block; margin: auto;"> </div></center> This model uses the Alpaca prompting format Then, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together. The two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here We have seen a significant improvement, so we decided to share that, even if the model is very big. ## Credits: - Undi - IkariDev ## Description This repo contains FP16 files of MiquMaid-v2-2x70B-DPO. Switch: FP16 - GGUF ## Training data used: - Aesir datasets - NoRobots - limarp - toxic-dpo-v0.1-sharegpt - ToxicQAFinal ## DPO training data used: - ToxicDPOqa - toxic-dpo-v0.1-NoWarning ### Custom format: ## Others Undi: If you want to support us, you can here. IkariDev: Visit my retro/neocities style website please kek
[ "## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.", "## Credits:\n- Undi\n- IkariDev", "## Description\n\nThis repo contains FP16 files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF", "## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal", "## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning", "### Custom format:", "## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek" ]
[ "TAGS\n#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.", "## Credits:\n- Undi\n- IkariDev", "## Description\n\nThis repo contains FP16 files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF", "## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal", "## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning", "### Custom format:", "## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek" ]
[ 75, 210, 11, 35, 40, 27, 5, 32 ]
[ "passage: TAGS\n#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.## Credits:\n- Undi\n- IkariDev## Description\n\nThis repo contains FP16 files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning### Custom format:## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek" ]
[ -0.08322587609291077, 0.08175056427717209, -0.0055728270672261715, 0.016568152233958244, 0.08308054506778717, 0.05306538939476013, 0.14567303657531738, 0.12926249206066132, 0.0228903628885746, 0.10643213987350464, -0.0013251571217551827, 0.07762584835290909, 0.0942251905798912, 0.18447981774806976, 0.005383491050451994, -0.20895586907863617, 0.0434865839779377, -0.03584234416484833, -0.004771251231431961, 0.07482351362705231, 0.12583808600902557, -0.06961724907159805, 0.07055482268333435, 0.02341715805232525, -0.061905037611722946, -0.03636528179049492, -0.010709179565310478, -0.03500340133905411, 0.07078579068183899, 0.053111184388399124, 0.07287522405385971, 0.0797262191772461, 0.017979731783270836, -0.2242787778377533, 0.04246906936168671, 0.07796678692102432, 0.008833984844386578, 0.08452127128839493, 0.09753596782684326, -0.023547085002064705, 0.07684999704360962, -0.06403782218694687, 0.008976373821496964, 0.06858740001916885, -0.12675221264362335, -0.13630148768424988, -0.1300961971282959, 0.19824208319187164, 0.07094621658325195, 0.010369530878961086, -0.009648829698562622, 0.0999331995844841, -0.03509241342544556, 0.03885633870959282, 0.13886569440364838, -0.1694156676530838, -0.0332564041018486, 0.15487995743751526, 0.02543502487242222, -0.048256393522024155, -0.07051641494035721, -0.004634113982319832, 0.02897823229432106, -0.014436803758144379, -0.021106034517288208, 0.008296414278447628, 0.16611158847808838, -0.04490438103675842, -0.08771254867315292, -0.01789119467139244, 0.1833019256591797, 0.07460318505764008, -0.05830187350511551, -0.131986603140831, -0.03571898117661476, 0.05086994543671608, -0.046183161437511444, -0.06744949519634247, 0.011370598338544369, 0.0249439999461174, 0.044066883623600006, -0.05942930653691292, -0.09535989910364151, -0.011820502579212189, -0.010260680690407753, 0.06824370473623276, 0.009925764054059982, -0.014782274141907692, -0.004903093911707401, 0.09505046159029007, -0.16118071973323822, -0.1226964145898819, -0.03487006202340126, -0.11661268025636673, -0.010934583842754364, -0.09422975778579712, -0.027175121009349823, -0.0307169146835804, 0.14087940752506256, 0.20340056717395782, 0.016623802483081818, -0.01913497969508171, -0.031687717884778976, 0.012174399569630623, 0.054371438920497894, 0.03681851178407669, -0.11383666098117828, -0.06612528860569, 0.06157006323337555, 0.07104776054620743, 0.02257978357374668, -0.003720178734511137, -0.012264952063560486, -0.02658775821328163, -0.0027979991864413023, 0.04237896949052811, 0.10889467597007751, 0.07514047622680664, -0.08691144734621048, -0.0609746016561985, 0.21440647542476654, -0.12984922528266907, 0.01607750914990902, 0.06248185783624649, -0.02321486361324787, 0.09254080057144165, 0.007397894747555256, 0.029916729778051376, -0.04162244498729706, 0.07982143014669418, -0.022525979205965996, -0.011808608658611774, -0.09315355867147446, -0.0641087144613266, 0.06427174061536789, 0.05324447527527809, -0.03133834898471832, -0.11200495064258575, -0.083650141954422, -0.05320780724287033, 0.04229982942342758, -0.04882919788360596, -0.05814952775835991, 0.014935133047401905, -0.02245750091969967, 0.01635144092142582, -0.0046884906478226185, -0.030080441385507584, -0.05000891536474228, 0.04819094017148018, -0.004542937036603689, 0.05954891815781593, 0.03302045911550522, 0.0016744636232033372, -0.06052873283624649, 0.03793414309620857, -0.2521441876888275, 0.08566590398550034, -0.029480239376425743, 0.007420490495860577, -0.11654376983642578, 0.020348910242319107, -0.07522062957286835, -0.002234116895124316, 0.02903014048933983, 0.19013279676437378, -0.13273926079273224, -0.04551460221409798, 0.21019329130649567, -0.13934452831745148, -0.09831961989402771, 0.11406073719263077, 0.00043720207759179175, 0.023597916588187218, 0.09138742089271545, 0.07639618217945099, 0.0995941162109375, -0.13819043338298798, -0.08565419912338257, -0.02741648256778717, -0.03784094378352165, 0.0911875069141388, 0.07344833761453629, -0.05763764679431915, 0.05809881165623665, 0.017925653606653214, -0.049992796033620834, 0.012958590872585773, -0.0321786142885685, -0.039132628589868546, -0.024412933737039566, -0.04075583070516586, 0.020073359832167625, -0.026397839188575745, -0.05293427035212517, -0.024455703794956207, -0.07854247093200684, -0.051584094762802124, 0.1513960063457489, -0.006222069729119539, -0.0016651126788929105, -0.11105501651763916, 0.15782423317432404, -0.0476687029004097, 0.02906816266477108, -0.12879818677902222, -0.06851780414581299, 0.006990274880081415, -0.06941312551498413, -0.004689231514930725, 0.039326541125774384, 0.044459018856287, 0.02904370054602623, -0.03591950610280037, -0.015460054390132427, 0.004460100084543228, -0.006422784645110369, -0.02682160586118698, -0.1785145252943039, -0.05363856628537178, -0.0498899407684803, 0.1715172976255417, -0.16980905830860138, 0.05459129810333252, 0.0672403946518898, 0.16633860766887665, 0.02089398354291916, -0.019497813656926155, 0.048624929040670395, -0.042324498295784, -0.02642376348376274, -0.04294122755527496, 0.025376005098223686, 0.020300276577472687, -0.08497953414916992, 0.09000350534915924, -0.11138954758644104, -0.02351846918463707, 0.13866788148880005, -0.019736556336283684, -0.05745825171470642, -0.0546082966029644, -0.028377942740917206, -0.01832570694386959, -0.055963605642318726, -0.03559993952512741, -0.006533037405461073, 0.07800199836492538, 0.07851526886224747, -0.05610864236950874, -0.0125391511246562, -0.016693081706762314, -0.06687252968549728, -0.016988690942525864, 0.04965713247656822, 0.022201692685484886, -0.11321530491113663, 0.07499245554208755, 0.08302930742502213, 0.03812093287706375, 0.10765257477760315, 0.00994646642357111, -0.09897708892822266, -0.024080505594611168, 0.04383711516857147, 0.03545910492539406, 0.04248449578881264, -0.018126528710126877, 0.03819604590535164, 0.07154548168182373, -0.0038717114366590977, 0.010172213427722454, -0.06188233196735382, 0.03393910825252533, 0.027773641049861908, -0.06007060781121254, -0.01615568995475769, 0.026981404051184654, 0.01962198130786419, 0.10396405309438705, 0.028018241748213768, 0.03202433884143829, 0.018552035093307495, -0.043981779366731644, -0.07579024881124496, 0.13291198015213013, -0.04472162202000618, -0.17857933044433594, -0.11330357193946838, -0.05411584675312042, -0.0855315551161766, 0.009778711013495922, 0.019991597160696983, -0.06942670047283173, -0.06439674645662308, -0.060187723487615585, 0.04027637839317322, 0.10290952771902084, -0.056008633226156235, -0.0016718949191272259, 0.045296810567379, 0.0768512710928917, -0.10286520421504974, -0.022195963189005852, 0.03304346650838852, -0.049653563648462296, 0.04235450550913811, 0.02704085223376751, 0.07418239116668701, 0.09192617982625961, 0.03773355484008789, -0.01706463098526001, 0.03461378440260887, 0.16830822825431824, -0.10787967592477798, 0.07683000713586807, 0.23435674607753754, 0.018682798370718956, 0.0762547105550766, 0.16471920907497406, 0.05072706565260887, -0.047359365969896317, 0.021650202572345734, 0.04242003709077835, 0.006857219617813826, -0.19462276995182037, -0.08288053423166275, -0.03733248636126518, -0.005401137750595808, 0.03887356445193291, 0.03884530067443848, 0.03638356178998947, 0.08440032601356506, -0.1335083693265915, -0.01989644020795822, 0.06710001081228256, 0.09737187623977661, 0.0470300167798996, 0.016155386343598366, 0.07607840746641159, -0.03195458650588989, -0.020392533391714096, 0.125222310423851, 0.03692743927240372, 0.054144784808158875, -0.010853162035346031, 0.15007740259170532, 0.07049945741891861, 0.11567993462085724, 0.01744772121310234, 0.06520543992519379, 0.011086692102253437, 0.0008784758392721415, -0.005976899527013302, -0.09406907111406326, -0.043418195098638535, 0.03740313649177551, 0.033981408923864365, -0.008436039090156555, -0.07429444044828415, 0.0089281490072608, 0.08650987595319748, 0.2329338639974594, 0.08074720203876495, -0.23459991812705994, -0.05113663524389267, 0.030431639403104782, -0.0017387619009241462, -0.06295337527990341, -0.0535212866961956, 0.007416590582579374, -0.13988573849201202, 0.09301675856113434, -0.01374578382819891, 0.09371960163116455, -0.08305789530277252, 0.01754147559404373, 0.0010732945520430803, 0.10589087754487991, -0.03642948344349861, 0.0761088877916336, -0.2409944087266922, 0.09077653288841248, 0.025983767583966255, 0.06898926198482513, -0.06974323838949203, 0.03639273717999458, 0.07066138088703156, 0.10320880264043808, 0.08927302807569504, -0.015603153966367245, 0.014260424301028252, -0.12127617001533508, -0.14003118872642517, -0.005038144066929817, 0.02316853031516075, -0.11417363584041595, 0.0889570489525795, -0.021646302193403244, -0.01703503727912903, -0.047649335116147995, 0.08012019842863083, -0.19778020679950714, -0.12629102170467377, 0.0556010976433754, -0.02794748917222023, 0.11238892376422882, -0.06772707402706146, -0.018717490136623383, -0.06733881682157516, 0.21206505596637726, -0.03213505446910858, -0.08062493056058884, -0.11441121250391006, 0.026783747598528862, 0.09243682771921158, -0.07596920430660248, -0.04873773455619812, -0.020093174651265144, 0.18777383863925934, -0.038672178983688354, -0.08744341880083084, 0.02058858796954155, -0.13621196150779724, -0.17661337554454803, -0.009326227009296417, 0.12615975737571716, 0.005194135941565037, 0.01783698983490467, 0.0553680844604969, -0.032263725996017456, 0.01754561997950077, -0.08365732431411743, 0.004025184083729982, 0.12217502295970917, 0.1031312644481659, 0.05967877805233002, -0.08511815965175629, -0.06096949800848961, -0.12095168232917786, -0.014022979885339737, 0.06344130635261536, 0.274539589881897, -0.021416950970888138, 0.04458567500114441, 0.1531730592250824, -0.08092541247606277, -0.18641507625579834, -0.0707169696688652, -0.006356265861541033, 0.016780180856585503, 0.026573697105050087, -0.16014130413532257, 0.09384822845458984, 0.12316624075174332, -0.029336633160710335, 0.010762334801256657, -0.17613527178764343, -0.11435005068778992, 0.04461490735411644, -0.008269629441201687, -0.007621788885444403, -0.16946391761302948, -0.05849017947912216, -0.097660131752491, -0.13063886761665344, 0.07310420274734497, -0.1337449699640274, 0.05166454613208771, 0.024179695174098015, -0.011226987466216087, 0.06603258103132248, -0.04934181645512581, 0.1542011946439743, -0.014666094444692135, 0.0488555021584034, -0.11426164954900742, 0.022456545382738113, 0.025384416803717613, -0.08568163216114044, 0.0957207977771759, 0.016474649310112, 0.00353869516402483, -0.06551156938076019, -0.041226454079151154, -0.06761892139911652, 0.06725402921438217, -0.0496300607919693, -0.05391307175159454, -0.02730843611061573, 0.09395930171012878, 0.05517663434147835, 0.02695770375430584, 0.025536878034472466, -0.06142789497971535, 0.08103754371404648, 0.1282617598772049, 0.1624961644411087, -0.034375064074993134, -0.06949970871210098, -0.003418775973841548, -0.029255326837301254, 0.05017935857176781, -0.058590181171894073, 0.07636282593011856, 0.03195631876587868, -0.019935868680477142, 0.10776576399803162, 0.016949327662587166, -0.13329020142555237, 0.0010127915302291512, 0.10175907611846924, -0.10444045066833496, -0.13793757557868958, -0.019259877502918243, -0.011894114315509796, -0.11659997701644897, -0.004532825667411089, 0.1646127849817276, -0.02335214987397194, -0.025871800258755684, 0.010859032161533833, 0.07287444174289703, -0.06349191814661026, 0.08762151747941971, 0.02943357639014721, 0.048725955188274384, -0.08221688121557236, 0.05564256012439728, 0.08500798046588898, -0.07775967568159103, -0.02606010064482689, -0.0020648466888815165, -0.08763104677200317, -0.0770595446228981, -0.011978598311543465, 0.08557475358247757, -0.0072275185957551, -0.07969184964895248, -0.03965126350522041, -0.03673487901687622, 0.0038413447327911854, 0.022416790947318077, 0.03850710391998291, 0.053902629762887955, 0.08095742017030716, -0.015250563621520996, -0.12866808474063873, 0.05684584379196167, 0.061837319284677505, 0.053982555866241455, -0.1288672238588333, 0.08606503158807755, -0.03616081923246384, 0.0001065447140717879, -0.01687285304069519, 0.008593684993684292, -0.09486141800880432, -0.04473700001835823, -0.09752067178487778, 0.014202088117599487, -0.1366480588912964, -0.010705758817493916, 0.008868695236742496, 0.015530426986515522, 0.020175326615571976, -0.0018080180743709207, -0.06507045775651932, -0.048653632402420044, -0.019045451655983925, 0.10604381561279297, -0.15450651943683624, 0.01790817640721798, 0.03755521401762962, -0.0954449325799942, 0.09731156378984451, 0.020690008997917175, 0.009245280176401138, -0.04879627376794815, -0.1989574283361435, -0.031209442764520645, 0.0032003915403038263, 0.040476858615875244, 0.005679417867213488, -0.15560869872570038, 0.0363885872066021, 0.00671869982033968, -0.07395973801612854, 0.02105339989066124, 0.013977659866213799, -0.11103937774896622, 0.03546896204352379, -0.011142640374600887, -0.025681473314762115, -0.051306284964084625, 0.018851416185498238, 0.09601647406816483, 0.030291985720396042, 0.15892551839351654, -0.06564448773860931, 0.03888765349984169, -0.1798815280199051, 0.005874267313629389, -0.006889458280056715, 0.019220640882849693, 0.0032177921384572983, -0.02018679492175579, 0.07053004950284958, -0.014638642780482769, 0.09781185537576675, -0.03873058408498764, -0.01587735302746296, 0.03689304739236832, -0.0924365371465683, 0.030703654512763023, 0.014611534774303436, 0.08200304210186005, 0.04422298073768616, 0.00758464727550745, -0.010053911246359348, 0.018468985334038734, 0.011190245859324932, -0.04577228054404259, 0.08127540349960327, 0.18978351354599, 0.05793013423681259, 0.009278765879571438, 0.0705496221780777, -0.06932304054498672, 0.020705074071884155, 0.006358034908771515, -0.07233873009681702, 0.0593639500439167, -0.03248776122927666, 0.049889251589775085, 0.16352644562721252, -0.13677527010440826, 0.0541604608297348, -0.046597033739089966, -0.026141921058297157, -0.12328024953603745, -0.201401486992836, -0.08468230068683624, -0.08219466358423233, 0.011756179854273796, -0.11093132942914963, 0.03190327063202858, 0.1321842074394226, 0.01770351640880108, -0.03608028590679169, 0.048036400228738785, -0.03725583106279373, -0.045282989740371704, 0.062158916145563126, -0.018250254914164543, -0.0339951366186142, 0.014523237012326717, -0.045400600880384445, 0.008889129385352135, 0.02148539200425148, 0.0529278926551342, 0.05407964065670967, 0.06979437917470932, 0.04528309032320976, -0.04661824554204941, -0.11286436021327972, 0.00664541544392705, -0.024927299469709396, 0.05191243439912796, 0.14725761115550995, 0.04077182337641716, -0.020731596276164055, -0.0030263580847531557, 0.1737184226512909, -0.012461662292480469, -0.08229293674230576, -0.1849258840084076, 0.04707200080156326, -0.014785108156502247, 0.005045464728027582, -0.010502869263291359, -0.1249101385474205, 0.020687149837613106, 0.15070722997188568, 0.18973442912101746, -0.03985215350985527, 0.006694442126899958, -0.004333381075412035, -0.0001975145860342309, -0.026144858449697495, 0.09000145643949509, 0.054642438888549805, 0.0797259733080864, -0.04702547565102577, 0.12402088940143585, -0.0032300916500389576, -0.010969951748847961, -0.09058138728141785, 0.12157844007015228, -0.05310794711112976, -0.009148834273219109, 0.0033057827968150377, 0.12607726454734802, -0.04102335497736931, -0.15445716679096222, -0.012124078348279, -0.0505206435918808, -0.11069467663764954, -0.04342915862798691, -0.04115661233663559, 0.04071194306015968, 0.08778784424066544, -0.012153390794992447, -0.0267386082559824, 0.1862812638282776, -0.0398721881210804, -0.03568607568740845, -0.024290045723319054, 0.040014710277318954, 0.03972858563065529, 0.15488167107105255, 0.03170529380440712, 0.07604373246431351, 0.11825017631053925, -0.04868915304541588, -0.133987158536911, 0.011587274260818958, 0.02060517482459545, -0.07713516801595688, 0.056650310754776, 0.08037795126438141, -0.009189124219119549, 0.03399558737874031, 0.09163636714220047, -0.15729060769081116, 0.024951322004199028, 0.01875595934689045, 0.0009336867369711399, -0.1323002725839615, 0.11611334979534149, -0.08535318821668625, 0.13006633520126343, 0.17944560945034027, -0.061025045812129974, 0.005815831013023853, -0.03884975239634514, 0.06299284845590591, 0.037699922919273376, 0.06932730972766876, -0.052074331790208817, -0.15504075586795807, 0.04075303673744202, -0.015410016290843487, 0.05524608865380287, -0.1700689196586609, -0.06216317042708397, 0.01801665686070919, -0.026410387828946114, -0.07110541313886642, 0.08316947519779205, 0.07301883399486542, 0.03250555694103241, -0.03453917056322098, -0.041888199746608734, -0.014949793927371502, 0.11215480417013168, -0.11826141923666, -0.07197774946689606 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
Lollitor/FineTunedMarkedPocket
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T03:53:06+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
# Triunvirato-7b Trinity-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [Kukedlc/neuronal-7b-Mlab](https://huggingface.co/Kukedlc/neuronal-7b-Mlab) * [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: Kukedlc/neuronal-7b-Mlab parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: mlabonne/Monarch-7B parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Triunvirato-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "mistralai/Mistral-7B-v0.1", "Kukedlc/neuronal-7b-Mlab", "mlabonne/Monarch-7B"], "base_model": ["mistralai/Mistral-7B-v0.1", "Kukedlc/neuronal-7b-Mlab", "mlabonne/Monarch-7B"]}
text-generation
Kukedlc/Triunvirato-7b
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mistralai/Mistral-7B-v0.1", "Kukedlc/neuronal-7b-Mlab", "mlabonne/Monarch-7B", "base_model:mistralai/Mistral-7B-v0.1", "base_model:Kukedlc/neuronal-7b-Mlab", "base_model:mlabonne/Monarch-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2024-02-14T03:56:46+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #mistralai/Mistral-7B-v0.1 #Kukedlc/neuronal-7b-Mlab #mlabonne/Monarch-7B #base_model-mistralai/Mistral-7B-v0.1 #base_model-Kukedlc/neuronal-7b-Mlab #base_model-mlabonne/Monarch-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Triunvirato-7b Trinity-7b is a merge of the following models using LazyMergekit: * mistralai/Mistral-7B-v0.1 * Kukedlc/neuronal-7b-Mlab * mlabonne/Monarch-7B ## Configuration ## Usage
[ "# Triunvirato-7b\n\nTrinity-7b is a merge of the following models using LazyMergekit:\n* mistralai/Mistral-7B-v0.1\n* Kukedlc/neuronal-7b-Mlab\n* mlabonne/Monarch-7B", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #mistralai/Mistral-7B-v0.1 #Kukedlc/neuronal-7b-Mlab #mlabonne/Monarch-7B #base_model-mistralai/Mistral-7B-v0.1 #base_model-Kukedlc/neuronal-7b-Mlab #base_model-mlabonne/Monarch-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Triunvirato-7b\n\nTrinity-7b is a merge of the following models using LazyMergekit:\n* mistralai/Mistral-7B-v0.1\n* Kukedlc/neuronal-7b-Mlab\n* mlabonne/Monarch-7B", "## Configuration", "## Usage" ]
[ 150, 59, 4, 3 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #mistralai/Mistral-7B-v0.1 #Kukedlc/neuronal-7b-Mlab #mlabonne/Monarch-7B #base_model-mistralai/Mistral-7B-v0.1 #base_model-Kukedlc/neuronal-7b-Mlab #base_model-mlabonne/Monarch-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# Triunvirato-7b\n\nTrinity-7b is a merge of the following models using LazyMergekit:\n* mistralai/Mistral-7B-v0.1\n* Kukedlc/neuronal-7b-Mlab\n* mlabonne/Monarch-7B## Configuration## Usage" ]
[ -0.039196547120809555, -0.021036546677350998, -0.005518512334674597, 0.023260759189724922, 0.07507970929145813, 0.06727985292673111, 0.16171322762966156, 0.08608241379261017, 0.028269793838262558, 0.06302297115325928, 0.06329423934221268, 0.1279289871454239, 0.036315176635980606, 0.03593917191028595, -0.06595945358276367, -0.2226652204990387, 0.07214388251304626, -0.0036780093796551228, -0.10570733994245529, 0.07541807740926743, 0.08773284405469894, -0.0356980599462986, 0.11426933109760284, -0.01715809851884842, -0.05339831858873367, 0.004519667010754347, -0.013082257471978664, -0.008915777318179607, 0.0948219746351242, 0.11220835149288177, 0.07005221396684647, 0.06963843107223511, -0.03299059346318245, -0.13817140460014343, 0.028652753680944443, 0.005972882732748985, -0.018588373437523842, 0.04787679761648178, 0.04537801444530487, -0.04369861260056496, 0.166873037815094, -0.03398863598704338, 0.02266417257487774, 0.06173813343048096, -0.12998974323272705, -0.029605336487293243, -0.14801113307476044, 0.03539019078016281, 0.06297633796930313, 0.009163205511868, -0.005949718412011862, 0.1126021072268486, -0.027006732299923897, 0.08128431439399719, 0.19552844762802124, -0.2909809350967407, -0.05068791285157204, 0.19042454659938812, 0.11289698630571365, 0.03999021276831627, 0.02212396450340748, 0.08660615980625153, 0.014251415617763996, 0.011346032842993736, 0.05379786342382431, -0.07519073039293289, 0.13189218938350677, -0.046704526990652084, -0.12737147510051727, 0.004964814521372318, 0.16373620927333832, 0.0036498161498457193, 0.027246402576565742, -0.06734860688447952, -0.08266960829496384, 0.10057493299245834, -0.05955184996128082, -0.06947217881679535, 0.020251628011465073, -0.03461642935872078, 0.05586991086602211, -0.07768236845731735, -0.03294457122683525, -0.014561260119080544, -0.08945589512586594, 0.0911848247051239, 0.0149666927754879, -0.01127621904015541, -0.023556644096970558, 0.048589929938316345, -0.053642388433218, -0.1294354945421219, -0.002861790359020233, -0.06529532372951508, 0.011674836277961731, -0.01628206856548786, -0.045171789824962616, -0.09823374450206757, 0.09784325957298279, 0.17365683615207672, -0.05423982813954353, 0.05086774379014969, 0.0005270958645269275, 0.047970160841941833, -0.020492807030677795, -0.00654463330283761, -0.11460568755865097, -0.20691311359405518, 0.009576537646353245, 0.08787011355161667, 0.07128942012786865, -0.008471616543829441, -0.08426813781261444, -0.04619264975190163, -0.008536715991795063, 0.05918707326054573, 0.06833310425281525, 0.09387672692537308, -0.06459008902311325, -0.060738228261470795, 0.1775394082069397, -0.06660103052854538, 0.021419337019324303, -0.00926575344055891, -0.008034512400627136, 0.06148013100028038, 0.04786817729473114, 0.03919481113553047, 0.005783290136605501, 0.03020966239273548, -0.08054504543542862, -0.01704193279147148, -0.040737539529800415, -0.11565708369016647, 0.022195208817720413, -0.0410802885890007, -0.0617663599550724, -0.09562596678733826, -0.12825700640678406, -0.0219985693693161, 0.06397250294685364, -0.06077945977449417, -0.01479898951947689, -0.04834357276558876, -0.036325838416814804, 0.03142562136054039, 0.019122280180454254, -0.000372645677998662, -0.01749054715037346, -0.005814747419208288, -0.03388972952961922, 0.07802708446979523, -0.12564538419246674, 0.0359671451151371, -0.05349545553326607, 0.10287365317344666, -0.20235683023929596, 0.06606268882751465, -0.08053380250930786, 0.07662243396043777, -0.12211967259645462, -0.01698489487171173, -0.03974771499633789, 0.013164743781089783, 0.06874129176139832, 0.1395079642534256, -0.1176794245839119, -0.07073502987623215, 0.09339553117752075, -0.10481667518615723, -0.15034933388233185, 0.08715275675058365, 0.03774137422442436, 0.04991593956947327, 0.04194730147719383, 0.17706017196178436, 0.12578047811985016, -0.029661575332283974, -0.012822259217500687, -0.03557760640978813, 0.0249263234436512, 0.012449052184820175, 0.07647563517093658, -0.018575964495539665, -0.08770673722028732, 0.03728177398443222, 0.005985722877085209, 0.06292030215263367, -0.030016738921403885, -0.058681730180978775, -0.043791014701128006, -0.06112147495150566, 0.10026644915342331, -0.02718462608754635, 0.012257145717740059, -0.06165112182497978, -0.05273047462105751, 0.13795031607151031, 0.08923552930355072, -0.04432014003396034, 0.012579775415360928, -0.035480450838804245, 0.13428756594657898, -0.0492367148399353, 0.040717098861932755, -0.08877982199192047, -0.10705183446407318, 0.009348156861960888, -0.033750370144844055, 0.012008861638605595, 0.010324396193027496, 0.06790262460708618, 0.03281829506158829, -0.09041515737771988, -0.01400057040154934, 0.1094963327050209, 0.017072709277272224, -0.0439622737467289, -0.16830338537693024, -0.0622396394610405, -0.03673027828335762, 0.16972830891609192, -0.09777583181858063, 0.07508083432912827, 0.03403361141681671, 0.19163042306900024, -0.006853461731225252, 0.031556934118270874, 0.037574928253889084, 0.04135683551430702, -0.037831734865903854, -0.012529759667813778, 0.09106768667697906, -0.038054630160331726, -0.11835579574108124, 0.12913751602172852, -0.1759594976902008, 0.07911728322505951, 0.09457814693450928, 0.04276189208030701, -0.0017620029393583536, -0.008437452837824821, 0.007928627543151379, -0.0478116013109684, 0.10399039834737778, -0.07297272980213165, -0.020859653130173683, 0.016687950119376183, 0.08453143388032913, -0.06623099744319916, -0.048041846603155136, 0.021870696917176247, -0.005687258206307888, -0.08390925079584122, 0.08755996823310852, -0.004086957313120365, -0.23196151852607727, 0.10388551652431488, 0.22640587389469147, 0.023184213787317276, 0.11114969849586487, 0.036253347992897034, 0.009183340705931187, -0.07517969608306885, 0.005890121683478355, 0.04099097475409508, 0.011119155213236809, -0.060455165803432465, 0.03563782200217247, 0.033599816262722015, 0.0263916477560997, 0.04592261463403702, -0.04913228005170822, 0.017864011228084564, -0.006506380625069141, -0.009372561238706112, 0.1334976851940155, 0.09962750971317291, -0.0023878496140241623, 0.08390583842992783, 0.01673654466867447, -0.03832116350531578, 0.013472187332808971, -0.0020725408103317022, -0.06295705586671829, 0.18021126091480255, -0.14232970774173737, -0.22463615238666534, -0.12766696512699127, -0.049020346254110336, -0.09789486974477768, -0.03817547485232353, 0.06901217252016068, -0.0052570742554962635, -0.01948731020092964, -0.1245802491903305, 0.10140996426343918, 0.004143236204981804, -0.047283824533224106, -0.0679522231221199, -0.02435113489627838, 0.0068602063693106174, -0.13981850445270538, -0.023376377299427986, 0.027806542813777924, -0.10681043565273285, 0.055845797061920166, -0.06749436259269714, 0.10178455710411072, 0.11279847472906113, 0.014162365347146988, -0.03180360421538353, -0.029572036117315292, 0.18004024028778076, -0.04504004120826721, 0.1035732552409172, 0.13127632439136505, 0.002552394988015294, 0.08090834319591522, 0.20216333866119385, 0.04181201756000519, -0.03489355370402336, -0.007267187349498272, 0.014983851462602615, -0.035134587436914444, -0.17856799066066742, -0.11121963709592819, -0.06957074254751205, 0.04276958107948303, -0.005100475158542395, 0.03383325785398483, 0.07510914653539658, 0.06614366918802261, -0.09519009292125702, -0.014249530620872974, 0.04989924281835556, 0.06478973478078842, 0.24205127358436584, -0.0020696064457297325, 0.12187983840703964, -0.05291786789894104, -0.00829482264816761, 0.04747204855084419, 0.05137741565704346, 0.12578916549682617, 0.05165455862879753, 0.11020724475383759, 0.09308876097202301, 0.07367130368947983, 0.041408438235521317, 0.02691762149333954, -0.03253605216741562, 0.008645985275506973, -0.039128806442022324, -0.1017809584736824, 0.030930500477552414, 0.021158425137400627, -0.0039667184464633465, 0.0538150779902935, -0.0038355987053364515, -0.045317042618989944, 0.07436371594667435, 0.14023132622241974, 0.09258219599723816, -0.24196043610572815, -0.06118818745017052, 0.07173048704862595, 0.027430832386016846, -0.02230055443942547, -0.001285279169678688, 0.05325309559702873, -0.07528012990951538, 0.16942082345485687, -0.03798843175172806, 0.08391910046339035, 0.008255294524133205, 0.01885048672556877, -0.004506591707468033, 0.06952251493930817, -0.024467075243592262, 0.026774484664201736, -0.2428494393825531, 0.16988587379455566, 0.03178664296865463, -0.011560119688510895, 0.029024755582213402, 0.017665395513176918, 0.07071202248334885, 0.1871231496334076, 0.013231799006462097, 0.01568603329360485, -0.00323869613930583, -0.03929120674729347, -0.05722538381814957, 0.009945510886609554, 0.03572135791182518, -0.052534304559230804, 0.0892820954322815, -0.02938266471028328, -0.05309111624956131, 0.0005093587678857148, 0.10533592104911804, -0.21878868341445923, -0.13710013031959534, 0.09656373411417007, 0.029969442635774612, -0.02051345258951187, -0.07953092455863953, -0.05736872926354408, -0.06053956598043442, 0.15079265832901, -0.032243307679891586, -0.05665000155568123, -0.08949783444404602, -0.08882241696119308, 0.17255155742168427, -0.07997189462184906, 0.04816166311502457, -0.044683221727609634, 0.011181719601154327, -0.06888161599636078, -0.1311512440443039, 0.08810406178236008, -0.06583179533481598, -0.09673476964235306, -0.011787987314164639, 0.11758862435817719, -0.0361461415886879, 0.03999039903283119, -0.0019732965156435966, 0.08585907518863678, 0.0075196679681539536, -0.05389395356178284, -0.01452422235161066, 0.12302152812480927, -0.011004697531461716, 0.07124833017587662, -0.07467161864042282, -0.15001316368579865, -0.02721235156059265, 0.00641586072742939, 0.11358316987752914, 0.304330050945282, -0.02570214867591858, 0.0753072202205658, 0.12338890880346298, -0.07803965359926224, -0.2206341177225113, -0.03977714106440544, -0.023789498955011368, 0.0028996437322348356, 0.08447601646184921, -0.11685008555650711, 0.02006630413234234, 0.1385577917098999, -0.011905721388757229, 0.07513897120952606, -0.3475218415260315, -0.12433713674545288, 0.010884825140237808, 0.09050055593252182, 0.11346300691366196, -0.15897059440612793, -0.08967425674200058, -0.07109205424785614, -0.20905105769634247, 0.0839705690741539, -0.08085165172815323, 0.08975101262331009, -0.04662468656897545, -0.014403874054551125, 0.009328816086053848, -0.016578394919633865, 0.15294429659843445, -0.060315605252981186, 0.021937822923064232, -0.09340851753950119, -0.09608926624059677, 0.1716414839029312, -0.06364122033119202, 0.04581823945045471, -0.1906120330095291, 0.019962534308433533, -0.007735345978289843, -0.00021111281239427626, -0.06101364269852638, 0.08986888825893402, -0.07690270245075226, -0.029347233474254608, -0.05592348426580429, 0.05247677490115166, 0.029614364728331566, 0.028693903237581253, 0.13714149594306946, -0.04041992127895355, 0.15239495038986206, 0.135343998670578, 0.10924277454614639, -0.06697920709848404, 0.047709133476018906, -0.002487708581611514, -0.036523330956697464, 0.04503243789076805, -0.07608212530612946, -0.008977971971035004, 0.08340594917535782, -0.029086632654070854, 0.0740010142326355, 0.036300960928201675, -0.05347181111574173, 0.0026869119610637426, 0.102315753698349, -0.09069618582725525, -0.2383306622505188, -0.027787908911705017, 0.0006329562165774405, -0.04346376284956932, 0.06740467995405197, 0.20552624762058258, -0.03420436754822731, -0.023068765178322792, 0.017282331362366676, 0.019186388701200485, -0.07155133783817291, 0.11237218976020813, -0.023908410221338272, 0.05141565948724747, -0.07110853493213654, 0.0170141514390707, 0.0591684989631176, -0.09108603000640869, -0.029126061126589775, 0.13649946451187134, -0.08757808059453964, -0.11592694371938705, -0.0781419649720192, 0.1293550729751587, -0.0435827374458313, 0.005926650948822498, -0.06754328310489655, -0.10303590446710587, 0.020878618583083153, 0.16935080289840698, 0.03661542385816574, 0.03295716643333435, 0.03357234224677086, -0.03604910895228386, 0.021841395646333694, 0.10183090716600418, -0.018361229449510574, 0.09461711347103119, -0.0833004042506218, -0.02185595966875553, -0.02521722950041294, -0.004915524274110794, -0.03737887740135193, -0.01016639918088913, -0.13351231813430786, -0.06866798549890518, -0.20242922008037567, -0.04895952716469765, -0.13153231143951416, -0.029619932174682617, -0.034125689417123795, -0.03265725448727608, -0.03958844020962715, -0.009241392835974693, -0.04284023120999336, -0.0527355782687664, -0.04170674830675125, 0.11243491619825363, -0.07725394517183304, -0.010778055526316166, 0.037921857088804245, -0.06405501067638397, 0.05703867971897125, -0.007681307382881641, -0.012452520430088043, 0.0006250694859772921, -0.10533580929040909, -0.056129340082407, -0.0006144494982436299, 0.02590084634721279, 0.028604278340935707, -0.09457040578126907, -0.04564613103866577, -0.004000979941338301, 0.017033254727721214, 0.008751480840146542, 0.06046487018465996, -0.0794825404882431, 0.0411360040307045, -0.05679456144571304, -0.0879041776061058, -0.0204024501144886, 0.019278038293123245, 0.034178417176008224, 0.015374709852039814, 0.11212952435016632, -0.0598628856241703, 0.00431639002636075, -0.1707630455493927, -0.019746778532862663, -0.005898125935345888, -0.16457509994506836, -0.05820145457983017, -0.0433570072054863, 0.018710531294345856, 0.004513608291745186, 0.08854760229587555, -0.03286376968026161, -0.139046311378479, 0.028586918488144875, 0.011218061670660973, 0.020765898749232292, 0.03485216200351715, 0.14657869935035706, 0.07495985180139542, -0.012924903072416782, -0.06911692768335342, 0.058080244809389114, -0.022344712167978287, 0.0011187456548213959, 0.10296458750963211, 0.13149909675121307, 0.016722312197089195, 0.0608418770134449, 0.09920460730791092, -0.005627905949950218, -0.01617286168038845, -0.016001051291823387, 0.014464232139289379, 0.07585562765598297, -0.03892304003238678, 0.13564610481262207, 0.17718742787837982, -0.14157786965370178, 0.06714282184839249, -0.03301328048110008, -0.022327914834022522, -0.08003395795822144, -0.12487879395484924, -0.10022684186697006, -0.1203225627541542, -0.05060047283768654, -0.11254260689020157, -0.0148758664727211, 0.08824288845062256, 0.013937755487859249, 0.017085114493966103, 0.12874901294708252, 0.01852233149111271, -0.013888753019273281, 0.020086582750082016, -0.011143490672111511, -0.01282911840826273, -0.02198248915374279, -0.018984466791152954, 0.015641771256923676, -0.000323467975249514, -0.014649003744125366, 0.034593645483255386, -0.04475930333137512, 0.04041268303990364, -0.04448419064283371, -0.12362409383058548, 0.0024667999241501093, 0.039501842111349106, 0.015134096145629883, -0.003881963901221752, 0.04718365892767906, -0.05628743767738342, 0.0005844530533067882, 0.12133800238370895, -0.020982585847377777, -0.12419524788856506, -0.025463001802563667, 0.16527289152145386, -0.015463546849787235, 0.051296744495630264, -0.011732050217688084, -0.04881076142191887, -0.012389452196657658, 0.12013055384159088, 0.31810933351516724, -0.02824585512280464, 0.000540554232429713, 0.026324139907956123, 0.011191670782864094, 0.04151146858930588, 0.06895299255847931, 0.028445947915315628, 0.1623130887746811, -0.06577754020690918, 0.0382835753262043, -0.029505953192710876, -0.06289239972829819, -0.08696417510509491, -0.03649193421006203, 0.01252774428576231, -0.03159512206912041, 0.04280366003513336, 0.10071031749248505, -0.058202456682920456, 0.030559737235307693, -0.002175688510760665, -0.16518434882164001, -0.12433169782161713, -0.10890144854784012, 0.10847886651754379, -0.01040082611143589, 0.08000773936510086, -0.03560950607061386, -0.042213112115859985, 0.07961232960224152, -0.02385663613677025, -0.07783966511487961, -0.10924804955720901, 0.045225031673908234, -0.06430922448635101, 0.04644765332341194, -0.02986188605427742, 0.00754763837903738, 0.13562384247779846, 0.00021846995514351875, -0.08204837143421173, 0.02559799887239933, 0.05471315607428551, -0.029881706461310387, 0.04748043417930603, 0.0392242893576622, -0.012876449152827263, 0.10750813037157059, 0.05831139534711838, -0.12120456248521805, 0.06699680536985397, 0.10036475211381912, -0.037054602056741714, -0.02163832075893879, 0.04742445796728134, -0.034939054399728775, 0.12273615598678589, 0.17966461181640625, -0.032006219029426575, 0.008856259286403656, -0.029620567336678505, -0.017715292051434517, 0.09666521102190018, 0.10197949409484863, -0.061032507568597794, -0.2060180902481079, -0.026851728558540344, -0.02930443361401558, 0.020806051790714264, -0.2213630974292755, -0.09229791164398193, -0.09742368757724762, 0.017361916601657867, -0.08563794940710068, 0.0849481001496315, 0.1547652781009674, -0.00181795924436301, -0.004861004184931517, -0.19410355389118195, -0.03257623687386513, 0.1288902759552002, -0.11190997809171677, -0.05998902767896652 ]
null
null
transformers
# eCeLLM-S This repo contains the models for "eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data" ## eCeLLM Models Leveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models). The eCeLLM-S model is instruction-tuned from the large base models [Phi-2](https://huggingface.co/microsoft/phi-2). ## Citation ```bibtex @misc{peng2024ecellm, title={eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data}, author={Bo Peng and Xinyi Ling and Ziru Chen and Huan Sun and Xia Ning}, year={2024}, eprint={2402.08831}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"license": "cc-by-4.0", "datasets": ["NingLab/ECInstruct"]}
text-generation
NingLab/eCeLLM-S
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "dataset:NingLab/ECInstruct", "arxiv:2402.08831", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T03:57:49+00:00
[ "2402.08831" ]
[]
TAGS #transformers #safetensors #phi #text-generation #custom_code #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us
# eCeLLM-S This repo contains the models for "eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data" ## eCeLLM Models Leveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models). The eCeLLM-S model is instruction-tuned from the large base models Phi-2.
[ "# eCeLLM-S\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"", "## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-S model is instruction-tuned from the large base models Phi-2." ]
[ "TAGS\n#transformers #safetensors #phi #text-generation #custom_code #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# eCeLLM-S\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"", "## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-S model is instruction-tuned from the large base models Phi-2." ]
[ 71, 43, 57 ]
[ "passage: TAGS\n#transformers #safetensors #phi #text-generation #custom_code #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# eCeLLM-S\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-S model is instruction-tuned from the large base models Phi-2." ]
[ -0.057683322578668594, -0.11165701597929001, -0.003767605172470212, 0.06444837152957916, 0.0782194659113884, -0.007454031612724066, 0.10657422244548798, -0.008631155826151371, 0.026796014979481697, 0.03590350225567818, 0.09861355274915695, 0.1870841085910797, -0.0555419959127903, 0.22820161283016205, -0.06017933040857315, -0.1753830909729004, 0.07364433258771896, 0.047445956617593765, 0.021017596125602722, 0.05565846338868141, 0.1399967521429062, -0.05968180671334267, 0.14417237043380737, -0.04869947209954262, -0.0004110107838641852, 0.04808956757187843, -0.04460244998335838, -0.040898822247982025, 0.08848419785499573, 0.054870713502168655, 0.09134390950202942, -0.03648568317294121, 0.07863505184650421, -0.19010590016841888, 0.0031781448051333427, -0.027312127873301506, -0.053184155374765396, 0.016096927225589752, -0.057606641203165054, 0.008622930385172367, 0.13708241283893585, -0.05790015682578087, 0.08193390816450119, -0.06037215143442154, -0.04518623277544975, 0.10294321179389954, -0.010588254779577255, 0.00799812376499176, 0.19261027872562408, 0.09278836846351624, 0.030646173283457756, 0.12812140583992004, -0.07811282575130463, 0.08699791878461838, 0.10980787873268127, -0.31932511925697327, 0.027280015870928764, 0.06632490456104279, 0.10057567805051804, 0.05600815638899803, 0.041971974074840546, 0.02263282984495163, 0.10415332764387131, 0.05459720268845558, 0.14496837556362152, -0.013918041251599789, -0.04541478678584099, -0.009169772267341614, -0.14033718407154083, -0.009200086817145348, 0.2573745548725128, -0.020340435206890106, -0.0654580295085907, -0.06327659636735916, -0.08869640529155731, 0.023670203983783722, 0.011318854056298733, -0.05458582565188408, 0.05594673380255699, 0.006951071787625551, 0.0654657781124115, -0.09199856966733932, -0.09087517112493515, -0.06367263197898865, -0.1395987570285797, 0.2899516820907593, 0.04668988287448883, 0.02620546892285347, -0.09216351062059402, 0.0589139424264431, -0.072369284927845, -0.04239964857697487, -0.06121755763888359, 0.000502753013279289, 0.055841490626335144, -0.012765219435095787, -0.03295154497027397, 0.06447746604681015, 0.027847714722156525, 0.17244844138622284, -0.06271607428789139, -0.025738639757037163, 0.07218813896179199, 0.06794249266386032, 0.01087060198187828, -0.002355891279876232, -0.020010892301797867, 0.035225823521614075, 0.07121234387159348, 0.00399997690692544, 0.13804176449775696, -0.017527630552649498, -0.13774673640727997, -0.0027099051512777805, -0.0392724871635437, 0.05595682933926582, -0.12120768427848816, 0.06001528725028038, -0.04320884123444557, 0.02413216046988964, 0.1722722053527832, -0.11218342930078506, 0.028842519968748093, -0.019078347831964493, -0.030300533398985863, -0.007438488770276308, 0.08796562999486923, 0.01929428055882454, -0.029309295117855072, 0.05858234316110611, -0.07823760062456131, -0.0656614601612091, -0.1124628484249115, -0.09570631384849548, 0.05420302227139473, -0.043492790311574936, 0.0880347490310669, -0.1500348448753357, -0.3478968143463135, 0.03422201797366142, -0.029408937320113182, -0.001466931775212288, -0.038219112902879715, -0.06420347094535828, -0.03661368042230606, -0.04263283312320709, -0.08492320775985718, -0.03943747282028198, -0.06272483617067337, -0.03235773369669914, 0.0032555386424064636, 0.011682230047881603, -0.14245007932186127, 0.00772540969774127, -0.06046952307224274, 0.007331510074436665, -0.011725409887731075, -0.025182975456118584, -0.01836540177464485, 0.00699421763420105, -0.0022647937294095755, -0.033968206495046616, -0.04991823807358742, 0.13013190031051636, 0.04146513342857361, 0.11015795916318893, -0.16128899157047272, 0.013254673220217228, 0.07779795676469803, -0.15521122515201569, -0.15624183416366577, 0.07198196649551392, -0.024548238143324852, 0.033202171325683594, 0.11989187449216843, 0.04709707200527191, -0.12308817356824875, -0.1322939693927765, 0.021498095244169235, 0.04599574953317642, 0.008579102344810963, -0.1321798712015152, 0.07509902119636536, 0.02223384380340576, -0.10079390555620193, 0.014235729351639748, -0.12760259211063385, -0.0437886081635952, -0.07309070229530334, -0.009429250843822956, -0.00184385955799371, -0.08065611124038696, -0.01056330744177103, -0.08492794632911682, 0.038873493671417236, -0.06816008687019348, -0.04486795514822006, 0.12293274700641632, 0.12612873315811157, -0.09127617627382278, 0.04818924888968468, -0.11191997677087784, 0.10788170993328094, -0.019312717020511627, -0.008131470531225204, -0.08490433543920517, -0.11338377743959427, 0.018299218267202377, 0.034464236348867416, 0.07444104552268982, -0.01854652166366577, 0.013024614192545414, 0.09123960137367249, 0.0008227215730585158, -0.01389256026595831, -0.04189375787973404, 0.00923792365938425, -0.10956630110740662, -0.12571106851100922, -0.04862042888998985, -0.07394137233495712, 0.03020222671329975, -0.19633260369300842, 0.04755602777004242, -0.018280474469065666, 0.08013051003217697, 0.0189060028642416, 0.07894602417945862, -0.05016805976629257, 0.0723385140299797, -0.0492064468562603, 0.0016968223499134183, 0.002981620142236352, 0.021190857514739037, -0.09603215008974075, 0.027908241376280785, -0.15385450422763824, 0.25512930750846863, 0.11150770634412766, -0.04985044151544571, -0.0023006624542176723, -0.09576254338026047, -0.013682219199836254, -0.008277657441794872, -0.07602307200431824, -0.09277407824993134, 0.1700327843427658, -0.020002402365207672, 0.1253386288881302, -0.09200885891914368, -0.03412134200334549, -0.06324685364961624, -0.101389579474926, -0.025302322581410408, 0.05771244689822197, 0.1285046488046646, -0.00875453557819128, 0.0674339011311531, 0.1447434425354004, -0.10899441689252853, 0.11840574443340302, 0.027003830298781395, -0.03470519557595253, -0.009897218085825443, -0.027602605521678925, -0.03883575275540352, 0.08881434053182602, -0.04284818470478058, -0.02567259594798088, 0.023465227335691452, 0.0066530704498291016, 0.14059633016586304, -0.13767728209495544, 0.001228988403454423, 0.0708402544260025, -0.02526267059147358, 0.004072803538292646, 0.013098102062940598, -0.09127490967512131, 0.07417875528335571, -0.08046874403953552, -0.1145424172282219, 0.036943696439266205, 0.010378261096775532, -0.12385784834623337, 0.22513480484485626, -0.13220646977424622, -0.055144015699625015, -0.16466273367404938, 0.049318864941596985, -0.08556213974952698, 0.04478069767355919, 0.03430486097931862, -0.01452749315649271, -0.12145546078681946, -0.15674705803394318, 0.0975315272808075, 0.03480100631713867, -0.027091629803180695, 0.0475858598947525, -0.04708287864923477, -0.08943360298871994, -0.18987397849559784, -0.05961273983120918, -0.055685438215732574, -0.09131483733654022, 0.018324201926589012, -0.05829499661922455, 0.09956134110689163, 0.16558335721492767, -0.017631379887461662, -0.015146974474191666, -0.006544260308146477, 0.17163941264152527, 0.032732509076595306, -0.0333707369863987, 0.1741531640291214, -0.02221575379371643, 0.011296643875539303, 0.06939896941184998, 0.023510247468948364, -0.1375551074743271, 0.05120805278420448, -0.027852831408381462, -0.04808712378144264, -0.23559069633483887, -0.14913497865200043, -0.017656270414590836, -0.07388743758201599, -0.031688813120126724, 0.05716733634471893, 0.034127648919820786, 0.08046916872262955, 0.008458244614303112, 0.06947311758995056, 0.02942582219839096, 0.061285022646188736, 0.13154469430446625, -0.0015232552541419864, 0.05380096286535263, -0.028085624799132347, -0.06101067364215851, 0.050854627043008804, 0.11962714791297913, 0.1680757999420166, 0.041400883346796036, 0.058340128511190414, 0.11732998490333557, -0.06771764159202576, 0.032975126057863235, 0.20976600050926208, -0.11377023905515671, 0.027320552617311478, -0.041073236614465714, -0.06208866462111473, -0.0514899343252182, 0.07184159010648727, -0.17073188722133636, 0.010851886123418808, -0.14015425741672516, 0.12387852370738983, 0.05201619490981102, 0.08195436000823975, 0.0014786869287490845, -0.3563093841075897, -0.004969784524291754, 0.10658855736255646, 0.04320641979575157, -0.009126751683652401, 0.09440995007753372, 0.0664452388882637, -0.011050939559936523, 0.047365691512823105, 0.0867392048239708, 0.06573847681283951, -0.09291141480207443, 0.015121920965611935, -0.01142677292227745, 0.0641094520688057, 0.024454642087221146, 0.05614805594086647, -0.15568506717681885, 0.21746134757995605, 0.005363557022064924, 0.12374208122491837, -0.0243819672614336, 0.02119225077331066, -0.03260543569922447, 0.16864635050296783, 0.10574717819690704, -0.012856323271989822, -0.12082979083061218, -0.13845844566822052, -0.106260746717453, 0.06871286034584045, -0.0011607453925535083, -0.039069000631570816, 0.10376622527837753, 0.048173677176237106, 0.014637731947004795, 0.049741290509700775, -0.037698421627283096, -0.18362659215927124, -0.11803014576435089, -0.030159806832671165, 0.08775169402360916, -0.008346131071448326, -0.061658620834350586, -0.08448062092065811, -0.006767428945749998, 0.0839414894580841, -0.0928531140089035, -0.10382667183876038, -0.05788666009902954, -0.1186196357011795, 0.016371451318264008, -0.06429164856672287, 0.06701601296663284, 0.09733807295560837, 0.12294194102287292, -0.015523764304816723, -0.07662846893072128, 0.06830771267414093, -0.12378833442926407, -0.059816136956214905, 0.009711879305541515, 0.08380213379859924, 0.03916682302951813, -0.018304472789168358, 0.08516750484704971, -0.05312154069542885, 0.027005420997738838, -0.11496029049158096, -0.08276709914207458, 0.20357495546340942, 0.05876368284225464, 0.1159086525440216, -0.16315442323684692, -0.012194031849503517, 0.030896907672286034, 0.0029002695810049772, 0.10851942747831345, 0.18488675355911255, 0.005696928594261408, -0.028025351464748383, 0.24622511863708496, -0.12947797775268555, -0.1970681995153427, -0.1206979975104332, -0.07589086890220642, 0.07578031718730927, -0.022593069821596146, -0.12451786547899246, 0.15402521193027496, 0.07540137320756912, -0.014822399243712425, -0.03568580001592636, -0.2602405250072479, -0.13599997758865356, 0.18593482673168182, 0.10465709865093231, 0.22096289694309235, -0.10149883478879929, -0.013087821193039417, -0.09830737859010696, -0.08769946545362473, 0.1666901856660843, -0.24352197349071503, 0.031035490334033966, -0.0027181601617485285, 0.129755899310112, -0.00729457288980484, 0.009943060576915741, 0.13386836647987366, 0.10872434824705124, 0.11524634063243866, -0.014031559228897095, 0.032912347465753555, -0.04105662181973457, -0.03389008343219757, 0.20293880999088287, -0.059238698333501816, 0.0016734831733629107, -0.1261950582265854, -0.084452323615551, 0.034021779894828796, 0.06747212260961533, -0.014334320090711117, -0.05007375404238701, -0.01542328204959631, -0.0415315255522728, 0.003127297153696418, 0.0016184590058401227, 0.07863800972700119, 0.04294656217098236, 0.00629356037825346, 0.049009498208761215, 0.21423441171646118, -0.19058017432689667, 0.023595845326781273, 0.04623405635356903, -0.03511543199419975, 0.10581981390714645, -0.028313301503658295, 0.002221795730292797, 0.11501073092222214, -0.022985391318798065, 0.09729928523302078, 0.0783952996134758, -0.009885945357382298, -0.01742437481880188, 0.09443159401416779, -0.1096378043293953, -0.020872483029961586, 0.014122306369245052, 0.10351148247718811, 0.07983916252851486, 0.14831696450710297, 0.17552319169044495, -0.0658743754029274, -0.010427442379295826, -0.08034562319517136, 0.062221966683864594, -0.040801700204610825, 0.1211126521229744, 0.05762559548020363, 0.004667605739086866, -0.08601320534944534, 0.07461506128311157, -0.00967315398156643, -0.03738182410597801, 0.030922798439860344, -0.018407486379146576, -0.07251086831092834, -0.07800236344337463, -0.006459319498389959, 0.19590720534324646, -0.1539412885904312, -0.1707564890384674, -0.03160178288817406, -0.1626807302236557, 0.00208553159609437, 0.09253692626953125, 0.11101958155632019, 0.026414930820465088, -0.015858972445130348, 0.02226177603006363, -0.0358894057571888, 0.030541742220520973, 0.09628473967313766, 0.0763116404414177, -0.17687565088272095, 0.061612263321876526, 0.0034791117068380117, 0.022915219888091087, -0.03816196322441101, 0.06848489493131638, -0.0958426222205162, 0.011716699227690697, -0.030312202870845795, 0.0712466761469841, -0.05579862743616104, -0.012893373146653175, 0.04483868554234505, 0.0181229580193758, -0.0904807299375534, 0.05947301164269447, -0.055760227143764496, 0.05793977901339531, 0.01830877922475338, 0.07482878118753433, -0.0950213149189949, -0.04254361614584923, -0.004411563742905855, -0.08253907412290573, 0.06636589020490646, 0.002757964190095663, -0.016150353476405144, 0.07860973477363586, -0.1897231936454773, 0.06002090871334076, 0.10988759249448776, 0.07222840189933777, 0.016680920496582985, -0.005414491984993219, 0.0027173375710844994, 0.08539964258670807, 0.013425973244011402, -0.04573053494095802, 0.025002093985676765, -0.07278043776750565, -0.02232937701046467, -0.0029170571360737085, -0.047830332070589066, -0.03209047392010689, -0.039063069969415665, 0.07987042516469955, 0.024410305544734, 0.14814020693302155, -0.06156791374087334, -0.05464043468236923, -0.05021631345152855, 0.06151339039206505, 0.043691959232091904, -0.031754035502672195, -0.09298194199800491, -0.033168043941259384, 0.026376955211162567, -0.058052148669958115, 0.3065340220928192, 0.01579618640244007, -0.012190115638077259, -0.02330915443599224, -0.0005592856323346496, 0.10047096759080887, 0.040782105177640915, 0.1377050280570984, -0.04366368427872658, 0.06329276412725449, -0.1382817029953003, -0.022365568205714226, 0.10703699290752411, -0.025918317958712578, 0.1540655642747879, 0.037921350449323654, -0.007592630572617054, 0.16508063673973083, 0.11184241622686386, -0.04249003157019615, -0.08225175738334656, -0.1960134506225586, 0.01056999433785677, 0.001974207814782858, 0.016250373795628548, 0.09040827304124832, 0.10727324336767197, -0.08757688850164413, -0.012290600687265396, 0.02032378502190113, -0.07340945303440094, -0.160459503531456, -0.09170642495155334, -0.09142542630434036, -0.07182452827692032, -0.02696414105594158, -0.18975235521793365, -0.10422630608081818, 0.0762203112244606, 0.015582955442368984, -0.0014345833333209157, 0.08708056062459946, -0.12267682701349258, 0.02613452821969986, -0.0465930737555027, -0.011474937200546265, 0.01714327186346054, -0.04062140733003616, -0.05079696327447891, -0.042957935482263565, -0.04101147502660751, -0.013690224848687649, 0.00699540926143527, 0.032387666404247284, 0.0375458188354969, 0.04028654098510742, 0.052876219153404236, -0.07830672711133957, -0.03093571774661541, -0.006448599509894848, 0.08905870467424393, 0.037395838648080826, -0.10645837336778641, 0.03825942054390907, 0.0770750567317009, -0.04162255674600601, -0.137673482298851, -0.08513274788856506, 0.11693599820137024, 0.08912403881549835, 0.12054510414600372, 0.0404943972826004, -0.027759362012147903, -0.058642566204071045, 0.15787877142429352, 0.18403688073158264, -0.07796763628721237, 0.004308752715587616, -0.03465950861573219, 0.030198466032743454, -0.0398603156208992, 0.09003196656703949, 0.09231603145599365, 0.35621482133865356, -0.011142651550471783, -0.05985775217413902, -0.06826934218406677, 0.07498201727867126, -0.09462094306945801, -0.005382255185395479, -0.008422537706792355, -0.01927168294787407, -0.008150380104780197, 0.019118359312415123, -0.03992939367890358, -0.029887014999985695, -0.09591729193925858, -0.06578709185123444, -0.03234710544347763, -0.0014321048511192203, 0.03578922897577286, -0.03392232581973076, 0.10682804137468338, -0.0951308086514473, -0.06627678871154785, 0.13074594736099243, 0.0027800812385976315, -0.18205712735652924, 0.07018814235925674, 0.08002918213605881, 0.058132752776145935, 0.252382755279541, 0.014351535588502884, 0.2110653966665268, 0.04286831244826317, -0.020064333453774452, -0.036042869091033936, 0.15732567012310028, 0.010480423457920551, 0.05252730846405029, 0.07760927081108093, -0.03004743903875351, -0.07583681493997574, -0.015600746497511864, 0.028013406321406364, -0.16266728937625885, 0.016874896362423897, 0.1448352187871933, -0.10499086230993271, -0.030104972422122955, -0.012679263949394226, -0.12570849061012268, 0.08777659386396408, 0.03816639631986618, -0.020712420344352722, -0.03861234337091446, 0.027705900371074677, 0.12349550426006317, 0.010397783480584621, -0.008535277098417282, 0.05250057205557823, -0.15988756716251373, -0.0027365463320165873, 0.01203073002398014, 0.024438567459583282, -0.17463798820972443, -0.058487486094236374, -0.0941338762640953, 0.022581415250897408, -0.1363006979227066, -0.0014503158163279295, 0.21589161455631256, 0.01654401235282421, -0.07831040769815445, -0.07870842516422272, -0.04945474490523338, 0.06556408107280731, -0.08102472126483917, -0.18647588789463043 ]
null
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
{"library_name": "peft", "base_model": "google/flan-t5-base"}
null
Jennny/sft_test
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-base", "region:us" ]
2024-02-14T04:11:57+00:00
[ "1910.09700" ]
[]
TAGS #peft #arxiv-1910.09700 #base_model-google/flan-t5-base #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ## Training procedure ### Framework versions - PEFT 0.6.2
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "## Training procedure", "### Framework versions\n\n\n- PEFT 0.6.2" ]
[ "TAGS\n#peft #arxiv-1910.09700 #base_model-google/flan-t5-base #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "## Training procedure", "### Framework versions\n\n\n- PEFT 0.6.2" ]
[ 30, 6, 3, 45, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4, 3, 11 ]
[ "passage: TAGS\n#peft #arxiv-1910.09700 #base_model-google/flan-t5-base #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact## Training procedure### Framework versions\n\n\n- PEFT 0.6.2" ]
[ -0.07966283708810806, 0.17495547235012054, -0.003960208036005497, 0.040247902274131775, 0.09955590218305588, 0.021680651232600212, 0.05830966308712959, 0.11275678873062134, -0.04289424791932106, 0.10504665970802307, 0.04830595478415489, 0.08152981102466583, 0.09926903992891312, 0.18716342747211456, 0.009259440936148167, -0.2326052337884903, 0.03612496331334114, -0.10921362042427063, 0.02398105338215828, 0.12840400636196136, 0.1484566181898117, -0.09827812016010284, 0.10040204972028732, -0.013206246308982372, -0.017664926126599312, -0.012296685948967934, -0.07314892113208771, -0.05411772057414055, 0.05740032345056534, 0.09048408269882202, 0.062274664640426636, 0.013172230683267117, 0.08180530369281769, -0.2702973484992981, 0.015511730685830116, 0.05344442278146744, -0.026319291442632675, 0.07300010323524475, 0.11438573896884918, -0.07537194341421127, 0.12624002993106842, -0.008164177648723125, 0.13143058121204376, 0.06793005764484406, -0.08974001556634903, -0.17959201335906982, -0.07118406146764755, 0.05760355666279793, 0.16161227226257324, 0.07207165658473969, -0.04735814034938812, 0.16451890766620636, -0.14597240090370178, 0.015478899702429771, 0.07384828478097916, -0.04342120513319969, -0.07790224999189377, 0.044352564960718155, 0.10364991426467896, 0.0931677594780922, -0.12859873473644257, -0.03619491681456566, 0.038361839950084686, 0.02634287066757679, 0.058819182217121124, 0.011133819818496704, 0.14685854315757751, 0.045696407556533813, -0.1505710780620575, -0.037485115230083466, 0.15106797218322754, 0.04136290401220322, -0.06034039333462715, -0.19753621518611908, -0.011869880370795727, -0.08285169303417206, -0.011332813650369644, -0.03407248854637146, 0.04827199503779411, -0.029339974746108055, 0.08400799334049225, 0.012831705622375011, -0.08425173163414001, -0.0532144196331501, 0.07863300293684006, 0.051920194178819656, 0.025854723528027534, -0.026845648884773254, -0.005581474397331476, 0.14218664169311523, 0.06279253959655762, -0.12026767432689667, -0.07576417177915573, -0.06785590946674347, -0.06308818608522415, -0.05726569518446922, 0.03705950081348419, 0.06333887577056885, 0.06323842704296112, 0.22914524376392365, 0.005770666990429163, 0.05457787215709686, 0.07066204398870468, 0.010097900405526161, 0.0695762187242508, 0.08040129393339157, -0.0738147422671318, -0.13667549192905426, -0.04533980414271355, 0.08337920159101486, -0.007196257822215557, -0.01926717720925808, -0.04431671276688576, 0.053359758108854294, 0.014578202739357948, 0.11281067132949829, 0.07576742768287659, -0.0196145698428154, -0.08815022557973862, -0.04851754382252693, 0.23488126695156097, -0.14854326844215393, 0.03205542266368866, 0.01027301512658596, -0.030047493055462837, -0.016907954588532448, 0.011153078638017178, 0.01098205242305994, -0.031511880457401276, 0.12591758370399475, -0.08381614089012146, -0.027010837569832802, -0.11431831866502762, -0.028658060356974602, 0.024522626772522926, 0.0338284932076931, -0.0035444789100438356, -0.023052146658301353, -0.07747457176446915, -0.07577605545520782, 0.0793587788939476, -0.09340132772922516, -0.07036970555782318, -0.008000309579074383, -0.06827875971794128, 0.0002903927525039762, 0.006723563652485609, 0.12825897336006165, -0.037751730531454086, 0.0297124944627285, -0.007156365551054478, 0.0572686642408371, 0.07862222194671631, 0.038942523300647736, -0.07109912484884262, 0.06493447721004486, -0.19912247359752655, 0.1017116829752922, -0.08675046265125275, 0.028889130800962448, -0.15458814799785614, -0.04082399606704712, 0.008909830823540688, 0.013932356610894203, 0.015485170297324657, 0.13676804304122925, -0.21019618213176727, -0.029200676828622818, 0.15373431146144867, -0.1153545007109642, -0.10125159472227097, 0.05436573922634125, -0.046380940824747086, 0.11123653501272202, 0.025209806859493256, -0.036412741988897324, 0.05802713334560394, -0.13619741797447205, -0.013166794553399086, -0.032252006232738495, -0.01251247525215149, 0.1266249269247055, 0.09498929977416992, -0.06700238585472107, 0.033745650202035904, 0.00914772879332304, -0.04731573909521103, -0.034986283630132675, -0.04459858685731888, -0.11990607529878616, 0.003394936677068472, -0.056497737765312195, 0.030954713001847267, -0.027792420238256454, -0.08369576185941696, -0.028369955718517303, -0.1587020456790924, 0.015291743911802769, 0.0864085778594017, 0.010593876242637634, -0.03114250674843788, -0.08290808647871017, 0.022604789584875107, -0.008856328204274178, -0.04049144685268402, -0.15100958943367004, -0.027516130357980728, 0.021498875692486763, -0.16744595766067505, 0.008121651597321033, -0.06418593227863312, 0.046465709805488586, 0.02939864806830883, -0.04911182448267937, -0.01670019142329693, -0.018885962665081024, 0.00802769884467125, -0.04628847539424896, -0.22708244621753693, -0.020014144480228424, -0.034428779035806656, 0.13509392738342285, -0.22311389446258545, 0.03309082239866257, 0.07190312445163727, 0.10494379699230194, -0.021915853023529053, -0.05028199404478073, 0.016797877848148346, -0.0637192651629448, -0.04568009451031685, -0.06604630500078201, -0.018909132108092308, -0.019567467272281647, -0.04836359992623329, 0.01125492062419653, -0.12331849336624146, -0.014460890553891659, 0.1119220182299614, 0.08950908482074738, -0.17596393823623657, -0.02240038849413395, -0.039231862872838974, -0.0744979977607727, -0.1160111129283905, -0.04475143924355507, 0.13616777956485748, 0.0437275767326355, 0.04183007404208183, -0.09483181685209274, -0.06118034943938255, 0.014472796581685543, -0.017302468419075012, -0.02581571601331234, 0.1119062528014183, 0.10309112817049026, -0.08082323521375656, 0.10333985090255737, 0.07076776027679443, 0.015257393941283226, 0.08173985779285431, -0.004577536601573229, -0.1136557087302208, -0.029295654967427254, 0.03402000293135643, -0.0026784208603203297, 0.1590677946805954, -0.08173886686563492, 0.07674702256917953, 0.0411888062953949, -0.026121947914361954, 0.04235502704977989, -0.1091519147157669, 0.01403148751705885, 0.0210078377276659, -0.025633005425333977, -0.015671242028474808, -0.04350321739912033, 0.013034616596996784, 0.08653311431407928, 0.027701111510396004, 0.026465486735105515, 0.021017856895923615, -0.029707787558436394, -0.13431793451309204, 0.20618698000907898, -0.09126629680395126, -0.23962217569351196, -0.1411246955394745, 0.05439568683505058, 0.047122661024332047, -0.023380465805530548, 0.03069615550339222, -0.04770932346582413, -0.1254000961780548, -0.09440131485462189, 0.001502787577919662, 0.03378452733159065, -0.07320912927389145, -0.0986015796661377, 0.03683161363005638, 0.03503140062093735, -0.13453343510627747, 0.04039473459124565, 0.06724382936954498, -0.0378582589328289, 0.0073346905410289764, 0.05782298743724823, 0.07719974219799042, 0.167662113904953, -0.006986937485635281, -0.023861922323703766, 0.05021905153989792, 0.2877836227416992, -0.15236225724220276, 0.09851706773042679, 0.11541785299777985, -0.05965179577469826, 0.0868348479270935, 0.17992757260799408, 0.02670656144618988, -0.1145789623260498, 0.04753350839018822, 0.03489305078983307, -0.03349072113633156, -0.27442988753318787, -0.05841159075498581, 0.005824671592563391, -0.09519011527299881, 0.07967337965965271, 0.09940797090530396, 0.10049108415842056, 0.06392061710357666, -0.07482703030109406, -0.08961138874292374, 0.010926647111773491, 0.09050114452838898, -0.03467651456594467, -0.00030079871066845953, 0.09014960378408432, -0.0375652015209198, 0.0006253434694372118, 0.11651235073804855, 0.007408502511680126, 0.19640907645225525, 0.06804949045181274, 0.11796615272760391, 0.09018829464912415, 0.08237504214048386, 0.024244949221611023, 0.03627180680632591, 0.01622183993458748, 0.011361395008862019, 0.004406531807035208, -0.08758098632097244, 0.03157343715429306, 0.11652819067239761, 0.06323780119419098, 0.04344043508172035, 0.023781679570674896, -0.07145816832780838, 0.05599856376647949, 0.17284955084323883, -0.008169496431946754, -0.2235848754644394, -0.044594742357730865, 0.06796911358833313, -0.0867152214050293, -0.12204260379076004, -0.01881367154419422, 0.05426795408129692, -0.1894984096288681, 0.03016233816742897, -0.03935709223151207, 0.10645869374275208, -0.07783426344394684, -0.042264822870492935, 0.08039087802171707, 0.06998853385448456, -0.0392499715089798, 0.08009643107652664, -0.18268200755119324, 0.14069019258022308, 0.010950729250907898, 0.04250356927514076, -0.09942860156297684, 0.10833729803562164, 0.004684888292104006, 0.025305936112999916, 0.16573308408260345, 0.010385951958596706, -0.039137646555900574, -0.046978868544101715, -0.09625104814767838, 0.004500079900026321, 0.08641693741083145, -0.1168317198753357, 0.06353410333395004, 0.0017045337008312345, -0.02564525417983532, -0.00612727040424943, -0.0886402279138565, -0.12782235443592072, -0.16514118015766144, 0.06158687174320221, -0.13761036098003387, 0.05732507258653641, -0.09037115424871445, -0.07082899659872055, -0.021842634305357933, 0.18183982372283936, -0.20491622388362885, -0.09187942743301392, -0.1500551700592041, -0.10702463984489441, 0.17903096973896027, -0.039056144654750824, 0.08374863862991333, 0.006542255636304617, 0.17291665077209473, 0.025539908558130264, 0.008938352577388287, 0.11329466849565506, -0.08604388684034348, -0.19368453323841095, -0.06676550954580307, 0.1482251137495041, 0.14837288856506348, 0.0453568734228611, -0.01365528255701065, 0.015149957500398159, -0.07050755620002747, -0.1481267660856247, -0.010308554396033287, 0.11012603342533112, 0.0741848424077034, 0.011517055332660675, -0.013539537787437439, -0.08518814295530319, -0.06981474161148071, -0.05746106430888176, 0.011672482825815678, 0.167813241481781, -0.07128731906414032, 0.15011021494865417, 0.1149265393614769, -0.052575793117284775, -0.18223842978477478, 0.05429453402757645, 0.06413064152002335, 0.01740925759077072, 0.05567947030067444, -0.18957418203353882, 0.1077280342578888, 0.06947354227304459, -0.04685664921998978, 0.15382228791713715, -0.163859024643898, -0.15512531995773315, 0.08353373408317566, 0.06313889473676682, -0.254227876663208, -0.13034571707248688, -0.09024234116077423, -0.05237794667482376, -0.12913040816783905, 0.07936906069517136, 0.02500961534678936, 0.011340818367898464, 0.04270685091614723, 0.036545176059007645, 0.007148200646042824, -0.0412234365940094, 0.22442373633384705, 0.01897338032722473, 0.04016336426138878, -0.04469499737024307, -0.09684522449970245, 0.019839808344841003, -0.033730294555425644, 0.09743134677410126, -0.013283653184771538, 0.015369964763522148, -0.11747521907091141, -0.057691916823387146, -0.057575758546590805, 0.033609580248594284, -0.0926871970295906, -0.09655226767063141, -0.061371300369501114, 0.09183340519666672, 0.07633788883686066, -0.04130642116069794, -0.02576126903295517, -0.09214995056390762, 0.04085351154208183, 0.18195658922195435, 0.20817652344703674, 0.04895678162574768, -0.10792981088161469, 0.01223039347678423, -0.01625070534646511, 0.04633253812789917, -0.24105775356292725, 0.05645421892404556, 0.05444354936480522, 0.029701463878154755, 0.11340273171663284, -0.023975059390068054, -0.15337702631950378, -0.06340060383081436, 0.0720849484205246, -0.04553833603858948, -0.1641089767217636, -0.030089950188994408, 0.03231855481863022, -0.19807812571525574, -0.05023534595966339, -0.008212633430957794, -0.020310088992118835, -0.04365583136677742, 0.011441202834248543, 0.07616772502660751, -0.011685175821185112, 0.14352235198020935, 0.07891044020652771, 0.09874721616506577, -0.1176963597536087, 0.06326421350240707, 0.05647953599691391, -0.07494295388460159, -0.002630628878250718, 0.09133803099393845, -0.04220138490200043, -0.033509232103824615, 0.06016204133629799, 0.0630078986287117, -0.005483993329107761, -0.051988858729600906, -0.009321916848421097, -0.09408114850521088, 0.05541081354022026, 0.12869282066822052, 0.06269419938325882, 0.00919261109083891, 0.054371826350688934, 0.012382088229060173, -0.08687056601047516, 0.08414894342422485, 0.040523119270801544, 0.03336145728826523, -0.05035014450550079, -0.00863735657185316, 0.037168968468904495, -0.008348370902240276, -0.016970330849289894, -0.016292093321681023, -0.07733742892742157, -0.015485844574868679, -0.12159670144319534, 0.032361868768930435, -0.08143065869808197, 0.02011949196457863, 0.027345210313796997, -0.05471082404255867, -0.017366519197821617, 0.014818869531154633, -0.08575256913900375, -0.043034669011831284, -0.0040040332823991776, 0.10240248590707779, -0.12219937890768051, 0.05029084533452988, 0.08867711573839188, -0.1085904911160469, 0.0715426653623581, 0.0007378205191344023, 0.0048809475265443325, 0.017351798713207245, -0.1749344915151596, 0.07913091778755188, -0.003074116539210081, 0.0012313209008425474, 0.02759600803256035, -0.21548858284950256, 0.0011697206646203995, -0.03606005385518074, -0.024654004722833633, 0.004632476717233658, -0.058308616280555725, -0.1468641459941864, 0.10349968820810318, -0.014173109084367752, -0.10818019509315491, -0.015833068639039993, 0.016462892293930054, 0.10619721561670303, -0.038397930562496185, 0.14588718116283417, -0.005371504928916693, 0.07590583711862564, -0.1716027855873108, -0.017126524820923805, -0.023610364645719528, 0.040410108864307404, -0.013780191540718079, -0.0076467664912343025, 0.04963245987892151, -0.019544249400496483, 0.24850550293922424, -0.022803541272878647, 0.08343855291604996, 0.06093638390302658, 0.039846278727054596, 0.0010922547662630677, 0.08817920088768005, 0.06835160404443741, 0.0015526583883911371, 0.019785283133387566, 0.0256244707852602, -0.013353426940739155, -0.038502808660268784, -0.16310197114944458, 0.0860290452837944, 0.15222229063510895, 0.03156472370028496, 0.011718125082552433, 0.05394242703914642, -0.11857123672962189, -0.07098344713449478, 0.0842730849981308, -0.009253058582544327, -0.024202292785048485, -0.05945031717419624, 0.13528090715408325, 0.12387312948703766, -0.19124260544776917, 0.07417537271976471, -0.04034242779016495, -0.06707727909088135, -0.13537608087062836, -0.13255655765533447, -0.06407910585403442, -0.052039891481399536, -0.015210787765681744, -0.07506805658340454, 0.05447607487440109, 0.09873759001493454, 0.014623859897255898, -0.02447345107793808, 0.10345233231782913, -0.008693516254425049, -0.03581440821290016, 0.021224450320005417, 0.07764099538326263, 0.04342377558350563, -0.09087637066841125, 0.01943235844373703, -0.00047461589565500617, 0.018878323957324028, 0.04537895694375038, 0.01378821674734354, -0.03865335136651993, 0.0009582482161931694, -0.027885915711522102, -0.0957859680056572, 0.03077291138470173, -0.029227979481220245, -0.04864049330353737, 0.12107650935649872, 0.012051111087203026, 0.008032916113734245, -0.0253708828240633, 0.20777973532676697, -0.07630852609872818, -0.05865175276994705, -0.15707352757453918, 0.09276075661182404, -0.062079817056655884, 0.05286775529384613, 0.04787491261959076, -0.10183709114789963, 0.0162917822599411, 0.1427721232175827, 0.12386076897382736, -0.017999062314629555, 0.010987836867570877, 0.04551858454942703, 0.005379379726946354, -0.017583457753062248, 0.017563464120030403, 0.046237144619226456, 0.12714095413684845, -0.06959330290555954, 0.08702433109283447, -0.01293692272156477, -0.07489795982837677, -0.004749631509184837, 0.10769753903150558, 0.0015925978077575564, 0.00390048511326313, -0.07322748750448227, 0.13921719789505005, -0.06418008357286453, -0.19876925647258759, 0.07454124093055725, -0.06142597645521164, -0.16875261068344116, -0.024626264348626137, 0.005892419256269932, -0.0026754396967589855, 0.0157051682472229, 0.07899370789527893, -0.06416712701320648, 0.18347159028053284, 0.057109568268060684, -0.1075378805398941, -0.09309061616659164, 0.07792813330888748, -0.09352586418390274, 0.2773940861225128, 0.021386394277215004, 0.05414924398064613, 0.09710957854986191, -0.006560757290571928, -0.12954750657081604, 0.06612084805965424, 0.10132471472024918, -0.09486634284257889, 0.08212227374315262, 0.15445320308208466, 0.004075667820870876, 0.12299486249685287, 0.05184756964445114, -0.05056367442011833, 0.04670628160238266, -0.08924750983715057, -0.04782366752624512, -0.10623191297054291, 0.07690701633691788, -0.08748120814561844, 0.149369016289711, 0.1438828557729721, -0.07011215388774872, -0.019785497337579727, -0.021609175950288773, 0.0902218446135521, -0.0006962258485145867, 0.11393564939498901, 0.01684495620429516, -0.19653575122356415, 0.025032266974449158, -0.0294088963419199, 0.09118358790874481, -0.19358280301094055, -0.05732259526848793, 0.05036921054124832, -0.026570871472358704, -0.06409520655870438, 0.10385052114725113, 0.03253486752510071, 0.052841588854789734, -0.032539255917072296, -0.04222508519887924, -0.007966484874486923, 0.14639613032341003, -0.10404806584119797, -0.016460463404655457 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mixtral-8x7B-v0.1_case-briefs This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2463 | 0.34 | 50 | 1.2128 | | 1.1418 | 0.68 | 100 | 1.1941 | | 1.2112 | 1.02 | 150 | 1.1856 | | 1.1268 | 1.36 | 200 | 1.1835 | | 1.0562 | 1.7 | 250 | 1.1822 | ### Framework versions - PEFT 0.7.1 - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mixtral-8x7B-v0.1", "model-index": [{"name": "Mixtral-8x7B-v0.1_case-briefs", "results": []}]}
null
retrieval-bar/Mixtral-8x7B-v0.1_case-briefs
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "region:us" ]
2024-02-14T04:13:14+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #base_model-mistralai/Mixtral-8x7B-v0.1 #license-apache-2.0 #region-us
Mixtral-8x7B-v0.1\_case-briefs ============================== This model is a fine-tuned version of mistralai/Mixtral-8x7B-v0.1 on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1822 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * lr\_scheduler\_warmup\_ratio: 0.03 * training\_steps: 250 ### Training results ### Framework versions * PEFT 0.7.1 * Transformers 4.37.2 * Pytorch 2.1.2+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* lr\\_scheduler\\_warmup\\_ratio: 0.03\n* training\\_steps: 250", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.37.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #base_model-mistralai/Mixtral-8x7B-v0.1 #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* lr\\_scheduler\\_warmup\\_ratio: 0.03\n* training\\_steps: 250", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.37.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 48, 144, 4, 39 ]
[ "passage: TAGS\n#peft #safetensors #generated_from_trainer #base_model-mistralai/Mixtral-8x7B-v0.1 #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* lr\\_scheduler\\_warmup\\_ratio: 0.03\n* training\\_steps: 250### Training results### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.37.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.1442261040210724, 0.10015255212783813, -0.0018684687092900276, 0.11457853764295578, 0.1507285088300705, 0.01641729474067688, 0.11916053295135498, 0.11887971311807632, -0.10838405787944794, 0.09029120206832886, 0.11315979808568954, 0.0800074115395546, 0.04256817325949669, 0.2001989334821701, -0.053154222667217255, -0.22669585049152374, 0.01405593752861023, -0.027333959937095642, -0.07883194088935852, 0.13352186977863312, 0.07861693948507309, -0.12459862977266312, 0.06762943416833878, -0.03413073718547821, -0.169409841299057, -0.014659907668828964, -0.0006852096994407475, -0.02320065349340439, 0.1295822262763977, 0.007703633978962898, 0.12970559298992157, 0.03518020734190941, 0.11853750050067902, -0.19989313185214996, 0.005414789542555809, 0.07147782295942307, 0.015095521695911884, 0.08410653471946716, 0.07129348814487457, -0.011700691655278206, 0.07070765644311905, -0.09818276762962341, 0.04829425737261772, 0.015731507912278175, -0.15427815914154053, -0.22815455496311188, -0.12228621542453766, 0.04707013815641403, 0.11215537786483765, 0.0701129138469696, -0.016096027567982674, 0.11919756233692169, -0.07576322555541992, 0.07629691064357758, 0.268537700176239, -0.29013609886169434, -0.08062107115983963, 0.02842964231967926, 0.008182615041732788, 0.09266079217195511, -0.11141037195920944, -0.04042265564203262, 0.05993695557117462, 0.0341075137257576, 0.12557394802570343, 0.0000934285853873007, -0.06323689967393875, 0.004720192868262529, -0.15268222987651825, -0.030014745891094208, 0.09353333711624146, 0.044481080025434494, -0.05140922963619232, -0.030434146523475647, -0.06925071030855179, -0.20349189639091492, -0.042423587292432785, 0.012385043315589428, 0.046209666877985, -0.05018123239278793, -0.06278231739997864, 0.026475120335817337, -0.07888399809598923, -0.08708489686250687, 0.0013973205350339413, 0.1146952360868454, 0.03922060877084732, 0.008744551800191402, 0.004690187517553568, 0.12258768826723099, -0.015748776495456696, -0.15727578103542328, 0.01563192903995514, 0.02201339229941368, -0.052738942205905914, -0.04796196520328522, -0.050415944308042526, 0.015611251816153526, 0.010999724268913269, 0.1603810042142868, -0.10868977755308151, 0.050879690796136856, 0.016374832019209862, 0.02109879069030285, -0.1042264997959137, 0.1297236531972885, -0.08466458320617676, -0.04627741500735283, 0.009883399121463299, 0.13430114090442657, 0.03856191784143448, -0.004245360381901264, -0.07794376462697983, 0.018195394426584244, 0.10619600862264633, 0.04759398475289345, -0.04938151687383652, 0.02024785988032818, -0.06305348873138428, 0.006505254656076431, 0.08107507228851318, -0.10600403696298599, 0.03680975362658501, 0.02284880541265011, -0.08157043159008026, -0.06468343734741211, -0.002500294242054224, 0.011932026594877243, 0.011166204698383808, 0.1330384910106659, -0.09581444412469864, 0.02774776704609394, -0.0847056657075882, -0.11078421771526337, 0.017110800370573997, -0.06067053601145744, -0.006722506135702133, -0.06543536484241486, -0.1718626767396927, -0.039546944200992584, 0.04272061213850975, -0.06939733028411865, -0.045804377645254135, -0.052692826837301254, -0.1096353754401207, 0.019729236140847206, -0.016842929646372795, 0.13344411551952362, -0.0717984139919281, 0.1220177710056305, 0.0324878916144371, 0.062052253633737564, -0.014674999751150608, 0.027618199586868286, -0.08935556560754776, 0.05150160938501358, -0.22904670238494873, 0.03051392361521721, -0.06419816613197327, 0.05558555945754051, -0.10773878544569016, -0.08937973529100418, 0.010865319520235062, -0.027652442455291748, 0.12552931904792786, 0.1456977277994156, -0.20914794504642487, -0.04218499734997749, 0.18581633269786835, -0.09977641701698303, -0.12226104736328125, 0.12171175330877304, -0.03489615395665169, -0.0046769496984779835, 0.040347322821617126, 0.16684234142303467, 0.03734515607357025, -0.11553168296813965, -0.0092190345749259, -0.05205517262220383, 0.1138368546962738, -0.031331390142440796, 0.08318009972572327, -0.007503877393901348, 0.03102538362145424, 0.0010418324964120984, -0.06334032118320465, 0.04773329943418503, -0.11004666239023209, -0.0843142718076706, -0.033399004489183426, -0.1045549139380455, 0.05016808956861496, 0.05651748925447464, 0.032249897718429565, -0.10412941128015518, -0.0884946882724762, 0.04390088841319084, 0.1033840999007225, -0.05950654670596123, 0.01801854558289051, -0.043603576719760895, 0.11089140921831131, -0.06657445430755615, -0.03303372487425804, -0.17620201408863068, -0.07145656645298004, 0.027556588873267174, 0.006231450475752354, -0.026836061850190163, -0.05830097571015358, 0.07777896523475647, 0.10203733295202255, -0.08158499747514725, -0.047522835433483124, -0.049735456705093384, -0.009040115401148796, -0.11644310504198074, -0.2361799031496048, -0.0605250708758831, -0.02970350719988346, 0.16822130978107452, -0.24008217453956604, 0.025042694061994553, -0.014552490785717964, 0.10157456994056702, 0.027642732486128807, -0.04242560267448425, -0.01970869116485119, 0.0800747200846672, -0.01937791332602501, -0.08005225658416748, 0.04564910754561424, 0.003323679557070136, -0.0567953884601593, -0.02322527952492237, -0.1313987374305725, 0.15242281556129456, 0.10989552736282349, 0.03446348011493683, -0.12137171626091003, -0.03528089448809624, -0.06889518350362778, -0.037964191287755966, -0.061636168509721756, 0.03493524342775345, 0.09527308493852615, 0.023763280361890793, 0.12587714195251465, -0.09564531594514847, -0.04025513306260109, 0.03330126404762268, -0.02198949083685875, 0.03819220885634422, 0.12445440143346786, 0.08965109288692474, -0.06741278618574142, 0.14193204045295715, 0.14304445683956146, -0.06957753002643585, 0.0918457955121994, -0.06633366644382477, -0.09393573552370071, -0.04013921320438385, 0.035805366933345795, 0.022362660616636276, 0.1636837273836136, -0.0026403479278087616, 0.01575743965804577, 0.0006292229518294334, 0.021089589223265648, -0.0008985123713500798, -0.21495555341243744, -0.049549371004104614, 0.020686239004135132, -0.06426016986370087, -0.04088675603270531, -0.039103370159864426, 0.003360204864293337, 0.11287248879671097, -0.00502445362508297, -0.08135723322629929, -0.0048993737436831, 0.003595819929614663, -0.07451064139604568, 0.20678234100341797, -0.09053430706262589, -0.06650182604789734, -0.09509509056806564, -0.01184489019215107, -0.027253467589616776, -0.004528189543634653, 0.03703213855624199, -0.08061125874519348, -0.014597589150071144, -0.10559208691120148, -0.02547609806060791, 0.04313124343752861, 0.022807680070400238, -0.0030642019119113684, -0.011588821187615395, 0.08249282091856003, -0.08334852010011673, 0.013729947619140148, -0.03785675764083862, -0.048648085445165634, 0.04540637508034706, 0.05172538012266159, 0.117942214012146, 0.14440473914146423, 0.0003841164871118963, 0.007335041183978319, -0.03446713462471962, 0.2505861818790436, -0.0690692812204361, -0.004078055266290903, 0.09666525572538376, -0.0074256849475204945, 0.07209696620702744, 0.17719842493534088, 0.0562337189912796, -0.11171498149633408, 0.013702704571187496, 0.03169351816177368, -0.025785740464925766, -0.20951823890209198, -0.03308763727545738, -0.034037500619888306, -0.01812884211540222, 0.08596692979335785, 0.022699978202581406, -0.027133740484714508, 0.03626593202352524, -0.003454647259786725, 0.0129788126796484, -0.016447462141513824, 0.059328943490982056, 0.008686241693794727, 0.06280316412448883, 0.11639148741960526, -0.029614433646202087, -0.023478539660573006, 0.03065251186490059, -0.00693792849779129, 0.23495641350746155, -0.04280480742454529, 0.10751813650131226, 0.03267987444996834, 0.19534601271152496, -0.01023736409842968, 0.08537860214710236, -0.002289974130690098, -0.03786849230527878, -0.0021187863312661648, -0.06588278710842133, -0.02359546162188053, 0.019256917759776115, -0.06428997963666916, 0.06411711126565933, -0.12246153503656387, 0.0020913348998874426, 0.05256994068622589, 0.3072035312652588, 0.09233351796865463, -0.3349055051803589, -0.07933998852968216, 0.002524478128179908, 0.0017340171616524458, -0.017122499644756317, -0.002815614454448223, 0.15699368715286255, -0.058182988315820694, 0.04475276544690132, -0.07188733667135239, 0.07483857125043869, -0.011494160629808903, 0.01825595833361149, 0.0733722597360611, 0.09635529667139053, -0.02283792942762375, 0.03173409029841423, -0.24143745005130768, 0.3096511662006378, 0.02255854383111, 0.08168480545282364, -0.02452646754682064, -0.00517966179177165, 0.020797932520508766, 0.0442252978682518, 0.07405956089496613, -0.007974601350724697, -0.06855852156877518, -0.22192472219467163, -0.10941459238529205, 0.026588506996631622, 0.11476623266935349, -0.0352504625916481, 0.1242583617568016, -0.01819188892841339, -0.014963765628635883, 0.05366310477256775, -0.01977168396115303, -0.08169195055961609, -0.05851546302437782, -0.007728110533207655, -0.00793568417429924, -0.021724393591284752, -0.08390744775533676, -0.1062350794672966, -0.06984298676252365, 0.1060275062918663, -0.034858498722314835, -0.033893756568431854, -0.1259373277425766, 0.08528460562229156, 0.13473966717720032, -0.0771656259894371, 0.04085921868681908, 0.023230254650115967, 0.07810220122337341, 0.021947544068098068, -0.02021976187825203, 0.11428502947092056, -0.06886106729507446, -0.21528860926628113, -0.07530912756919861, 0.11989734321832657, 0.044468045234680176, 0.05765817314386368, -0.023684458807110786, 0.04342168569564819, 0.019218258559703827, -0.08463650941848755, 0.02531646378338337, -0.014982401393353939, 0.07545281201601028, 0.03153171390295029, -0.04667710140347481, 0.02382725290954113, -0.05724142864346504, -0.03684268891811371, 0.10389301180839539, 0.3506873548030853, -0.0950956791639328, 0.014242907054722309, 0.05926893651485443, -0.04537998139858246, -0.17393015325069427, 0.038638900965452194, 0.08682091534137726, 0.013438605703413486, 0.05455923452973366, -0.15112072229385376, 0.06488490849733353, 0.12689389288425446, -0.033532049506902695, 0.12073325365781784, -0.3306348919868469, -0.12199027836322784, 0.054854560643434525, 0.14370331168174744, 0.06386197358369827, -0.17735637724399567, -0.038505833595991135, -0.0016436873702332377, -0.09785348922014236, 0.06732648611068726, -0.1078624352812767, 0.09547433257102966, -0.013896369375288486, 0.033676695078611374, 0.014172520488500595, -0.062287211418151855, 0.1426820158958435, -0.001501716673374176, 0.11152627319097519, -0.029763437807559967, 0.006831579376012087, 0.04231002926826477, -0.06752488017082214, 0.009220234118402004, -0.0812593400478363, 0.04372797906398773, -0.06945028901100159, 0.003418449079617858, -0.093901127576828, 0.00959151890128851, -0.05653424933552742, -0.04457610473036766, -0.023168427869677544, 0.05751859396696091, 0.05467430129647255, -0.015988729894161224, 0.09441293030977249, 0.01300301868468523, 0.17979969084262848, 0.1305941939353943, 0.030709391459822655, -0.028868945315480232, -0.028598535805940628, 0.016574040055274963, -0.023368846625089645, 0.04012118652462959, -0.15130969882011414, 0.02142772451043129, 0.13616608083248138, 0.03814907744526863, 0.12105457484722137, 0.062362268567085266, -0.05146055296063423, 0.003147370181977749, 0.07364083081483841, -0.14787547290325165, -0.0875418484210968, 0.023803861811757088, 0.0022179766092449427, -0.14349429309368134, 0.030112532898783684, 0.10336501151323318, -0.06924708187580109, -0.016722435131669044, -0.0094066821038723, 0.03893544152379036, -0.035092759877443314, 0.242338165640831, 0.060453686863183975, 0.07331052422523499, -0.10112729668617249, 0.07759904861450195, 0.059584975242614746, -0.07364267110824585, 0.01738743484020233, 0.07820694148540497, -0.0848909541964531, -0.015267351642251015, 0.10806042701005936, 0.12814466655254364, -0.021183045580983162, -0.02748963050544262, -0.14303092658519745, -0.10769903659820557, 0.06294438242912292, 0.1843680888414383, 0.07161519676446915, 0.01894494704902172, 0.016217980533838272, 0.002036980353295803, -0.12240206450223923, 0.10498741269111633, 0.06896144896745682, 0.092178113758564, -0.12721078097820282, 0.1422191709280014, -0.015194414183497429, 0.007899989373981953, -0.008998311124742031, 0.06309298425912857, -0.12591150403022766, 0.004470896441489458, -0.12265204638242722, -0.01701054535806179, -0.027332285419106483, -0.010042176581919193, -0.014999164268374443, -0.05733460932970047, -0.05247753486037254, 0.011164240539073944, -0.11356797814369202, -0.03842503949999809, 0.003298071911558509, 0.02788414992392063, -0.14894349873065948, -0.03334140032529831, 0.029757576063275337, -0.0929313525557518, 0.07761451601982117, 0.038185201585292816, 0.04425778612494469, 0.045622069388628006, -0.13135366141796112, 0.009628851898014545, 0.03536928817629814, -0.02474549598991871, 0.06769441813230515, -0.12124048173427582, -0.014890856109559536, -0.033062953501939774, 0.03691685199737549, 0.019985945895314217, 0.08109846711158752, -0.13137522339820862, 0.0071665383875370026, -0.021081920713186264, -0.051370035856962204, -0.035724397748708725, 0.02525188960134983, 0.08690261095762253, 0.011246115900576115, 0.15699191391468048, -0.08777888119220734, 0.03324931859970093, -0.23461557924747467, -0.027101030573248863, -0.02254469133913517, -0.07875590026378632, -0.1289473921060562, -0.01798456907272339, 0.08770803362131119, -0.05015358328819275, 0.07304221391677856, -0.021997183561325073, 0.08436913043260574, 0.032472800463438034, -0.057665351778268814, 0.008159189485013485, 0.051036473363637924, 0.1670725792646408, 0.030776632949709892, -0.04376521334052086, 0.06468188017606735, 0.03792035952210426, 0.07448235899209976, 0.10644414275884628, 0.21572834253311157, 0.14348061382770538, 0.023422112688422203, 0.07764914631843567, 0.04152359440922737, -0.11302697658538818, -0.11285393685102463, 0.054672807455062866, -0.05507883056998253, 0.0879351869225502, -0.025180060416460037, 0.2124292403459549, 0.09843916445970535, -0.19315075874328613, 0.026096485555171967, -0.06282639503479004, -0.08911427855491638, -0.107750304043293, -0.009461061097681522, -0.07857777923345566, -0.14979377388954163, -0.002779952483251691, -0.11470230668783188, 0.031115006655454636, 0.13287800550460815, 0.010654354467988014, 0.028610575944185257, 0.15081855654716492, 0.07925136387348175, 0.0488986112177372, 0.04641346633434296, 0.032869864255189896, -0.004115903750061989, -0.026454387232661247, -0.09308696538209915, 0.030370431020855904, -0.04435201361775398, 0.041963398456573486, -0.04771076515316963, -0.053367793560028076, 0.06416838616132736, 0.016553446650505066, -0.10715056955814362, 0.030856655910611153, 0.01112265232950449, 0.0654309093952179, 0.06544230133295059, 0.0259188674390316, 0.029091455042362213, -0.02259197272360325, 0.24748629331588745, -0.0787092074751854, -0.0590999461710453, -0.11961884796619415, 0.2789159119129181, 0.02488282322883606, -0.007887202315032482, 0.020306821912527084, -0.10183672606945038, 0.004303053021430969, 0.1522679328918457, 0.1544114500284195, -0.10523374378681183, -0.01390250213444233, -0.01408469956368208, -0.013422741554677486, -0.04704807326197624, 0.10959617048501968, 0.12080396711826324, 0.03284946829080582, -0.10345520079135895, -0.025187818333506584, -0.05883217975497246, -0.03700970858335495, -0.033978674560785294, 0.046607472002506256, 0.004636221099644899, 0.021077105775475502, -0.05245942249894142, 0.08231164515018463, -0.033593013882637024, -0.1296154260635376, 0.0639449879527092, -0.219996377825737, -0.1946876049041748, -0.022242436185479164, 0.06881187856197357, 0.010509336367249489, 0.06097298860549927, -0.024246644228696823, -0.010080942884087563, 0.09067381173372269, -0.04209175333380699, -0.021865123882889748, -0.13984091579914093, 0.06641487032175064, -0.10690547525882721, 0.22143061459064484, -0.030737165361642838, 0.034830525517463684, 0.12611347436904907, 0.03884178400039673, -0.11992917209863663, 0.05677448585629463, 0.07593828439712524, -0.097491554915905, 0.011140533722937107, 0.13403846323490143, -0.05474456772208214, 0.08613713830709457, 0.03956238925457001, -0.11052185297012329, 0.013384176418185234, -0.03185313940048218, -0.03987128660082817, -0.04756028577685356, -0.03948930278420448, -0.035482510924339294, 0.13973307609558105, 0.20881320536136627, -0.056415729224681854, 0.04600967839360237, -0.054094716906547546, 0.01440751738846302, 0.05479861795902252, 0.08434195071458817, -0.0311244148761034, -0.2656686007976532, 0.04126397892832756, 0.07434708625078201, 0.0005482901469804347, -0.22870510816574097, -0.06858275085687637, 0.030266737565398216, -0.06373131275177002, -0.0987645760178566, 0.11502803862094879, 0.05960732325911522, 0.06264673918485641, -0.05592329055070877, -0.0846467912197113, -0.0733082965016365, 0.17110127210617065, -0.13849742710590363, -0.09369119256734848 ]
null
null
transformers
# RandomMergeWEIGHTED-7B-SLERP RandomMergeWEIGHTED-7B-SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [jsfs11/MoEv4Config-TestWeightedTIES-7b](https://huggingface.co/jsfs11/MoEv4Config-TestWeightedTIES-7b) * [nlpguy/AlloyIngot](https://huggingface.co/nlpguy/AlloyIngot) ## 🧩 Configuration ```yaml base_model: nlpguy/AlloyIngot dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.0, 0.3, 0.5, 0.7, 1.0] - filter: mlp value: [1.0, 0.7, 0.5, 0.3, 0.0] - value: 0.5 slices: - sources: - layer_range: [0, 32] model: jsfs11/MoEv4Config-TestWeightedTIES-7b - layer_range: [0, 32] model: nlpguy/AlloyIngot ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/RandomMergeWEIGHTED-7B-SLERP" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "jsfs11/MoEv4Config-TestWeightedTIES-7b", "nlpguy/AlloyIngot"], "base_model": ["jsfs11/MoEv4Config-TestWeightedTIES-7b", "nlpguy/AlloyIngot"]}
text-generation
jsfs11/RandomMergeWEIGHTED-7B-SLERP-8.0bpw-exl2
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "jsfs11/MoEv4Config-TestWeightedTIES-7b", "nlpguy/AlloyIngot", "base_model:jsfs11/MoEv4Config-TestWeightedTIES-7b", "base_model:nlpguy/AlloyIngot", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:16:55+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #jsfs11/MoEv4Config-TestWeightedTIES-7b #nlpguy/AlloyIngot #base_model-jsfs11/MoEv4Config-TestWeightedTIES-7b #base_model-nlpguy/AlloyIngot #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# RandomMergeWEIGHTED-7B-SLERP RandomMergeWEIGHTED-7B-SLERP is a merge of the following models using LazyMergekit: * jsfs11/MoEv4Config-TestWeightedTIES-7b * nlpguy/AlloyIngot ## Configuration ## Usage
[ "# RandomMergeWEIGHTED-7B-SLERP\n\nRandomMergeWEIGHTED-7B-SLERP is a merge of the following models using LazyMergekit:\n* jsfs11/MoEv4Config-TestWeightedTIES-7b\n* nlpguy/AlloyIngot", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #jsfs11/MoEv4Config-TestWeightedTIES-7b #nlpguy/AlloyIngot #base_model-jsfs11/MoEv4Config-TestWeightedTIES-7b #base_model-nlpguy/AlloyIngot #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# RandomMergeWEIGHTED-7B-SLERP\n\nRandomMergeWEIGHTED-7B-SLERP is a merge of the following models using LazyMergekit:\n* jsfs11/MoEv4Config-TestWeightedTIES-7b\n* nlpguy/AlloyIngot", "## Configuration", "## Usage" ]
[ 126, 71, 4, 3 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #jsfs11/MoEv4Config-TestWeightedTIES-7b #nlpguy/AlloyIngot #base_model-jsfs11/MoEv4Config-TestWeightedTIES-7b #base_model-nlpguy/AlloyIngot #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# RandomMergeWEIGHTED-7B-SLERP\n\nRandomMergeWEIGHTED-7B-SLERP is a merge of the following models using LazyMergekit:\n* jsfs11/MoEv4Config-TestWeightedTIES-7b\n* nlpguy/AlloyIngot## Configuration## Usage" ]
[ -0.05972747877240181, 0.03057904541492462, -0.006433635484427214, 0.015061469748616219, 0.05033011734485626, 0.03454131260514259, 0.17571482062339783, 0.06736285239458084, 0.089013010263443, 0.052668869495391846, 0.12578743696212769, 0.16838927567005157, -0.0005705832154490054, 0.10067769885063171, -0.07708018273115158, -0.1395946741104126, 0.09710583090782166, -0.017726948484778404, 0.03192218020558357, 0.09444224089384079, 0.08746247738599777, -0.06270555406808853, 0.09959947317838669, 0.006606881506741047, -0.076526939868927, -0.003411223879083991, 0.018922535702586174, -0.03860088437795639, 0.07385648787021637, 0.08905570954084396, 0.0349910594522953, 0.09172698110342026, -0.02705163136124611, -0.12700121104717255, 0.04211815819144249, -0.002648016670718789, 0.008736811578273773, 0.07845509797334671, 0.08526267111301422, -0.05160617455840111, 0.06415265053510666, -0.02286234125494957, 0.017331397160887718, 0.07215481996536255, -0.08262603729963303, -0.043121736496686935, -0.07988300919532776, 0.02749059535562992, 0.008693772368133068, 0.028071392327547073, -0.027777960523962975, 0.16101166605949402, -0.05648566782474518, 0.11023669689893723, 0.24470147490501404, -0.2444334477186203, -0.03947586938738823, 0.1296011507511139, 0.021536558866500854, -0.09802500158548355, 0.00216197338886559, 0.04832773655653, 0.05592476949095726, 0.013842174783349037, 0.049869246780872345, -0.07957237213850021, 0.06309107691049576, -0.051527392119169235, -0.13425754010677338, 0.0030000749975442886, 0.12700651586055756, 0.038399506360292435, -0.04230789840221405, -0.12645283341407776, -0.0994081050157547, 0.143100306391716, -0.05332979932427406, -0.015622910112142563, -0.02644728310406208, -0.02442121133208275, -0.007292882539331913, -0.0017973438370972872, -0.019268032163381577, -0.051870197057724, -0.07451683282852173, 0.16027946770191193, 0.005466041155159473, 0.004349610302597284, -0.02273499220609665, 0.07220854610204697, -0.08191180229187012, -0.14018070697784424, -0.038833003491163254, -0.07745073735713959, -0.020268719643354416, -0.025009039789438248, -0.05528153479099274, -0.11735828965902328, 0.1452612578868866, 0.24280168116092682, -0.06646786630153656, 0.056521713733673096, -0.00617747800424695, 0.057121049612760544, 0.01562140416353941, -0.04960359260439873, -0.05337522178888321, -0.09782432019710541, 0.032441575080156326, 0.07728502154350281, 0.06456053256988525, -0.01973901316523552, -0.01624053716659546, -0.04532967507839203, 0.04896608367562294, 0.017897913232445717, 0.06712646782398224, 0.11156658828258514, -0.08123352378606796, -0.04533741995692253, 0.19180162250995636, -0.08451826125383377, -0.03202171251177788, 0.017700521275401115, -0.061728399246931076, 0.03572150319814682, 0.06790676712989807, 0.03299197554588318, -0.003898469265550375, 0.05439145117998123, -0.07124271988868713, -0.00994257815182209, -0.016942854970693588, -0.09946202486753464, 0.02417670004069805, 0.051782336086034775, -0.029270775616168976, -0.12055230140686035, -0.2535928189754486, -0.04920409619808197, -0.009626802057027817, -0.009419105015695095, -0.016030557453632355, -0.08527132868766785, -0.021980511024594307, -0.01686091721057892, -0.011026615276932716, 0.00007042005017865449, -0.03333946317434311, 0.00285981479100883, -0.01160576194524765, 0.049037884920835495, -0.06879056245088577, -0.0026841508224606514, -0.12354188412427902, 0.07692547887563705, -0.1810615211725235, 0.10648363828659058, -0.08025520294904709, 0.07524222880601883, -0.08839217573404312, -0.043100256472826004, -0.037081122398376465, 0.024257391691207886, 0.03383925184607506, 0.21454136073589325, -0.08838751912117004, -0.08970827609300613, 0.1273876130580902, -0.15406353771686554, -0.13136598467826843, 0.10231251269578934, -0.009015546180307865, 0.0520535409450531, 0.08830276876688004, 0.18578128516674042, 0.1134546548128128, 0.020181693136692047, -0.05691172555088997, -0.00603274954482913, -0.00034593133023008704, 0.08365330100059509, 0.04746781289577484, -0.012240048497915268, -0.10412336140871048, 0.0677989274263382, 0.019428675994277, 0.07344820350408554, -0.05744338408112526, -0.038520991802215576, -0.07107450067996979, -0.06038946285843849, 0.14320506155490875, 0.008206796832382679, 0.04822865128517151, -0.08145725727081299, -0.031676407903432846, 0.060884296894073486, 0.10139267146587372, -0.0456744022667408, -0.014888006262481213, -0.10069505870342255, 0.09501245617866516, -0.010215713642537594, 0.057255469262599945, -0.13221032917499542, -0.14174561202526093, -0.001227238099090755, -0.0034425000194460154, -0.008852084167301655, -0.013600286096334457, 0.09339432418346405, 0.04875392094254494, -0.0653773695230484, -0.059304773807525635, 0.11073748022317886, 0.007471129298210144, -0.02787630632519722, -0.1872134804725647, -0.07043176889419556, -0.0589480958878994, 0.1822303831577301, -0.14919030666351318, 0.08386669307947159, -0.01741774193942547, 0.20351724326610565, 0.010201362892985344, -0.027365753427147865, 0.05977717787027359, 0.001021561212837696, -0.0509917214512825, -0.004706472624093294, 0.0667736828327179, -0.03426438570022583, -0.1252143830060959, 0.09752468019723892, -0.10400007665157318, 0.12024983018636703, 0.09319165349006653, -0.0035853928420692682, -0.05631644278764725, -0.030476372689008713, -0.01770409196615219, -0.04088716208934784, 0.015692688524723053, -0.057969462126493454, 0.011783329769968987, 0.03231809288263321, 0.09356028586626053, -0.0653155967593193, -0.023509502410888672, -0.00001178965703729773, -0.043755799531936646, -0.008981099352240562, 0.09875345975160599, -0.044533103704452515, -0.19399960339069366, 0.08834287524223328, 0.10317529737949371, 0.01741737686097622, 0.0863044261932373, -0.005627466831356287, 0.003754373174160719, -0.030938606709241867, 0.0468362458050251, 0.0017324512591585517, -0.03068622387945652, -0.11723749339580536, 0.037910912185907364, 0.07838600873947144, -0.009519359096884727, 0.025564752519130707, -0.044113099575042725, 0.009759040549397469, -0.01833975501358509, -0.007615732494741678, 0.052472710609436035, 0.09366130083799362, 0.016069944947957993, 0.07814163714647293, -0.020023617893457413, -0.04966593533754349, 0.02710498683154583, -0.009967714548110962, -0.10756290704011917, 0.16599757969379425, -0.06922440230846405, -0.15765149891376495, -0.14084555208683014, -0.02009795792400837, -0.1289057731628418, -0.01401412021368742, 0.049792345613241196, -0.016208361834287643, -0.03918096795678139, -0.13668549060821533, 0.08775132149457932, 0.09417674690485, 0.007086948491632938, 0.03712942823767662, -0.027626894414424896, 0.03403104469180107, -0.07583098858594894, -0.016774959862232208, 0.009968223050236702, -0.008145486004650593, 0.10622987151145935, -0.06553741544485092, 0.07476145774126053, 0.09409718215465546, 0.043286968022584915, -0.020707471296191216, -0.020048698410391808, 0.2373034507036209, -0.021435419097542763, 0.044457804411649704, 0.17688916623592377, -0.04320492967963219, 0.048794232308864594, 0.11394889652729034, 0.03000466711819172, -0.057749684900045395, 0.03424274921417236, 0.007888990454375744, -0.038191020488739014, -0.176252543926239, -0.10451803356409073, -0.03395663574337959, 0.09821807593107224, 0.051257167011499405, 0.03170567750930786, 0.023976802825927734, 0.10078694671392441, -0.08555425703525543, -0.05838213860988617, 0.08655840903520584, 0.06701881438493729, 0.16449812054634094, -0.018251001834869385, 0.14466267824172974, -0.0408555343747139, -0.03974731266498566, 0.04750359058380127, -0.12918193638324738, 0.06037408113479614, -0.02104834094643593, 0.0707215964794159, 0.05395389720797539, 0.07404936105012894, 0.0455920584499836, 0.07752714306116104, 0.00615127244964242, -0.029888805001974106, -0.009240977466106415, -0.0859949141740799, -0.04602110758423805, 0.04387283697724342, -0.05963442847132683, 0.07970172166824341, -0.027999326586723328, 0.02587667480111122, 0.07784255594015121, 0.15750546753406525, 0.09754607826471329, -0.29003554582595825, -0.12379351258277893, 0.048467934131622314, 0.014537470415234566, -0.008078358136117458, 0.006437384523451328, 0.08488291501998901, -0.09668727219104767, 0.18189896643161774, -0.011626556515693665, 0.07595259696245193, 0.014005042612552643, 0.04230126366019249, -0.0762004554271698, 0.08660955727100372, -0.03251390531659126, 0.045076604932546616, -0.23217962682247162, 0.03326590359210968, 0.03738439083099365, 0.007659727707505226, -0.02172388881444931, 0.01325131580233574, 0.0627661943435669, 0.15907390415668488, 0.06822194904088974, -0.00877428613603115, -0.03412133827805519, -0.0548962764441967, -0.04567139595746994, 0.0017083706334233284, 0.0247862096875906, -0.0030235741287469864, 0.0871073305606842, -0.007262322586029768, -0.029544474557042122, 0.012292503379285336, 0.024241749197244644, -0.15917329490184784, -0.06837058812379837, 0.055184874683618546, 0.08379790186882019, 0.07386039197444916, -0.10211055725812912, -0.06177075207233429, -0.11401215195655823, 0.2378016710281372, -0.03570796921849251, -0.07537928223609924, -0.08173172175884247, -0.0072562540881335735, 0.11075342446565628, -0.06959632784128189, 0.018706854432821274, -0.02652551978826523, 0.0744171142578125, -0.050445280969142914, -0.13214391469955444, 0.05340409651398659, -0.09002602100372314, -0.15509192645549774, -0.011903757229447365, 0.10126092284917831, -0.013839283026754856, 0.031043924391269684, 0.004502227529883385, 0.035959046334028244, -0.000014409023606276605, -0.08472711592912674, -0.0012163169449195266, 0.12227974832057953, -0.060472551733255386, 0.13941214978694916, -0.015077700838446617, -0.14020374417304993, -0.030849125236272812, 0.009644032455980778, 0.1238340362906456, 0.3187919855117798, -0.024779146537184715, 0.04287738353013992, 0.09966322779655457, -0.022370366379618645, -0.22207367420196533, -0.008381596766412258, -0.012151815928518772, 0.002164904261007905, 0.047052253037691116, -0.08140801638364792, 0.09704559296369553, 0.1035032719373703, -0.007468107156455517, 0.11046528816223145, -0.3325757384300232, -0.14194504916667938, 0.10221990197896957, 0.06088639050722122, 0.21412576735019684, -0.10426152497529984, -0.10078755021095276, -0.07216893881559372, -0.1402493566274643, 0.0498390793800354, -0.14119844138622284, 0.04970179870724678, -0.032129887491464615, 0.0035828575491905212, 0.039401669055223465, -0.046657733619213104, 0.14645487070083618, 0.0016146423295140266, 0.06644272059202194, -0.07319557666778564, 0.016148364171385765, 0.06819477677345276, -0.029547186568379402, 0.09197156131267548, -0.10062927007675171, 0.045113932341337204, -0.037432946264743805, -0.022000206634402275, -0.08084049820899963, 0.1123707965016365, -0.02659488469362259, -0.027108265087008476, -0.03808349743485451, 0.01754787564277649, 0.011700291186571121, 0.05433735251426697, 0.17218978703022003, -0.058233171701431274, 0.1442594826221466, 0.24522942304611206, 0.10353595018386841, -0.13756686449050903, 0.04182467237114906, 0.005407939199358225, -0.042152948677539825, 0.06052858754992485, -0.02863454446196556, -0.0002353080635657534, 0.08169903606176376, 0.04014981538057327, 0.07616052776575089, 0.02977067232131958, -0.04759807139635086, -0.008101378567516804, 0.051621951162815094, -0.20949587225914001, -0.17029748857021332, -0.018680207431316376, -0.005949723068624735, -0.06765985488891602, 0.08000767976045609, 0.20969319343566895, -0.019830547273159027, 0.006812738254666328, 0.025645285844802856, 0.014155477285385132, -0.04185422137379646, 0.17198742926120758, -0.0037742136046290398, 0.05755912512540817, -0.11745727062225342, 0.01693294569849968, 0.0036772291641682386, -0.02482631988823414, -0.019775714725255966, 0.0678572729229927, -0.12836287915706635, -0.0953749492764473, -0.12402927875518799, 0.1656351387500763, -0.036414481699466705, -0.03628024458885193, -0.15411441028118134, -0.11700505018234253, 0.029410099610686302, 0.12918207049369812, 0.09116718918085098, 0.06114425137639046, 0.057668037712574005, -0.06193777546286583, -0.00023375543241854757, 0.04964408278465271, 0.07468801736831665, 0.10176831483840942, -0.08879374712705612, 0.053226862102746964, -0.038027551025152206, 0.02742360159754753, -0.06409689038991928, -0.005584429018199444, -0.14152590930461884, -0.013002480380237103, -0.17297609150409698, 0.0034666794817894697, -0.19639578461647034, -0.01125506591051817, 0.0020362711511552334, -0.025828249752521515, -0.009309341199696064, -0.010422979481518269, -0.03373231738805771, -0.019189970567822456, 0.00643025990575552, 0.0890040472149849, -0.10924628376960754, -0.017536869272589684, 0.01974254474043846, -0.057369835674762726, 0.05877062305808067, 0.05149511992931366, -0.06756282597780228, 0.003828859655186534, -0.11891378462314606, -0.057215359061956406, 0.0958949625492096, -0.0046548121608793736, -0.00934651680290699, -0.04523337632417679, -0.02625914476811886, 0.007169153541326523, 0.002447956707328558, 0.04287365451455116, 0.10092423856258392, -0.09039237350225449, 0.028259657323360443, -0.00345798977650702, -0.026306770741939545, -0.07814701646566391, 0.004232402890920639, 0.02493731863796711, 0.017493631690740585, 0.1869782954454422, -0.09164179861545563, 0.03275866061449051, -0.1704009473323822, -0.002088880632072687, 0.013834652490913868, -0.1407691389322281, 0.013477171771228313, -0.00622179638594389, 0.04101616144180298, -0.03986746072769165, 0.10823722183704376, -0.09382923692464828, -0.13481104373931885, 0.038654182106256485, -0.02163657546043396, 0.06463529169559479, 0.025762829929590225, 0.12220277637243271, 0.06513714045286179, -0.034082986414432526, -0.06355120986700058, 0.05232851207256317, 0.033851128071546555, -0.05451114848256111, 0.06273806840181351, 0.1081763282418251, -0.05159206688404083, 0.08021872490644455, 0.0302876103669405, 0.02525746449828148, 0.04472190886735916, 0.04592663422226906, -0.04345111548900604, 0.06712976098060608, 0.011932228691875935, 0.12888771295547485, 0.1373734027147293, -0.08741271495819092, 0.02079685963690281, 0.015436473302543163, -0.0030055369716137648, -0.0950043648481369, -0.11680889129638672, -0.11321378499269485, -0.12008198350667953, -0.009867586195468903, -0.09197501093149185, -0.03217989578843117, 0.06745275110006332, 0.003683844581246376, 0.013436384499073029, 0.1325875073671341, 0.015351466834545135, -0.035942722111940384, 0.03677519038319588, -0.05237217992544174, -0.07067342102527618, -0.006311921868473291, -0.07782729715108871, 0.06104879453778267, 0.04848501458764076, -0.007835314609110355, 0.02594044990837574, 0.011516171507537365, 0.014951137825846672, -0.032713670283555984, -0.12815985083580017, -0.005521644838154316, 0.05909876152873039, -0.006821443792432547, -0.02771506831049919, 0.06204455718398094, -0.017367064952850342, -0.020496513694524765, 0.11644577980041504, -0.03351578861474991, -0.1123361885547638, -0.08628512173891068, 0.21431174874305725, -0.019954491406679153, 0.0478796623647213, 0.012485980056226254, -0.05355245620012283, 0.004084326326847076, 0.08528418838977814, 0.24173200130462646, -0.03733273223042488, 0.028415296226739883, -0.023664191365242004, 0.0015055875992402434, 0.0181434266269207, 0.037910278886556625, -0.0071102106012403965, 0.06909473240375519, -0.037483375519514084, 0.05119621008634567, -0.02340148203074932, -0.06957060843706131, -0.07815317064523697, -0.028048325330018997, 0.012982029467821121, 0.012032805010676384, -0.022681288421154022, 0.06723479926586151, -0.1228964552283287, -0.009256264194846153, -0.0068078357726335526, -0.08766548335552216, -0.09379535913467407, -0.07515668869018555, 0.003631031606346369, 0.027872633188962936, 0.08989787101745605, -0.048018209636211395, -0.009335783310234547, 0.02789068967103958, -0.047052592039108276, -0.05061542987823486, -0.06914027035236359, 0.028012510389089584, -0.09188002347946167, 0.061926763504743576, -0.02018660306930542, 0.07512759417295456, 0.11675196141004562, -0.04077121987938881, -0.10394302010536194, 0.03405527397990227, 0.034977708011865616, -0.005314134526997805, 0.03157850354909897, 0.07720789313316345, 0.022630151361227036, 0.17078417539596558, 0.061476726084947586, -0.14710746705532074, 0.019266337156295776, 0.06986013799905777, -0.04365083947777748, -0.06936958432197571, 0.038582056760787964, -0.011600852012634277, 0.08500073105096817, 0.14464733004570007, -0.03790072351694107, -0.000051062092097708955, -0.016905544325709343, 0.0265029389411211, 0.048121944069862366, 0.0030193948186933994, -0.0698138028383255, -0.2268054187297821, 0.007474674377590418, 0.03881361335515976, 0.007502924185246229, -0.2643527090549469, -0.0710139125585556, -0.11587003618478775, -0.011565872468054295, -0.013107024133205414, 0.0681263878941536, 0.10576385259628296, 0.032247208058834076, -0.011308571323752403, -0.16912677884101868, -0.005125885829329491, 0.1333518922328949, -0.06524055451154709, -0.11255912482738495 ]
null
null
transformers
This is a finetuned version of Mistral Instruct v0.2 with Undi95's toxicsharegpt-NoWarning.jsonl. (while writing this I realize that it is not the DPO version but the NoWarning version! OOps!) The finetuned was made at 8K context length in LoRA using axolotl. The goal of this finetune was to check the validity of a 32K context despite a training at a way much lower context length (8k).
{"license": "apache-2.0"}
text-generation
Karko/toxic-sharegpt-dpo-m7b-v0.2-8k-ctx
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:17:52+00:00
[]
[]
TAGS #transformers #pytorch #mistral #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This is a finetuned version of Mistral Instruct v0.2 with Undi95's URL. (while writing this I realize that it is not the DPO version but the NoWarning version! OOps!) The finetuned was made at 8K context length in LoRA using axolotl. The goal of this finetune was to check the validity of a 32K context despite a training at a way much lower context length (8k).
[]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #mistral #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.015409701503813267, 0.08684792369604111, -0.007423728704452515, 0.022875074297189713, 0.10365157574415207, -0.001980504719540477, 0.14533835649490356, 0.12954343855381012, -0.004772621672600508, -0.05460605397820473, 0.1409015655517578, 0.2027537077665329, -0.008917601779103279, 0.018711159005761147, -0.07042168825864792, -0.22289018332958221, 0.08404254913330078, 0.02047770842909813, 0.022739041596651077, 0.09953130781650543, 0.120528943836689, -0.035591937601566315, 0.0569840632379055, -0.004956970922648907, -0.06757090985774994, 0.0070970915257930756, 0.024326059967279434, -0.1045515388250351, 0.09950809925794601, 0.036672309041023254, 0.05583534017205238, 0.029254250228405, -0.05118486285209656, -0.19678853452205658, 0.02683219686150551, 0.00018361402908340096, -0.056461334228515625, 0.056632619351148605, 0.04070131853222847, -0.05332319810986519, 0.10012437403202057, 0.06158125028014183, -0.01832008548080921, 0.0721743032336235, -0.09505189210176468, -0.08331061899662018, -0.07250804454088211, 0.05970657989382744, 0.08185795694589615, 0.09796223789453506, 0.010505441576242447, 0.11810492724180222, -0.07799715548753738, 0.07494509965181351, 0.1172027736902237, -0.33981090784072876, -0.0026175377424806356, 0.06638350337743759, 0.03239420801401138, 0.04975641146302223, -0.035383351147174835, 0.04283852502703667, 0.040931377559900284, 0.017256855964660645, 0.015219692140817642, -0.06426721811294556, -0.11929856240749359, 0.042762596160173416, -0.06941927969455719, -0.06636232882738113, 0.2602652907371521, -0.03290852531790733, 0.04529343172907829, -0.029029574245214462, -0.08066470921039581, 0.032633278518915176, -0.03427960351109505, 0.045259200036525726, -0.011292409151792526, 0.10875177383422852, 0.07731177657842636, -0.06752524524927139, -0.13933737576007843, 0.0015817460371181369, -0.18821367621421814, 0.04673399776220322, 0.0331365130841732, 0.05788605660200119, -0.16465279459953308, 0.0690697729587555, 0.05023214966058731, -0.12203720211982727, -0.0019481421913951635, -0.07446354627609253, 0.0927194133400917, 0.04360521212220192, -0.0727580338716507, 0.0008593451348133385, 0.14155349135398865, 0.1984974443912506, 0.015515977516770363, 0.019322356209158897, -0.05039917677640915, 0.11395134776830673, -0.006688843015581369, 0.0379333421587944, 0.035573024302721024, -0.03691229596734047, 0.08719717711210251, -0.1050424873828888, 0.07411850988864899, -0.04356927424669266, -0.15499576926231384, -0.00852825865149498, -0.011788220144808292, 0.10263732820749283, 0.061791252344846725, 0.07900100946426392, -0.027020862326025963, 0.0044917999766767025, 0.1009165570139885, -0.06531418859958649, -0.014056549407541752, 0.023517029359936714, 0.016540132462978363, 0.10788820683956146, 0.04758845642209053, 0.05246545374393463, -0.09558314830064774, 0.02884039096534252, -0.05161452293395996, -0.016594992950558662, -0.04684757441282272, -0.012270443141460419, 0.06675555557012558, -0.048958100378513336, 0.017668411135673523, -0.1363086998462677, -0.18406887352466583, 0.016857074573636055, 0.05352689325809479, -0.008760148659348488, -0.10693589597940445, -0.013043982908129692, -0.025939565151929855, 0.04102541506290436, -0.08082083612680435, 0.008397107943892479, -0.07796332985162735, 0.07026473432779312, -0.09576227515935898, 0.0314265675842762, -0.15901058912277222, 0.07282808423042297, -0.11671654134988785, -0.014634160324931145, -0.021270738914608955, 0.01576857827603817, -0.05432453751564026, 0.16009275615215302, -0.043672021478414536, -0.0027258223854005337, -0.0177659559994936, 0.01660650409758091, -0.02986859530210495, 0.1690487563610077, -0.11497001349925995, -0.058123793452978134, 0.2023806869983673, -0.09145738929510117, -0.18897899985313416, 0.1036759689450264, 0.01157114002853632, 0.03729310259222984, 0.08850960433483124, 0.17486944794654846, 0.02760644629597664, -0.028054894879460335, 0.1086244210600853, 0.12643346190452576, -0.044140979647636414, -0.11964507400989532, 0.044865578413009644, -0.06485406309366226, -0.08484672755002975, 0.05889582633972168, 0.02011760324239731, 0.07037513703107834, -0.0004359012527856976, -0.07457975298166275, -0.058667562901973724, -0.02854490466415882, 0.00460734311491251, -0.02169043757021427, 0.06641148030757904, -0.06561508774757385, -0.010547596029937267, -0.008822528645396233, 0.03086497262120247, 0.017180053517222404, 0.05686159431934357, -0.03327915817499161, 0.0766189768910408, 0.05109377205371857, 0.06334439665079117, -0.1310018002986908, -0.0009121003095060587, -0.01655587926506996, 0.040567200630903244, 0.02168630249798298, 0.07256612181663513, 0.03601373732089996, -0.04993029683828354, 0.0025330763310194016, 0.019591709598898888, 0.13411393761634827, 0.014612255617976189, -0.04063592478632927, -0.12573835253715515, 0.06039649620652199, -0.042741019278764725, 0.0718408152461052, -0.02399357594549656, 0.03399793803691864, 0.013270393945276737, 0.09551757574081421, -0.04243960231542587, 0.08679742366075516, -0.016582854092121124, -0.023255929350852966, -0.07040935009717941, 0.01800604723393917, 0.12277916818857193, 0.04082636907696724, -0.09313486516475677, 0.2246045619249344, -0.13708917796611786, 0.16215552389621735, 0.19641700387001038, -0.21735423803329468, 0.09056171029806137, -0.08796922117471695, -0.034690603613853455, -0.015900868922472, 0.06364069879055023, -0.02141793817281723, 0.09352058917284012, 0.020213155075907707, 0.1632341742515564, -0.05209064483642578, -0.048614177852869034, -0.03710081800818443, -0.06314955651760101, -0.0036918623372912407, 0.06913930177688599, 0.11787015199661255, -0.14450736343860626, 0.18675976991653442, 0.29967033863067627, -0.0228639617562294, 0.12758371233940125, -0.07291752099990845, -0.010060886852443218, 0.06624984741210938, -0.007429774850606918, -0.044152338057756424, -0.04781055450439453, -0.2017725259065628, -0.0010484630474820733, 0.10103020817041397, 0.0302731990814209, 0.07822578400373459, -0.11411648243665695, -0.03838447481393814, -0.019111268222332, -0.025152454152703285, -0.013018845580518246, 0.06714487820863724, 0.014589358121156693, 0.11112331598997116, -0.03947838023304939, -0.06582189351320267, 0.10862605273723602, -0.0030252858996391296, -0.0916232168674469, 0.15598924458026886, -0.17222101986408234, -0.2365698665380478, -0.13506467640399933, -0.14125503599643707, -0.06725845485925674, 0.0061986688524484634, 0.1560138761997223, -0.05210694298148155, -0.03717096149921417, -0.023960532620549202, -0.005135776475071907, -0.01915021799504757, -0.0205965805798769, -0.014139513485133648, 0.03248695284128189, -0.04410990700125694, -0.13039520382881165, -0.04872015863656998, 0.0028312522917985916, -0.05728713795542717, 0.10117123275995255, -0.08360128849744797, 0.062473051249980927, 0.15147140622138977, 0.06219446286559105, 0.028914617374539375, -0.029127702116966248, 0.16537632048130035, -0.035094864666461945, 0.012193632312119007, 0.22332313656806946, -0.034228116273880005, 0.08676350861787796, 0.15661999583244324, 0.01989852637052536, -0.05211940035223961, 0.02736888825893402, -0.03449709713459015, -0.06067895516753197, -0.2752978503704071, -0.12174105644226074, -0.1288522183895111, 0.060555413365364075, 0.007948680780827999, 0.07394526898860931, 0.1615350842475891, 0.053380370140075684, -0.05993610993027687, -0.023039625957608223, 0.045597922056913376, 0.08564340323209763, 0.2762641906738281, -0.04004678502678871, 0.12363208085298538, -0.0951872318983078, -0.06694601476192474, 0.10579653829336166, 0.09293379634618759, 0.1509571075439453, 0.10055403411388397, 0.13397394120693207, 0.07687326520681381, 0.12383612990379333, 0.07805889844894409, 0.09173227101564407, 0.019528735429048538, 0.004015237092971802, -0.06465347856283188, -0.05374268442392349, -0.04345662146806717, 0.045971404761075974, -0.03370741382241249, -0.12038318812847137, -0.020297987386584282, -0.08536669611930847, 0.08920039236545563, 0.2027074545621872, 0.021189715713262558, -0.1272536665201187, 0.002933231648057699, 0.10520020872354507, -0.014903970062732697, -0.06263303756713867, 0.10243529826402664, -0.04815252870321274, -0.1054665595293045, 0.0879107341170311, -0.02639479748904705, 0.15255224704742432, -0.013666548766195774, 0.07710667699575424, -0.06644656509160995, -0.0819144994020462, 0.06157959997653961, 0.1266910433769226, -0.31921207904815674, 0.20611070096492767, -0.0182107612490654, -0.03699688985943794, -0.09798870235681534, 0.013747641816735268, 0.049936920404434204, 0.16572459042072296, 0.08352688699960709, -0.0018848103936761618, -0.08298163115978241, 0.02695791982114315, -0.047491271048784256, 0.04240097105503082, 0.03971465304493904, -0.017537405714392662, -0.043701086193323135, -0.06741668283939362, -0.007043382618576288, -0.002793816849589348, 0.04699712619185448, -0.04868411272764206, -0.18748705089092255, 0.06958627700805664, 0.10095080733299255, 0.028390511870384216, -0.027612579986453056, -0.008185554295778275, -0.09999363869428635, 0.18305733799934387, -0.09867512434720993, -0.09326521307229996, -0.10086479783058167, -0.13691207766532898, 0.04545261710882187, -0.05765595659613609, 0.050915054976940155, -0.09801178425550461, 0.018740233033895493, -0.07529935240745544, -0.20178447663784027, 0.09470770508050919, -0.12135938555002213, -0.024124588817358017, -0.02653873711824417, 0.1577531099319458, -0.08466745167970657, 0.020403098315000534, 0.0332508347928524, 0.012311766855418682, -0.13388726115226746, -0.11684983968734741, -0.015581742860376835, 0.03459005802869797, 0.04221097007393837, -0.03390936553478241, -0.11737306416034698, -0.0787791833281517, -0.01646876335144043, -0.05436144396662712, 0.2834779918193817, 0.17631706595420837, -0.060282085090875626, 0.20695817470550537, 0.20618124306201935, -0.10937727987766266, -0.3104526996612549, -0.16977591812610626, -0.14297077059745789, -0.08577767759561539, -0.014562071301043034, -0.1775428056716919, 0.09382864087820053, 0.034938983619213104, -0.07179628312587738, 0.0904635637998581, -0.25756314396858215, -0.08309656381607056, 0.18716807663440704, -0.02639860101044178, 0.31364238262176514, -0.15250667929649353, -0.09800801426172256, -0.07630838453769684, -0.18309956789016724, 0.1479845494031906, -0.12274591624736786, 0.07358091324567795, -0.0048736524768173695, 0.09022410959005356, 0.010368114337325096, -0.033450912684202194, 0.11195433884859085, 0.003930948209017515, 0.004062446765601635, -0.12148502469062805, 0.022170403972268105, 0.06074124947190285, -0.011291960254311562, 0.05001821741461754, -0.17527687549591064, 0.027267344295978546, -0.08532539755105972, -0.011281749233603477, -0.06285116821527481, 0.07699020951986313, -0.005398043897002935, -0.060117207467556, -0.013225434347987175, -0.061802465468645096, 0.0374070405960083, 0.014278181828558445, 0.23927098512649536, -0.008680110797286034, 0.12128475308418274, 0.14329372346401215, 0.10049069672822952, -0.1607641726732254, 0.0024455131497234106, -0.1042158231139183, -0.06745992600917816, 0.06359205394983292, -0.14563539624214172, 0.03943949192762375, 0.09686549752950668, -0.053767189383506775, 0.07137129455804825, 0.0642566978931427, -0.0010500672506168485, -0.0316520594060421, 0.0996650904417038, -0.1906297504901886, -0.040981147438287735, -0.01857759803533554, 0.1321486234664917, 0.05748132988810539, 0.06689241528511047, 0.15979041159152985, 0.011921430937945843, -0.028582751750946045, 0.02099432982504368, 0.04702383652329445, -0.05525495111942291, 0.036426376551389694, 0.007884319871664047, -0.0005075702210888267, -0.14053145051002502, 0.11592000722885132, 0.02246685139834881, -0.14134417474269867, 0.003873371984809637, 0.15534506738185883, -0.13364022970199585, -0.14977918565273285, -0.027466032654047012, 0.08037876337766647, -0.13263121247291565, -0.07287447899580002, -0.028367934748530388, -0.15615379810333252, 0.06694918125867844, 0.08665522187948227, 0.08514928072690964, 0.06608957052230835, -0.03258892521262169, -0.06875579804182053, 0.0475950762629509, 0.026791656389832497, -0.05628606304526329, 0.00020784043590538204, -0.046583160758018494, -0.042881086468696594, -0.001507226494140923, 0.0877838134765625, -0.05138865485787392, -0.05674329400062561, -0.0895736888051033, 0.031917739659547806, -0.18151916563510895, -0.02857813611626625, -0.09417331963777542, -0.024928808212280273, 0.008236890658736229, -0.053997766226530075, -0.042653270065784454, -0.011623186059296131, -0.11963123083114624, -0.011988243088126183, -0.04361237958073616, 0.082652747631073, -0.11203013360500336, -0.02368803508579731, 0.09073679149150848, -0.023613018915057182, 0.13367167115211487, 0.10658402740955353, -0.10276412963867188, 0.08387479931116104, -0.1928723007440567, -0.0799347385764122, 0.08301905542612076, 0.04832072556018829, 0.028779933229088783, 0.017271678894758224, -0.021399762481451035, 0.11676602810621262, 0.004532552789896727, 0.025777248665690422, 0.023042388260364532, -0.13163988292217255, -0.025764591991901398, -0.00619317265227437, -0.13689322769641876, -0.024360287934541702, -0.1060371845960617, 0.07861495763063431, 0.025346513837575912, 0.16982567310333252, -0.0284965131431818, 0.07258551567792892, -0.04895607382059097, 0.03468940034508705, 0.008509636856615543, -0.15423886477947235, -0.15333659946918488, -0.08200114965438843, -0.019637158140540123, -0.00884277280420065, 0.23183366656303406, -0.009707566350698471, -0.05158108100295067, 0.0722092017531395, 0.09711810201406479, 0.016985198482871056, 0.009931320324540138, 0.2313230335712433, 0.07879756391048431, -0.014714543707668781, -0.10166309773921967, 0.007005973719060421, 0.0005849547451362014, -0.044633299112319946, 0.10488119721412659, 0.10391885787248611, 0.08115096390247345, 0.08236812800168991, 0.02623850293457508, 0.03471389040350914, -0.078928142786026, -0.09838554263114929, 0.03492005914449692, 0.08472396433353424, -0.04172258451581001, 0.14760838449001312, 0.17064866423606873, -0.033166028559207916, 0.02585987001657486, -0.04717849940061569, -0.00956462137401104, -0.16179145872592926, -0.14348137378692627, -0.06375367939472198, -0.10883096605539322, -0.015307868830859661, -0.0769011452794075, 0.05903923138976097, 0.060794223099946976, 0.05372563749551773, -0.07204505801200867, 0.011943754740059376, 0.004907660651952028, -0.07804394513368607, 0.03383222222328186, -0.03508858010172844, 0.035794697701931, -0.04365871474146843, -0.031089521944522858, -0.06757081300020218, -0.0035503790713846684, -0.029813310131430626, 0.07339829206466675, 0.0038932389579713345, 0.03889371454715729, -0.13275346159934998, -0.07421664148569107, -0.04377426579594612, 0.042993735522031784, -0.019170496612787247, 0.18267516791820526, 0.021577659994363785, 0.007816042751073837, 0.08419680595397949, 0.18083883821964264, -0.07004255801439285, -0.1451852172613144, -0.052618738263845444, 0.1644560843706131, 0.028169890865683556, 0.06741172820329666, 0.0019811694510281086, 0.015433324500918388, -0.07699776440858841, 0.32747191190719604, 0.30243903398513794, -0.07576510310173035, 0.007829064503312111, -0.013641436584293842, 0.03648514300584793, 0.06940560787916183, 0.11828207224607468, 0.13268940150737762, 0.23461958765983582, -0.06898297369480133, -0.005585272330790758, -0.04286198690533638, -0.015952395275235176, -0.17911778390407562, 0.0897325724363327, -0.017971375957131386, -0.09780330210924149, 0.00942147709429264, 0.0976203978061676, -0.16907264292240143, 0.08960027247667313, -0.12355687469244003, -0.12336046993732452, -0.04138069227337837, -0.0017381325596943498, 0.2014443725347519, 0.03757923096418381, 0.04644612595438957, -0.01788375712931156, -0.0713774636387825, 0.1382463127374649, -0.01752217672765255, -0.19167326390743256, -0.03196316212415695, 0.09617471694946289, -0.07213528454303741, 0.07131285220384598, 0.0036048609763383865, 0.0626218169927597, 0.07510518282651901, 0.06807549297809601, -0.07855155318975449, 0.06562432646751404, 0.0385238379240036, -0.044623009860515594, 0.02168615162372589, -0.06457453221082687, -0.011550289578735828, -0.07459240406751633, 0.06196307763457298, -0.07198399305343628, 0.05728697031736374, 0.037725381553173065, -0.05979626998305321, -0.0140507398173213, 0.051177285611629486, -0.0780172049999237, 0.04763141646981239, 0.025181911885738373, -0.0311091560870409, -0.04188043624162674, -0.05837644264101982, -0.045713700354099274, -0.005075318273156881, -0.17677293717861176, -0.07456211000680923, -0.059750694781541824, -0.05412285029888153, 0.0629354789853096, 0.033089347183704376, -0.15054041147232056, -0.02229725942015648, -0.09212680906057358, 0.045467860996723175, -0.17629528045654297, 0.03551184758543968, 0.10165860503911972, -0.01227504387497902, 0.0069757262244820595, -0.06308183073997498, 0.03621555119752884, 0.03467743843793869, -0.06993583589792252, -0.07515902072191238 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text2text-generation
lvcalucioli/ca-finetuned-flan-t5-base
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:23:07+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 58, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.053328532725572586, 0.16120538115501404, -0.005120371468365192, 0.022602224722504616, 0.09686747193336487, 0.013199392706155777, 0.07261143624782562, 0.11177206039428711, -0.020693831145763397, 0.1128523200750351, 0.0323781855404377, 0.09778297692537308, 0.11381756514310837, 0.15530984103679657, -0.0018252237932756543, -0.23414164781570435, 0.051169246435165405, -0.12603329122066498, -0.039110470563173294, 0.11734651774168015, 0.14655858278274536, -0.10434788465499878, 0.07780920714139938, -0.029932111501693726, -0.010786613449454308, -0.030950399115681648, -0.06109464541077614, -0.04963193088769913, 0.05158040300011635, 0.07096312940120697, 0.06875279545783997, 0.009741154499351978, 0.09293358027935028, -0.2676756680011749, 0.021060682833194733, 0.07436702400445938, -0.0019205488497391343, 0.07644513249397278, 0.05394738167524338, -0.07786445319652557, 0.08801496773958206, -0.053122974932193756, 0.14802159368991852, 0.08166222274303436, -0.09144649654626846, -0.19256246089935303, -0.08630277216434479, 0.10201671719551086, 0.17971307039260864, 0.050409309566020966, -0.02338344417512417, 0.10295069962739944, -0.08843041211366653, 0.012706292793154716, 0.059160783886909485, -0.06515879184007645, -0.05482804775238037, 0.0630323737859726, 0.08173035830259323, 0.0787791833281517, -0.12468571215867996, -0.018215585500001907, 0.011311499401926994, 0.00691694812849164, 0.08102929592132568, 0.022060219198465347, 0.14176861941814423, 0.03922285884618759, -0.1292058527469635, -0.047744158655405045, 0.10315844416618347, 0.04381343349814415, -0.04969092458486557, -0.24839195609092712, -0.028692634776234627, -0.03409173712134361, -0.029329892247915268, -0.041139665991067886, 0.04428756237030029, -0.010770969092845917, 0.08322557806968689, -0.008045176975429058, -0.07979845255613327, -0.03690612316131592, 0.06324487924575806, 0.05645342543721199, 0.024454401805996895, -0.008984005078673363, 0.006743076257407665, 0.1175178587436676, 0.10636600106954575, -0.12631633877754211, -0.05289403349161148, -0.06528059393167496, -0.0853288322687149, -0.04429693520069122, 0.03338160738348961, 0.04351643845438957, 0.04334709793329239, 0.24920088052749634, 0.011966975405812263, 0.05556565150618553, 0.03878911957144737, 0.011687099933624268, 0.06360286474227905, 0.11270952969789505, -0.05845928564667702, -0.09383665025234222, -0.033332064747810364, 0.09301437437534332, 0.008503437042236328, -0.0402098223567009, -0.06047673895955086, 0.06078295037150383, 0.015703821554780006, 0.12211526930332184, 0.087046779692173, 0.002870776690542698, -0.07195370644330978, -0.06478150933980942, 0.19285908341407776, -0.15949691832065582, 0.047871991991996765, 0.03357849270105362, -0.040312062948942184, -0.0005020854296162724, 0.01165273692458868, 0.023987481370568275, -0.021567439660429955, 0.0924374982714653, -0.05500924214720726, -0.03761355206370354, -0.10879732668399811, -0.03591866046190262, 0.03197222575545311, 0.0022585385013371706, -0.02967100404202938, -0.033424828201532364, -0.08920473605394363, -0.0635172426700592, 0.09580977261066437, -0.07413128018379211, -0.05156254023313522, -0.016345804557204247, -0.0761859342455864, 0.026101797819137573, 0.01702207140624523, 0.08535456657409668, -0.0213642455637455, 0.037230201065540314, -0.05421315133571625, 0.06241346150636673, 0.10910454392433167, 0.0320611298084259, -0.053984515368938446, 0.06094928830862045, -0.2412392497062683, 0.10316064208745956, -0.07156267017126083, 0.05108866095542908, -0.15137021243572235, -0.025331947952508926, 0.04665522649884224, 0.009590202011168003, -0.011478574015200138, 0.14007656276226044, -0.2198302298784256, -0.029333066195249557, 0.1640782356262207, -0.09730498492717743, -0.08055570721626282, 0.059064920991659164, -0.054139286279678345, 0.10999192297458649, 0.04003598168492317, -0.023768696933984756, 0.06297750771045685, -0.14250542223453522, -0.0039275879971683025, -0.041889119893312454, -0.01720282807946205, 0.16010744869709015, 0.07506491243839264, -0.06698185205459595, 0.077672079205513, 0.022212913259863853, -0.023321649059653282, -0.04393244534730911, -0.022494852542877197, -0.10826845467090607, 0.009565223939716816, -0.06269361078739166, 0.02424052357673645, -0.023944495245814323, -0.0903024971485138, -0.029575346037745476, -0.1770460456609726, -0.013402442447841167, 0.08679109811782837, -0.010982494801282883, -0.019886262714862823, -0.11693590134382248, 0.012033592909574509, 0.032231178134679794, 0.0004325093177612871, -0.13445010781288147, -0.05658498778939247, 0.0273329745978117, -0.16240260004997253, 0.031236927956342697, -0.05114622414112091, 0.04928715154528618, 0.03406677767634392, -0.03175085783004761, -0.031348153948783875, 0.01572313904762268, 0.006510823033750057, -0.013680041767656803, -0.24737438559532166, -0.02852414920926094, -0.022412575781345367, 0.16979394853115082, -0.2190135270357132, 0.04012007266283035, 0.07135825604200363, 0.15074580907821655, 0.006911954842507839, -0.03669405356049538, 0.005606858059763908, -0.0768459290266037, -0.03284264728426933, -0.0623927041888237, -0.008401541970670223, -0.03721899166703224, -0.054593876004219055, 0.051287684589624405, -0.16718235611915588, -0.031153932213783264, 0.1028679683804512, 0.06780845671892166, -0.13963541388511658, -0.01705223321914673, -0.04106766730546951, -0.043112557381391525, -0.05709490180015564, -0.05539087578654289, 0.11148729920387268, 0.05757083371281624, 0.04828811436891556, -0.06848311424255371, -0.0756818875670433, 0.006132613401859999, -0.0179264098405838, -0.021222935989499092, 0.0928845927119255, 0.07583390921354294, -0.12310270220041275, 0.09178637713193893, 0.10549022257328033, 0.0892157256603241, 0.10119049996137619, -0.02137933485209942, -0.08691582083702087, -0.04892461374402046, 0.0229446180164814, 0.016364475712180138, 0.13983985781669617, -0.016759416088461876, 0.05310053750872612, 0.04020100086927414, -0.012910815887153149, 0.011883769184350967, -0.09328193217515945, 0.02934250421822071, 0.03636814281344414, -0.019501443952322006, 0.040251899510622025, -0.03908125311136246, 0.020790016278624535, 0.08787564933300018, 0.04434992000460625, 0.03818633407354355, 0.013980780728161335, -0.04370194673538208, -0.11091572046279907, 0.17051653563976288, -0.12536633014678955, -0.239797443151474, -0.14147889614105225, 0.001731917611323297, 0.041165996342897415, -0.01159723661839962, 0.0031763319857418537, -0.06770002096891403, -0.11874829977750778, -0.09346967190504074, 0.015001182444393635, 0.04228860139846802, -0.080612413585186, -0.05524664744734764, 0.05777253210544586, 0.040611669421195984, -0.143319234251976, 0.020423002541065216, 0.04869217798113823, -0.08989228308200836, -0.00900039542466402, 0.08071441948413849, 0.06998268514871597, 0.17929090559482574, 0.009512054733932018, -0.020932139828801155, 0.03292093798518181, 0.2157505750656128, -0.13771237432956696, 0.11451084166765213, 0.14277678728103638, -0.0911637470126152, 0.08293474465608597, 0.1991184800863266, 0.03884927183389664, -0.10264625400304794, 0.03326369449496269, 0.022328944876790047, -0.028676386922597885, -0.2503291964530945, -0.06918580830097198, 0.0007976540364325047, -0.05238448083400726, 0.07527847588062286, 0.08888168632984161, 0.09494108706712723, 0.01729334332048893, -0.09416709095239639, -0.08025584369897842, 0.04901478812098503, 0.10409125685691833, 0.010409193113446236, -0.01156378723680973, 0.09060908854007721, -0.03323452174663544, 0.01843860000371933, 0.09313460439443588, 0.004041523206979036, 0.17060963809490204, 0.05550962686538696, 0.18336638808250427, 0.07643263041973114, 0.0721396952867508, 0.015671607106924057, 0.013079277239739895, 0.02304760180413723, 0.021578695625066757, -0.0033059304114431143, -0.0851421132683754, -0.009511260315775871, 0.11862117052078247, 0.06801546365022659, 0.020754681900143623, 0.009507957845926285, -0.033934496343135834, 0.08064714074134827, 0.17465052008628845, -0.0009437129483558238, -0.1870066076517105, -0.06896740943193436, 0.08026526123285294, -0.08972865343093872, -0.10345284640789032, -0.02900044620037079, 0.0354950949549675, -0.17372116446495056, 0.02448408491909504, -0.018045885488390923, 0.11108683049678802, -0.1356782615184784, -0.01890929788351059, 0.06319493800401688, 0.07008420675992966, -0.0016097982879728079, 0.06208989396691322, -0.16155508160591125, 0.10791012644767761, 0.01390943955630064, 0.06503470987081528, -0.09786296635866165, 0.10111832618713379, -0.006267238408327103, -0.007413685787469149, 0.14043578505516052, 0.009255880489945412, -0.07051325589418411, -0.08343593031167984, -0.0979004055261612, -0.010649190284311771, 0.12877127528190613, -0.14879846572875977, 0.08456916362047195, -0.0322830006480217, -0.04405250772833824, 0.005208021495491266, -0.10768675804138184, -0.12857580184936523, -0.18887875974178314, 0.05537694692611694, -0.13356289267539978, 0.033175256103277206, -0.1055491715669632, -0.0408647358417511, -0.02885887771844864, 0.19630752503871918, -0.22321896255016327, -0.0670507624745369, -0.15318840742111206, -0.09096445143222809, 0.14798617362976074, -0.049908362329006195, 0.08374498039484024, -0.005065108183771372, 0.18742504715919495, 0.01894373446702957, -0.024415504187345505, 0.1011786088347435, -0.09638315439224243, -0.19627197086811066, -0.08534666895866394, 0.15457913279533386, 0.13537167012691498, 0.0351712740957737, -0.004617651924490929, 0.03167666867375374, -0.0189940445125103, -0.12101218104362488, 0.022920187562704086, 0.17696480453014374, 0.07036592066287994, 0.024736741557717323, -0.02639835514128208, -0.11453131586313248, -0.06600044667720795, -0.032452553510665894, 0.02982977218925953, 0.18294402956962585, -0.07586611062288284, 0.18679921329021454, 0.13732017576694489, -0.05770440772175789, -0.1956426501274109, 0.01923983357846737, 0.04058924317359924, 0.00837375782430172, 0.032165057957172394, -0.20239581167697906, 0.08806682378053665, 0.0007347199134528637, -0.05074144899845123, 0.13624143600463867, -0.17552010715007782, -0.15046143531799316, 0.06929060816764832, 0.03642011433839798, -0.19279520213603973, -0.12030941992998123, -0.08865538984537125, -0.05107492581009865, -0.17776648700237274, 0.10758756101131439, 0.02193085290491581, 0.00676411809399724, 0.033654287457466125, 0.026140762493014336, 0.014790141955018044, -0.0396585576236248, 0.19431912899017334, -0.02348872646689415, 0.030807901173830032, -0.08293910324573517, -0.07001609355211258, 0.05941145867109299, -0.05705835670232773, 0.0775861069560051, -0.022215960547327995, 0.013414059765636921, -0.10643109679222107, -0.04425564035773277, -0.03175993636250496, 0.015691282227635384, -0.09722420573234558, -0.08909335732460022, -0.050057362765073776, 0.09262266010046005, 0.0974174216389656, -0.035089656710624695, -0.03564268350601196, -0.07118509709835052, 0.039714183658361435, 0.18831974267959595, 0.17605267465114594, 0.046182651072740555, -0.08030564337968826, -0.004098092205822468, -0.011694483458995819, 0.042484745383262634, -0.21906526386737823, 0.062426332384347916, 0.05058585852384567, 0.014059843495488167, 0.1173645630478859, -0.01779606007039547, -0.15810294449329376, -0.06761486083269119, 0.05993710458278656, -0.06326820701360703, -0.19225671887397766, 0.0032602818682789803, 0.055388111621141434, -0.16711848974227905, -0.04538320377469063, 0.0430813767015934, -0.005750913172960281, -0.039257556200027466, 0.01613711006939411, 0.08359149098396301, 0.0031580389477312565, 0.07040093839168549, 0.05520293489098549, 0.086640864610672, -0.10250966250896454, 0.07937785238027573, 0.08386688679456711, -0.08347215503454208, 0.028158824890851974, 0.09330378472805023, -0.06144890934228897, -0.029910072684288025, 0.032212331891059875, 0.08255140483379364, 0.012964491732418537, -0.04401125758886337, 0.008184057660400867, -0.10146338492631912, 0.0627170279622078, 0.09755739569664001, 0.03206513822078705, 0.011901181191205978, 0.03383762761950493, 0.04645882546901703, -0.07481352984905243, 0.11842621862888336, 0.025973208248615265, 0.01822328381240368, -0.04273592680692673, -0.04516541585326195, 0.027133917436003685, -0.02340707741677761, -0.007566304877400398, -0.03583317995071411, -0.06988023966550827, -0.01722576655447483, -0.16493180394172668, -0.01076561864465475, -0.044063083827495575, 0.008020744659006596, 0.026847293600440025, -0.0369400717318058, 0.008594665676355362, 0.009077225811779499, -0.07577309012413025, -0.06240518018603325, -0.02245018258690834, 0.0914878100156784, -0.16343435645103455, 0.023352261632680893, 0.08310231566429138, -0.12098916620016098, 0.09322582185268402, 0.018653366714715958, -0.0019369579385966063, 0.02680385299026966, -0.15561461448669434, 0.0368269607424736, -0.027320701628923416, 0.014671673998236656, 0.045705173164606094, -0.21818207204341888, -0.0014451020397245884, -0.03558654710650444, -0.059982262551784515, -0.010693925432860851, -0.037350837141275406, -0.11245633661746979, 0.10088492184877396, 0.012412267737090588, -0.08672942966222763, -0.03157110512256622, 0.03652326017618179, 0.08053763210773468, -0.02631879225373268, 0.15205731987953186, -0.0010786735219880939, 0.07447176426649094, -0.1738860309123993, -0.0210786834359169, -0.0090115275233984, 0.02177848480641842, -0.016872623935341835, -0.01564885675907135, 0.042430613189935684, -0.026671668514609337, 0.18584245443344116, -0.027355844154953957, 0.03733034059405327, 0.06316441297531128, 0.01770097203552723, -0.021354418247938156, 0.10755398869514465, 0.06012963131070137, 0.02173144742846489, 0.019801700487732887, 0.0075409491546452045, -0.041807159781455994, -0.018543899059295654, -0.19347810745239258, 0.07164526730775833, 0.14044208824634552, 0.08769161999225616, -0.012164209969341755, 0.08067302405834198, -0.10084949433803558, -0.11743459850549698, 0.11121641099452972, -0.059808436781167984, -0.0022669173777103424, -0.06652101874351501, 0.13155525922775269, 0.14582572877407074, -0.19254228472709656, 0.07050827890634537, -0.06511960923671722, -0.05269601568579674, -0.11906112730503082, -0.1953776627779007, -0.05703132599592209, -0.054343048483133316, -0.015079263597726822, -0.05059242993593216, 0.07498416304588318, 0.05622640252113342, 0.010858895257115364, 0.0015552249969914556, 0.06971994787454605, -0.019759170711040497, 0.001521410304121673, 0.032095473259687424, 0.06417544931173325, 0.014362066984176636, -0.03133942559361458, 0.018592869862914085, -0.008470231667160988, 0.03991629183292389, 0.0633486732840538, 0.04155107960104942, -0.028110865503549576, 0.01659207232296467, -0.0337030366063118, -0.10854189842939377, 0.04278707876801491, -0.028698457404971123, -0.08063279837369919, 0.13984808325767517, 0.025403661653399467, 0.009562181308865547, -0.022226108238101006, 0.241981640458107, -0.07480388879776001, -0.09265431761741638, -0.14692139625549316, 0.1055137887597084, -0.04348868504166603, 0.06415078788995743, 0.045384783297777176, -0.10421041399240494, 0.012057800777256489, 0.12658540904521942, 0.1625804305076599, -0.0438871793448925, 0.019560009241104126, 0.03037482313811779, 0.00398933095857501, -0.03853052854537964, 0.05252939090132713, 0.06827457249164581, 0.14848913252353668, -0.050116557627916336, 0.09223522990942001, 0.0050886585377156734, -0.09908851981163025, -0.034064266830682755, 0.11810369789600372, -0.019035303965210915, 0.019260596483945847, -0.05601469427347183, 0.11788773536682129, -0.06368034332990646, -0.233087420463562, 0.06406685709953308, -0.07426205277442932, -0.14131881296634674, -0.024826664477586746, 0.07676053047180176, -0.014309047721326351, 0.027850469574332237, 0.0722186341881752, -0.07654546946287155, 0.19937579333782196, 0.03671684116125107, -0.058611851185560226, -0.05623113736510277, 0.07896319031715393, -0.11419995129108429, 0.27488458156585693, 0.015893742442131042, 0.045155949890613556, 0.1038452610373497, -0.013412448577582836, -0.13435201346874237, 0.01833420805633068, 0.09638454020023346, -0.08846497535705566, 0.04018587991595268, 0.20595665276050568, -0.0028567397966980934, 0.11962885409593582, 0.07707620412111282, -0.08087631314992905, 0.049051105976104736, -0.09828304499387741, -0.07230360060930252, -0.08931835740804672, 0.09120666980743408, -0.07232820242643356, 0.14308606088161469, 0.1311190128326416, -0.05265164002776146, 0.00968363881111145, -0.029376711696386337, 0.045510269701480865, 0.004632700700312853, 0.10403459519147873, 0.008749093860387802, -0.1797543615102768, 0.02403045818209648, 0.01841445453464985, 0.10992073267698288, -0.1701374351978302, -0.09734909981489182, 0.043629229068756104, -0.0012522460892796516, -0.06121290475130081, 0.1290796846151352, 0.05957380682229996, 0.05011506378650665, -0.043520737439394, -0.0211784765124321, -0.008504665456712246, 0.14072857797145844, -0.10404830425977707, -0.00016830587992444634 ]
null
null
sample-factory
[Biopeak Male Enhancement](https://atozsupplement.com/biopeak-male-enhancement/) It's vital to take note of that not all upgrade techniques are therapeutically or experimentally demonstrated, and numerous items advertised for these reasons might need guideline or logical proof supporting their adequacy and wellbeing. Prior to considering any type of male upgrade, it's significant to talk with a medical care proficient to grasp expected dangers, viability, and legitimate use. Furthermore, solid way of life decisions like standard activity, a decent eating regimen, overseeing pressure, and sufficient rest can emphatically influence sexual wellbeing and execution. VISIT HERE FOR OFFICIAL WEBSITE:-https://atozsupplement.com/biopeak-male-enhancement/
{"language": ["en"], "license": "bigscience-openrail-m", "library_name": "sample-factory", "tags": ["Biopeak Male Enhancement"]}
null
biopeakmaleenhancement/biopeakmaleenhancement
[ "sample-factory", "Biopeak Male Enhancement", "en", "license:bigscience-openrail-m", "region:us" ]
2024-02-14T04:26:56+00:00
[]
[ "en" ]
TAGS #sample-factory #Biopeak Male Enhancement #en #license-bigscience-openrail-m #region-us
Biopeak Male Enhancement It's vital to take note of that not all upgrade techniques are therapeutically or experimentally demonstrated, and numerous items advertised for these reasons might need guideline or logical proof supporting their adequacy and wellbeing. Prior to considering any type of male upgrade, it's significant to talk with a medical care proficient to grasp expected dangers, viability, and legitimate use. Furthermore, solid way of life decisions like standard activity, a decent eating regimen, overseeing pressure, and sufficient rest can emphatically influence sexual wellbeing and execution. VISIT HERE FOR OFFICIAL WEBSITE:-URL
[]
[ "TAGS\n#sample-factory #Biopeak Male Enhancement #en #license-bigscience-openrail-m #region-us \n" ]
[ 34 ]
[ "passage: TAGS\n#sample-factory #Biopeak Male Enhancement #en #license-bigscience-openrail-m #region-us \n" ]
[ 0.059733208268880844, 0.14116916060447693, -0.0038548926822841167, -0.10532311350107193, -0.016972018405795097, -0.005176512990146875, 0.2109173983335495, 0.10016068071126938, 0.1540966033935547, -0.04037818685173988, 0.19738240540027618, 0.04459291324019432, -0.0646730437874794, 0.20598557591438293, 0.11077117919921875, -0.046621061861515045, 0.0527985580265522, 0.015123892575502396, -0.022511683404445648, 0.017451221123337746, 0.06133377552032471, -0.13675303757190704, 0.025031238794326782, 0.015036151744425297, -0.015638671815395355, 0.026698296889662743, 0.07266905158758163, 0.09625168144702911, 0.13920791447162628, -0.03784354031085968, 0.01665537990629673, 0.07806600630283356, -0.04262834042310715, -0.12524227797985077, 0.07596592605113983, -0.07404247671365738, -0.046364061534404755, 0.11916996538639069, 0.07273201644420624, 0.06478538364171982, 0.09592127054929733, 0.08015887439250946, 0.012263467535376549, 0.08960561454296112, -0.062499284744262695, -0.1238546222448349, 0.00045836754725314677, -0.009277165867388248, -0.12443670630455017, -0.00236354093067348, 0.03444318845868111, 0.18305987119674683, -0.13585159182548523, 0.007130343466997147, 0.08373377472162247, -0.010373515076935291, 0.061690229922533035, -0.05108119919896126, 0.31021997332572937, 0.14846079051494598, -0.13563072681427002, -0.05839730426669121, 0.005006108433008194, -0.038546573370695114, 0.03089621104300022, -0.03860919550061226, 0.16000314056873322, -0.021155541762709618, -0.0024635798763483763, 0.06458816677331924, 0.20830591022968292, 0.055762454867362976, -0.020066842436790466, -0.009672378189861774, -0.07195653766393661, -0.04162827879190445, 0.03940476104617119, 0.00765252998098731, -0.025257866829633713, 0.02375810034573078, -0.011563189327716827, -0.13638891279697418, -0.052242983132600784, 0.054804883897304535, -0.02554178237915039, 0.2789691686630249, -0.07363937795162201, 0.04371163621544838, -0.05868030712008476, -0.07531461119651794, 0.10313545912504196, -0.0393008291721344, 0.03353237360715866, -0.045146502554416656, 0.08731119334697723, -0.09478145837783813, 0.043029461055994034, 0.05121719837188721, 0.22878114879131317, 0.10515077412128448, -0.0868818536400795, -0.017958104610443115, 0.02036735601723194, 0.10078920423984528, -0.02483760006725788, -0.13438159227371216, -0.04374614357948303, 0.011333885602653027, 0.10777051746845245, -0.03513304144144058, -0.03253643587231636, -0.007311927620321512, -0.07364188879728317, -0.07604489475488663, -0.10258244723081589, 0.0677962377667427, -0.04348127543926239, -0.08033424615859985, -0.03819887340068817, -0.012632769532501698, 0.1000608503818512, 0.05768681690096855, -0.07992623001337051, 0.03522700443863869, 0.06577230244874954, 0.09334057569503784, -0.1128164604306221, 0.03570731729269028, 0.14647535979747772, -0.03763234242796898, -0.1904274970293045, -0.04077380523085594, -0.018805867061018944, 0.035714421421289444, -0.009766903705894947, 0.05144842341542244, 0.12683124840259552, -0.1292026937007904, -0.027343085035681725, 0.013751146383583546, -0.0284234918653965, 0.04562249779701233, -0.0777791440486908, 0.10431694984436035, 0.027688924223184586, -0.05358681082725525, -0.03520877659320831, 0.04583634063601494, -0.059449005872011185, 0.08796864748001099, -0.11728057265281677, 0.07588427513837814, -0.11771216243505478, -0.02937648817896843, -0.1271788626909256, 0.05050591006875038, -0.059733252972364426, -0.15529382228851318, -0.04539496824145317, 0.18843141198158264, -0.07815763354301453, 0.004855080042034388, -0.1627945601940155, -0.06581804901361465, -0.04002959653735161, 0.0323566310107708, -0.06738246977329254, -0.06044371426105499, 0.1120549738407135, 0.07082555443048477, -0.116175077855587, -0.012226314283907413, -0.03555179759860039, 0.26241135597229004, 0.034399956464767456, 0.26040539145469666, -0.0001334164699073881, -0.20251412689685822, 0.024975698441267014, 0.10144076496362686, -0.12345825880765915, -0.16057272255420685, 0.1346380114555359, -0.07129516452550888, -0.07141115516424179, 0.010235763154923916, 0.0966561809182167, 0.12766610085964203, -0.08787554502487183, -0.025817740708589554, 0.06915560364723206, -0.03273184970021248, -0.00828667264431715, -0.12534336745738983, 0.11168140918016434, -0.07989054918289185, 0.09022378921508789, 0.0019273075740784407, 0.10990715026855469, 0.04784766957163811, 0.011643616482615471, -0.06381113827228546, 0.012712848372757435, -0.035810839384794235, -0.061887145042419434, -0.07819598913192749, -0.03885162994265556, 0.01803315430879593, -0.16064129769802094, -0.041985850781202316, 0.15217234194278717, 0.022906994447112083, 0.00039893583743833005, 0.013944020494818687, 0.034516364336013794, 0.004284558817744255, 0.018509391695261, -0.026660175994038582, -0.1626681089401245, 0.11381261050701141, -0.0825100839138031, -0.09211661666631699, 0.023178059607744217, 0.018190039321780205, 0.021978378295898438, 0.04899757355451584, 0.10097205638885498, -0.045250944793224335, 0.039527397602796555, -0.00544520141556859, -0.018543094396591187, -0.011240108869969845, 0.11328458786010742, -0.014560931362211704, -0.11446744203567505, 0.12948836386203766, 0.12755610048770905, 0.2799892723560333, 0.05311517417430878, -0.03925958275794983, -0.08481588959693909, -0.08966033160686493, -0.07260479778051376, -0.012680902145802975, -0.03218685835599899, -0.09238433092832565, 0.046459682285785675, 0.0031396758276969194, 0.04379560053348541, -0.01674124039709568, -0.0011503547430038452, -0.024105696007609367, -0.013371916487812996, 0.032681457698345184, 0.12519679963588715, 0.1380399614572525, -0.20191358029842377, 0.08413150161504745, 0.2172485589981079, 0.09293576329946518, 0.25291821360588074, -0.04897646605968475, -0.08719184249639511, -0.05181923508644104, 0.0363403856754303, -0.08995930850505829, 0.15215423703193665, -0.15415500104427338, 0.1634179651737213, 0.06807246059179306, -0.0523516908288002, 0.05543496832251549, 0.04436191916465759, -0.1291206032037735, -0.06563656777143478, 0.06595978885889053, -0.04423125833272934, 0.10518290847539902, -0.04121996834874153, 0.1310640275478363, 0.07457791268825531, 0.024360088631510735, 0.06843394041061401, 0.04182446002960205, -0.0937415063381195, 0.09910932183265686, -0.016693836078047752, 0.05952206254005432, -0.058648329228162766, -0.027029624208807945, 0.0769483894109726, -0.02787870168685913, 0.044966068118810654, -0.004003947135061026, -0.018184339627623558, 0.06561031192541122, 0.012445960193872452, -0.013690553605556488, 0.013796561397612095, 0.0019442442571744323, 0.06384545564651489, 0.07617045193910599, -0.08539920300245285, 0.022640090435743332, 0.0401003398001194, 0.12581858038902283, 0.12628459930419922, -0.06532976031303406, 0.039749663323163986, 0.008913959376513958, -0.03002498671412468, -0.059594422578811646, 0.02519952319562435, 0.2773938775062561, 0.03271614387631416, -0.14643239974975586, 0.17264381051063538, 0.0530959814786911, 0.027317846193909645, 0.07226071506738663, 0.03606417775154114, -0.08650225400924683, 0.03523962199687958, -0.08755144476890564, -0.11909216642379761, -0.1800452619791031, -0.0037362261209636927, -0.015273119322955608, 0.03619101643562317, -0.09654011577367783, 0.0099180918186903, 0.06643905490636826, -0.029253771528601646, 0.038321737200021744, 0.005021081306040287, -0.16622111201286316, 0.03604014217853546, -0.033444058150053024, -0.130465567111969, 0.016534272581338882, -0.029761895537376404, -0.0684918761253357, 0.05411946028470993, 0.03356027230620384, 0.05585676059126854, 0.17935024201869965, 0.2108895629644394, 0.09701672196388245, -0.030694114044308662, 0.1310349553823471, 0.11461004614830017, -0.013489377684891224, -0.0828394889831543, -0.04515868425369263, -0.10653869807720184, 0.014065111987292767, 0.047050923109054565, 0.007855705916881561, -0.008057706989347935, 0.14634940028190613, -0.16852536797523499, 0.03145759925246239, -0.06485273689031601, -0.018194355070590973, -0.06060231477022171, 0.017415078356862068, 0.04071391746401787, -0.095775306224823, 0.03418524190783501, -0.09254182130098343, 0.14322294294834137, -0.04675161838531494, -0.08532129973173141, 0.007598588243126869, 0.019678210839629173, 0.19263778626918793, 0.10612346231937408, -0.007951582781970501, -0.12179964780807495, -0.028985396027565002, 0.07609431445598602, -0.1722055971622467, 0.15305429697036743, -0.03417268022894859, -0.06839955598115921, 0.005775908473879099, -0.09310755133628845, 0.0032463509123772383, 0.0630539208650589, 0.143875852227211, 0.025150323286652565, -0.17395290732383728, -0.13110366463661194, -0.18128713965415955, 0.023949457332491875, 0.03602143004536629, -0.03393573686480522, -0.011989017948508263, 0.027912519872188568, 0.026000844314694405, 0.0011359917698428035, 0.13631147146224976, -0.17330564558506012, 0.06003224104642868, 0.04135168343782425, -0.05520205199718475, 0.08870663493871689, 0.00745536619797349, 0.006587953306734562, 0.13701282441616058, 0.127719447016716, -0.17479988932609558, -0.07988223433494568, -0.1251693218946457, -0.07064872980117798, 0.03749697282910347, -0.05134496092796326, -0.06347006559371948, -0.004242356400936842, 0.018709992989897728, -0.01863226480782032, -0.13613185286521912, 0.06703124195337296, 0.04183988645672798, -0.05701598525047302, -0.1627648025751114, 0.09878215938806534, -0.04569464921951294, 0.11699026823043823, -0.01859121583402157, -0.0897127166390419, -0.13530652225017548, -0.08352988958358765, 0.07806858420372009, -0.04645652696490288, -0.0359732024371624, -0.08998095989227295, -0.14142991602420807, 0.11024970561265945, 0.07058820873498917, -0.06637046486139297, 0.2385779619216919, 0.3430306911468506, -0.04595121368765831, 0.1415655016899109, 0.14603805541992188, -0.0454343818128109, -0.1627432405948639, 0.02703278698027134, -0.06779895722866058, -0.01858803816139698, 0.07409803569316864, -0.21391655504703522, 0.17398495972156525, 0.11200994998216629, -0.021443163976073265, 0.15428538620471954, -0.06815070658922195, -0.10940945893526077, -0.09119658917188644, 0.007078991271555424, 0.47993412613868713, -0.023407522588968277, -0.05097653344273567, -0.09439833462238312, 0.044059958308935165, 0.20442144572734833, -0.00707279471680522, 0.049317918717861176, -0.07742047309875488, 0.1338169127702713, -0.012196593917906284, -0.04233498126268387, 0.15982070565223694, -0.04076337814331055, 0.014776688069105148, 0.05695216357707977, -0.09225662052631378, 0.07939980924129486, 0.06169791519641876, -0.012461444362998009, 0.033856917172670364, -0.05500597134232521, -0.021388782188296318, 0.008214663714170456, -0.03238785266876221, 0.19422078132629395, -0.012243439443409443, -0.12908923625946045, -0.08397665619850159, 0.030834252014756203, -0.031466659158468246, -0.07887134701013565, 0.13827988505363464, -0.03496229648590088, 0.17540204524993896, -0.0404287688434124, 0.08434102684259415, -0.16576047241687775, -0.027994908392429352, 0.05022835731506348, -0.04299583658576012, 0.02542773447930813, -0.09708235412836075, -0.021685009822249413, 0.10592468082904816, 0.0026840080972760916, 0.036376629024744034, 0.04613083228468895, -0.0925239846110344, 0.0735057145357132, 0.08411349356174469, -0.17005296051502228, 0.044111739844083786, -0.0376301109790802, 0.10040736943483353, -0.07939078658819199, -0.09209266304969788, 0.07456411421298981, 0.060774993151426315, -0.024372920393943787, -0.079083152115345, 0.011452131904661655, -0.12114130705595016, 0.07413638383150101, 0.1774785965681076, 0.06526634842157364, -0.021605070680379868, -0.1883176565170288, -0.02379535138607025, 0.026769625023007393, -0.11955481022596359, 0.01706513948738575, 0.002337720012292266, -0.03415044769644737, -0.04103744029998779, 0.12528641521930695, -0.08177994191646576, 0.06829828768968582, 0.0015359242679551244, -0.08907339721918106, 0.015191649086773396, 0.16877396404743195, 0.0059042139910161495, 0.10316716134548187, 0.022502977401018143, -0.08560074120759964, 0.005183322820812464, 0.03300384432077408, -0.3391541838645935, 0.011068245396018028, 0.03145239129662514, 0.057421281933784485, -0.1357341706752777, 0.0593070350587368, -0.10251881927251816, 0.012245877645909786, -0.16317760944366455, -0.05380522459745407, -0.05234937742352486, -0.03828635811805725, -0.048253271728754044, -0.07236777991056442, -0.05065620318055153, 0.012405282817780972, -0.06551117449998856, -0.03786008432507515, -0.12721973657608032, 0.0333697684109211, 0.028396720066666603, 0.06987720727920532, 0.07809069007635117, 0.02405550889670849, 0.1078341007232666, -0.007285365369170904, 0.1302785575389862, -0.011500086635351181, 0.07242987304925919, -0.02717907726764679, -0.05508579686284065, 0.04458677023649216, 0.024615401402115822, 0.04761834442615509, -0.015113038010895252, -0.10015108436346054, -0.06724825501441956, 0.018264155834913254, 0.0594383105635643, 0.08255257457494736, -0.09808224439620972, -0.06824126839637756, 0.02021712437272072, -0.043623000383377075, -0.024430423974990845, -0.06827989220619202, -0.08497657626867294, 0.0865267887711525, 0.008859368972480297, 0.13426080346107483, 0.07856391370296478, 0.06848573684692383, -0.09871266037225723, 0.03904462605714798, 0.0019403495825827122, -0.09714574366807938, -0.06855463236570358, 0.05740728601813316, -0.07100794464349747, -0.007110683713108301, 0.3372415602207184, -0.04900936037302017, -0.07283693552017212, 0.07614491134881973, 0.10653924942016602, 0.093600794672966, 0.007062087766826153, 0.2925892472267151, 0.005916513502597809, 0.04956135153770447, -0.00730376411229372, 0.012617997825145721, -0.07776778936386108, -0.09236826747655869, 0.122929148375988, 0.22670474648475647, -0.040866147726774216, -0.09682714939117432, -0.013327062129974365, 0.015138206072151661, -0.03818022087216377, -0.07802354544401169, 0.12573586404323578, -0.1000366359949112, -0.01696530543267727, 0.18851812183856964, 0.11729834228754044, -0.1209964007139206, -0.003223956795409322, 0.06938381493091583, 0.011277448385953903, -0.13361810147762299, 0.08975204080343246, -0.02825220860540867, 0.03468380495905876, 0.0317055769264698, -0.09319133311510086, -0.06320837885141373, 0.048259437084198, -0.04411818087100983, -0.043424203991889954, -0.03078918717801571, -0.04469247907400131, -0.09782058000564575, -0.027103396132588387, 0.04530381038784981, -0.07435614615678787, -0.29574042558670044, -0.03706665709614754, -0.039360322058200836, -0.040557343512773514, -0.0369369275867939, -0.021014641970396042, -0.07507183402776718, -0.17596253752708435, -0.2295544296503067, -0.04290055111050606, -0.059640198945999146, -0.008943137712776661, -0.04577341303229332, -0.001592082786373794, -0.008112955838441849, -0.009535379707813263, -0.0016345527255907655, 0.14733608067035675, 0.07116542756557465, 0.09456869959831238, 0.007802003528922796, -0.0550907664000988, -0.03352857381105423, 0.0841204822063446, -0.05877108499407768, 0.08131938427686691, 0.06595875322818756, 0.18888087570667267, 0.07179322093725204, -0.19361525774002075, 0.04484431818127632, -0.05328376591205597, 0.020279206335544586, -0.058663733303546906, 0.08209431916475296, 0.026357220485806465, -0.024583226069808006, -0.02220858633518219, 0.02660258114337921, -0.005987999029457569, 0.07701446861028671, -0.1186639741063118, -0.05119052156805992, 0.0704585611820221, -0.04751024767756462, -0.17355331778526306, -0.05338747799396515, -0.09731312096118927, 0.02577020227909088, -0.047100670635700226, -0.16091254353523254, 0.006661523133516312, 0.023841245099902153, -0.01966993138194084, -0.050251275300979614, -0.0023158255498856306, -0.04965980723500252, -0.04037489369511604, -0.06909375637769699, 0.017236942425370216, -0.19681815803050995, 0.00508289085701108, 0.15190806984901428, -0.04461964592337608, 0.16437916457653046, -0.026038844138383865, 0.06609157472848892, 0.037427376955747604, -0.0362156517803669, -0.14612524211406708, 0.00135997764300555, 0.01793287694454193, -0.00877121277153492, -0.07042159140110016, 0.00684660067781806, 0.07668185234069824, 0.08041638135910034, 0.03877587243914604, -0.022003991529345512, -0.02639513835310936, 0.005956320557743311, -0.09132764488458633, -0.0028142957016825676, 0.0759507492184639, -0.07745151221752167, 0.14018353819847107, 0.03212807700037956, -0.09462156146764755, -0.09420954436063766, -0.04788345843553543, -0.049355633556842804, 0.027847932651638985, -0.05307353660464287, -0.1423511654138565, -0.10485710948705673, -0.03847488388419151, 0.05439072474837303, -0.03680327534675598, -0.2701833248138428, -0.087875135242939, -0.19074596464633942, 0.09675686061382294, -0.04681768640875816, 0.0015471663791686296, 0.0005492775817401707, -0.04875396564602852, 0.058503370732069016, -0.13848748803138733, 0.0551503524184227, -0.0348648764193058, 0.012531781569123268, -0.03410521149635315 ]
null
null
transformers
# eCeLLM-L This repo contains the models for "eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data" ## eCeLLM Models Leveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models). The eCeLLM-L model is instruction-tuned from the large base models [Llama-2 13B-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf). ## Citation ```bibtex @misc{peng2024ecellm, title={eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data}, author={Bo Peng and Xinyi Ling and Ziru Chen and Huan Sun and Xia Ning}, year={2024}, eprint={2402.08831}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"license": "cc-by-4.0", "datasets": ["NingLab/ECInstruct"]}
text-generation
NingLab/eCeLLM-L
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:NingLab/ECInstruct", "arxiv:2402.08831", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:27:12+00:00
[ "2402.08831" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# eCeLLM-L This repo contains the models for "eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data" ## eCeLLM Models Leveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models). The eCeLLM-L model is instruction-tuned from the large base models Llama-2 13B-chat.
[ "# eCeLLM-L\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"", "## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-L model is instruction-tuned from the large base models Llama-2 13B-chat." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# eCeLLM-L\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"", "## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-L model is instruction-tuned from the large base models Llama-2 13B-chat." ]
[ 80, 43, 62 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# eCeLLM-L\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-L model is instruction-tuned from the large base models Llama-2 13B-chat." ]
[ -0.039050184190273285, -0.06399025022983551, -0.002810201607644558, 0.07877717912197113, 0.06265608966350555, -0.00027314142789691687, 0.10827166587114334, 0.020922493189573288, 0.02827756479382515, 0.007869805209338665, 0.10189100354909897, 0.1826450079679489, -0.06265450268983841, 0.2182312160730362, -0.04692773148417473, -0.16205808520317078, 0.04782169312238693, 0.03614526242017746, 0.012400575913488865, 0.07919605821371078, 0.16483469307422638, -0.07940226793289185, 0.12666091322898865, -0.028736470267176628, -0.05337297543883324, 0.04592273011803627, -0.05362867936491966, -0.06566768139600754, 0.08231867104768753, 0.06215905770659447, 0.09481389075517654, -0.024790078401565552, 0.07378671318292618, -0.20176230370998383, 0.004665051586925983, -0.05947278067469597, -0.06537208706140518, 0.016736533492803574, -0.06773952394723892, -0.02716074325144291, 0.12400057911872864, -0.042616039514541626, 0.08701758831739426, -0.033833108842372894, -0.027406763285398483, 0.09660457074642181, -0.020588256418704987, -0.022950170561671257, 0.1887330561876297, 0.08943071961402893, 0.027429940178990364, 0.09952938556671143, -0.10370402783155441, 0.09032339602708817, 0.12601152062416077, -0.300326943397522, 0.026959659531712532, 0.09856341779232025, 0.10435035824775696, 0.04719088226556778, -0.012335105799138546, 0.03344278410077095, 0.11397813260555267, 0.04517630860209465, 0.1360037475824356, -0.012705978937447071, -0.10357925295829773, 0.004454549867659807, -0.11910093575716019, 0.022308291867375374, 0.31169432401657104, -0.025895169004797935, -0.04136006906628609, -0.052376773208379745, -0.060551632195711136, -0.019438719376921654, 0.016060028225183487, -0.0662912055850029, 0.05802996829152107, -0.010977918282151222, 0.03828134015202522, -0.08316944539546967, -0.10619798302650452, -0.04084145277738571, -0.12152446806430817, 0.2606774866580963, 0.035154424607753754, 0.003457002341747284, -0.09884621202945709, 0.04090714082121849, -0.02589455433189869, -0.039654430001974106, -0.0693054348230362, 0.009670114144682884, 0.05388488620519638, -0.006616050377488136, -0.029474178329110146, 0.03458411991596222, 0.023791125044226646, 0.1993257850408554, -0.02908441424369812, -0.010530843399465084, 0.0886111631989479, 0.054807212203741074, 0.0170498788356781, 0.04659322276711464, 0.0029605526942759752, -0.045444805175065994, 0.06986641883850098, -0.01590673066675663, 0.1201852485537529, -0.03607657179236412, -0.1639208197593689, 0.006513180211186409, -0.0568704791367054, 0.06699319183826447, -0.11587998270988464, 0.05731179937720299, -0.08786603808403015, 0.014197035692632198, 0.10760229825973511, -0.11607354879379272, 0.04723384603857994, -0.021684769541025162, -0.04911980405449867, -0.012062731198966503, 0.07933331280946732, 0.01994115486741066, -0.00005322726065060124, 0.0281180739402771, -0.07664984464645386, -0.05725175887346268, -0.1254003643989563, -0.10721515864133835, 0.07876601815223694, -0.0019192233448848128, 0.07859119027853012, -0.15873846411705017, -0.27227503061294556, 0.0316178984940052, -0.018956521525979042, -0.016477232798933983, -0.03111465647816658, -0.12639831006526947, -0.023180196061730385, -0.004346469417214394, -0.0771980807185173, -0.07883639633655548, -0.06850538402795792, -0.03850466012954712, -0.005934211891144514, 0.05039329454302788, -0.12188848853111267, 0.0180385559797287, -0.03218788653612137, 0.001974343555048108, 0.026680773124098778, -0.0039047447498887777, -0.03881406784057617, 0.011299834586679935, -0.025687266141176224, -0.011594043113291264, -0.009948904626071453, 0.11270447075366974, 0.03985437750816345, 0.10584313422441483, -0.17883455753326416, 0.010662493295967579, 0.07530756294727325, -0.1013650968670845, -0.1530136615037918, 0.07508861273527145, -0.04118962958455086, 0.09878996759653091, 0.12934455275535583, 0.05680619180202484, -0.09811881929636002, -0.1116132140159607, -0.00833695475012064, 0.03720146790146828, -0.0009440895519219339, -0.11376585811376572, 0.06319967657327652, 0.033328015357255936, -0.08437425643205643, 0.004081381484866142, -0.05940740555524826, -0.04021454229950905, -0.07036285102367401, -0.020643578842282295, 0.035150881856679916, -0.07793083041906357, 0.027468862012028694, -0.1302136331796646, 0.014229876920580864, -0.1003246083855629, -0.05280120298266411, 0.12062794715166092, 0.12540632486343384, -0.09390036761760712, 0.05139274522662163, -0.14154206216335297, 0.0745597705245018, -0.03736623749136925, 0.009396498091518879, -0.05126788839697838, -0.16597098112106323, 0.024830514565110207, 0.013540340587496758, 0.0963580384850502, -0.0023722404148429632, -0.01515424158424139, 0.0594998262822628, 0.016653232276439667, 0.006417124066501856, -0.04455391317605972, -0.0005331445718184114, -0.11332748830318451, -0.12945078313350677, -0.02295907586812973, -0.09329412132501602, 0.03095082938671112, -0.148493692278862, 0.03183041885495186, 0.0489676408469677, 0.053006600588560104, 0.024683019146323204, 0.08271530270576477, -0.03314180299639702, 0.05772007256746292, -0.07326260954141617, 0.007555619813501835, 0.0038010673597455025, -0.016085240989923477, -0.15695440769195557, 0.0658487007021904, -0.14049208164215088, 0.19907650351524353, 0.11563096940517426, -0.06319393217563629, 0.0033604460768401623, -0.1331797093153, -0.0061365291476249695, -0.015487978234887123, -0.060473501682281494, -0.10185416042804718, 0.19043442606925964, -0.022501589730381966, 0.11448878049850464, -0.08668462187051773, -0.05234018713235855, -0.08485604077577591, -0.08005248755216599, -0.050732944160699844, 0.06973807513713837, 0.14139090478420258, -0.01257591973990202, 0.05426078662276268, 0.18102653324604034, -0.09155366569757462, 0.16563422977924347, 0.08261767029762268, 0.004035038873553276, -0.019694140180945396, -0.03596682846546173, -0.04415963217616081, 0.05652865394949913, -0.08552800863981247, -0.02909720130264759, 0.02346373349428177, -0.005561055615544319, 0.1246766746044159, -0.13794060051441193, 0.009233401156961918, 0.06941784918308258, -0.04382197558879852, 0.03519617021083832, 0.024131668731570244, -0.11128059029579163, 0.06562846153974533, -0.06167982518672943, -0.14087343215942383, 0.05437226966023445, 0.005158451851457357, -0.09427700191736221, 0.2077239751815796, -0.17162194848060608, -0.13601990044116974, -0.1618678867816925, -0.011977835558354855, -0.09236954897642136, 0.04193146899342537, 0.05246745049953461, -0.03440940007567406, -0.12954799830913544, -0.14078451693058014, 0.0832696333527565, 0.037716321647167206, -0.03808348625898361, 0.05717907473444939, -0.04560789465904236, -0.11900127679109573, -0.22920677065849304, -0.03447414189577103, -0.021494125947356224, -0.09020601212978363, 0.026740098372101784, -0.04193602502346039, 0.13355784118175507, 0.18557722866535187, -0.03149808198213577, -0.012310518883168697, -0.0022338179405778646, 0.1674223244190216, 0.00012066175986547023, -0.031216375529766083, 0.11467717587947845, -0.0150395967066288, 0.004319421015679836, 0.09907971322536469, 0.03823212906718254, -0.15536488592624664, 0.05983969196677208, -0.025597358122467995, -0.04079059138894081, -0.2582913935184479, -0.13622727990150452, -0.015464214608073235, -0.05899367481470108, -0.02813102863729, 0.0567772313952446, 0.011637908406555653, 0.06657818704843521, 0.010914422571659088, 0.07530514150857925, 0.04657590761780739, 0.06736849248409271, 0.1511271446943283, -0.0384930744767189, 0.05113885924220085, -0.004589417949318886, -0.07059970498085022, 0.045168790966272354, 0.15049666166305542, 0.15040025115013123, 0.06030233949422836, 0.16027823090553284, 0.105301633477211, -0.03640621528029442, 0.0329040065407753, 0.17609840631484985, -0.09287391602993011, 0.04618434980511665, -0.05223884433507919, -0.05561739206314087, -0.035082392394542694, 0.09032953530550003, -0.10406982153654099, -0.0016229207394644618, -0.10535051673650742, 0.09874838590621948, 0.07857180386781693, 0.0357164666056633, -0.01571730338037014, -0.3335023522377014, 0.005185313057154417, 0.10176971554756165, 0.027469728142023087, -0.005306818522512913, 0.10527518391609192, 0.0925128236413002, -0.01186068169772625, 0.04552062600851059, 0.08083100616931915, 0.07018408179283142, -0.08950594812631607, -0.004463106859475374, -0.019937623292207718, 0.08759818971157074, 0.012357956729829311, 0.09013038128614426, -0.1834467053413391, 0.17409712076187134, 0.0185772143304348, 0.09321330487728119, -0.038605134934186935, -0.005589253734797239, -0.032276544719934464, 0.11529505997896194, 0.08115136623382568, -0.017711319029331207, -0.10937340557575226, -0.11914210766553879, -0.10035693645477295, 0.06415174156427383, 0.02536035142838955, -0.03374908119440079, 0.10503748804330826, 0.03954991698265076, -0.009404756128787994, 0.05164921283721924, -0.08755554258823395, -0.14985115826129913, -0.14176832139492035, -0.01410848367959261, 0.17310379445552826, 0.023660218343138695, -0.04717511683702469, -0.08206011354923248, 0.03276945650577545, 0.09180617332458496, -0.12132202088832855, -0.08524312824010849, -0.07019342482089996, -0.10269908607006073, 0.038286175578832626, -0.0610484816133976, 0.07637067139148712, 0.11064612865447998, 0.15514349937438965, -0.030256280675530434, -0.04847174137830734, 0.06009632349014282, -0.12290570884943008, -0.06727225333452225, 0.002016030717641115, 0.08169805258512497, 0.04315789416432381, 0.0007396560977213085, 0.08517128974199295, -0.07911776751279831, 0.016743168234825134, -0.1267329305410385, -0.10185419023036957, 0.24453943967819214, -0.0010435464791953564, 0.11905034631490707, -0.15671783685684204, -0.02977990172803402, 0.0020129855256527662, -0.025515440851449966, 0.1378597766160965, 0.19564838707447052, -0.0068854885175824165, 0.04638800397515297, 0.2520989775657654, -0.12655037641525269, -0.2073153704404831, -0.12445761263370514, -0.0691881999373436, 0.07745487987995148, -0.012607122771441936, -0.0870790183544159, 0.1348644495010376, 0.05060850828886032, -0.011825920082628727, 0.03131485357880592, -0.2934567630290985, -0.14699594676494598, 0.14264941215515137, 0.0829617828130722, 0.20532403886318207, -0.04599054902791977, -0.010403755120933056, -0.13149739801883698, -0.07451887428760529, 0.18633419275283813, -0.1861802339553833, 0.07195721566677094, 0.0006887915660627186, 0.15340270102024078, -0.011802629567682743, 0.020457539707422256, 0.13793595135211945, 0.11792093515396118, 0.1039387434720993, -0.026091158390045166, -0.0026580619160085917, -0.0561252199113369, -0.03288472443819046, 0.19758468866348267, -0.10654958337545395, -0.02432670071721077, -0.0890064612030983, -0.08938925713300705, 0.03999396041035652, 0.09682836383581161, -0.027689680457115173, -0.046290311962366104, -0.05362226441502571, -0.05084965378046036, 0.02758343517780304, 0.004730861634016037, 0.07154442369937897, 0.040504831820726395, -0.02530621737241745, 0.05431588366627693, 0.2153615802526474, -0.24046115577220917, 0.010611454024910927, 0.029511015862226486, -0.03698287904262543, 0.11752356588840485, -0.023633696138858795, 0.006738970056176186, 0.13057495653629303, -0.03544589504599571, 0.1233571469783783, 0.06940614432096481, -0.04222192242741585, 0.0036311738658696413, 0.10391087085008621, -0.07492326945066452, 0.027784688398241997, -0.0059383041225373745, 0.1133243665099144, 0.07259274274110794, 0.11211484670639038, 0.20033657550811768, -0.08254577219486237, -0.010829142294824123, -0.06133878231048584, 0.06973573565483093, -0.017292339354753494, 0.15358611941337585, 0.07219258695840836, 0.0013119836803525686, -0.08358965069055557, 0.07863761484622955, 0.009061750955879688, -0.05339548736810684, 0.051145289093256, 0.012039070017635822, -0.061839908361434937, -0.08831070363521576, -0.014122869819402695, 0.21232853829860687, -0.2205141931772232, -0.1490388661623001, -0.007888040505349636, -0.12752185761928558, -0.007184120826423168, 0.11382219195365906, 0.10092218220233917, 0.03779987245798111, -0.017222153022885323, 0.008934114128351212, -0.03897768259048462, 0.0715513825416565, 0.10453158617019653, 0.05443275347352028, -0.16467538475990295, 0.05478609353303909, 0.01949155330657959, 0.02758924290537834, -0.040005024522542953, 0.04958773031830788, -0.08480670303106308, 0.005740052089095116, -0.0033132098615169525, 0.06916636973619461, -0.039283134043216705, 0.015372667461633682, 0.05421339347958565, 0.03252524882555008, -0.08665299415588379, 0.04706451669335365, -0.07034476101398468, 0.048456232994794846, -0.008087980560958385, 0.07791678607463837, -0.09730521589517593, -0.06496630609035492, 0.018949517980217934, -0.05958881229162216, 0.07310422509908676, -0.0299705658107996, -0.03299757465720177, 0.06900004297494888, -0.2712298631668091, 0.06410980969667435, 0.10868703573942184, 0.07394451647996902, 0.05574699118733406, -0.022468918934464455, -0.010311705991625786, 0.06839160621166229, 0.022311639040708542, -0.04950917512178421, -0.00726620526984334, -0.08971875160932541, -0.06604858487844467, -0.051392242312431335, -0.07508784532546997, -0.028458673506975174, -0.024276725947856903, 0.06856779754161835, 0.0036899601109325886, 0.1463780254125595, -0.051025692373514175, -0.03991484269499779, -0.0070398589596152306, 0.0597073920071125, 0.031470250338315964, -0.03628050535917282, -0.12656950950622559, -0.03972959145903587, 0.02841523289680481, -0.08888325840234756, 0.27299848198890686, 0.02145957387983799, -0.035812050104141235, -0.02854226715862751, -0.05280224233865738, 0.029863256961107254, 0.018597489222884178, 0.10325290262699127, -0.03966214507818222, 0.08184850960969925, -0.13261669874191284, -0.009450705721974373, 0.13792887330055237, -0.07421386986970901, 0.12126105278730392, 0.004834843799471855, 0.007550850044935942, 0.18391792476177216, 0.10794617235660553, -0.0711553692817688, -0.08412735164165497, -0.1297762095928192, 0.018311461433768272, 0.027354050427675247, 0.004088612738996744, 0.08819351345300674, 0.11161622405052185, -0.08844589442014694, -0.01623656041920185, 0.014322406612336636, -0.08426164090633392, -0.13604381680488586, -0.09487161785364151, -0.11749403178691864, -0.0867299735546112, -0.02531317248940468, -0.19516360759735107, -0.07230347394943237, 0.022942407056689262, 0.02967209741473198, -0.003657875582575798, 0.09750645607709885, -0.15390191972255707, 0.0029028768185526133, -0.026907768100500107, -0.01267946045845747, 0.019923610612750053, -0.03703684359788895, -0.06606824696063995, -0.0667354017496109, 0.003211965085938573, -0.042047109454870224, 0.02733931876718998, 0.035687029361724854, 0.02818809635937214, 0.0335097573697567, 0.038278136402368546, -0.07566924393177032, -0.0145405363291502, 0.035356972366571426, 0.04087657108902931, 0.037628162652254105, -0.10512232780456543, 0.04036417976021767, 0.07964010536670685, -0.030525444075465202, -0.10606406629085541, -0.07318300008773804, 0.05276178568601608, 0.09683628380298615, 0.11943531036376953, 0.016767593100667, -0.03376955911517143, -0.06435844302177429, 0.16393320262432098, 0.18414652347564697, -0.08771611005067825, -0.009660357609391212, -0.07263752073049545, 0.035850223153829575, -0.028960777446627617, 0.0862627625465393, 0.07880818098783493, 0.35713309049606323, 0.007925261743366718, -0.05983618274331093, -0.053132444620132446, 0.07943248748779297, -0.0640377551317215, -0.016680769622325897, -0.016447454690933228, -0.025759993121027946, -0.006967297289520502, 0.019369542598724365, -0.030327018350362778, -0.0745386853814125, -0.05681898072361946, -0.0781201720237732, -0.03501027077436447, 0.011270646005868912, 0.0893603190779686, -0.016904931515455246, 0.10900988429784775, -0.09766871482133865, -0.08558443933725357, 0.12939761579036713, -0.0022105530370026827, -0.21810579299926758, 0.06833918392658234, 0.08402284979820251, 0.0551745668053627, 0.2662951946258545, 0.005557098425924778, 0.208744615316391, 0.061574362218379974, -0.014516757801175117, -0.041088707745075226, 0.15752863883972168, 0.03026982769370079, 0.05241996422410011, 0.11263673007488251, -0.0020761790219694376, -0.06880662590265274, 0.06645721942186356, 0.03502930700778961, -0.15977780520915985, 0.02686179243028164, 0.152339905500412, -0.07562568783760071, -0.041992101818323135, -0.017029404640197754, -0.13143125176429749, 0.11104299873113632, 0.05621757358312607, -0.028933033347129822, -0.0484488382935524, 0.046002037823200226, 0.1285274177789688, -0.005435019265860319, 0.00027517456328496337, 0.03781760483980179, -0.16623450815677643, -0.0008050362812355161, -0.0028757029213011265, 0.01675759069621563, -0.1393408477306366, -0.06379260122776031, -0.09814184159040451, 0.027897879481315613, -0.11784247308969498, 0.024648526683449745, 0.20121613144874573, 0.012461593374609947, -0.06893475353717804, -0.0627279207110405, -0.052913203835487366, 0.05313951522111893, -0.12697391211986542, -0.17083773016929626 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_asr_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.9321 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.921 | 200.0 | 1000 | 3.0016 | 1.0 | | 2.7953 | 400.0 | 2000 | 2.9321 | 1.0 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["minds14"], "metrics": ["wer"], "base_model": "facebook/wav2vec2-base", "model-index": [{"name": "my_awesome_asr_mind_model", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "minds14", "type": "minds14", "config": "en-US", "split": "None", "args": "en-US"}, "metrics": [{"type": "wer", "value": 1.0, "name": "Wer"}]}]}]}
automatic-speech-recognition
alekoe/my_awesome_asr_mind_model
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:minds14", "base_model:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-14T04:27:25+00:00
[]
[]
TAGS #transformers #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-minds14 #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us
my\_awesome\_asr\_mind\_model ============================= This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set: * Loss: 2.9321 * Wer: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 2000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.2.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-minds14 #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 77, 158, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-minds14 #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.12051050364971161, 0.1092028021812439, -0.002510610269382596, 0.03892416134476662, 0.09763863682746887, 0.018884101882576942, 0.10134239494800568, 0.15120212733745575, -0.053535763174295425, 0.09590266644954681, 0.12245342135429382, 0.052578117698431015, 0.07936438173055649, 0.19475217163562775, -0.04249247536063194, -0.2929709255695343, 0.027692321687936783, -0.024148298427462578, -0.12358136475086212, 0.11901675909757614, 0.09299248456954956, -0.11023508757352829, 0.03377814218401909, -0.006513233762234449, -0.0950276330113411, -0.020527785643935204, -0.013019800186157227, -0.06106739863753319, 0.12470652163028717, 0.04980316013097763, 0.07885412871837616, 0.05568801611661911, 0.09364617615938187, -0.2748165726661682, 0.013936094008386135, 0.061626408249139786, 0.035716764628887177, 0.07181596755981445, 0.0870484784245491, -0.02756127342581749, 0.08570448309183121, -0.08794623613357544, 0.08954020589590073, 0.04582124203443527, -0.10854481160640717, -0.324898898601532, -0.09847323596477509, 0.06087244674563408, 0.16194646060466766, 0.062252823263406754, -0.030178971588611603, 0.06194747984409332, -0.06598957628011703, 0.07936816662549973, 0.2055942863225937, -0.25990667939186096, -0.07206331193447113, -0.009450742974877357, 0.05809110775589943, 0.04263579472899437, -0.11228551715612411, -0.007271529175341129, 0.011603849940001965, 0.024195970967411995, 0.12938527762889862, 0.005486565642058849, 0.030303189530968666, 0.011467101983726025, -0.1388823240995407, -0.03869480639696121, 0.09130238741636276, 0.09047958254814148, -0.025256281718611717, -0.1362418681383133, -0.02749851532280445, -0.162252739071846, -0.05003312975168228, -0.02059556357562542, 0.02642899379134178, -0.0370984748005867, -0.11607251316308975, -0.001920467708259821, -0.0625489354133606, -0.09255697578191757, 0.019438719376921654, 0.15975739061832428, 0.028980279341340065, -0.03000459261238575, 0.023172002285718918, 0.11041061580181122, 0.019979916512966156, -0.14264170825481415, 0.0007382270996458828, 0.023275619372725487, -0.1255246102809906, -0.021043922752141953, -0.018804306164383888, -0.0008502601995132864, 0.020277392119169235, 0.1549113392829895, -0.0259241983294487, 0.08545394241809845, 0.027436552569270134, 0.022117530927062035, -0.08973564207553864, 0.15888263285160065, -0.07287604361772537, -0.10904836654663086, -0.04611438512802124, 0.12774890661239624, -0.003090919926762581, -0.012878569774329662, -0.08021741360425949, 0.022175848484039307, 0.09410343319177628, 0.05761140212416649, 0.0027303220704197884, 0.026812275871634483, -0.07189628481864929, -0.01780441217124462, 0.02745228074491024, -0.09884131699800491, 0.05178273096680641, 0.03136252984404564, -0.051809102296829224, -0.04003138467669487, 0.0029806604143232107, 0.03793492540717125, 0.021653246134519577, 0.1160433366894722, -0.04214589670300484, -0.02426042966544628, -0.07079008966684341, -0.10243844240903854, 0.01752123236656189, -0.02971845492720604, -0.015104123391211033, -0.07516661286354065, -0.12069203704595566, -0.05533907189965248, 0.06879673898220062, -0.05338837951421738, -0.04815957322716713, -0.07135767489671707, -0.056057482957839966, 0.05503229424357414, -0.02938745729625225, 0.16361182928085327, -0.05494901165366173, 0.10906701534986496, 0.00018759517115540802, 0.07345353811979294, 0.053330060094594955, 0.0553518682718277, -0.03125111013650894, 0.061245325952768326, -0.1711100935935974, 0.08681008219718933, -0.08560812473297119, 0.03988419473171234, -0.163691908121109, -0.08207424730062485, -0.011096415109932423, 0.002892801072448492, 0.09090445935726166, 0.12289927154779434, -0.20130406320095062, -0.09976550191640854, 0.15775229036808014, -0.08285015821456909, -0.10246404260396957, 0.12672768533229828, -0.029723219573497772, 0.013987386599183083, 0.03845639526844025, 0.16590383648872375, 0.08306834846735, -0.09144749492406845, 0.02583133801817894, -0.06246629357337952, 0.09378660470247269, 0.059564340859651566, 0.10012312233448029, -0.04589186608791351, 0.014337319880723953, -0.0051638116128742695, -0.062099944800138474, 0.07409803569316864, -0.07905343174934387, -0.079830601811409, -0.002706511877477169, -0.08629998564720154, 0.05944500491023064, 0.02889097109436989, 0.020643483847379684, -0.08815187960863113, -0.1263328641653061, 0.014129303395748138, 0.10846176743507385, -0.08775638788938522, 0.01892685703933239, -0.07446378469467163, 0.02236282080411911, -0.013106929138302803, -0.0014315219596028328, -0.14431588351726532, -0.0033193801064044237, 0.028578903526067734, -0.043702006340026855, 0.006230355706065893, -0.037377212196588516, 0.08926335722208023, 0.03955335170030594, -0.08304478973150253, -0.0777636170387268, -0.0297845546156168, 0.01879405602812767, -0.0729825347661972, -0.24886517226696014, -0.06589338928461075, -0.04219796881079674, 0.18340156972408295, -0.22215163707733154, 0.013711229898035526, 0.030785616487264633, 0.14755114912986755, 0.056775230914354324, -0.04204858839511871, 0.007431387901306152, 0.0631861686706543, -0.005582849029451609, -0.08131593465805054, 0.034968432039022446, -0.006784212309867144, -0.1576855480670929, 0.017782967537641525, -0.12981730699539185, 0.09616900980472565, 0.09164837002754211, 0.06031518056988716, -0.11249339580535889, -0.0841275006532669, -0.0533028282225132, -0.05002156272530556, -0.030588028952479362, 0.005326078739017248, 0.1753711700439453, 0.03919932618737221, 0.10695552825927734, -0.06736526638269424, -0.0443413071334362, 0.0291293878108263, 0.011770463548600674, -0.021030358970165253, 0.12932929396629333, 0.03287649154663086, -0.1050763800740242, 0.10240036249160767, 0.13205158710479736, -0.04390193894505501, 0.13613222539424896, -0.05398159474134445, -0.07609916478395462, -0.047736767679452896, 0.0395500622689724, 0.03202016279101372, 0.12075980752706528, -0.09415604174137115, -0.011486878618597984, 0.018079962581396103, 0.019781053066253662, 0.0022478506434708834, -0.18813899159431458, -0.008795689791440964, 0.04835912585258484, -0.06844665110111237, 0.0002332986769033596, -0.025785986334085464, -0.0028358737472444773, 0.08779744058847427, 0.03494543582201004, -0.05695319175720215, 0.0006401318241842091, -0.02231980487704277, -0.09516920149326324, 0.18616999685764313, -0.1119699701666832, -0.16796468198299408, -0.10245183110237122, -0.014253661967813969, -0.0028990020509809256, -0.012081251479685307, 0.037164200097322464, -0.09599919617176056, -0.026672299951314926, -0.07329055666923523, 0.024930544197559357, -0.0368424728512764, 0.03488386794924736, -0.005814786534756422, 0.019058028236031532, 0.06609723716974258, -0.0792723298072815, 0.022418713197112083, -0.013733751140534878, -0.007100806571543217, 0.02383529767394066, 0.026754843071103096, 0.08323252201080322, 0.1630542129278183, 0.03542119637131691, 0.028481431305408478, -0.06117439270019531, 0.15295282006263733, -0.12652479112148285, 0.015568112023174763, 0.1121266707777977, -0.009134317748248577, 0.03618480637669563, 0.19209279119968414, 0.037782877683639526, -0.08932369202375412, 0.02328423410654068, 0.011678097769618034, -0.012214310467243195, -0.20431192219257355, -0.028855489566922188, -0.049044910818338394, -0.020253701135516167, 0.11967577040195465, 0.03210340440273285, -0.017576096579432487, 0.023041371256113052, -0.02739006094634533, -0.026854002848267555, 0.038987815380096436, 0.0736677348613739, 0.04395221546292305, 0.030213456600904465, 0.124759241938591, -0.006686120294034481, -0.0218160729855299, 0.035436857491731644, 0.009019221179187298, 0.23373524844646454, 0.013846378773450851, 0.13405820727348328, 0.04649878665804863, 0.13995307683944702, 0.0206095390021801, 0.030705511569976807, 0.02590310201048851, -0.024375760927796364, 0.002024495741352439, -0.05507546290755272, -0.023012695834040642, 0.07224053144454956, 0.09692394733428955, 0.02665267325937748, -0.11311566084623337, -0.027776431292295456, 0.030052145943045616, 0.34836000204086304, 0.08378442376852036, -0.2860748767852783, -0.09053277969360352, 0.02559591829776764, -0.08389093726873398, -0.04552319273352623, 0.010785343125462532, 0.13783705234527588, -0.09754153341054916, 0.07616554945707321, -0.0706121101975441, 0.07826874405145645, -0.05893386900424957, -0.001906155259348452, 0.06131455674767494, 0.07505173981189728, -0.011551326140761375, 0.04208676144480705, -0.24748553335666656, 0.32575899362564087, 0.003215802600607276, 0.06907682120800018, -0.0383588969707489, 0.03188704699277878, 0.03624706715345383, -0.011964138597249985, 0.09308718889951706, -0.015180133283138275, -0.14019304513931274, -0.17820528149604797, -0.07712536305189133, 0.013012230396270752, 0.13124293088912964, -0.08926265686750412, 0.11461719870567322, -0.026406744495034218, -0.03392587602138519, 0.05683830380439758, -0.04912438616156578, -0.10701513290405273, -0.1077425479888916, 0.010076746344566345, 0.02797493152320385, 0.0921909287571907, -0.11429200321435928, -0.09296803176403046, -0.056102339178323746, 0.16866165399551392, -0.11275286972522736, -0.013799871318042278, -0.14647544920444489, 0.07387929409742355, 0.15318700671195984, -0.07015855610370636, 0.05709250643849373, 0.013593049719929695, 0.13293609023094177, -0.010829170234501362, -0.0076415869407355785, 0.12935325503349304, -0.0884983241558075, -0.23293037712574005, -0.07954340428113937, 0.1701773852109909, 0.0402490496635437, 0.06514754891395569, -0.014587005600333214, 0.04802537336945534, -0.0021549281664192677, -0.066726453602314, 0.08221430331468582, 0.07321074604988098, -0.0009982470655813813, 0.04379821941256523, -0.01147131435573101, -0.028780123218894005, -0.06631243973970413, -0.07415404170751572, 0.13566988706588745, 0.31872493028640747, -0.11125703155994415, 0.07855521887540817, 0.08741383999586105, -0.03350990638136864, -0.15893568098545074, 0.012835169211030006, 0.11953502893447876, 0.0464116595685482, 0.02980407327413559, -0.18715088069438934, -0.003538602264598012, 0.07948725670576096, -0.040494099259376526, 0.050219424068927765, -0.2907966375350952, -0.13682614266872406, 0.09415324032306671, 0.0868840292096138, -0.03012876771390438, -0.14871343970298767, -0.06799320131540298, -0.023612527176737785, -0.05618574842810631, 0.03345777466893196, -0.023433947935700417, 0.1164599135518074, 0.0077233812771737576, 0.02168230153620243, 0.019212733954191208, -0.0457632876932621, 0.15129408240318298, -0.04047633334994316, 0.0644957572221756, -0.004680674523115158, 0.014479069039225578, -0.04345414787530899, -0.08227259665727615, -0.007144843693822622, -0.08472545444965363, 0.03134319558739662, -0.09083192050457001, -0.035981740802526474, -0.08433377742767334, 0.021358007565140724, -0.03374754637479782, -0.051632706075906754, -0.03114265576004982, 0.06876340508460999, 0.06030686944723129, -0.0133733619004488, 0.08741449564695358, -0.07040011137723923, 0.16186434030532837, 0.1285540908575058, 0.10706397891044617, -0.003199211787432432, -0.06465035676956177, -0.0038189305923879147, -0.0448748841881752, 0.04727235808968544, -0.1430254727602005, 0.032362036406993866, 0.12352354824542999, 0.04291658475995064, 0.16968688368797302, 0.0415448434650898, -0.08622587472200394, 0.008986875414848328, 0.06575573235750198, -0.07603215426206589, -0.15412050485610962, -0.009744700975716114, 0.06578615307807922, -0.14962023496627808, -0.0043197860941290855, 0.12179260700941086, -0.04184719920158386, -0.01122509129345417, 0.008578437380492687, 0.03397401049733162, -0.02856636606156826, 0.20484969019889832, 0.02517949417233467, 0.0844685509800911, -0.08809538185596466, 0.0737048014998436, 0.056438371539115906, -0.1482299119234085, 0.04156913235783577, 0.07743997126817703, -0.06657540798187256, -0.015203338116407394, 0.02748929336667061, 0.08848299086093903, 0.048032406717538834, -0.04425032064318657, -0.09884724020957947, -0.15588229894638062, 0.072261743247509, 0.12787126004695892, 0.022487349808216095, 0.020777996629476547, -0.014527218416333199, 0.03369832783937454, -0.07993500679731369, 0.10554108768701553, 0.07562422007322311, 0.061507001519203186, -0.12672699987888336, 0.1369858980178833, 0.009184726513922215, -0.018340526148676872, -0.003912670537829399, 0.007863381877541542, -0.12105175852775574, 0.0174592062830925, -0.1078580692410469, -0.03641891106963158, -0.06676696985960007, -0.00823319423943758, 0.01286346185952425, -0.06585732847452164, -0.038632191717624664, 0.002905850764364004, -0.11305299401283264, -0.044582489877939224, -0.02411271631717682, 0.06172029301524162, -0.09862300753593445, -0.04109618812799454, 0.03470705822110176, -0.11346712708473206, 0.09494172781705856, 0.023587021976709366, 0.035785991698503494, 0.009000624530017376, -0.11958112567663193, -0.0006223799427971244, 0.025002693757414818, -0.021657004952430725, 0.02392648346722126, -0.1997956782579422, -0.019871683791279793, -0.04146995395421982, 0.004669381771236658, 0.011515253223478794, 0.0397675447165966, -0.11409979313611984, -0.007504423148930073, -0.04119155928492546, -0.056611329317092896, -0.05234149098396301, 0.04343543201684952, 0.08216064423322678, 0.03036045841872692, 0.14065036177635193, -0.09537015855312347, 0.05925730615854263, -0.2239624410867691, -0.0037534453440457582, -0.046408943831920624, -0.05989350378513336, -0.07932852953672409, -0.027240408584475517, 0.09210139513015747, -0.05138292908668518, 0.09024123102426529, -0.06858143210411072, 0.05794881656765938, 0.0367421917617321, -0.14186178147792816, 0.03294414281845093, 0.052838634699583054, 0.16867753863334656, 0.052479345351457596, -0.031131811439990997, 0.05615526810288429, 0.015177401714026928, 0.04612042382359505, 0.12079862505197525, 0.14043644070625305, 0.17443925142288208, 0.06785360723733902, 0.08766160905361176, 0.06130681931972504, -0.121241994202137, -0.11786223948001862, 0.1189441829919815, -0.046428125351667404, 0.11135058104991913, -0.02980848215520382, 0.20869433879852295, 0.11431854218244553, -0.21776174008846283, 0.04829619824886322, -0.03339294716715813, -0.07139670103788376, -0.08862729370594025, -0.05837313458323479, -0.0910336971282959, -0.18948236107826233, -0.0021169204264879227, -0.08476287871599197, 0.03676426410675049, 0.025972722098231316, 0.037419889122247696, 0.052681777626276016, 0.09101654589176178, 0.03828806057572365, 0.006859718821942806, 0.11592346429824829, 0.028745757415890694, -0.004966198466718197, -0.04491560533642769, -0.10553433001041412, 0.05011424049735069, -0.04273054003715515, 0.04372512176632881, -0.043789930641651154, -0.10562442243099213, 0.05133640021085739, 0.032510899007320404, -0.1151682585477829, 0.021859975531697273, -0.009127413854002953, 0.06548859924077988, 0.10014959424734116, 0.0414309948682785, -0.00905719306319952, -0.018333591520786285, 0.235820934176445, -0.1099429801106453, -0.06338809430599213, -0.14297819137573242, 0.2655138373374939, -0.02470894530415535, 0.004364147782325745, 0.004112279042601585, -0.07883531600236893, -0.004088824149221182, 0.15888871252536774, 0.14857053756713867, -0.02837371453642845, -0.002716048387810588, 0.015126414597034454, -0.018536629155278206, -0.04295959323644638, 0.06417103856801987, 0.10345068573951721, 0.04775061085820198, -0.058140020817518234, -0.0208515003323555, -0.027244113385677338, -0.07015907019376755, -0.0082562156021595, 0.09637755900621414, 0.020985174924135208, -0.0020464640110731125, -0.03430252522230148, 0.1226547583937645, -0.008365912362933159, -0.1618550717830658, 0.052970040589571, -0.20809245109558105, -0.181022047996521, -0.029099179431796074, 0.06276281923055649, 0.029489777982234955, 0.05198405310511589, 0.006544039119035006, -0.018441159278154373, 0.09656353294849396, 0.0003995232982560992, -0.02336059883236885, -0.12034270167350769, 0.08549577742815018, -0.06926152855157852, 0.17746978998184204, -0.04455569013953209, 0.012879841960966587, 0.12579645216464996, 0.051297035068273544, -0.08973782509565353, 0.05661493539810181, 0.08067164570093155, -0.11371839791536331, 0.05529799684882164, 0.19075047969818115, -0.04674863815307617, 0.17610463500022888, 0.06476321816444397, -0.1251007467508316, 0.04277823120355606, -0.11005937308073044, -0.09133688360452652, -0.06500263512134552, 0.01375576388090849, -0.02424081601202488, 0.1444065421819687, 0.19472210109233856, -0.06874153763055801, -0.002588439965620637, -0.04015488922595978, 0.02267669327557087, 0.04710126295685768, 0.14696165919303894, -0.031127143651247025, -0.25983792543411255, 0.02716190740466118, 0.02667391300201416, 0.024520542472600937, -0.24207915365695953, -0.10917488485574722, 0.016537906602025032, -0.050289254635572433, -0.04569930210709572, 0.12576638162136078, 0.05903775990009308, 0.04422809183597565, -0.05260637030005455, -0.14399193227291107, -0.012748868204653263, 0.17385971546173096, -0.1617729812860489, -0.042773980647325516 ]
null
null
null
Quantized using 200 samples of 8192 tokens from an RP-oriented [PIPPA](https://huggingface.co/datasets/royallab/PIPPA-cleaned) dataset. Branches: - `main` -- `measurement.json` - `2.25b6h` -- 2.25bpw, 6bit lm_head - `3.7b6h` -- 3.7bpw, 6bit lm_head - `6b6h` -- 6bpw, 6bit lm_head Requires ExllamaV2 version 0.0.12 and up. Original model link: [Envoid/Mixtral-Instruct-ITR-8x7B](Envoid/Mixtral-Instruct-ITR-8x7B) Original model README below. *** # Caution this model may be unpredictable ![](https://files.catbox.moe/y8nv86.jpg) ## Mixtral-Instruct-ITR (Interpolative Training Regression) We have to go back, edition. For this model I took what I learned in the making of [Cat-8x7B](https://huggingface.co/Envoid/Cat-8x7B) and went back to the very beginning and SLERP merged [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) onto [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) While the results aren't perfect the model feels more creative and less overcooked than Mixtral Instruct is often accused of being. The hopes are that this should also have left the model much more receptive to additional finetuning and I am interested to see what comes of it so please feel free to download it and have fun. Apologies about the small shard size (keep forgetting to change the mergekit config back) ## The model is a lot less likely to refuse certain requests in this state: so if you are going to apply additional finetuning to the model you may need to bolster its alignment depending on your use case. The model still responds well to [INST] Thingie [/INST] formatting quite well. Or if preferred this can easily be reproduced if you have both base and instruct models handy using mergekit (mixtral branch) with the following config ``` models: - model: ./mistralai_Mixtral-8x7B-Instruct-v0.1 - model: ./mistralai_Mixtral-8x7B-v0.1 merge_method: slerp base_model: ./mistralai_Mixtral-8x7B-v0.1 parameters: t: - value: 0.5 dtype: float16 ```
{"license": "cc-by-nc-4.0"}
null
rAIfle/Mixtral-Instruct-ITR-8x7B-exl2-rpcal
[ "license:cc-by-nc-4.0", "region:us" ]
2024-02-14T04:27:27+00:00
[]
[]
TAGS #license-cc-by-nc-4.0 #region-us
Quantized using 200 samples of 8192 tokens from an RP-oriented PIPPA dataset. Branches: - 'main' -- 'URL' - '2.25b6h' -- 2.25bpw, 6bit lm_head - '3.7b6h' -- 3.7bpw, 6bit lm_head - '6b6h' -- 6bpw, 6bit lm_head Requires ExllamaV2 version 0.0.12 and up. Original model link: Envoid/Mixtral-Instruct-ITR-8x7B Original model README below. * # Caution this model may be unpredictable ![](URL ## Mixtral-Instruct-ITR (Interpolative Training Regression) We have to go back, edition. For this model I took what I learned in the making of Cat-8x7B and went back to the very beginning and SLERP merged mistralai/Mixtral-8x7B-Instruct-v0.1 onto mistralai/Mixtral-8x7B-v0.1 While the results aren't perfect the model feels more creative and less overcooked than Mixtral Instruct is often accused of being. The hopes are that this should also have left the model much more receptive to additional finetuning and I am interested to see what comes of it so please feel free to download it and have fun. Apologies about the small shard size (keep forgetting to change the mergekit config back) ## The model is a lot less likely to refuse certain requests in this state: so if you are going to apply additional finetuning to the model you may need to bolster its alignment depending on your use case. The model still responds well to [INST] Thingie [/INST] formatting quite well. Or if preferred this can easily be reproduced if you have both base and instruct models handy using mergekit (mixtral branch) with the following config
[ "# Caution this model may be unpredictable\n![](URL", "## Mixtral-Instruct-ITR (Interpolative Training Regression)\n\nWe have to go back, edition. \n\nFor this model I took what I learned in the making of Cat-8x7B and went back to the very beginning and SLERP merged mistralai/Mixtral-8x7B-Instruct-v0.1 onto mistralai/Mixtral-8x7B-v0.1\n\nWhile the results aren't perfect the model feels more creative and less overcooked than Mixtral Instruct is often accused of being. \n\nThe hopes are that this should also have left the model much more receptive to additional finetuning and I am interested to see what comes of it so please feel free to download it and have fun. \n\nApologies about the small shard size (keep forgetting to change the mergekit config back)", "## The model is a lot less likely to refuse certain requests in this state:\n\nso if you are going to apply additional finetuning to the model you may need to bolster its alignment depending on your use case. \n\nThe model still responds well to [INST] Thingie [/INST] formatting quite well. \n\nOr if preferred this can easily be reproduced if you have both base and instruct models handy using mergekit (mixtral branch) with the following config" ]
[ "TAGS\n#license-cc-by-nc-4.0 #region-us \n", "# Caution this model may be unpredictable\n![](URL", "## Mixtral-Instruct-ITR (Interpolative Training Regression)\n\nWe have to go back, edition. \n\nFor this model I took what I learned in the making of Cat-8x7B and went back to the very beginning and SLERP merged mistralai/Mixtral-8x7B-Instruct-v0.1 onto mistralai/Mixtral-8x7B-v0.1\n\nWhile the results aren't perfect the model feels more creative and less overcooked than Mixtral Instruct is often accused of being. \n\nThe hopes are that this should also have left the model much more receptive to additional finetuning and I am interested to see what comes of it so please feel free to download it and have fun. \n\nApologies about the small shard size (keep forgetting to change the mergekit config back)", "## The model is a lot less likely to refuse certain requests in this state:\n\nso if you are going to apply additional finetuning to the model you may need to bolster its alignment depending on your use case. \n\nThe model still responds well to [INST] Thingie [/INST] formatting quite well. \n\nOr if preferred this can easily be reproduced if you have both base and instruct models handy using mergekit (mixtral branch) with the following config" ]
[ 17, 16, 184, 107 ]
[ "passage: TAGS\n#license-cc-by-nc-4.0 #region-us \n# Caution this model may be unpredictable\n![](URL## Mixtral-Instruct-ITR (Interpolative Training Regression)\n\nWe have to go back, edition. \n\nFor this model I took what I learned in the making of Cat-8x7B and went back to the very beginning and SLERP merged mistralai/Mixtral-8x7B-Instruct-v0.1 onto mistralai/Mixtral-8x7B-v0.1\n\nWhile the results aren't perfect the model feels more creative and less overcooked than Mixtral Instruct is often accused of being. \n\nThe hopes are that this should also have left the model much more receptive to additional finetuning and I am interested to see what comes of it so please feel free to download it and have fun. \n\nApologies about the small shard size (keep forgetting to change the mergekit config back)## The model is a lot less likely to refuse certain requests in this state:\n\nso if you are going to apply additional finetuning to the model you may need to bolster its alignment depending on your use case. \n\nThe model still responds well to [INST] Thingie [/INST] formatting quite well. \n\nOr if preferred this can easily be reproduced if you have both base and instruct models handy using mergekit (mixtral branch) with the following config" ]
[ -0.05219966545701027, -0.15276886522769928, -0.002726055681705475, 0.05779749155044556, 0.07581539452075958, 0.041383132338523865, -0.009928038343787193, 0.07740651816129684, 0.0859873816370964, 0.09261898696422577, -0.04830196872353554, -0.03419937193393707, 0.08027569949626923, 0.054234087467193604, 0.0524652898311615, -0.13124032318592072, 0.04003871604800224, -0.06578516215085983, 0.11522442102432251, 0.045170582830905914, 0.11353345960378647, -0.10284800827503204, 0.060061294585466385, -0.01623700186610222, 0.021241948008537292, -0.01150586549192667, -0.020233994349837303, 0.0864545926451683, 0.03774411976337433, 0.07441207021474838, 0.06151805818080902, 0.011149781756103039, -0.016553696244955063, -0.16058748960494995, 0.04616381227970123, 0.039446379989385605, -0.0005358551279641688, 0.019672906026244164, 0.04870607703924179, 0.08721362054347992, 0.08089365065097809, -0.08900678902864456, -0.03705155849456787, 0.08784401416778564, -0.11623387038707733, -0.07450545579195023, -0.09381894767284393, 0.15524989366531372, 0.0871272087097168, -0.021767830476164818, -0.04697737842798233, 0.09927075356245041, -0.018880518153309822, 0.06266412138938904, 0.10314883291721344, -0.21563197672367096, 0.007400239817798138, 0.1541537195444107, 0.08701788634061813, 0.08429370075464249, -0.05784008279442787, -0.028323693200945854, 0.029231945052742958, -0.005258789286017418, -0.0885668471455574, 0.02281206101179123, 0.07291489839553833, -0.022308848798274994, -0.1225506141781807, -0.03285623714327812, 0.140494242310524, 0.03609945997595787, -0.078376404941082, -0.15534010529518127, -0.08254183828830719, -0.011867799796164036, -0.024161309003829956, -0.07028145343065262, 0.05418659374117851, 0.09322118014097214, 0.20121252536773682, -0.08386871218681335, -0.12824374437332153, 0.02768739126622677, -0.12011150270700455, 0.032853107899427414, -0.017332199960947037, 0.007473764941096306, 0.0029390898998826742, 0.09247544407844543, -0.19058355689048767, -0.06653761863708496, -0.12770111858844757, -0.06529537588357925, -0.11090093851089478, -0.10064267367124557, -0.0436190627515316, 0.02936641499400139, 0.0016339890426024795, 0.13328775763511658, -0.05026823654770851, 0.01625676080584526, -0.024792058393359184, 0.07711900770664215, 0.08979985117912292, 0.03227239102125168, -0.04227408394217491, -0.07856820523738861, 0.012498847208917141, 0.043614648282527924, 0.11263246089220047, -0.0038222232833504677, -0.045127805322408676, -0.04765656962990761, -0.03355054557323456, 0.042861029505729675, 0.04377365857362747, 0.003711592871695757, -0.08890782296657562, -0.049085699021816254, 0.17431406676769257, -0.07192442566156387, 0.049472883343696594, 0.02727653644979, -0.07518012076616287, 0.045668717473745346, 0.0005432938341982663, -0.003889995627105236, -0.03268079832196236, 0.07363524287939072, -0.07685281336307526, 0.013760816305875778, -0.061581216752529144, -0.11176123470067978, 0.05933152511715889, 0.007373775355517864, -0.07050104439258575, -0.10867711901664734, -0.14745652675628662, -0.0528947189450264, -0.021008513867855072, -0.06609608978033066, 0.04636700823903084, 0.0178040973842144, -0.05752028152346611, 0.02643708884716034, -0.002698731841519475, -0.013085836544632912, -0.06128494814038277, -0.00030437056557275355, -0.05486863851547241, 0.0833764299750328, -0.012429740279912949, -0.002356654265895486, -0.09743667393922806, 0.004465318284928799, -0.2532031834125519, 0.034600622951984406, -0.053705066442489624, 0.0105422493070364, -0.08908277004957199, -0.02824252098798752, -0.037345994263887405, 0.03968874737620354, 0.014111101627349854, 0.15607263147830963, -0.10332635790109634, -0.005720084998756647, 0.1324634552001953, -0.13767847418785095, -0.06795065850019455, 0.20347557961940765, -0.011133822612464428, 0.058664217591285706, 0.0970994085073471, 0.01677381992340088, 0.14433354139328003, -0.11768539994955063, -0.13916130363941193, 0.08234162628650665, -0.09935588389635086, 0.09667001664638519, 0.003323328448459506, -0.010176192037761211, -0.03684256225824356, -0.0053209285251796246, 0.022376108914613724, -0.0244904775172472, -0.0073563409969210625, -0.022514991462230682, -0.045181382447481155, 0.032991763204336166, 0.017577696591615677, -0.0012064991751685739, -0.05809847638010979, -0.045100897550582886, -0.07204169034957886, -0.116389699280262, 0.15435464680194855, 0.015425136312842369, 0.02368084527552128, -0.12419117987155914, 0.23011380434036255, -0.08371876925230026, 0.0004892728757113218, -0.10587737709283829, -0.06347615271806717, 0.054915908724069595, -0.025632018223404884, -0.02017754130065441, 0.15865880250930786, 0.07289496064186096, 0.047484107315540314, -0.022895149886608124, -0.0006460211589001119, 0.09298396110534668, -0.01667889952659607, -0.09474026411771774, -0.14066320657730103, -0.001686692819930613, -0.08085948973894119, 0.1969701647758484, -0.12029630690813065, 0.01324402168393135, 0.12788468599319458, 0.06075946241617203, 0.019274288788437843, -0.03414782136678696, 0.024384016171097755, -0.02044355683028698, -0.029660731554031372, -0.008089144714176655, 0.06405939906835556, 0.023604758083820343, -0.1051410660147667, 0.06048497185111046, -0.2229616791009903, -0.24111728370189667, 0.09316771477460861, 0.0887737050652504, -0.07662635296583176, -0.1092563048005104, -0.0024614508729428053, -0.011412029154598713, -0.03175600618124008, -0.10261387377977371, 0.11035685986280441, 0.03850946202874184, 0.10148583352565765, -0.04128240421414375, -0.036153096705675125, 0.010203120298683643, -0.032767023891210556, 0.013523646630346775, 0.07824236899614334, 0.02265232987701893, -0.2106143832206726, 0.03224049508571625, 0.15116214752197266, 0.020434053614735603, 0.061849236488342285, 0.010344667360186577, -0.08867660909891129, -0.05476390942931175, 0.11437094956636429, 0.017673516646027565, 0.03393394127488136, -0.07705420255661011, 0.04390972480177879, 0.038670629262924194, 0.005598766729235649, 0.00009809000766836107, -0.05840258300304413, 0.059586137533187866, 0.03891093656420708, -0.014677039347589016, 0.01532095018774271, 0.008974001742899418, 0.002500449074432254, 0.07842037081718445, 0.0035209793131798506, -0.031380459666252136, -0.013310857117176056, -0.05513573810458183, -0.07111913710832596, 0.12187588214874268, -0.08292867243289948, -0.16509674489498138, -0.18573836982250214, 0.028209339827299118, -0.04081873595714569, 0.026752272620797157, 0.016551116481423378, -0.06318828463554382, -0.0866636112332344, -0.13762935996055603, 0.018160752952098846, 0.017127782106399536, -0.07009252160787582, -0.0855303630232811, -0.0097430981695652, 0.04983748868107796, -0.12466791272163391, -0.03334437310695648, 0.0006431203801184893, -0.09739266335964203, 0.03935922309756279, 0.0386214442551136, 0.04347222298383713, 0.12916557490825653, 0.031248128041625023, -0.05746544525027275, 0.014789312146604061, 0.16690604388713837, -0.07484568655490875, 0.11160705983638763, 0.1496070921421051, 0.01663842983543873, 0.09104267507791519, 0.17399899661540985, 0.03574667125940323, -0.07443059235811234, 0.04699120670557022, 0.00039439689135178924, -0.02876313216984272, -0.08649170398712158, -0.1053057387471199, -0.08176646381616592, -0.005534451920539141, 0.030189117416739464, 0.00794224813580513, 0.006414438597857952, 0.05411265417933464, -0.146542027592659, -0.05599214881658554, 0.018711507320404053, 0.07999097555875778, 0.05042196437716484, -0.04783351346850395, 0.06804514676332474, -0.07063987851142883, -0.0201491080224514, 0.16640587151050568, -0.03546237200498581, 0.0847274586558342, -0.023793600499629974, 0.15822014212608337, 0.08305618911981583, 0.031066957861185074, 0.021642746403813362, 0.039329200983047485, -0.08576186001300812, -0.043295275419950485, -0.061886485666036606, -0.0685361996293068, -0.0017612981610000134, 0.11456204205751419, 0.12427015602588654, 0.04628824070096016, -0.06479036808013916, -0.007428300566971302, 0.05540530011057854, 0.04279755800962448, 0.10494787245988846, -0.14073653519153595, -0.10072067379951477, 0.08347909897565842, 0.02088305354118347, -0.036870185285806656, -0.025371456518769264, 0.15266606211662292, -0.01887631043791771, 0.024785030633211136, 0.03884195163846016, 0.06708770245313644, -0.03253615275025368, 0.004736546892672777, -0.07850468903779984, 0.11864704638719559, -0.020492248237133026, 0.08085847645998001, -0.044669415801763535, 0.033253248780965805, 0.03046991676092148, 0.045385248959064484, -0.04063932225108147, 0.012288535945117474, 0.07721834629774094, 0.12389044463634491, 0.12455081194639206, 0.024716464802622795, 0.007189767900854349, -0.1804908663034439, -0.0770418718457222, -0.03703760728240013, 0.06528622657060623, -0.027495378628373146, 0.08747884631156921, -0.04963359981775284, 0.00041934469481930137, 0.001561140874400735, 0.04424387216567993, -0.03590285778045654, -0.1235833466053009, 0.029345816001296043, 0.02346913143992424, -0.0024803075939416885, -0.042332973331213, 0.0005645903875119984, -0.028903212398290634, 0.15768732130527496, -0.1744157075881958, -0.04069624841213226, -0.08176495879888535, 0.0220258180052042, 0.09571349620819092, -0.06254201382398605, -0.04174274206161499, -0.013300861231982708, 0.11156477779150009, -0.030380090698599815, -0.028650792315602303, 0.04204900935292244, -0.11402767896652222, -0.155118927359581, -0.05651848390698433, 0.07959795743227005, 0.04235539957880974, 0.07644038647413254, 0.03783382102847099, 0.05473122000694275, -0.03143491595983505, -0.11047328263521194, 0.017562689259648323, 0.19507095217704773, 0.03261125087738037, 0.10175147652626038, -0.04294698312878609, 0.009080914780497551, -0.0378262996673584, -0.007219015620648861, 0.13873247802257538, 0.2626374363899231, -0.10099050402641296, 0.1268961876630783, 0.22115302085876465, -0.09662660956382751, -0.18162187933921814, -0.06717155873775482, -0.010266787372529507, 0.05532127246260643, 0.002311230404302478, -0.06161386892199516, 0.15010593831539154, 0.08117084205150604, 0.0018829834880307317, 0.019225366413593292, -0.21666525304317474, -0.07712559401988983, -0.020103905349969864, -0.029941853135824203, 0.18682248890399933, -0.12150386720895767, -0.06764622777700424, -0.00003683097384055145, -0.027309413999319077, 0.02833160012960434, -0.12734974920749664, 0.10208238661289215, -0.006592413876205683, -0.02164550870656967, 0.05323664844036102, -0.03265015408396721, 0.21326228976249695, -0.01433455478399992, 0.06079292297363281, -0.10434356331825256, 0.023246008902788162, 0.00667433300986886, -0.068832628428936, 0.1319103091955185, 0.05533855780959129, -0.012754717841744423, -0.15338477492332458, -0.029286714270710945, -0.04107145965099335, 0.05737105756998062, -0.04471331089735031, -0.018750222399830818, -0.05751000717282295, 0.11192135512828827, 0.07045198231935501, -0.04743098467588425, -0.0014153639785945415, -0.07227226346731186, 0.054370082914829254, 0.07451089471578598, 0.13448776304721832, -0.10744132846593857, -0.14370028674602509, 0.015457069501280785, -0.004733021836727858, 0.07395768910646439, -0.0650181844830513, 0.050442539155483246, 0.07954240590333939, -0.0127267399802804, 0.15952634811401367, 0.04000033810734749, -0.08981257677078247, 0.021973256021738052, 0.11193262785673141, -0.08458505570888519, -0.2407730519771576, -0.01675313711166382, -0.012559613212943077, -0.12360703200101852, -0.0923602506518364, 0.13753078877925873, -0.010406268760561943, 0.025639953091740608, 0.01703876070678234, 0.09395245462656021, -0.0015606997767463326, 0.07201302796602249, 0.041670072823762894, 0.031863514333963394, -0.06491484493017197, 0.025726893916726112, 0.06048079580068588, -0.18492482602596283, 0.017204243689775467, 0.030275171622633934, -0.08181851357221603, -0.11788717657327652, -0.10757167637348175, 0.03252706676721573, 0.02329157665371895, -0.04255864769220352, -0.015858102589845657, -0.029489437118172646, 0.010269735008478165, 0.04507464915513992, 0.04600759968161583, 0.02003251016139984, -0.02299521118402481, 0.008984600193798542, -0.057838618755340576, 0.061233311891555786, 0.07497569173574448, 0.03984115645289421, -0.06144654378294945, 0.09646397083997726, -0.036633919924497604, -0.03457300364971161, -0.018978463485836983, -0.0283510759472847, -0.07032459229230881, -0.027807574719190598, -0.08309892565011978, 0.03263530507683754, -0.0899735689163208, -0.010080121457576752, 0.03973161056637764, 0.029703602194786072, 0.012097304686903954, -0.0005343027878552675, -0.06187514215707779, -0.015282295644283295, -0.005962364375591278, 0.12233065813779831, -0.13706012070178986, -0.009080656804144382, 0.06372233480215073, -0.07287102192640305, 0.09609611332416534, -0.027434565126895905, -0.024955864995718002, -0.05125654861330986, -0.18040505051612854, -0.07634783536195755, 0.0031686266884207726, 0.09044094383716583, -0.0046627577394247055, -0.1135186180472374, 0.042587000876665115, -0.043942056596279144, -0.054629553109407425, 0.015649039298295975, 0.06924363970756531, -0.06841647624969482, 0.045700155198574066, 0.018231365829706192, -0.029339386150240898, -0.12162158638238907, 0.005888059269636869, 0.039010945707559586, 0.07284876704216003, 0.147622212767601, -0.03779933974146843, -0.0034155072644352913, -0.10102995485067368, 0.003354407148435712, 0.005058783572167158, -0.021185478195548058, -0.01743784174323082, -0.1402895301580429, 0.06126711145043373, 0.011497742496430874, -0.015217280946671963, -0.059130843728780746, -0.04311095550656319, 0.03961290419101715, 0.022380542010068893, 0.017778104171156883, -0.06587798148393631, 0.011932862922549248, 0.04514264315366745, -0.02323194220662117, -0.04662786051630974, 0.009863065555691719, 0.04945800080895424, -0.051080889999866486, 0.10944774746894836, 0.0769144594669342, 0.05687631666660309, 0.06673814356327057, -0.013787558302283287, -0.09781240671873093, 0.05495292320847511, 0.017708253115415573, -0.09207504987716675, 0.04764602705836296, -0.03655877709388733, 0.09086063504219055, 0.09065338969230652, -0.073998361825943, 0.08267108350992203, -0.08064726740121841, -0.029016489163041115, -0.10044160485267639, -0.07810811698436737, -0.04387088492512703, -0.029876112937927246, -0.01356420200318098, -0.12527954578399658, 0.035994354635477066, 0.11501283198595047, 0.04669959843158722, 0.0019056479213759303, 0.07179132848978043, -0.1303819864988327, -0.048042893409729004, 0.03274853900074959, -0.018283220008015633, 0.03091580979526043, -0.003533006412908435, -0.020128989592194557, 0.05384081229567528, -0.02232898585498333, 0.049106817692518234, 0.10862629860639572, 0.1237463504076004, -0.01806572824716568, -0.0407039076089859, -0.10989279299974442, -0.03506743162870407, 0.014631983824074268, -0.03236417844891548, 0.1317192167043686, 0.05840159207582474, 0.015764888375997543, -0.019643837586045265, 0.11676184833049774, -0.05363215133547783, -0.09774722158908844, -0.11761114001274109, 0.233707457780838, 0.01588096097111702, 0.00392142403870821, -0.01677192933857441, -0.1445317417383194, 0.01705258898437023, 0.1121426448225975, 0.09086393564939499, -0.0878634974360466, 0.017716635018587112, 0.06005769968032837, 0.005698434542864561, 0.028259892016649246, 0.08216831833124161, -0.012675844132900238, 0.20808884501457214, -0.05941356346011162, 0.23944683372974396, -0.04306574910879135, -0.023921823129057884, -0.006997842341661453, 0.050837442278862, -0.05253215134143829, 0.04134715721011162, -0.06115705147385597, 0.04680453613400459, 0.00905435997992754, -0.16439451277256012, 0.07458388805389404, -0.047601740807294846, -0.03783855214715004, -0.034918610006570816, 0.09589318186044693, 0.08662591129541397, 0.08105631172657013, -0.030812686309218407, -0.011565512046217918, 0.14199253916740417, -0.05498616024851799, -0.12192938476800919, -0.046089332550764084, 0.027302684262394905, -0.1437884122133255, 0.10912060737609863, 0.03681832551956177, 0.039796002209186554, 0.13207024335861206, -0.03037012182176113, -0.15519081056118011, -0.0038853983860462904, 0.028634756803512573, -0.07358384877443314, 0.049707841128110886, 0.11793078482151031, 0.01853417418897152, 0.011704244650900364, 0.07887604832649231, -0.13486891984939575, 0.06684297323226929, 0.0289887897670269, -0.038616329431533813, -0.09872055053710938, 0.09500808268785477, -0.05432319641113281, 0.14531710743904114, 0.17089763283729553, -0.0153230344876647, -0.06958571821451187, -0.053933035582304, -0.005619979463517666, 0.049206703901290894, 0.12071546912193298, 0.0075874472968280315, -0.08451126515865326, 0.059915512800216675, 0.03896481543779373, 0.11820794641971588, -0.26544874906539917, -0.09216606616973877, 0.06859634071588516, 0.0347556471824646, -0.02726207859814167, 0.1107153445482254, 0.09475912898778915, 0.040319785475730896, -0.005697707645595074, -0.10809885710477829, -0.00721900537610054, 0.07293295115232468, -0.04139126464724541, -0.05769963189959526 ]
null
null
transformers
# eCeLLM-M This repo contains the models for "eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data" ## eCeLLM Models Leveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models). The eCeLLM-M model is instruction-tuned from the large base models [Mistral-7B Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). ## Citation ```bibtex @misc{peng2024ecellm, title={eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data}, author={Bo Peng and Xinyi Ling and Ziru Chen and Huan Sun and Xia Ning}, year={2024}, eprint={2402.08831}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"license": "cc-by-4.0", "datasets": ["NingLab/ECInstruct"]}
text-generation
NingLab/eCeLLM-M
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:NingLab/ECInstruct", "arxiv:2402.08831", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:27:45+00:00
[ "2402.08831" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# eCeLLM-M This repo contains the models for "eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data" ## eCeLLM Models Leveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models). The eCeLLM-M model is instruction-tuned from the large base models Mistral-7B Instruct-v0.2.
[ "# eCeLLM-M\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"", "## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-M model is instruction-tuned from the large base models Mistral-7B Instruct-v0.2." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# eCeLLM-M\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"", "## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-M model is instruction-tuned from the large base models Mistral-7B Instruct-v0.2." ]
[ 80, 43, 64 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #dataset-NingLab/ECInstruct #arxiv-2402.08831 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# eCeLLM-M\n\nThis repo contains the models for \"eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data\"## eCeLLM Models\nLeveraging ECInstruct, we develop eCeLLM by instruction tuning general-purpose LLMs (base models).\nThe eCeLLM-M model is instruction-tuned from the large base models Mistral-7B Instruct-v0.2." ]
[ -0.049088895320892334, -0.0803079903125763, -0.002827257616445422, 0.06775563210248947, 0.07023724913597107, 0.0025299687404185534, 0.09884628653526306, 0.011776993982493877, 0.0501587800681591, 0.0031179708894342184, 0.09979889541864395, 0.1783100962638855, -0.06824430823326111, 0.22330616414546967, -0.056072134524583817, -0.16639383137226105, 0.05632985755801201, 0.02574225701391697, 0.021226389333605766, 0.0829448252916336, 0.17239278554916382, -0.08461035043001175, 0.1272663176059723, -0.039752598851919174, -0.06622126698493958, 0.029771124944090843, -0.051696810871362686, -0.06323358416557312, 0.07793404906988144, 0.05014282092452049, 0.08721227198839188, -0.017167044803500175, 0.0794551894068718, -0.1658606082201004, 0.008050343953073025, -0.06373301893472672, -0.05723722651600838, 0.02930803783237934, -0.05151498317718506, -0.017003057524561882, 0.1260562539100647, -0.04495713487267494, 0.08596453070640564, -0.022266903892159462, -0.02534288913011551, 0.08484683185815811, -0.027307987213134766, -0.02318594418466091, 0.1877220869064331, 0.09272634983062744, 0.025926783680915833, 0.10868633538484573, -0.09772944450378418, 0.08493867516517639, 0.13596035540103912, -0.2715447247028351, 0.026738787069916725, 0.11047898977994919, 0.0982951894402504, 0.06252271682024002, -0.015888256952166557, 0.025507615879178047, 0.0970674529671669, 0.05352785810828209, 0.1383739709854126, -0.010261131450533867, -0.04268142580986023, 0.0057541425339877605, -0.12932588160037994, 0.01840297318994999, 0.30877700448036194, -0.023762205615639687, -0.04275676980614662, -0.04712624475359917, -0.07209267467260361, 0.024356067180633545, 0.01846594549715519, -0.07233026623725891, 0.04941627383232117, -0.008246372453868389, 0.039792634546756744, -0.07946308702230453, -0.09982315450906754, -0.04490095376968384, -0.13041569292545319, 0.23968471586704254, 0.01878545619547367, -0.002178256632760167, -0.10095056146383286, 0.043551255017519, -0.029135694727301598, -0.04497133195400238, -0.06796609610319138, -0.0014254724374040961, 0.04361287131905556, -0.019887251779437065, -0.03721965476870537, 0.004975616931915283, 0.015762416645884514, 0.18470680713653564, -0.05287119373679161, -0.0038844665978103876, 0.11393949389457703, 0.05371701344847679, 0.024888163432478905, 0.04373737797141075, -0.012337878346443176, -0.054649222642183304, 0.0636933222413063, -0.01915300264954567, 0.10741425305604935, -0.04074099287390709, -0.15948008000850677, -0.005407106596976519, -0.032946255058050156, 0.05620016157627106, -0.1153835579752922, 0.0652390569448471, -0.07721288502216339, 0.0018538289004936814, 0.14116212725639343, -0.11176948994398117, 0.035175975412130356, -0.008177739568054676, -0.057841796427965164, -0.01874092034995556, 0.07212156802415848, 0.02568458765745163, 0.0060501196421682835, 0.03839557617902756, -0.08010879158973694, -0.04823955520987511, -0.1255832463502884, -0.11930310726165771, 0.07728608697652817, -0.0019115143222734332, 0.06618794053792953, -0.15305674076080322, -0.27179327607154846, 0.029896564781665802, -0.015213281847536564, -0.007119659334421158, -0.01827666163444519, -0.11692214012145996, -0.020089581608772278, 0.0005529734189622104, -0.06833592802286148, -0.04839545115828514, -0.06326641887426376, -0.04963889718055725, -0.020448552444577217, 0.04315885901451111, -0.13039393723011017, 0.020150134339928627, -0.029750384390354156, -0.00012874417006969452, 0.005101946182549, -0.007396582514047623, -0.0355260856449604, 0.02098018489778042, -0.03440603241324425, -0.011231771670281887, 0.01564386673271656, 0.09184938669204712, 0.03966927155852318, 0.10884389281272888, -0.17929726839065552, 0.00865557137876749, 0.04774368181824684, -0.09636365622282028, -0.1452869027853012, 0.08077069371938705, -0.036930862814188004, 0.08217868208885193, 0.12098804861307144, 0.04732266068458557, -0.11009332537651062, -0.11146476119756699, 0.013441230170428753, 0.03395913913846016, -0.013850311748683453, -0.10272034257650375, 0.09088826179504395, 0.023756280541419983, -0.08547099679708481, 0.005345659330487251, -0.06659892201423645, -0.041344624012708664, -0.0739157423377037, -0.019282177090644836, 0.03406716510653496, -0.06368649005889893, 0.03591769561171532, -0.12293916195631027, 0.01747412048280239, -0.09329426288604736, -0.0427619107067585, 0.1327696293592453, 0.11295938491821289, -0.08318740874528885, 0.04356944561004639, -0.1347590535879135, 0.06968282908201218, -0.04350836202502251, 0.010438896715641022, -0.07372435927391052, -0.14667093753814697, 0.026006149128079414, 0.0035392679274082184, 0.09124723076820374, 0.009131009690463543, -0.0054060351103544235, 0.07383722066879272, 0.010933256708085537, 0.000043071613617939875, -0.039146795868873596, 0.015463866293430328, -0.11451572179794312, -0.13128410279750824, -0.03147641941905022, -0.10272800922393799, 0.029146842658519745, -0.1380796879529953, 0.03711790591478348, 0.059563860297203064, 0.057922154664993286, 0.03005351312458515, 0.07599198818206787, -0.02195914089679718, 0.04507013037800789, -0.058191414922475815, 0.003298182040452957, 0.026275699958205223, -0.012501531280577183, -0.154700368642807, 0.06772506982088089, -0.15866036713123322, 0.18218182027339935, 0.10747746378183365, -0.06169427931308746, 0.012933378107845783, -0.14927025139331818, -0.0105367973446846, -0.01754116453230381, -0.04986538365483284, -0.10516918450593948, 0.19752854108810425, -0.01756175421178341, 0.10670983046293259, -0.08728345483541489, -0.06514576822519302, -0.07999815791845322, -0.07354379445314407, -0.06987688690423965, 0.07195207476615906, 0.10349572449922562, -0.06641549617052078, 0.04423327371478081, 0.20455695688724518, -0.08799740672111511, 0.17052072286605835, 0.08081024140119553, 0.004597954917699099, -0.03291428089141846, -0.049593474715948105, -0.04330560564994812, 0.04676024988293648, -0.1115676760673523, -0.030093489214777946, 0.029965078458189964, 0.0063313026912510395, 0.12766362726688385, -0.12298888713121414, 0.019021421670913696, 0.06775397807359695, -0.025940602645277977, 0.01824060082435608, 0.03256151080131531, -0.10437396168708801, 0.0624140240252018, -0.054398760199546814, -0.12977974116802216, 0.056153204292058945, -0.0016010744730010629, -0.11095207184553146, 0.20979805290699005, -0.18756334483623505, -0.10431444644927979, -0.15609334409236908, -0.010041414760053158, -0.08987399935722351, 0.035370733588933945, 0.046279702335596085, -0.037101682275533676, -0.12432456016540527, -0.14724858105182648, 0.08875276893377304, 0.03069266863167286, -0.04367779567837715, 0.07164692133665085, -0.04524201527237892, -0.11871418356895447, -0.22337430715560913, -0.03795260563492775, -0.021869605407118797, -0.08359345048666, 0.03490854427218437, -0.0416298471391201, 0.12843047082424164, 0.1856122463941574, -0.03428775817155838, -0.005639487877488136, -0.0015786922303959727, 0.1983584612607956, 0.01937277987599373, -0.015954965725541115, 0.11227765679359436, -0.015644297003746033, 0.005498526617884636, 0.11211813241243362, 0.035721320658922195, -0.14197106659412384, 0.06287562102079391, -0.042362406849861145, -0.029572969302535057, -0.2471075803041458, -0.1393139660358429, -0.015508897602558136, -0.08059239387512207, -0.03982454910874367, 0.04766039177775383, 0.0006135233561508358, 0.057788774371147156, 0.0006232382147572935, 0.05025927349925041, 0.06397243589162827, 0.06897104531526566, 0.1221541240811348, -0.029472844675183296, 0.04137921705842018, 0.005923546385020018, -0.04083125293254852, 0.04909517988562584, 0.12855403125286102, 0.17306049168109894, 0.055315081030130386, 0.1769939661026001, 0.10975822061300278, -0.05840564891695976, 0.044000204652547836, 0.18422293663024902, -0.09469234198331833, 0.044321972876787186, -0.06262087821960449, -0.06193267181515694, -0.025581633672118187, 0.07668762654066086, -0.09914577007293701, 0.016644760966300964, -0.1170840859413147, 0.11060027033090591, 0.07949557900428772, 0.029551677405834198, -0.025653818622231483, -0.3244065046310425, -0.017844753339886665, 0.10283121466636658, 0.037875015288591385, 0.008051118813455105, 0.08795618265867233, 0.10696389526128769, -0.01699117384850979, 0.04213970899581909, 0.06248914822936058, 0.0746740847826004, -0.057635992765426636, 0.0014811521396040916, -0.02303963340818882, 0.11306358128786087, 0.01106980163604021, 0.07991727441549301, -0.19571590423583984, 0.19472898542881012, 0.01884583942592144, 0.10705575346946716, -0.0386078841984272, -0.007007052656263113, -0.02128245122730732, 0.13724057376384735, 0.0633440911769867, -0.00911274179816246, -0.13795028626918793, -0.11649783700704575, -0.08655828982591629, 0.05869201943278313, 0.01943446695804596, -0.03125251829624176, 0.10212340950965881, 0.04118621349334717, -0.012347355484962463, 0.056758493185043335, -0.046036601066589355, -0.1880180835723877, -0.13607828319072723, -0.005162616726011038, 0.14184482395648956, 0.013241547159850597, -0.05787549540400505, -0.08031915873289108, 0.02784273587167263, 0.07038533687591553, -0.12478063255548477, -0.08004353195428848, -0.08239425718784332, -0.10259151458740234, 0.03485788032412529, -0.07191414386034012, 0.0591428279876709, 0.10090914368629456, 0.16717244684696198, -0.03426612913608551, -0.050187405198812485, 0.07422954589128494, -0.1320868879556656, -0.07569768279790878, 0.0008353370358236134, 0.06130921468138695, 0.05449703708291054, 0.014736148528754711, 0.0797870010137558, -0.06686875224113464, 0.017533540725708008, -0.12421483546495438, -0.09190008789300919, 0.2605225741863251, 0.013894866220653057, 0.1111188605427742, -0.15357591211795807, -0.07009007781744003, 0.007394181098788977, -0.02691187895834446, 0.13995970785617828, 0.19100601971149445, -0.004165374208241701, 0.048942774534225464, 0.29470083117485046, -0.11927474290132523, -0.20627230405807495, -0.11212474852800369, -0.061178553849458694, 0.0612402968108654, -0.012952716089785099, -0.07219979166984558, 0.1296945959329605, 0.056737784296274185, -0.0011938802199438214, -0.005104743875563145, -0.2996067702770233, -0.14821510016918182, 0.1323053538799286, 0.1052790954709053, 0.18887312710285187, -0.033717282116413116, -0.008253623731434345, -0.12798786163330078, -0.11411887407302856, 0.17522865533828735, -0.19250796735286713, 0.06423389166593552, 0.004761651158332825, 0.14633119106292725, -0.022060900926589966, 0.003581831930205226, 0.13995102047920227, 0.11497703194618225, 0.10879888385534286, -0.03060569427907467, -0.03305662050843239, -0.026450634002685547, -0.03615457937121391, 0.19016827642917633, -0.08916672319173813, -0.013621047139167786, -0.06886167824268341, -0.08560778945684433, 0.027689727023243904, 0.0907849371433258, -0.030392928048968315, -0.057392265647649765, -0.035956479609012604, -0.03406834229826927, 0.024291351437568665, -0.009921274147927761, 0.07266378402709961, 0.033348217606544495, -0.014795325696468353, 0.05906139686703682, 0.22588670253753662, -0.2891097366809845, 0.028641870245337486, 0.02557334490120411, -0.03146512433886528, 0.1171022355556488, 0.00013235471851658076, 0.0017553544603288174, 0.1278047412633896, -0.03416752442717552, 0.1330231875181198, 0.07112982869148254, -0.04324302077293396, 0.010145926848053932, 0.08495631814002991, -0.0656907707452774, -0.0030381816904991865, -0.01147792860865593, 0.14550426602363586, 0.06675746291875839, 0.10838497430086136, 0.1906806230545044, -0.07347273826599121, -0.01085450779646635, -0.06496107578277588, 0.06736472994089127, -0.01499701663851738, 0.16750912368297577, 0.06540026515722275, 0.013377252034842968, -0.08659546822309494, 0.09257650375366211, 0.008093885146081448, -0.07406962662935257, 0.03830694034695625, 0.02375333569943905, -0.08794751018285751, -0.0961858257651329, -0.01002301461994648, 0.23252153396606445, -0.1981591135263443, -0.1348683387041092, -0.0024750828742980957, -0.1283637136220932, 0.005437412764877081, 0.11224507540464401, 0.10720054060220718, 0.03140920773148537, -0.027400270104408264, 0.00057826261036098, -0.022187577560544014, 0.07718085497617722, 0.10409679263830185, 0.05223209783434868, -0.15484802424907684, 0.06551188975572586, 0.0013739411951974034, 0.01711956225335598, -0.04303304851055145, 0.04175761714577675, -0.0814773365855217, -0.003303521079942584, -0.023834263905882835, 0.065791554749012, -0.05344553291797638, 0.012301478534936905, 0.04450565204024315, 0.0294913649559021, -0.0798318088054657, 0.05795259773731232, -0.07254154235124588, 0.045616403222084045, -0.00976611115038395, 0.08176498115062714, -0.0816282257437706, -0.06323087960481644, 0.005206163972616196, -0.05101153254508972, 0.07844267040491104, -0.012351769022643566, -0.04184652492403984, 0.060499418526887894, -0.29414114356040955, 0.04035424068570137, 0.0946936085820198, 0.06472288817167282, 0.0671381726861, -0.04311472550034523, -0.01379022840410471, 0.06331675499677658, 0.016876282170414925, -0.04536851868033409, 0.016685815528035164, -0.07853983342647552, -0.05892106518149376, -0.041135936975479126, -0.07147816568613052, -0.04738640785217285, -0.025125594809651375, 0.07647982984781265, 0.000016273619621642865, 0.16176867485046387, -0.04996831715106964, -0.039085980504751205, -0.011555074714124203, 0.05279140546917915, 0.04022306576371193, -0.039535995572805405, -0.1524377316236496, -0.02254696935415268, 0.02947504259645939, -0.09151571989059448, 0.24403144419193268, 0.000497221655678004, -0.04323682561516762, -0.013294369913637638, -0.0332762785255909, 0.01782219670712948, 0.017263127490878105, 0.10516524314880371, -0.0415009967982769, 0.07629340142011642, -0.11680460721254349, 0.005429722834378481, 0.12136127799749374, -0.06252624839544296, 0.14147597551345825, 0.02351861633360386, 0.026194291189312935, 0.1796029955148697, 0.09121781587600708, -0.05296947434544563, -0.0892043337225914, -0.10523328930139542, 0.039364442229270935, 0.029982538893818855, -0.006989473942667246, 0.07001472264528275, 0.13579434156417847, -0.09677685052156448, -0.014890450984239578, 0.0036217886954545975, -0.07934330403804779, -0.1267157793045044, -0.10976741462945938, -0.11484890431165695, -0.07087958604097366, -0.03524899110198021, -0.19172483682632446, -0.07202016562223434, 0.00603099912405014, 0.034845855087041855, -0.001055450178682804, 0.08805394172668457, -0.16083088517189026, -0.0017056843498721719, -0.024665912613272667, -0.020979924127459526, 0.006116990465670824, -0.023500079289078712, -0.05499840900301933, -0.04205765947699547, -0.01269008219242096, -0.0365985743701458, 0.024957582354545593, 0.01911166124045849, 0.005432920530438423, 0.03634930029511452, 0.02287987433373928, -0.06879809498786926, -0.014721505343914032, 0.018500687554478645, 0.05203372612595558, 0.03613918647170067, -0.10120583325624466, 0.04372860863804817, 0.0798172801733017, -0.028424888849258423, -0.12521801888942719, -0.07672006636857986, 0.06790976226329803, 0.09822207689285278, 0.12236551195383072, 0.03477668762207031, -0.0341532863676548, -0.06292727589607239, 0.11990096420049667, 0.1957118660211563, -0.08260682970285416, -0.01420578733086586, -0.05602908506989479, 0.03425534442067146, -0.03741561248898506, 0.09373464435338974, 0.06871622800827026, 0.33695459365844727, 0.005348512902855873, -0.03322374075651169, -0.061351895332336426, 0.07146254926919937, -0.060752760618925095, -0.02557520568370819, -0.0034995293244719505, -0.026223361492156982, 0.004856552463024855, 0.026637287810444832, -0.02124226652085781, -0.0766749307513237, -0.09653926640748978, -0.06754148751497269, -0.029092388227581978, 0.007638304028660059, 0.09341724961996078, -0.013308507390320301, 0.11817709356546402, -0.08338779211044312, -0.07601279765367508, 0.1355702430009842, -0.0021570769604295492, -0.20585374534130096, 0.06286024302244186, 0.09388909488916397, 0.04794516786932945, 0.2672547996044159, -0.0022333015222102404, 0.1989911049604416, 0.07518788427114487, -0.018814994022250175, -0.06283462047576904, 0.1640174835920334, 0.036725930869579315, 0.056052517145872116, 0.11663465946912766, 0.0177496075630188, -0.06992871314287186, 0.06959218531847, 0.025496507063508034, -0.1774895191192627, 0.03376905992627144, 0.1478346735239029, -0.07511984556913376, -0.03323755040764809, 0.008302592672407627, -0.12104245275259018, 0.1116488054394722, 0.05088803172111511, -0.02387011982500553, -0.04497392848134041, 0.04110962525010109, 0.12854062020778656, 0.0029707681387662888, 0.017245804890990257, 0.02453017048537731, -0.17491818964481354, 0.007951706647872925, -0.009860223159193993, 0.019426116719841957, -0.1307149976491928, -0.07217202335596085, -0.10737370699644089, 0.026932530105113983, -0.11321118474006653, 0.02500821091234684, 0.19499866664409637, 0.012199107557535172, -0.062145382165908813, -0.06853964179754257, -0.060667917132377625, 0.062029242515563965, -0.13875775039196014, -0.16164636611938477 ]
null
null
transformers
<br> <br> # LWM-Text-Chat-128K Model Card ## Model details **Model type:** LWM-Text-Chat-128K is an open-source model trained from LLaMA-2 on a subset of Books3 filtered data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LWM-Text-Chat-128K was trained in December 2023. **Paper or resources for more information:** https://largeworldmodel.github.io/ ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/LargeWorldModel/lwm/issues ## Training dataset - 92K subset of Books3 documents with 100K to 200K tokens
{"inference": false}
text-generation
brucethemoose/LargeWorldModel_LWM-Text-Chat-128K-55bpw
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:29:03+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #autotrain_compatible #text-generation-inference #region-us
<br> <br> # LWM-Text-Chat-128K Model Card ## Model details Model type: LWM-Text-Chat-128K is an open-source model trained from LLaMA-2 on a subset of Books3 filtered data. It is an auto-regressive language model, based on the transformer architecture. Model date: LWM-Text-Chat-128K was trained in December 2023. Paper or resources for more information: URL ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. Where to send questions or comments about the model: URL ## Training dataset - 92K subset of Books3 documents with 100K to 200K tokens
[ "# LWM-Text-Chat-128K Model Card", "## Model details\n\nModel type:\nLWM-Text-Chat-128K is an open-source model trained from LLaMA-2 on a subset of Books3 filtered data. It is an auto-regressive language model, based on the transformer architecture.\n\nModel date:\nLWM-Text-Chat-128K was trained in December 2023.\n\nPaper or resources for more information:\nURL", "## License\nLlama 2 is licensed under the LLAMA 2 Community License, \nCopyright (c) Meta Platforms, Inc. All Rights Reserved.\n\nWhere to send questions or comments about the model:\nURL", "## Training dataset\n- 92K subset of Books3 documents with 100K to 200K tokens" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #autotrain_compatible #text-generation-inference #region-us \n", "# LWM-Text-Chat-128K Model Card", "## Model details\n\nModel type:\nLWM-Text-Chat-128K is an open-source model trained from LLaMA-2 on a subset of Books3 filtered data. It is an auto-regressive language model, based on the transformer architecture.\n\nModel date:\nLWM-Text-Chat-128K was trained in December 2023.\n\nPaper or resources for more information:\nURL", "## License\nLlama 2 is licensed under the LLAMA 2 Community License, \nCopyright (c) Meta Platforms, Inc. All Rights Reserved.\n\nWhere to send questions or comments about the model:\nURL", "## Training dataset\n- 92K subset of Books3 documents with 100K to 200K tokens" ]
[ 39, 12, 85, 41, 21 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #autotrain_compatible #text-generation-inference #region-us \n# LWM-Text-Chat-128K Model Card## Model details\n\nModel type:\nLWM-Text-Chat-128K is an open-source model trained from LLaMA-2 on a subset of Books3 filtered data. It is an auto-regressive language model, based on the transformer architecture.\n\nModel date:\nLWM-Text-Chat-128K was trained in December 2023.\n\nPaper or resources for more information:\nURL## License\nLlama 2 is licensed under the LLAMA 2 Community License, \nCopyright (c) Meta Platforms, Inc. All Rights Reserved.\n\nWhere to send questions or comments about the model:\nURL## Training dataset\n- 92K subset of Books3 documents with 100K to 200K tokens" ]
[ -0.03925536200404167, 0.10935981571674347, -0.0008230543462559581, 0.10017281770706177, 0.08177951723337173, -0.0211784690618515, 0.26606807112693787, 0.09452613443136215, 0.05170540139079094, -0.09951122850179672, 0.023703129962086678, 0.14414706826210022, -0.013322253711521626, 0.016005948185920715, -0.028671234846115112, -0.21122819185256958, 0.024770326912403107, -0.07241104543209076, -0.03478320688009262, 0.05926980823278427, 0.04339022934436798, -0.012349092401564121, 0.07723680883646011, -0.047994013875722885, -0.022552890703082085, -0.0030535163823515177, 0.053477756679058075, -0.11369629949331284, 0.0954623743891716, 0.07466649264097214, 0.05339749529957771, 0.04805610328912735, 0.08076640218496323, -0.1440615952014923, 0.033094387501478195, 0.006251271814107895, -0.05142555385828018, 0.010512773878872395, -0.03391200676560402, -0.018700046464800835, 0.18975800275802612, 0.017490234225988388, 0.028451310470700264, 0.029397528618574142, -0.09114154428243637, -0.02030211128294468, -0.08022166043519974, 0.04783777520060539, 0.07832460105419159, 0.08243822306394577, 0.06362922489643097, 0.0907946527004242, -0.038263265043497086, 0.09916055202484131, 0.14918072521686554, -0.28149721026420593, 0.008844963274896145, 0.20942847430706024, 0.06927008926868439, 0.14492332935333252, -0.05789024382829666, 0.12133311480283737, 0.03936726599931717, 0.012988460250198841, 0.06038093566894531, -0.0777822807431221, 0.0029046540148556232, 0.009527899324893951, -0.10767552256584167, -0.026565169915556908, 0.2131323218345642, -0.042382076382637024, -0.0867311879992485, -0.01927579753100872, -0.033714327961206436, 0.1204814538359642, 0.006873755715787411, 0.03959310054779053, 0.03377531096339226, 0.023389894515275955, -0.048183005303144455, -0.09384491294622421, -0.07377307116985321, -0.12545251846313477, -0.08566250652074814, 0.254603773355484, 0.008191542699933052, 0.09566944092512131, -0.11990128457546234, 0.042332299053668976, -0.07973078638315201, -0.037630844861269, -0.061635881662368774, -0.037459585815668106, 0.09708630293607712, 0.03348402678966522, -0.06426084786653519, -0.12834981083869934, 0.0475386306643486, 0.020722296088933945, -0.10363460332155228, -0.010052166879177094, -0.005451529752463102, 0.0820283368229866, 0.021676745265722275, -0.03446216881275177, 0.045510828495025635, 0.07833274453878403, 0.10189048200845718, -0.001510890549980104, 0.1249152421951294, -0.035205576568841934, -0.12460567057132721, -0.019884362816810608, -0.049481309950351715, 0.11238864809274673, -0.006440302822738886, 0.10315428674221039, 0.06555838882923126, -0.011705975048244, 0.09781541675329208, -0.09280525147914886, -0.014636931009590626, -0.03791733458638191, -0.05971258506178856, -0.08184323459863663, 0.1508534699678421, -0.04309020936489105, -0.015561775304377079, -0.010703380219638348, -0.031196948140859604, -0.03145775571465492, -0.08084452897310257, -0.09075966477394104, 0.07088927924633026, 0.03469111770391464, -0.027601977810263634, -0.1768825799226761, -0.29470929503440857, -0.01013207621872425, 0.03964735195040703, 0.04346923530101776, -0.0034196835476905107, 0.014148743823170662, -0.01427346933633089, -0.0012211116263642907, -0.0183684304356575, -0.07049519568681717, -0.06680884957313538, 0.0865461602807045, -0.05452032387256622, 0.09533211588859558, -0.17735935747623444, 0.037350039929151535, -0.023715121671557426, 0.05170975252985954, -0.134707972407341, 0.011675767600536346, -0.07874365150928497, 0.03578993305563927, 0.0224273931235075, -0.0031481178011745214, -0.012792232446372509, 0.05704576522111893, 0.0116220498457551, 0.10814742743968964, -0.14895616471767426, -0.008003893308341503, 0.1395982801914215, -0.19203771650791168, -0.12328207492828369, 0.05874007195234299, -0.05681544169783592, 0.07978768646717072, 0.14803753793239594, 0.20495589077472687, 0.21916678547859192, -0.06137194111943245, -0.011462983675301075, 0.039768051356077194, -0.07727932929992676, -0.20923592150211334, 0.007224090397357941, 0.05295403301715851, -0.17343461513519287, 0.03484024107456207, -0.05385784059762955, 0.006825178395956755, 0.019125454127788544, -0.05798913910984993, -0.04471571370959282, -0.12433484941720963, 0.040516503155231476, -0.04818248748779297, 0.03223065659403801, -0.0954376682639122, 0.02146456018090248, 0.1618722826242447, 0.11358916759490967, -0.014505221508443356, 0.039234306663274765, -0.07239402085542679, 0.07819809019565582, 0.011665216647088528, 0.025850579142570496, -0.07766882330179214, -0.08122783154249191, -0.007856260985136032, 0.0017526594456285238, 0.10199767351150513, 0.05191025510430336, 0.037330981343984604, 0.06011054664850235, -0.069450743496418, 0.030265918001532555, 0.000963942613452673, -0.006578037049621344, -0.06589753180742264, -0.10088459402322769, 0.05639457702636719, -0.04783901199698448, -0.050428152084350586, -0.13140219449996948, 0.055021077394485474, -0.028593622148036957, -0.06146989390254021, -0.01575593277812004, 0.04171108454465866, 0.06720344722270966, -0.000171965584740974, 0.008578491397202015, -0.00413352670148015, 0.08853842318058014, 0.023488424718379974, -0.0735979974269867, 0.13093352317810059, -0.2013946771621704, 0.048991914838552475, 0.10771958529949188, 0.004027974791824818, 0.005253339186310768, -0.0008551834034733474, -0.0006464308244176209, -0.0074637820944190025, -0.11486642062664032, 0.015272025018930435, 0.08025004714727402, -0.015767214819788933, 0.09855686128139496, -0.0951361209154129, 0.006828665267676115, -0.05349653214216232, -0.11231347173452377, 0.0015070734079927206, 0.05558133125305176, 0.08697500824928284, -0.08557592332363129, 0.05038299039006233, 0.17053478956222534, -0.08264489471912384, 0.1917659044265747, -0.00030241269269026816, 0.02752707339823246, -0.03422752395272255, 0.019092928618192673, 0.03415430709719658, 0.07604291290044785, 0.03809458017349243, -0.01599958725273609, -0.009635944850742817, 0.0223055612295866, 0.02292805165052414, -0.17697517573833466, -0.061551518738269806, -0.018842844292521477, -0.10030893236398697, -0.056479062885046005, 0.033276211470365524, -0.07906439900398254, 0.11469466984272003, -0.01811979152262211, -0.007528166752308607, 0.04929467290639877, -0.03779971972107887, -0.07312092185020447, 0.1528274565935135, -0.12454769015312195, -0.1989900916814804, -0.19228799641132355, 0.006767017766833305, -0.10570850968360901, 0.04571697488427162, 0.07665762305259705, -0.03298354521393776, -0.04818259924650192, -0.1353042721748352, -0.03552212193608284, -0.017085781320929527, -0.04573690891265869, -0.03961919620633125, 0.05838486924767494, -0.012705777771770954, -0.18188272416591644, -0.026941057294607162, -0.0008639536099508405, -0.09833227097988129, 0.07104592025279999, -0.04853178188204765, 0.05873924866318703, 0.14722870290279388, -0.030935412272810936, -0.008872256614267826, -0.02340054325759411, 0.0924646332859993, 0.007992462255060673, 0.028770608827471733, 0.20729051530361176, 0.00812599714845419, 0.08242136240005493, 0.11059192568063736, 0.03130649775266647, -0.09334325045347214, 0.08040116727352142, 0.028233062475919724, -0.14775045216083527, -0.23716744780540466, -0.05472848191857338, -0.004290499724447727, 0.10882343351840973, -0.05289345234632492, 0.0976986363530159, 0.03158484771847725, 0.09590978175401688, 0.006518552545458078, 0.0021744538098573685, 0.08250760287046432, 0.05978243425488472, 0.15373164415359497, -0.03159337490797043, 0.08554872870445251, -0.13317260146141052, 0.03759600967168808, 0.11319749057292938, 0.07058496028184891, 0.1929336041212082, -0.0033444613218307495, 0.044212233275175095, 0.12424483150243759, 0.050050459802150726, 0.11255104094743729, 0.06029529869556427, 0.006046866066753864, 0.053062621504068375, -0.03250997141003609, -0.06853923946619034, -0.06058378890156746, 0.07391525059938431, -0.15066109597682953, -0.040282994508743286, -0.07834232598543167, 0.026658758521080017, -0.0012602631468325853, 0.10107316821813583, 0.009393716230988503, -0.15420164167881012, -0.053247082978487015, 0.11493747681379318, 0.0021038404665887356, 0.008479620330035686, 0.09190747141838074, 0.12480767071247101, -0.08427664637565613, 0.07389127463102341, 0.026072509586811066, 0.095368392765522, -0.12903782725334167, -0.022667793557047844, -0.11573652178049088, 0.003832130692899227, -0.05224362760782242, 0.10065995156764984, -0.18459367752075195, 0.16108529269695282, 0.025441179051995277, 0.01859544962644577, -0.025979604572057724, -0.03840627521276474, 0.09260091930627823, 0.20447474718093872, 0.04208052530884743, 0.04777760058641434, -0.111233651638031, -0.025691146031022072, 0.009307861328125, 0.036915816366672516, 0.007434098515659571, 0.03266598656773567, 0.032934390008449554, -0.02149796113371849, 0.013271930627524853, -0.000018400753106107004, -0.017742782831192017, -0.12722915410995483, -0.04652056470513344, -0.00014118682884145528, 0.13800570368766785, 0.007662403862923384, -0.08636578917503357, -0.05552972853183746, -0.03362362086772919, 0.15471912920475006, 0.13889694213867188, -0.09542528539896011, -0.07575114071369171, -0.17842791974544525, -0.015204176306724548, -0.06470013409852982, 0.012082991190254688, 0.027033813297748566, 0.03947170078754425, -0.03461981564760208, -0.14447341859340668, 0.034929145127534866, -0.051504459232091904, -0.07155992835760117, 0.012643308378756046, 0.0881270170211792, 0.013321265578269958, -0.011153330095112324, 0.02106378600001335, -0.04788525775074959, 0.02584141120314598, -0.14258836209774017, -0.005570839624851942, 0.21388275921344757, -0.025479653850197792, 0.02380330301821232, -0.13664256036281586, 0.01038896944373846, -0.007833628915250301, -0.0512877032160759, 0.09166380017995834, 0.18222478032112122, -0.03774236887693405, 0.13966555893421173, 0.24563778936862946, -0.16337071359157562, -0.2589201331138611, -0.07978592067956924, -0.10388141870498657, -0.032727934420108795, 0.05610628426074982, -0.10188356786966324, 0.05487968772649765, 0.030111713334918022, -0.0581875778734684, 0.10211390256881714, -0.2503749132156372, -0.10432635992765427, 0.0808497816324234, 0.18584930896759033, 0.334999144077301, -0.16668857634067535, -0.07596186548471451, -0.12930607795715332, -0.07839622348546982, 0.18197457492351532, -0.23679375648498535, 0.1238866075873375, -0.021472126245498657, 0.17473046481609344, -0.008429956622421741, -0.004079960752278566, 0.08147834986448288, -0.004198094364255667, 0.10616246610879898, -0.17754411697387695, 0.002529063494876027, 0.08195387572050095, -0.11138893663883209, 0.12629751861095428, -0.16312474012374878, 0.09057652205228806, -0.08957504481077194, -0.05399644747376442, -0.03159978240728378, 0.08816636353731155, -0.025289135053753853, -0.08906091749668121, -0.06153428182005882, 0.026064369827508926, -0.012203086167573929, -0.01930909790098667, -0.0010502968216314912, -0.02685418725013733, 0.06959779560565948, 0.1674622893333435, 0.12975911796092987, 0.005898087285459042, 0.04921092838048935, -0.019302889704704285, -0.06423147022724152, 0.07201982289552689, -0.21379388868808746, 0.011274613440036774, 0.030858971178531647, 0.028623517602682114, 0.0743759274482727, 0.03877769783139229, -0.032038286328315735, 0.028679631650447845, 0.0813806802034378, -0.13062353432178497, -0.08627159893512726, -0.006050162948668003, 0.11701057106256485, 0.005975606385618448, 0.12565775215625763, 0.1935424655675888, -0.07764255255460739, 0.029814908280968666, -0.0017363236984238029, 0.03322824090719223, -0.025846485048532486, 0.05111638084053993, 0.10865360498428345, 0.002569925505667925, -0.04709064960479736, 0.1380181908607483, 0.002393621252849698, 0.07837864011526108, 0.03599197044968605, 0.13159461319446564, -0.08479031920433044, -0.11717256903648376, -0.01473169308155775, 0.1226431205868721, -0.13770250976085663, -0.1088714525103569, -0.033042751252651215, -0.08128125220537186, -0.012519685551524162, 0.24538646638393402, 0.03853931650519371, 0.02725512720644474, 0.0032735930290073156, 0.019930219277739525, -0.01836959831416607, 0.06545855104923248, -0.05041524022817612, 0.02299700677394867, -0.13701090216636658, 0.05236344784498215, 0.01687118224799633, 0.08895955979824066, -0.047945111989974976, -0.02691551111638546, -0.13657021522521973, 0.032419390976428986, -0.23748593032360077, 0.04881979897618294, -0.10038788616657257, 0.047050364315509796, -0.03529241308569908, -0.027261171489953995, -0.024943435564637184, 0.031120186671614647, -0.08360714465379715, 0.004422842059284449, -0.024639008566737175, 0.051360055804252625, -0.13430485129356384, -0.08899868279695511, -0.000024795241188257933, 0.0315592922270298, 0.03841395676136017, -0.0009884885512292385, -0.06076883152127266, 0.08610847592353821, -0.11815465241670609, 0.07987391203641891, 0.04019102081656456, 0.01137896440923214, -0.04022661969065666, -0.04563969373703003, -0.017837530001997948, 0.01504561398178339, 0.059935156255960464, 0.059392429888248444, 0.04867671802639961, -0.08895837515592575, 0.0031759249977767467, -0.015885135158896446, -0.06781307607889175, -0.042221277952194214, -0.02817365899682045, 0.08594962954521179, 0.07874766737222672, 0.13292157649993896, -0.08683886379003525, 0.023996775969862938, -0.08767800033092499, 0.004554783459752798, 0.04176095500588417, -0.058195967227220535, -0.08574773371219635, -0.04764377698302269, -0.006527131889015436, -0.01194070652127266, 0.16512979567050934, 0.06690323352813721, -0.08599123358726501, -0.005745042115449905, 0.02340293675661087, 0.07023192942142487, -0.048914942890405655, 0.2082698941230774, -0.0023987162858247757, 0.024790747091174126, 0.009712152183055878, 0.008396633900702, 0.025455979630351067, -0.165395125746727, 0.13555991649627686, 0.05105789005756378, -0.010519448667764664, 0.04957720264792442, 0.1333116888999939, 0.056656330823898315, -0.0251082144677639, -0.18302787840366364, -0.000010157213182537816, 0.02019287832081318, -0.09292908012866974, 0.05747559666633606, 0.12239093333482742, -0.06171335652470589, 0.08031883835792542, 0.015340268611907959, -0.08640547096729279, -0.15950976312160492, -0.2262144535779953, -0.07797960191965103, -0.1078604981303215, 0.003535056486725807, -0.08925212919712067, 0.0016430692048743367, 0.08104491233825684, 0.011376692913472652, -0.04635940119624138, 0.010819841176271439, -0.14505811035633087, -0.028088999912142754, -0.022846847772598267, -0.036039452999830246, -0.0006291347090154886, -0.02966771274805069, -0.010300444439053535, 0.006066341884434223, -0.003430171636864543, -0.06318648159503937, 0.0844363421201706, 0.04227156192064285, 0.04434332624077797, -0.046537358313798904, -0.033087294548749924, -0.053430184721946716, 0.0427989736199379, 0.09647759050130844, 0.1404627561569214, 0.08050333708524704, -0.1003587394952774, 0.06616990268230438, 0.22538629174232483, -0.07767001539468765, -0.13348837196826935, -0.025688014924526215, 0.18649068474769592, -0.10752879828214645, -0.02156182751059532, -0.04808158800005913, -0.04551517218351364, 0.003909947816282511, 0.24829110503196716, 0.23115088045597076, -0.04766521975398064, 0.050058089196681976, -0.11910715699195862, 0.010178588330745697, 0.047131702303886414, 0.16982324421405792, 0.03998905420303345, 0.22474074363708496, 0.001851898618042469, -0.044467322528362274, -0.024506254121661186, 0.021037202328443527, -0.10409126430749893, 0.08508957922458649, -0.08696769177913666, -0.05355563759803772, -0.05251772329211235, 0.07485654950141907, -0.13381652534008026, -0.08736758679151535, -0.05728355795145035, 0.002312916098162532, -0.005972748156636953, -0.028971895575523376, 0.03611399605870247, -0.01714467629790306, 0.028177281841635704, -0.050205010920763016, 0.0554809495806694, 0.06702267378568649, 0.012941251508891582, -0.23373275995254517, -0.06569481641054153, 0.06544888764619827, 0.12665647268295288, 0.10518894344568253, 0.021699557080864906, 0.06612509489059448, 0.03986670821905136, -0.019746141508221626, -0.08620204776525497, 0.22505076229572296, -0.011913915164768696, -0.11435247957706451, -0.023259470239281654, 0.004631561227142811, -0.06948840618133545, 0.07868096232414246, 0.05214545130729675, 0.0311602596193552, 0.00413889903575182, 0.09778199344873428, -0.02395091950893402, -0.13617725670337677, 0.009606464765965939, -0.13637913763523102, 0.11710181832313538, 0.09895811229944229, -0.012883003801107407, -0.02236165851354599, -0.045541197061538696, 0.03342203050851822, -0.015192460268735886, -0.2652629315853119, 0.036446861922740936, -0.06862089782953262, -0.050870541483163834, 0.03747429698705673, 0.03705156221985817, -0.3226117789745331, -0.03320526331663132, -0.07247413694858551, -0.019091421738266945, -0.06470569223165512, 0.044360384345054626, 0.1575043797492981, -0.014393692836165428, -0.034463636577129364, -0.052118632942438126, -0.009995423257350922, 0.09563484787940979, -0.1450968235731125, -0.13588659465312958 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # business_taglines_base This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "google/flan-t5-base", "model-index": [{"name": "business_taglines_base", "results": []}]}
text2text-generation
fliarbi/business_taglines_base
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:30:45+00:00
[]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# business_taglines_base This model is a fine-tuned version of google/flan-t5-base on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
[ "# business_taglines_base\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 12\n- eval_batch_size: 12\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# business_taglines_base\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 12\n- eval_batch_size: 12\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ 76, 31, 6, 12, 8, 3, 90, 4, 30 ]
[ "passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# business_taglines_base\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 12\n- eval_batch_size: 12\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ -0.0658586397767067, 0.09371329098939896, -0.0016453639836981893, 0.09925305098295212, 0.1584559679031372, 0.01667906530201435, 0.14866170287132263, 0.09020516276359558, -0.11152663826942444, 0.03746115416288376, 0.06109969690442085, 0.06932821124792099, 0.030204158276319504, 0.17228102684020996, -0.036848828196525574, -0.2387525588274002, 0.00641843443736434, -0.02718975581228733, -0.047642193734645844, 0.11553790420293808, 0.09540417790412903, -0.09825077652931213, 0.08601894974708557, -0.0186763908714056, -0.1416538655757904, 0.04270026087760925, -0.0009416110115125775, -0.04544421285390854, 0.11498122662305832, 0.035194747149944305, 0.08776655793190002, 0.016313524916768074, 0.12869763374328613, -0.23817577958106995, 0.0038730932865291834, 0.08566290140151978, 0.010725685395300388, 0.05566436052322388, 0.059485919773578644, -0.007069195155054331, 0.12150386720895767, -0.12458287179470062, 0.09155591577291489, 0.046690475195646286, -0.073538638651371, -0.12847979366779327, -0.08172190934419632, 0.08603021502494812, 0.11231593787670135, 0.12248782813549042, -0.006506395060569048, 0.13581520318984985, -0.11195860058069229, 0.09478139132261276, 0.17875565588474274, -0.2884233295917511, -0.06793345510959625, 0.05973130837082863, 0.033980172127485275, 0.08370240032672882, -0.08785872906446457, 0.004617247264832258, 0.043911080807447433, 0.02558901533484459, 0.10734205693006516, -0.014686105772852898, -0.12299159914255142, 0.00681280018761754, -0.1303423047065735, -0.0013687266036868095, 0.18574966490268707, 0.06539630889892578, -0.04878575727343559, -0.07659201323986053, -0.06632408499717712, -0.07252522557973862, -0.013751571998000145, -0.0445832721889019, 0.06679617613554001, -0.026762165129184723, -0.05185806751251221, -0.0638696476817131, -0.08175713568925858, -0.06648094952106476, -0.008302399888634682, 0.09508335590362549, 0.05557902902364731, -0.00657491572201252, -0.02995140478014946, 0.10796347260475159, 0.017576541751623154, -0.10171599686145782, -0.0189636442810297, 0.006448995787650347, -0.057101186364889145, -0.06854372471570969, -0.0287410207092762, -0.02330799214541912, 0.026145491749048233, 0.1507275253534317, -0.07853272557258606, 0.061004653573036194, 0.007324259262531996, 0.006084042135626078, -0.06320132315158844, 0.12885814905166626, -0.023343436419963837, -0.07395519316196442, 0.03215435892343521, 0.07823166251182556, 0.0474223755300045, 0.009320603683590889, -0.0917748510837555, -0.005574233364313841, 0.0883655995130539, 0.07745801657438278, -0.05152643471956253, 0.05975955352187157, -0.03755086660385132, -0.006517465692013502, -0.01447972934693098, -0.1292690634727478, 0.04671616107225418, -0.007136151194572449, -0.07129136472940445, -0.03862722963094711, 0.05424726754426956, 0.011136861518025398, -0.040370360016822815, 0.08898957818746567, -0.07119260728359222, -0.00009411356586497277, -0.09087636321783066, -0.0652007907629013, 0.022920144721865654, -0.045093465596437454, -0.0055259536020457745, -0.096339650452137, -0.24691654741764069, -0.03281699866056442, 0.045255307108163834, -0.037992212921381, -0.059312742203474045, -0.06326694786548615, -0.06524843722581863, -0.0191086083650589, -0.019250186160206795, 0.11052317917346954, -0.06544175744056702, 0.07491803169250488, 0.013615536503493786, 0.021902047097682953, 0.015420026145875454, 0.025325028225779533, -0.10706096142530441, 0.01750190556049347, -0.1312665194272995, 0.061363622546195984, -0.06672384589910507, 0.0655992180109024, -0.098614901304245, -0.08637717366218567, -0.013759659603238106, 0.00480001512914896, 0.02933790162205696, 0.14355415105819702, -0.15654665231704712, -0.029789159074425697, 0.17309914529323578, -0.09258870035409927, -0.10540643334388733, 0.10855060070753098, -0.037122711539268494, 0.05341637507081032, 0.09851595014333725, 0.1387924700975418, 0.08719071000814438, -0.11587431281805038, 0.010424661450088024, -0.019665125757455826, 0.03631218895316124, 0.008981850929558277, 0.04264485836029053, -0.024141425266861916, -0.019798455759882927, 0.02156374230980873, -0.06740298122167587, 0.020184356719255447, -0.0789785236120224, -0.07958658784627914, -0.05627721548080444, -0.09852250665426254, 0.030757468193769455, 0.025063982233405113, 0.04536256939172745, -0.08822863548994064, -0.11441375315189362, 0.10613260418176651, 0.09378135204315186, -0.06237456202507019, 0.004451279062777758, -0.058780487626791, 0.025205958634614944, 0.01051401998847723, -0.0015773080522194505, -0.16386212408542633, -0.15516680479049683, 0.024782614782452583, -0.10056093335151672, 0.06514481455087662, -0.010261474177241325, 0.05928993597626686, 0.08313257992267609, -0.07451341301202774, -0.02685992605984211, -0.06099795177578926, 0.004303014371544123, -0.09076673537492752, -0.21576133370399475, -0.013197873719036579, -0.007841848768293858, 0.1642632931470871, -0.2633076310157776, 0.04470016434788704, -0.05371886119246483, 0.11887867748737335, 0.02083594910800457, -0.02941776067018509, -0.012149044312536716, 0.05118138715624809, -0.02171771042048931, -0.09094768017530441, 0.04118990898132324, -0.0060888975858688354, -0.06873776018619537, -0.05137167125940323, -0.12957261502742767, 0.12248203903436661, 0.10072947293519974, 0.006485156714916229, -0.09971822053194046, -0.007504803594201803, -0.059309620410203934, -0.04898950830101967, -0.10187552869319916, 0.011469563469290733, 0.15229938924312592, -0.017617136240005493, 0.13276146352291107, -0.06312301009893417, -0.05456448346376419, -0.01249900832772255, -0.009822414256632328, 0.01069449819624424, 0.07720442861318588, 0.10516618192195892, -0.11889894306659698, 0.1099167987704277, 0.09002043306827545, -0.06613621860742569, 0.15653681755065918, -0.043474357575178146, -0.046393558382987976, -0.004232608247548342, 0.030628826469182968, -0.012902730144560337, 0.10254687815904617, -0.12867091596126556, 0.006487791892141104, 0.006794715765863657, 0.00882743950933218, 0.03942534327507019, -0.1843491792678833, -0.016217296943068504, 0.02174719236791134, -0.07243602722883224, -0.01978090964257717, -0.03459279611706734, 0.007812649942934513, 0.09176867455244064, 0.005620576441287994, -0.029003288596868515, 0.03109891712665558, 0.011161805130541325, -0.10953667759895325, 0.19303137063980103, -0.10053267329931259, -0.13049636781215668, -0.120816670358181, 0.04558892920613289, -0.07689692080020905, -0.011943204328417778, 0.048635777086019516, -0.0857553482055664, -0.06962327659130096, -0.12380312383174896, 0.009924500249326229, -0.0012844373704865575, -0.013451366685330868, -0.007912800647318363, 0.026608958840370178, 0.07522716373205185, -0.12937738001346588, 0.0013239665422588587, -0.004791404586285353, -0.10477902740240097, -0.00636775977909565, 0.026423657312989235, 0.11254902929067612, 0.12862983345985413, -0.013448821380734444, 0.011238106526434422, -0.03766578063368797, 0.1975979506969452, -0.06429732590913773, 0.018905790522694588, 0.13101132214069366, 0.04225092753767967, 0.03861348703503609, 0.14473111927509308, 0.02981593832373619, -0.10516087710857391, 0.05634202063083649, 0.08049044013023376, -0.012252261862158775, -0.2521075904369354, -0.043520040810108185, -0.032909322530031204, -0.04744301736354828, 0.07498573511838913, 0.06529755145311356, 0.049774155020713806, 0.03819004446268082, -0.024861697107553482, 0.06951504200696945, 0.03605535253882408, 0.08111178874969482, 0.12396379560232162, 0.04632584750652313, 0.10079158842563629, -0.039894264191389084, -0.03163675218820572, 0.06417015194892883, -0.02745206281542778, 0.2717079520225525, 0.005564549006521702, 0.07607850432395935, 0.052375130355358124, 0.12172094732522964, -0.013240321539342403, 0.04079754650592804, 0.05243832245469093, 0.0019561024382710457, 0.015633651986718178, -0.06762667745351791, -0.0014976407401263714, 0.037843767553567886, -0.06048668175935745, 0.047655101865530014, -0.07760033756494522, 0.03333515673875809, 0.04556303098797798, 0.2604977786540985, 0.011400637216866016, -0.3103748857975006, -0.07958592474460602, 0.016501229256391525, -0.04535866156220436, -0.03289876505732536, 0.023489493876695633, 0.10400725901126862, -0.12134965509176254, 0.0761478990316391, -0.04839809238910675, 0.09483104199171066, -0.011117955669760704, 0.009791218675673008, 0.06652434915304184, 0.11884647607803345, -0.009888256900012493, 0.0944853127002716, -0.25580134987831116, 0.22156839072704315, 0.0047026630491018295, 0.13816528022289276, -0.03337645158171654, 0.027669956907629967, 0.030163470655679703, 0.13092060387134552, 0.09358356893062592, -0.00954075250774622, -0.019860928878188133, -0.15557844936847687, -0.06124519556760788, 0.05502667650580406, 0.10145588219165802, -0.03480609133839607, 0.09135237336158752, -0.057407915592193604, -0.02058436907827854, 0.06271284818649292, -0.056552719324827194, -0.2262383997440338, -0.10912150889635086, -0.023547552525997162, 0.0030151642858982086, 0.01868145540356636, -0.09413136541843414, -0.09511607140302658, -0.04354121536016464, 0.18181122839450836, -0.009401068091392517, -0.04602869227528572, -0.1286754012107849, 0.06492780894041061, 0.06704296916723251, -0.059603385627269745, 0.03482885658740997, 0.015448692254722118, 0.09070713073015213, 0.052783187478780746, -0.08301270753145218, 0.07604063302278519, -0.07200510054826736, -0.1810004711151123, -0.06409498304128647, 0.1189446672797203, 0.03376214578747749, 0.03593163937330246, 0.007003338076174259, 0.003747123759239912, 0.013369075953960419, -0.10545199364423752, -0.012462389655411243, 0.08511032909154892, 0.07736991345882416, 0.06916190683841705, -0.1094525009393692, -0.025575680658221245, -0.04756839945912361, -0.04834819957613945, 0.09330953657627106, 0.21124868094921112, -0.06865885853767395, 0.04986901208758354, 0.07293124496936798, -0.08393078297376633, -0.1710488647222519, 0.054457612335681915, 0.06413757801055908, 0.004506759345531464, 0.05011599510908127, -0.170818030834198, 0.13535894453525543, 0.12295272946357727, -0.020803265273571014, 0.06983177363872528, -0.33666011691093445, -0.15491636097431183, 0.06812480837106705, 0.14531512558460236, 0.02559172920882702, -0.15701569616794586, -0.03780301660299301, -0.0513189435005188, -0.12258751690387726, 0.10548906773328781, -0.16292546689510345, 0.10125648975372314, 0.0029993599746376276, 0.053424086421728134, 0.003668853547424078, -0.03619410842657089, 0.11884760111570358, 0.015306724235415459, 0.10483725368976593, -0.06532492488622665, 0.04121632128953934, 0.076036736369133, -0.062034644186496735, 0.07097732275724411, -0.0840773731470108, 0.07282470166683197, -0.08123922348022461, -0.04389302060008049, -0.05646983161568642, 0.08791156858205795, -0.059495147317647934, -0.05677076429128647, -0.048245128244161606, 0.03586997836828232, 0.06382355839014053, -0.027732353657484055, 0.059319376945495605, 0.0028280906844884157, 0.11424965411424637, 0.08548195660114288, 0.11398164182901382, -0.02953655831515789, -0.06491366773843765, -0.02431018464267254, -0.034515198320150375, 0.046245966106653214, -0.12881018221378326, 0.021412573754787445, 0.10565081238746643, 0.03153131529688835, 0.14811775088310242, 0.049256253987550735, -0.03578520566225052, -0.005203059874475002, 0.04740353301167488, -0.12927216291427612, -0.18674282729625702, -0.021264968439936638, -0.11847996711730957, -0.10527633875608444, 0.039479807019233704, 0.09809333831071854, -0.09437644481658936, 0.007731209043413401, -0.019448507577180862, 0.02350100316107273, -0.02712676301598549, 0.18003366887569427, 0.027824178338050842, 0.052279435098171234, -0.08140494674444199, 0.12606942653656006, 0.0768866240978241, -0.04150647670030594, 0.024397749453783035, 0.09397243708372116, -0.10594625025987625, -0.04144401475787163, 0.09594912827014923, 0.20025843381881714, -0.03954867646098137, -0.0580945685505867, -0.10880627483129501, -0.1311996877193451, 0.04252181202173233, 0.1384011059999466, 0.04221236705780029, -0.003537664422765374, -0.02274138480424881, 0.03464338928461075, -0.12013434618711472, 0.09976823627948761, 0.058096326887607574, 0.0770697072148323, -0.16822537779808044, 0.12981101870536804, 0.03231634572148323, 0.0035492826718837023, -0.02234576642513275, 0.038816794753074646, -0.10853800177574158, -0.0213834997266531, -0.1483638733625412, -0.01910329982638359, -0.015671877190470695, 0.014568072743713856, -0.006955243181437254, -0.04374322667717934, -0.059750307351350784, 0.05016128346323967, -0.06028074026107788, -0.06266320496797562, 0.019270215183496475, 0.0700678899884224, -0.15680205821990967, 0.0028273779898881912, 0.017138225957751274, -0.09213647991418839, 0.07161600887775421, 0.04339667409658432, 0.009651715867221355, 0.05539017543196678, -0.18579059839248657, 0.009594115428626537, 0.04711912199854851, 0.0198347344994545, 0.04571598768234253, -0.07258421182632446, -0.008333069272339344, -0.00382043095305562, 0.05246978625655174, 0.02372920885682106, 0.05061604082584381, -0.12087223678827286, -0.016613561660051346, -0.057051654905080795, -0.06573788821697235, -0.047316137701272964, 0.031538669019937515, 0.09546736627817154, -0.00766959460452199, 0.20284917950630188, -0.11530537158250809, 0.017240559682250023, -0.2087000161409378, -0.022979000583291054, 0.005718084517866373, -0.04421045631170273, -0.11196242272853851, -0.043545912951231, 0.06701943278312683, -0.05152261629700661, 0.13199342787265778, 0.01593906246125698, 0.10825240612030029, 0.03955607861280441, -0.04287385195493698, -0.001313977874815464, 0.018816566094756126, 0.18751174211502075, 0.039711397141218185, -0.008739872835576534, 0.06610126048326492, -0.010893608443439007, 0.07584482431411743, -0.034623630344867706, 0.21199265122413635, 0.15482595562934875, -0.10849721729755402, 0.0762166976928711, 0.07238488644361496, -0.11091376096010208, -0.15368779003620148, 0.06949624419212341, -0.04465563967823982, 0.12747028470039368, -0.06041373312473297, 0.16509315371513367, 0.11921773850917816, -0.1626068502664566, 0.02931852452456951, -0.04850029572844505, -0.09941723197698593, -0.11185035854578018, -0.05059166997671127, -0.09852039068937302, -0.1447429656982422, 0.02083428017795086, -0.11079312115907669, 0.019497156143188477, 0.07015037536621094, 0.010473517701029778, -0.013498875312507153, 0.1630994826555252, -0.010926375165581703, 0.004335843026638031, 0.04115073010325432, 0.0005437746294774115, -0.02063825912773609, -0.06388947367668152, -0.07627489417791367, 0.010255986824631691, -0.015079278498888016, 0.039379581809043884, -0.028885580599308014, -0.03391903638839722, 0.03906134516000748, -0.022009721025824547, -0.05197973921895027, 0.040844228118658066, 0.025434007868170738, 0.020857438445091248, 0.029335493221879005, 0.04621034488081932, -0.027191825211048126, -0.005209691822528839, 0.2993132770061493, -0.0730147436261177, -0.1236046850681305, -0.10817643254995346, 0.23200863599777222, 0.05051469802856445, -0.003062694799154997, 0.05686671659350395, -0.11319280415773392, 0.013291209004819393, 0.19263955950737, 0.16168144345283508, -0.04967283830046654, -0.010920953936874866, -0.026592299342155457, -0.022722192108631134, -0.03134410083293915, 0.13582944869995117, 0.10950835049152374, 0.05355644226074219, -0.026034440845251083, 0.016705593094229698, 0.009541474282741547, -0.028464796021580696, -0.11067026853561401, 0.09008339792490005, 0.02349065989255905, -0.004882301203906536, -0.025456514209508896, 0.09518717974424362, -0.013246292248368263, -0.13803167641162872, 0.0514305904507637, -0.1385212540626526, -0.15409842133522034, -0.03936709836125374, 0.09194380044937134, -0.024529695510864258, 0.04196503385901451, -0.013500985689461231, -0.011922732926905155, 0.11813288182020187, -0.016861604526638985, -0.08970338851213455, -0.09855112433433533, 0.05887811630964279, -0.09196344017982483, 0.2601822018623352, -0.00806157011538744, 0.04859263822436333, 0.1105489507317543, 0.005231283139437437, -0.10931907594203949, 0.10415210574865341, 0.048594798892736435, -0.0669008418917656, 0.06531953066587448, 0.09887854009866714, -0.04447126388549805, 0.0816129520535469, 0.027909450232982635, -0.09485126286745071, 0.004699756391346455, -0.0168375875800848, -0.0489882193505764, -0.08977977931499481, 0.0005294412840157747, -0.08038221299648285, 0.13327732682228088, 0.19811666011810303, -0.0324653759598732, 0.03240259736776352, -0.08137809485197067, 0.05440623685717583, 0.05416923761367798, 0.08593154698610306, -0.0021920460276305676, -0.21131077408790588, 0.01787947677075863, 0.013179847039282322, 0.021522432565689087, -0.252105176448822, -0.0787343978881836, -0.002285833703354001, -0.030068062245845795, -0.09027626365423203, 0.10883765667676926, 0.13601206243038177, 0.036501187831163406, -0.04106007143855095, -0.175608828663826, -0.04679436981678009, 0.17895616590976715, -0.1489568054676056, -0.06658609956502914 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
cnrcastroli/drpairForm2Checkboxes10k
[ "transformers", "safetensors", "vision-encoder-decoder", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T04:32:39+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 39, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.05306316912174225, 0.20225799083709717, -0.004532716237008572, 0.02486577071249485, 0.10745619982481003, 0.005829503294080496, 0.06235508993268013, 0.11292294412851334, -0.0020419019274413586, 0.12131396681070328, 0.02719549834728241, 0.07967612892389297, 0.12327883392572403, 0.1561002880334854, 0.003298027440905571, -0.2451947182416916, 0.056976594030857086, -0.09095743298530579, 0.005862638354301453, 0.11416777968406677, 0.1328127682209015, -0.10651655495166779, 0.09236611425876617, -0.006378492806106806, -0.018223589286208153, -0.01560811698436737, -0.07464081048965454, -0.06576249748468399, 0.05573050677776337, 0.07688132673501968, 0.0721992626786232, 0.009551521390676498, 0.07658318430185318, -0.2803225517272949, 0.014262731187045574, 0.08472383767366409, 0.001679662149399519, 0.06746198982000351, 0.08127366751432419, -0.06743600219488144, 0.1253480762243271, -0.072596974670887, 0.1388878971338272, 0.07806979864835739, -0.09000035375356674, -0.19567735493183136, -0.06588542461395264, 0.06967565417289734, 0.13176710903644562, 0.05219413340091705, -0.02802334912121296, 0.13226838409900665, -0.09170275926589966, 0.009603562764823437, 0.11835573613643646, -0.0669531598687172, -0.05480296164751053, 0.036625828593969345, 0.09896823018789291, 0.08901896327733994, -0.11835762113332748, -0.005250310990959406, 0.02971211075782776, 0.02317153476178646, 0.08707734197378159, 0.01639537699520588, 0.14948242902755737, 0.03726613521575928, -0.14019928872585297, -0.05744593217968941, 0.0939771831035614, 0.03824683278799057, -0.04958764836192131, -0.2343815118074417, -0.031156767159700394, -0.016557393595576286, -0.0305255725979805, -0.04024772346019745, 0.05501044541597366, -0.03525097668170929, 0.0778101459145546, -0.00980226881802082, -0.08041384816169739, -0.028304021805524826, 0.04802321270108223, 0.06495635211467743, 0.0185654629021883, -0.0052207582630217075, 0.02111206203699112, 0.11669638752937317, 0.0788947269320488, -0.13250376284122467, -0.07449234277009964, -0.07420225441455841, -0.098720021545887, -0.04206917807459831, 0.035802435129880905, 0.07063398510217667, 0.03907659277319908, 0.1947319507598877, -0.017316637560725212, 0.0492829903960228, 0.04488114267587662, 0.006694390904158354, 0.06837808340787888, 0.11208193004131317, -0.06981375813484192, -0.1344674974679947, -0.058068543672561646, 0.0876275971531868, -0.004179352894425392, -0.03578972443938255, -0.050102028995752335, 0.04014993831515312, 0.030947856605052948, 0.11303774267435074, 0.08247632533311844, 0.00018158231978304684, -0.06263403594493866, -0.042954958975315094, 0.22251743078231812, -0.14639760553836823, 0.04202887415885925, 0.005975429899990559, -0.04316512867808342, -0.004425262566655874, 0.010939684696495533, 0.012188587337732315, -0.037748441100120544, 0.10074765980243683, -0.07618969678878784, -0.034445326775312424, -0.11386469751596451, -0.0645400807261467, 0.02648116648197174, 0.004736251663416624, -0.021350713446736336, -0.043291062116622925, -0.11405764520168304, -0.04943132400512695, 0.07177776843309402, -0.07382809370756149, -0.05491260066628456, 0.011223746463656425, -0.053137388080358505, 0.004582186229526997, 0.00267049134708941, 0.1107012927532196, -0.032886769622564316, 0.02474004216492176, -0.046873610466718674, 0.06870805472135544, 0.10572899132966995, 0.037948183715343475, -0.08262749016284943, 0.07297130674123764, -0.23081135749816895, 0.10601279884576797, -0.0860590934753418, 0.020004073157906532, -0.14292661845684052, -0.04098188504576683, 0.028510602191090584, 0.027961768209934235, -0.010129709728062153, 0.1261758655309677, -0.2058180272579193, -0.030243845656514168, 0.14840680360794067, -0.11589378863573074, -0.09422067552804947, 0.06595603376626968, -0.05322439596056938, 0.10703813284635544, 0.04694817587733269, -0.023595338687300682, 0.07076855003833771, -0.1317324936389923, -0.04631568118929863, -0.021216953173279762, -0.014257868751883507, 0.1454293578863144, 0.06817390769720078, -0.05359628424048424, 0.07706184685230255, 0.021635930985212326, -0.037367887794971466, -0.03435307368636131, -0.03299751877784729, -0.0921449214220047, 0.006188652943819761, -0.06746368855237961, 0.029415255412459373, -0.021083641797304153, -0.09160202741622925, -0.0303809754550457, -0.1750536859035492, 0.03627307340502739, 0.08193549513816833, 0.006318137980997562, -0.0197709072381258, -0.09286735206842422, 0.01832297258079052, -0.012543086893856525, -0.01892191916704178, -0.16171851754188538, -0.04700363799929619, 0.04258821904659271, -0.20086339116096497, 0.01967989094555378, -0.03661181032657623, 0.04892909526824951, 0.03480081260204315, -0.04064054414629936, -0.008631768636405468, 0.003335281042382121, 0.015725387260317802, -0.024876078590750694, -0.20007483661174774, -0.030333993956446648, -0.02597803995013237, 0.13431528210639954, -0.22246739268302917, 0.02835940755903721, 0.08417746424674988, 0.1434013694524765, 0.0016660679830238223, -0.04368278756737709, 0.014076939783990383, -0.054847393184900284, -0.05226233974099159, -0.06906641274690628, -0.006392029579728842, -0.03333830088376999, -0.03956965357065201, 0.07096927613019943, -0.20027990639209747, -0.04262993112206459, 0.10826600342988968, 0.09837738424539566, -0.14323553442955017, -0.02474437840282917, -0.04144697263836861, -0.061835117638111115, -0.09049158543348312, -0.06381296366453171, 0.1425853669643402, 0.04930912330746651, 0.05233171954751015, -0.08628004789352417, -0.06071622669696808, 0.010883725248277187, -0.00011982241994701326, -0.04022165387868881, 0.08589175343513489, 0.08529563993215561, -0.1104804202914238, 0.09131632000207901, 0.08476598560810089, 0.06810380518436432, 0.10764316469430923, 0.0015695258043706417, -0.10674308240413666, -0.02863943576812744, 0.007197246421128511, 0.014064288698136806, 0.14327655732631683, -0.04052828997373581, 0.048501238226890564, 0.05552942305803299, -0.026791011914610863, 0.01846246048808098, -0.1073673665523529, 0.03181065618991852, 0.047323208302259445, -0.009707847610116005, 0.022087840363383293, -0.03469701483845711, 0.029233038425445557, 0.08711127936840057, 0.035028502345085144, 0.029371140524744987, 0.006271174643188715, -0.035827167332172394, -0.10475867241621017, 0.17433254420757294, -0.0890800803899765, -0.2983497679233551, -0.1401464194059372, -0.0031294787768274546, 0.04853705316781998, -0.02189650572836399, 0.011501757428050041, -0.04715869575738907, -0.11619791388511658, -0.10501103848218918, 0.008872180245816708, 0.04236939176917076, -0.07721052318811417, -0.0677536204457283, 0.049645159393548965, 0.03511786088347435, -0.1394437551498413, 0.02193400263786316, 0.04976930096745491, -0.03652774170041084, -0.014805521816015244, 0.07396114617586136, 0.1029050275683403, 0.17309242486953735, -0.006633569020777941, -0.017617538571357727, 0.023926623165607452, 0.24285922944545746, -0.14599764347076416, 0.10973547399044037, 0.15899382531642914, -0.06477009505033493, 0.10309092700481415, 0.19795724749565125, 0.023503681644797325, -0.07609159499406815, 0.03380175679922104, 0.03942976891994476, -0.05477331578731537, -0.22650650143623352, -0.06247439235448837, -0.0018889455823227763, -0.07084330171346664, 0.0898994579911232, 0.09043484926223755, 0.10881193727254868, 0.04595636948943138, -0.08826620131731033, -0.06884618103504181, 0.018320003524422646, 0.10980518162250519, -0.021245790645480156, 0.0068580652587115765, 0.08790436387062073, -0.04739201068878174, -0.004643888212740421, 0.10682045668363571, 0.012494737282395363, 0.19045358896255493, 0.026300430297851562, 0.1511247158050537, 0.0705496221780777, 0.02818082831799984, 0.028634218499064445, 0.01902483031153679, 0.02658020332455635, 0.008844421245157719, -0.017161816358566284, -0.08914987742900848, 0.024366190657019615, 0.1353050321340561, 0.07279488444328308, 0.03349636495113373, 0.02151625230908394, -0.03378571942448616, 0.06302186101675034, 0.16916872560977936, 0.010774882510304451, -0.22069227695465088, -0.038822758942842484, 0.08901690691709518, -0.07502853125333786, -0.12661625444889069, -0.02531552128493786, 0.041314706206321716, -0.17944134771823883, 0.04614526778459549, -0.01675923727452755, 0.11310327053070068, -0.12792818248271942, -0.027826640754938126, 0.0399215929210186, 0.08714547008275986, -0.030904775485396385, 0.07850778102874756, -0.16933031380176544, 0.11483496427536011, 0.012726574204862118, 0.06142592057585716, -0.11495199054479599, 0.09937658905982971, 0.012870636768639088, -0.004057616461068392, 0.166650652885437, -0.0004076457116752863, -0.07127676159143448, -0.06420327723026276, -0.0747542679309845, -0.021446911618113518, 0.09447984397411346, -0.11176029592752457, 0.08143189549446106, -0.014278407208621502, -0.038768354803323746, 0.002094640163704753, -0.1095178872346878, -0.12445959448814392, -0.19356580078601837, 0.06069660931825638, -0.10815826058387756, 0.003831093432381749, -0.09925412386655807, -0.05358343943953514, -0.04677683115005493, 0.20124182105064392, -0.14483362436294556, -0.09758627414703369, -0.15289589762687683, -0.09554614871740341, 0.1664566993713379, -0.04663718119263649, 0.08821606636047363, -0.0038687095511704683, 0.22914768755435944, 0.006724040023982525, -0.012434800155460835, 0.07520399242639542, -0.08637748658657074, -0.17783690989017487, -0.07604682445526123, 0.12165174633264542, 0.12136691808700562, 0.04747939854860306, -0.012795967981219292, 0.021366307511925697, -0.03262670710682869, -0.1143370196223259, 0.008061125874519348, 0.12403146922588348, 0.05908475071191788, 0.04311663657426834, 0.00427021412178874, -0.11007828265428543, -0.07147429138422012, -0.03523124009370804, 0.021944832056760788, 0.18807166814804077, -0.08221416175365448, 0.15053938329219818, 0.12907743453979492, -0.05370299890637398, -0.21416690945625305, 0.03436880186200142, 0.04090806469321251, 0.00472818361595273, 0.053175248205661774, -0.1770489513874054, 0.07840683311223984, 0.024572648108005524, -0.05139078199863434, 0.15225622057914734, -0.1677834391593933, -0.1536329686641693, 0.0777980238199234, 0.05417194589972496, -0.21989625692367554, -0.12022100389003754, -0.08520790934562683, -0.06769770383834839, -0.14243635535240173, 0.08412115275859833, 0.020698823034763336, 0.00019321028958074749, 0.04856256768107414, 0.034081753343343735, 0.019389502704143524, -0.04823823645710945, 0.21962693333625793, -0.009151222184300423, 0.036160267889499664, -0.07677234709262848, -0.09645134955644608, 0.07220485061407089, -0.054490040987730026, 0.08667207509279251, -0.024035243317484856, 0.007558862213045359, -0.07708337903022766, -0.05522387474775314, -0.051626816391944885, 0.029731709510087967, -0.07851403951644897, -0.1059325784444809, -0.0698300376534462, 0.09317977726459503, 0.09290435165166855, -0.03390717878937721, -0.03715480491518974, -0.09010928869247437, 0.027843475341796875, 0.20326566696166992, 0.1706404834985733, 0.05219545215368271, -0.10166811943054199, 0.0006855534156784415, -0.017444688826799393, 0.04213650897145271, -0.21454355120658875, 0.04805922508239746, 0.046434495598077774, 0.023125024512410164, 0.11990387737751007, -0.016930051147937775, -0.16412340104579926, -0.04671873524785042, 0.056455835700035095, -0.036497533321380615, -0.20693081617355347, -0.012548294849693775, 0.052488550543785095, -0.18057814240455627, -0.0640311911702156, 0.01719793491065502, -0.01455759722739458, -0.024732910096645355, 0.013886804692447186, 0.06330747157335281, 0.027956031262874603, 0.09375539422035217, 0.05616210401058197, 0.10073219239711761, -0.11451173573732376, 0.08603792637586594, 0.08968610316514969, -0.09007474035024643, 0.0125290397554636, 0.0736992210149765, -0.055889032781124115, -0.02316245622932911, 0.020047122612595558, 0.06119868531823158, -0.00162112049292773, -0.061508238315582275, -0.01975059136748314, -0.11018196493387222, 0.06758071482181549, 0.13242226839065552, 0.04006093740463257, -0.005321177653968334, 0.048064373433589935, 0.021657899022102356, -0.0826604813337326, 0.11298491060733795, 0.025856876745820045, 0.038508445024490356, -0.06642783433198929, -0.023183433338999748, 0.045513976365327835, 0.008002778515219688, -0.020539432764053345, -0.02922571264207363, -0.05385620519518852, -0.011762911453843117, -0.18990042805671692, 0.01677597686648369, -0.0765504315495491, 0.004350012633949518, 0.014810539782047272, -0.03814086318016052, -0.020958559587597847, 0.016691848635673523, -0.07982292026281357, -0.05134430527687073, -0.002734045498073101, 0.0985812395811081, -0.13863937556743622, 0.007181720342487097, 0.08835478872060776, -0.11878933757543564, 0.06740869581699371, -0.024482958018779755, -0.017330501228570938, -0.0019446499645709991, -0.12968114018440247, 0.04302144795656204, 0.002646980108693242, 0.01983785443007946, 0.042118169367313385, -0.16895927488803864, 0.006406146101653576, -0.04021742194890976, -0.04932057484984398, -0.01649690791964531, -0.07501037418842316, -0.11416008323431015, 0.11071296036243439, 0.0018048452911898494, -0.07790763676166534, -0.0117954695597291, 0.05156298726797104, 0.10936092585325241, -0.037753306329250336, 0.1212289109826088, 0.0044145528227090836, 0.06474429368972778, -0.18044467270374298, -0.024778762832283974, -0.015598369762301445, 0.006858370266854763, 0.02694357931613922, -0.0140616400167346, 0.042949724942445755, -0.013948258012533188, 0.2575705349445343, -0.02087925560772419, 0.07440228760242462, 0.06519795209169388, 0.046770140528678894, 0.011650492437183857, 0.0869150459766388, 0.06678774207830429, 0.012648052535951138, 0.003416551509872079, 0.032283470034599304, -0.031422972679138184, -0.014915283769369125, -0.1482047736644745, 0.07101717591285706, 0.1439564973115921, 0.08283385634422302, 0.012806775979697704, 0.06352550536394119, -0.10048910230398178, -0.10461166501045227, 0.08237126469612122, -0.041638992726802826, -0.0008007619762793183, -0.058745238929986954, 0.1454916000366211, 0.15373669564723969, -0.17184817790985107, 0.0812029168009758, -0.0365472249686718, -0.04692631587386131, -0.110826775431633, -0.16450464725494385, -0.06572620570659637, -0.02580863982439041, -0.003703176509588957, -0.05508402734994888, 0.06688077747821808, 0.11885157972574234, -0.0016993435565382242, -0.0014807049883529544, 0.10038914531469345, -0.022431546822190285, -0.02085503377020359, 0.03484790027141571, 0.04871930554509163, 0.036450520157814026, -0.04567375034093857, 0.02037064917385578, 0.010481024160981178, 0.03885771334171295, 0.0584954097867012, 0.024686437100172043, -0.03216709941625595, 0.015852995216846466, -0.012883862480521202, -0.10344603657722473, 0.023220296949148178, -0.02661588042974472, -0.07547900825738907, 0.12944786250591278, 0.03020857274532318, 0.016596315428614616, -0.03272676467895508, 0.20282141864299774, -0.07233016192913055, -0.07228796184062958, -0.14049077033996582, 0.11066530644893646, -0.03675038740038872, 0.06309209764003754, 0.05746688321232796, -0.11500853300094604, -0.005017681512981653, 0.12902788817882538, 0.12829062342643738, -0.03323068469762802, 0.0049867476336658, 0.026197774335741997, 0.00827173050493002, -0.049032241106033325, 0.04763645678758621, 0.032188743352890015, 0.15468738973140717, -0.07100655138492584, 0.07814180850982666, -0.0005074164946563542, -0.08921105414628983, -0.03626048564910889, 0.1392250955104828, 0.0028979976195842028, 0.032514654099941254, -0.06501611322164536, 0.1007646918296814, -0.07232671231031418, -0.22924686968326569, 0.04944430664181709, -0.0780143067240715, -0.1530541479587555, -0.012732122093439102, 0.02754151076078415, -0.013794543221592903, 0.02254127338528633, 0.061679136008024216, -0.06457692384719849, 0.16001729667186737, 0.03501654788851738, -0.08832933753728867, -0.05492360517382622, 0.07016300410032272, -0.1023297980427742, 0.29636111855506897, 0.011759842745959759, 0.032544128596782684, 0.10384590178728104, -0.01977287232875824, -0.1365358531475067, 0.029908113181591034, 0.09750298410654068, -0.0958370491862297, 0.0666261613368988, 0.18576137721538544, -0.01007252186536789, 0.10188479721546173, 0.07690271735191345, -0.06373509019613266, 0.05595288425683975, -0.08074036985635757, -0.06501531600952148, -0.0913926437497139, 0.0567726232111454, -0.06534478068351746, 0.14360256493091583, 0.11906343698501587, -0.03889768570661545, -0.0050442758947610855, -0.029765458777546883, 0.041717544198036194, 0.013438636437058449, 0.12334854900836945, 0.013119494542479515, -0.1562117338180542, 0.029238002374768257, 0.003133314661681652, 0.10249229520559311, -0.2173282951116562, -0.08784149587154388, 0.04678759351372719, -0.03227124735713005, -0.05141454562544823, 0.1055324450135231, 0.06109399348497391, 0.05229108780622482, -0.0470384918153286, -0.05454113334417343, -0.007119470275938511, 0.1505606472492218, -0.11762657761573792, -0.009603551588952541 ]
null
null
null
## Exllama v2 Quantizations of bagel-dpo-20b-v04-llama Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/jondurbin/bagel-dpo-20b-v04-llama | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ------ | ---- | ------------ | ---- | ---- | ---- | ----------- | | [6_5](https://huggingface.co/bartowski/bagel-dpo-20b-v04-llama-exl2/tree/6_5) | 6.5 | 8.0 | 19.6 GB | 21.0 GB | 23.0 GB | Near unquantized performance at vastly reduced size, **recommended**. | | [4_25](https://huggingface.co/bartowski/bagel-dpo-20b-v04-llama-exl2/tree/4_25) | 4.25 | 6.0 | 13.8 GB | 15.2 GB | 17.2 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/bagel-dpo-20b-v04-llama-exl2/tree/3_5) | 3.5 | 6.0 | 12.4 GB | 13.8 GB | 15.8 GB | Lower quality, only use if you have to. | | [3_0](https://huggingface.co/bartowski/bagel-dpo-20b-v04-llama-exl2/tree/3_0) | 3.0 | 6.0 | 11.1 GB | 12.5 GB | 15.5 GB | Very low quality. Usable on 12GB. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/bagel-dpo-20b-v04-llama-exl2 bagel-dpo-20b-v04-llama-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `bagel-dpo-20b-v04-llama-exl2`: ```shell mkdir bagel-dpo-20b-v04-llama-exl2 huggingface-cli download bartowski/bagel-dpo-20b-v04-llama-exl2 --local-dir bagel-dpo-20b-v04-llama-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir bagel-dpo-20b-v04-llama-exl2-6_5 huggingface-cli download bartowski/bagel-dpo-20b-v04-llama-exl2 --revision 6_5 --local-dir bagel-dpo-20b-v04-llama-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir bagel-dpo-20b-v04-llama-exl2-6.5 huggingface-cli download bartowski/bagel-dpo-20b-v04-llama-exl2 --revision 6_5 --local-dir bagel-dpo-20b-v04-llama-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
{"license": "other", "datasets": ["ai2_arc", "allenai/ultrafeedback_binarized_cleaned", "argilla/distilabel-intel-orca-dpo-pairs", "jondurbin/airoboros-3.2", "codeparrot/apps", "facebook/belebele", "bluemoon-fandom-1-1-rp-cleaned", "boolq", "camel-ai/biology", "camel-ai/chemistry", "camel-ai/math", "camel-ai/physics", "jondurbin/contextual-dpo-v0.1", "jondurbin/gutenberg-dpo-v0.1", "jondurbin/py-dpo-v0.1", "jondurbin/truthy-dpo-v0.1", "LDJnr/Capybara", "jondurbin/cinematika-v0.1", "WizardLM/WizardLM_evol_instruct_70k", "glaiveai/glaive-function-calling-v2", "jondurbin/gutenberg-dpo-v0.1", "grimulkan/LimaRP-augmented", "lmsys/lmsys-chat-1m", "ParisNeo/lollms_aware_dataset", "TIGER-Lab/MathInstruct", "Muennighoff/natural-instructions", "openbookqa", "kingbri/PIPPA-shareGPT", "piqa", "Vezora/Tested-22k-Python-Alpaca", "ropes", "cakiki/rosetta-code", "Open-Orca/SlimOrca", "b-mc2/sql-create-context", "squad_v2", "mattpscott/airoboros-summarization", "migtissera/Synthia-v1.3", "unalignment/toxic-dpo-v0.2", "WhiteRabbitNeo/WRN-Chapter-1", "WhiteRabbitNeo/WRN-Chapter-2", "winogrande"], "license_name": "internlm2-20b", "license_link": "https://huggingface.co/internlm/internlm2-20b#open-source-license", "base_model": "internlm/internlm2-20b", "quantized_by": "bartowski", "pipeline_tag": "text-generation"}
text-generation
bartowski/bagel-dpo-20b-v04-llama-exl2
[ "text-generation", "dataset:ai2_arc", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "dataset:jondurbin/airoboros-3.2", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:bluemoon-fandom-1-1-rp-cleaned", "dataset:boolq", "dataset:camel-ai/biology", "dataset:camel-ai/chemistry", "dataset:camel-ai/math", "dataset:camel-ai/physics", "dataset:jondurbin/contextual-dpo-v0.1", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:jondurbin/py-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:LDJnr/Capybara", "dataset:jondurbin/cinematika-v0.1", "dataset:WizardLM/WizardLM_evol_instruct_70k", "dataset:glaiveai/glaive-function-calling-v2", "dataset:grimulkan/LimaRP-augmented", "dataset:lmsys/lmsys-chat-1m", "dataset:ParisNeo/lollms_aware_dataset", "dataset:TIGER-Lab/MathInstruct", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:kingbri/PIPPA-shareGPT", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:ropes", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:b-mc2/sql-create-context", "dataset:squad_v2", "dataset:mattpscott/airoboros-summarization", "dataset:migtissera/Synthia-v1.3", "dataset:unalignment/toxic-dpo-v0.2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:winogrande", "base_model:internlm/internlm2-20b", "license:other", "region:us" ]
2024-02-14T04:34:02+00:00
[]
[]
TAGS #text-generation #dataset-ai2_arc #dataset-allenai/ultrafeedback_binarized_cleaned #dataset-argilla/distilabel-intel-orca-dpo-pairs #dataset-jondurbin/airoboros-3.2 #dataset-codeparrot/apps #dataset-facebook/belebele #dataset-bluemoon-fandom-1-1-rp-cleaned #dataset-boolq #dataset-camel-ai/biology #dataset-camel-ai/chemistry #dataset-camel-ai/math #dataset-camel-ai/physics #dataset-jondurbin/contextual-dpo-v0.1 #dataset-jondurbin/gutenberg-dpo-v0.1 #dataset-jondurbin/py-dpo-v0.1 #dataset-jondurbin/truthy-dpo-v0.1 #dataset-LDJnr/Capybara #dataset-jondurbin/cinematika-v0.1 #dataset-WizardLM/WizardLM_evol_instruct_70k #dataset-glaiveai/glaive-function-calling-v2 #dataset-grimulkan/LimaRP-augmented #dataset-lmsys/lmsys-chat-1m #dataset-ParisNeo/lollms_aware_dataset #dataset-TIGER-Lab/MathInstruct #dataset-Muennighoff/natural-instructions #dataset-openbookqa #dataset-kingbri/PIPPA-shareGPT #dataset-piqa #dataset-Vezora/Tested-22k-Python-Alpaca #dataset-ropes #dataset-cakiki/rosetta-code #dataset-Open-Orca/SlimOrca #dataset-b-mc2/sql-create-context #dataset-squad_v2 #dataset-mattpscott/airoboros-summarization #dataset-migtissera/Synthia-v1.3 #dataset-unalignment/toxic-dpo-v0.2 #dataset-WhiteRabbitNeo/WRN-Chapter-1 #dataset-WhiteRabbitNeo/WRN-Chapter-2 #dataset-winogrande #base_model-internlm/internlm2-20b #license-other #region-us
Exllama v2 Quantizations of bagel-dpo-20b-v04-llama --------------------------------------------------- Using <a href="URL ExLlamaV2 v0.0.13 for quantization. **The "main" branch only contains the URL, download one of the other branches for the model (see below)** Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions. Original model: URL Download instructions --------------------- With git: With huggingface hub (credit to TheBloke for instructions): To download the 'main' (only useful if you only care about URL) branch to a folder called 'bagel-dpo-20b-v04-llama-exl2': To download from a different branch, add the '--revision' parameter: Linux: Windows (which apparently doesn't like \_ in folders sometimes?): Want to support my work? Visit my ko-fi page here: URL
[]
[ "TAGS\n#text-generation #dataset-ai2_arc #dataset-allenai/ultrafeedback_binarized_cleaned #dataset-argilla/distilabel-intel-orca-dpo-pairs #dataset-jondurbin/airoboros-3.2 #dataset-codeparrot/apps #dataset-facebook/belebele #dataset-bluemoon-fandom-1-1-rp-cleaned #dataset-boolq #dataset-camel-ai/biology #dataset-camel-ai/chemistry #dataset-camel-ai/math #dataset-camel-ai/physics #dataset-jondurbin/contextual-dpo-v0.1 #dataset-jondurbin/gutenberg-dpo-v0.1 #dataset-jondurbin/py-dpo-v0.1 #dataset-jondurbin/truthy-dpo-v0.1 #dataset-LDJnr/Capybara #dataset-jondurbin/cinematika-v0.1 #dataset-WizardLM/WizardLM_evol_instruct_70k #dataset-glaiveai/glaive-function-calling-v2 #dataset-grimulkan/LimaRP-augmented #dataset-lmsys/lmsys-chat-1m #dataset-ParisNeo/lollms_aware_dataset #dataset-TIGER-Lab/MathInstruct #dataset-Muennighoff/natural-instructions #dataset-openbookqa #dataset-kingbri/PIPPA-shareGPT #dataset-piqa #dataset-Vezora/Tested-22k-Python-Alpaca #dataset-ropes #dataset-cakiki/rosetta-code #dataset-Open-Orca/SlimOrca #dataset-b-mc2/sql-create-context #dataset-squad_v2 #dataset-mattpscott/airoboros-summarization #dataset-migtissera/Synthia-v1.3 #dataset-unalignment/toxic-dpo-v0.2 #dataset-WhiteRabbitNeo/WRN-Chapter-1 #dataset-WhiteRabbitNeo/WRN-Chapter-2 #dataset-winogrande #base_model-internlm/internlm2-20b #license-other #region-us \n" ]
[ 571 ]
[ "passage: " ]
[ 0.10088140517473221, -0.018662717193365097, -0.014522166922688484, 0.018606146797537804, 0.023765284568071365, 0.004740193951874971, 0.06258118152618408, -0.026830460876226425, -0.04826553910970688, 0.07734379917383194, 0.14376786351203918, 0.014736739918589592, -0.06107987463474274, -0.11733254045248032, 0.06612761318683624, -0.2047748565673828, -0.037414923310279846, 0.056273531168699265, 0.009187481366097927, 0.06562598049640656, -0.02434733882546425, -0.09018827974796295, 0.07299808412790298, -0.08781832456588745, 0.14526405930519104, 0.01878758892416954, 0.06504875421524048, 0.18429632484912872, 0.09970057010650635, 0.11702091991901398, 0.13575558364391327, -0.04038470238447189, -0.011557001620531082, -0.14774653315544128, 0.07691587507724762, -0.014373138546943665, -0.15217146277427673, 0.025232499465346336, -0.12929874658584595, -0.01808922551572323, 0.25475311279296875, 0.01534960512071848, 0.029779013246297836, -0.04167575016617775, -0.16052180528640747, -0.0590660460293293, 0.0919354110956192, 0.06486072391271591, -0.010019899345934391, 0.1712968945503235, -0.02153913490474224, 0.03424368053674698, -0.09385901689529419, 0.07052260637283325, 0.19514355063438416, -0.20610728859901428, -0.1006559357047081, -0.08724600076675415, 0.11976124346256256, 0.14322549104690552, -0.06600390374660492, 0.07013007998466492, -0.00961635634303093, 0.0030693383887410164, -0.015733856707811356, -0.13099238276481628, 0.02844751998782158, 0.03067631460726261, -0.1811460554599762, -0.0640716552734375, 0.30105605721473694, -0.09633759409189224, 0.002427132334560156, 0.0787530168890953, -0.053909290581941605, -0.040617942810058594, 0.03964995965361595, -0.09230393916368484, -0.014140287414193153, 0.01384926587343216, 0.10298433899879456, -0.12299185991287231, -0.13773000240325928, -0.02121606282889843, -0.157494455575943, 0.048379164189100266, -0.024653412401676178, -0.04442920908331871, -0.04851122200489044, -0.06017559766769409, -0.12612059712409973, 0.000512510072439909, 0.041482940316200256, -0.024423200637102127, 0.1559523046016693, -0.002448274753987789, -0.10534128546714783, 0.07821804285049438, -0.04324449598789215, 0.12092731893062592, -0.005785259418189526, -0.05442351475358009, -0.15294459462165833, 0.074778251349926, -0.02651713415980339, -0.06253089755773544, 0.07520212233066559, 0.038682516664266586, -0.14124302566051483, 0.06373816728591919, 0.23928126692771912, -0.022006848827004433, -0.10606227815151215, 0.028468851000070572, -0.10610315948724747, 0.008702310733497143, 0.051518701016902924, -0.07086535543203354, 0.0058532170951366425, 0.08344139158725739, -0.055856697261333466, 0.005761888809502125, -0.0732530951499939, 0.004698348231613636, 0.1325135976076126, -0.06489431858062744, -0.028221776708960533, -0.019128886982798576, -0.051935240626335144, 0.03433530777692795, -0.12376418709754944, 0.03562777116894722, 0.03317849710583687, 0.025547705590724945, 0.025010574609041214, 0.010960287414491177, 0.06279592961072922, -0.03790099918842316, 0.039029769599437714, 0.03395000845193863, 0.013587660156190395, -0.0733308419585228, 0.028965618461370468, 0.10213160514831543, 0.04138053581118584, 0.03844508156180382, -0.02808219939470291, -0.10400713980197906, 0.033996060490608215, 0.1590195596218109, 0.02609369158744812, -0.0568048320710659, -0.0855354368686676, 0.05605924129486084, -0.09767164289951324, -0.008923036977648735, -0.004201364703476429, -0.1799231767654419, 0.07966101169586182, -0.13277772068977356, 0.05211609601974487, 0.06705841422080994, -0.08015942573547363, 0.07278327643871307, -0.036035358905792236, 0.08581636101007462, -0.061681270599365234, -0.09944043308496475, 0.10575190931558609, -0.1474672108888626, -0.10337568819522858, 0.03808961808681488, 0.06868811696767807, 0.15876536071300507, 0.03702828288078308, 0.3275095820426941, 0.04579167068004608, -0.04380965977907181, -0.12316784262657166, 0.24117890000343323, 0.07791456580162048, 0.12689347565174103, 0.10734214633703232, -0.008592220954596996, 0.062086306512355804, -0.0683913305401802, 0.11054874211549759, -0.0395747534930706, 0.038130953907966614, -0.027718061581254005, 0.05682503432035446, 0.09006205201148987, -0.00396359758451581, 0.04406249523162842, -0.11547725647687912, 0.017450081184506416, -0.02161266840994358, 0.05977876856923103, 0.055848851799964905, -0.02352149225771427, 0.07067382335662842, -0.033313948661088943, 0.10518638789653778, 0.018068799749016762, -0.022716403007507324, -0.09641099721193314, 0.0712471678853035, -0.11446129530668259, 0.03784957528114319, 0.12325499206781387, 0.10289265215396881, 0.016275592148303986, 0.048849575221538544, -0.08027477562427521, 0.03338871896266937, -0.11047673225402832, 0.06948070228099823, -0.07255526632070541, -0.2861364483833313, 0.07820780575275421, -0.028145987540483475, 0.055141933262348175, -0.19825822114944458, 0.033747583627700806, 0.1187836304306984, -0.024249840527772903, -0.02254699543118477, -0.06522262096405029, 0.015384395606815815, -0.0070239766500890255, 0.04417163133621216, 0.042748838663101196, 0.09422635287046432, 0.06814953684806824, -0.18346276879310608, 0.17921076714992523, -0.25094085931777954, -0.01641913317143917, 0.17104443907737732, -0.2794303596019745, -0.058096230030059814, -0.13257531821727753, -0.03710683435201645, 0.041895490139722824, 0.014122984372079372, 0.01029844582080841, 0.1309339702129364, 0.052658453583717346, 0.0855904221534729, -0.01946805603802204, -0.0643816739320755, 0.026591405272483826, -0.06922557204961777, -0.02772519364953041, 0.19246873259544373, 0.08876720070838928, -0.020858284085989, 0.10801603645086288, 0.4027579426765442, 0.008946962654590607, 0.16435682773590088, 0.009801486507058144, -0.02772163227200508, -0.11947281658649445, -0.026993131265044212, 0.015032045543193817, 0.18933694064617157, -0.09905892610549927, 0.11194439232349396, 0.005158163607120514, 0.005132751073688269, 0.009942347183823586, -0.17338602244853973, -0.01486213505268097, -0.02278844080865383, 0.06827802211046219, -0.07817026227712631, 0.026034748181700706, -0.1789725422859192, 0.03974950686097145, 0.07705280929803848, -0.02707895264029503, 0.004983764141798019, 0.03295057639479637, -0.11155463755130768, 0.09104271978139877, -0.11551369726657867, -0.14961257576942444, 0.007025607395917177, -0.03021315485239029, 0.05682855099439621, 0.040434978902339935, -0.009356042370200157, -0.051237646490335464, 0.054304882884025574, -0.051934074610471725, 0.023422647267580032, -0.04149213433265686, -0.023490924388170242, -0.1196964681148529, 0.09047400951385498, -0.051711127161979675, 0.04977705329656601, -0.04936591908335686, -0.044404033571481705, -0.12015771865844727, -0.05905621126294136, -0.036500267684459686, 0.017191139981150627, 0.08223620802164078, 0.18826507031917572, -0.053043998777866364, -0.055443815886974335, 0.11002728343009949, -0.13621819019317627, 0.017493033781647682, 0.1452866792678833, -0.12819905579090118, 0.026072250679135323, 0.14170628786087036, 0.04517645016312599, -0.003489951603114605, 0.010687512345612049, 0.018667858093976974, -0.04266245663166046, -0.09272119402885437, 0.01030183769762516, -0.05271062254905701, 0.23475757241249084, -0.009374884888529778, -0.0034512998536229134, -0.014462464489042759, -0.04894660785794258, -0.04539022222161293, -0.0005831476300954819, 0.07464434206485748, 0.04053977504372597, 0.3334212601184845, -0.15323013067245483, 0.05755968391895294, -0.04745563492178917, -0.08498891443014145, 0.06915947049856186, -0.13861355185508728, -0.09019304811954498, 0.16100206971168518, -0.011544786393642426, 0.04394727945327759, -0.042151276022195816, -0.11102429032325745, -0.11689663678407669, -0.023532286286354065, -0.027373312041163445, -0.07563745230436325, -0.07157991826534271, -0.10077033936977386, 0.08554750680923462, 0.04267209768295288, 0.021485179662704468, -0.1025456041097641, -0.010052155703306198, 0.022982988506555557, -0.14773941040039062, 0.20475095510482788, 0.19180890917778015, 0.011337916366755962, 0.08410727977752686, 0.06382661312818527, -0.010761413723230362, 0.15196149051189423, 0.07944714277982712, 0.04364664852619171, 0.05297204852104187, -0.03650839626789093, 0.03582345321774483, -0.027388878166675568, 0.09536612778902054, -0.24799557030200958, -0.15070310235023499, -0.020300470292568207, 0.001627209479920566, -0.2552933394908905, 0.2551094889640808, 0.06651961803436279, -0.12370788305997849, 0.03391389548778534, -0.09386051446199417, -0.009471049532294273, 0.26239001750946045, 0.1852397322654724, 0.015368219465017319, -0.03417232632637024, -0.1090126782655716, -0.03821006044745445, 0.027917027473449707, 0.1861421763896942, -0.14043398201465607, 0.033696796745061874, -0.06331641972064972, -0.006639811675995588, -0.05559191852807999, 0.2925061881542206, 0.12242256104946136, -0.14570900797843933, 0.06869152188301086, -0.030220095068216324, -0.048972949385643005, 0.059638869017362595, -0.028867226094007492, 0.3264729380607605, -0.08855616301298141, -0.3116912543773651, 0.05774489790201187, 0.10278056561946869, -0.03255411982536316, -0.045465968549251556, 0.007009455934166908, -0.1768670678138733, -0.016765983775258064, -0.052723806351423264, -0.19133833050727844, 0.10661590099334717, -0.024738892912864685, -0.0307807307690382, -0.033922649919986725, -0.05820566415786743, 0.1983342319726944, -0.12921564280986786, 0.20773911476135254, -0.12212350964546204, 0.08700055629014969, -0.01905209757387638, -0.02997533231973648, 0.03866449370980263, -0.141332745552063, -0.017802661284804344, 0.00716002844274044, -0.09446828067302704, 0.3014236092567444, -0.10929568111896515, -0.09096018224954605, 0.07719434797763824, 0.267107218503952, 0.050763264298439026, 0.1467892825603485, 0.2061053067445755, -0.1276119202375412, -0.2509326636791229, -0.25802692770957947, -0.17251130938529968, -0.15138596296310425, 0.10616834461688995, -0.1953103393316269, 0.01682359166443348, -0.06984357535839081, -0.007821853272616863, 0.07298106700181961, -0.19640178978443146, -0.10225348174571991, 0.011932333931326866, -0.02443608082830906, 0.3365027904510498, -0.051236070692539215, -0.041262779384851456, 0.035107798874378204, 0.17965957522392273, 0.06778347492218018, -0.13164401054382324, 0.11943989992141724, 0.044046707451343536, -0.20160388946533203, -0.010275471955537796, 0.0016777724958956242, 0.06427444517612457, -0.14723274111747742, -0.03730021417140961, -0.12177160382270813, -0.19296352565288544, -0.033135250210762024, -0.028573328629136086, -0.1994989812374115, -0.21236062049865723, -0.05289372429251671, -0.20468713343143463, -0.008053453639149666, -0.05909772962331772, -0.009726934134960175, -0.0897960439324379, -0.07568006217479706, -0.004636567551642656, 0.10411664098501205, -0.04956544190645218, -0.01738882064819336, 0.21664302051067352, -0.13407111167907715, 0.16799545288085938, -0.02591407671570778, 0.050347454845905304, 0.12934958934783936, -0.14712533354759216, -0.03145695850253105, -0.02003406174480915, 0.06543044745922089, -0.1233450174331665, -0.04242291301488876, 0.09669307619333267, -0.024700060486793518, 0.035171039402484894, 0.024270188063383102, -0.029029330238699913, -0.06393830478191376, 0.03728315234184265, -0.23820005357265472, -0.0650336742401123, -0.12468812614679337, -0.0755915641784668, -0.0704081654548645, -0.13810639083385468, 0.2552330195903778, -0.024343479424715042, 0.012579211965203285, 0.059194259345531464, -0.02257334254682064, -0.03856420889496803, -0.056927844882011414, 0.009450364857912064, 0.04256889224052429, 0.043097104877233505, 0.0024899374693632126, 0.10604649037122726, -0.25851866602897644, 0.01129012368619442, 0.225157231092453, 0.053607966750860214, -0.11914634704589844, -0.25370627641677856, 0.01314239390194416, -0.06842298805713654, 0.0246258731931448, -0.10362477600574493, 0.02709161303937435, 0.008309371769428253, 0.367423951625824, 0.07480517029762268, 0.13875460624694824, -0.0769694596529007, -0.008947416208684444, 0.022995121777057648, 0.1477241963148117, -0.14509247243404388, -0.11208677291870117, 0.017368407920002937, 0.10699690878391266, 0.1101352721452713, 0.05100949853658676, -0.11660114675760269, -0.11735589802265167, -0.09127160906791687, 0.008553779684007168, 0.046934016048908234, -0.08556275814771652, -0.01725589856505394, -0.0748712569475174, -0.03628244251012802, 0.05945931375026703, -0.10104285180568695, -0.11125358194112778, 0.03769983351230621, 0.2144407033920288, 0.06367329508066177, 0.010085693560540676, -0.05180589109659195, 0.07704999297857285, 0.10733602941036224, -0.004205533768981695, 0.05265294015407562, -0.02260427176952362, 0.020531553775072098, 0.06537619233131409, 0.07338721305131912, 0.18039044737815857, -0.08879125118255615, -0.051358453929424286, -0.16933071613311768, 0.033823005855083466, -0.07401442527770996, -0.10194945335388184, 0.007242912892252207, 0.04342253506183624, 0.045390717685222626, -0.025972984731197357, 0.06346867978572845, 0.13605263829231262, -0.17420588433742523, -0.012038663029670715, -0.0006161206401884556, -0.10288915783166885, 0.016654938459396362, 0.11862446367740631, -0.03884240984916687, 0.05308246985077858, -0.07361584901809692, 0.035394251346588135, -0.010224311612546444, 0.02284044772386551, -0.1409454345703125, -0.09786668419837952, -0.03647754713892937, -0.0784822404384613, 0.05206417292356491, -0.10346197336912155, 0.15325744450092316, 0.1583964228630066, -0.03602725267410278, -0.0015469025820493698, -0.09759868681430817, -0.02730455808341503, 0.11308977007865906, -0.12303721904754639, -0.18540742993354797, 0.039498940110206604, -0.03882857784628868, 0.10492098331451416, 0.09465189278125763, 0.14437235891819, 0.2655978798866272, 0.05588209629058838, -0.000027213827706873417, 0.02196868322789669, -0.014188582077622414, -0.20227117836475372, 0.08083024621009827, 0.026943407952785492, -0.04631992429494858, 0.0809173583984375, 0.1336372196674347, 0.11537721753120422, 0.0063463537953794, 0.01810188591480255, 0.01686929538846016, -0.18113884329795837, -0.039236076176166534, 0.10787186026573181, 0.05683591961860657, -0.052979253232479095, -0.010606110095977783, -0.09685581922531128, -0.04204314202070236, 0.058011576533317566, 0.014274654909968376, 0.1085636243224144, 0.08530007302761078, -0.09240323305130005, 0.037224117666482925, 0.014868620783090591, 0.1268608570098877, -0.10642792284488678, -0.07123373448848724, -0.001865506637841463, -0.18951912224292755, -0.06465506553649902, 0.027754925191402435, 0.049196287989616394, -0.10724097490310669, -0.09010972827672958, -0.03453265503048897, -0.013577466830611229, 0.03166091442108154, 0.030871424823999405, 0.15350301563739777, -0.0395645797252655, -0.00027114758267998695, -0.00334249553270638, 0.19112080335617065, -0.07462437450885773, -0.01671314425766468, 0.002522183582186699, 0.3874795436859131, 0.07526469230651855, 0.07736105471849442, -0.11991360783576965, 0.1381579339504242, 0.04667859897017479, 0.1852773129940033, 0.0939725786447525, -0.03842923045158386, -0.005798748694360256, 0.17905300855636597, 0.12415104359388351, 0.12203900516033173, -0.04075012356042862, 0.016393456608057022, 0.2064705640077591, -0.0888720452785492, -0.05077289044857025, -0.12821514904499054, 0.032190848141908646, 0.13242194056510925, -0.042561549693346024, 0.18163809180259705, 0.03639279305934906, -0.0492582693696022, 0.03800947219133377, 0.06065068393945694, 0.08798600733280182, 0.014269312843680382, -0.31178075075149536, 0.04376087710261345, -0.011326160281896591, 0.23705735802650452, -0.0023722671903669834, 0.04052514582872391, 0.05183788761496544, -0.08809556066989899, -0.09916465729475021, 0.05328189581632614, -0.11437737941741943, -0.10698084533214569, 0.13542723655700684, 0.055200397968292236, 0.010742714628577232, -0.13351216912269592, -0.028623446822166443, 0.08631475269794464, -0.015042918734252453, 0.11369027942419052, 0.0909174233675003, 0.12490178644657135, 0.025815900415182114, -0.19568556547164917, 0.08283932507038116, -0.010022910311818123, 0.0884237289428711, 0.11090505868196487, -0.01272580400109291, 0.04462837427854538, -0.04982006549835205, -0.1370786875486374, 0.20648884773254395, 0.14972087740898132, -0.11391030997037888, 0.03349374607205391, 0.2130325436592102, 0.05640855431556702, -0.19208219647407532, -0.0474395751953125, -0.04378552734851837, 0.02485080622136593, 0.04035710543394089, 0.041076190769672394, 0.08824002742767334, 0.038619957864284515, 0.022640634328126907, -0.004068495240062475, -0.2877684533596039, -0.09410925209522247, 0.1919555962085724, 0.07227888703346252, -0.10434906929731369, 0.03375978395342827, -0.024976706132292747, -0.0055419402197003365, -0.039455510675907135, -0.1149677112698555, 0.10533712804317474, -0.015929613262414932, 0.0543212816119194, -0.02240067906677723 ]
null
null
transformers
lora merge as it was really tricky to get it to work of https://huggingface.co/152334H/miqu-1-70b-hermes2.5-qlora. Base Model: Miqu 70B (Mistral AI Leak) Dequantized by 152234h Finetune also by 152234h Outputs seem good, but the prompting is still a bit buggy, not sure if that's an error on my part. For me it wouldn't generate text until I activated flash attention 2 in Oogabooga. You need around 130 GB vram, 2 a100 80 or h100 work, as does 6 3090 or 4090.
{}
text-generation
alicecomfy/miqu-openhermes-full
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:35:57+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lora merge as it was really tricky to get it to work of URL Base Model: Miqu 70B (Mistral AI Leak) Dequantized by 152234h Finetune also by 152234h Outputs seem good, but the prompting is still a bit buggy, not sure if that's an error on my part. For me it wouldn't generate text until I activated flash attention 2 in Oogabooga. You need around 130 GB vram, 2 a100 80 or h100 work, as does 6 3090 or 4090.
[]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0025275361258536577, -0.0001923485251609236, -0.006265548523515463, -0.015470379032194614, 0.14499373733997345, -0.028404569253325462, 0.15743876993656158, 0.10216288268566132, -0.016515901312232018, -0.005879437550902367, 0.13293911516666412, 0.18897342681884766, -0.04105788469314575, 0.06876428425312042, -0.13829541206359863, -0.18312405049800873, 0.09113060683012009, -0.013822423294186592, 0.03515074774622917, 0.08409638702869415, 0.0932898074388504, -0.07266701012849808, 0.08857875317335129, -0.06148778647184372, -0.10361214727163315, 0.05092727392911911, 0.06043635308742523, -0.13909505307674408, 0.11150942742824554, 0.06775431334972382, 0.11288037896156311, 0.027468517422676086, -0.06618446111679077, -0.23875419795513153, 0.03589427098631859, 0.00753146642819047, -0.051577672362327576, 0.0058175791054964066, 0.03636404126882553, -0.1097058653831482, 0.04051654040813446, 0.04469956085085869, 0.00021809773170389235, 0.08442177623510361, -0.15546654164791107, 0.06800442934036255, -0.002407381311058998, -0.06865520775318146, 0.12485704571008682, 0.09881561249494553, -0.02976861037313938, 0.1102595254778862, -0.057100702077150345, 0.13280145823955536, 0.091591976583004, -0.3186618387699127, -0.003942628391087055, 0.0958758294582367, 0.06983128935098648, 0.07967404276132584, -0.06204569712281227, 0.11005426943302155, 0.06603875011205673, -0.028024829924106598, 0.02064795419573784, -0.07409501820802689, -0.10913103073835373, 0.03592049330472946, -0.06419096142053604, -0.009571890346705914, 0.22065986692905426, -0.04367516562342644, 0.05751708522439003, -0.09162309765815735, -0.0995384231209755, -0.0247837882488966, -0.0396478995680809, 0.012331417761743069, -0.04514940083026886, 0.08160442858934402, 0.019335998222231865, -0.04633626341819763, -0.12890876829624176, -0.008018983528017998, -0.17076820135116577, 0.1811964362859726, 0.005199354141950607, 0.02442912757396698, -0.20238032937049866, 0.02906203269958496, 0.04106132686138153, -0.10090473294258118, 0.025178983807563782, -0.07719490677118301, 0.01825258508324623, -0.005892610643059015, -0.046279799193143845, -0.13398124277591705, 0.1491030603647232, 0.08494239300489426, -0.0005539536359719932, 0.04007169231772423, -0.10608358681201935, 0.06104206293821335, 0.022818511351943016, 0.04804274067282677, 0.03869948908686638, -0.06879250705242157, 0.05627613142132759, -0.08342784643173218, 0.0508001446723938, -0.05944942682981491, -0.1386847198009491, 0.024055305868387222, 0.031425975263118744, 0.13315221667289734, 0.0017164216842502356, 0.11610209941864014, -0.03588532656431198, 0.044105302542448044, -0.012231726199388504, -0.09078667312860489, -0.012852373532950878, 0.006181049160659313, 0.04073227569460869, 0.058935366570949554, 0.003931640647351742, 0.0445232018828392, -0.08074261993169785, 0.01615862548351288, -0.06115381792187691, -0.03175666928291321, -0.04919363185763359, -0.0631871148943901, 0.022269519045948982, -0.04057661443948746, 0.020480984821915627, -0.18904319405555725, -0.18130221962928772, -0.010753653943538666, -0.007172730751335621, -0.030490992590785027, 0.0022755407262593508, -0.10090426355600357, -0.03387688845396042, 0.040230490267276764, -0.07043762505054474, -0.07739421725273132, -0.07803317159414291, 0.07843781262636185, -0.00265422067604959, 0.08381499350070953, -0.10656087845563889, 0.04970443993806839, -0.09960713237524033, 0.01960716024041176, -0.05696958303451538, 0.09261596202850342, -0.01810166798532009, 0.176054447889328, 0.0018004929879680276, 0.05481388047337532, -0.10008521378040314, 0.09792350232601166, -0.034205883741378784, 0.24032017588615417, -0.12606854736804962, -0.05242421105504036, 0.25191134214401245, -0.0926923081278801, -0.20163705945014954, 0.10935027152299881, -0.010772661305963993, 0.08481452614068985, 0.13479895889759064, 0.20754358172416687, -0.015913480892777443, -0.045121897011995316, 0.05547235533595085, 0.08676405251026154, -0.07969193905591965, -0.04258081316947937, -0.030695654451847076, -0.00825904868543148, -0.12001212686300278, 0.03712722286581993, 0.1519177109003067, 0.05687887594103813, -0.0281114149838686, -0.050816960632801056, -0.03571990877389908, -0.044413451105356216, 0.02818411961197853, -0.04473036527633667, 0.06910067796707153, -0.10363573580980301, 0.0006273399922065437, -0.010337512008845806, -0.012483193539083004, -0.04071385785937309, 0.01801861636340618, -0.08533908426761627, 0.06396320462226868, -0.022157005965709686, 0.06676841527223587, -0.1311766654253006, -0.1424725204706192, -0.03107737936079502, 0.15497735142707825, 0.0008130024652928114, 0.04048839956521988, 0.05708606541156769, -0.02200975827872753, -0.006066197529435158, 0.0038202404975891113, 0.2253466695547104, 0.020227152854204178, -0.07675717025995255, -0.07088415324687958, 0.13054034113883972, -0.07940568774938583, 0.030723467469215393, -0.12398941814899445, 0.020328985527157784, 0.03513510525226593, 0.1097598448395729, 0.047444846481084824, 0.05561123788356781, 0.004702181555330753, 0.008372185751795769, -0.08619910478591919, 0.010377784259617329, 0.08074870705604553, -0.01227664202451706, -0.10242956876754761, 0.20337490737438202, -0.25976958870887756, 0.24716266989707947, 0.19521492719650269, -0.24115389585494995, 0.018377767875790596, -0.10141341388225555, 0.003829582827165723, 0.012805426493287086, 0.024148453027009964, -0.05857624486088753, 0.04867461323738098, -0.012569122016429901, 0.18487760424613953, -0.05018437281250954, -0.018152592703700066, -0.02104724571108818, -0.07530767470598221, -0.04800248518586159, 0.07012031972408295, 0.039547912776470184, -0.160243958234787, 0.17658013105392456, 0.20741666853427887, 0.02963312156498432, 0.19451767206192017, -0.008084332570433617, 0.012330391444265842, 0.08119862526655197, 0.050950754433870316, -0.0175669826567173, -0.06862029433250427, -0.15648166835308075, -0.03670823946595192, 0.043055564165115356, 0.030797453597187996, 0.09445386379957199, -0.09958264976739883, -0.04511178657412529, 0.0011800180654972792, -0.024101782590150833, 0.0735475942492485, 0.07761804759502411, 0.03345014899969101, 0.1358105093240738, -0.03901049494743347, -0.04459084942936897, 0.09134979546070099, -0.024857651442289352, -0.09121633321046829, 0.1860041320323944, -0.13852070271968842, -0.33030685782432556, -0.161834716796875, -0.18542969226837158, -0.06781243532896042, 0.07022225111722946, 0.11340232938528061, -0.10954514145851135, -0.061868466436862946, -0.05999770015478134, 0.07520762085914612, -0.007149056531488895, 0.013371878303587437, -0.03824148327112198, 0.06614325940608978, -0.06669750064611435, -0.09500472247600555, -0.04334532096982002, 0.006028147879987955, -0.048677343875169754, 0.11999621987342834, -0.1025199145078659, 0.09498763829469681, 0.1617601215839386, 0.032975710928440094, 0.013706114143133163, -0.04199353605508804, 0.1517704725265503, -0.09394092857837677, -0.014426164329051971, 0.17949515581130981, -0.08021048456430435, 0.049978144466876984, 0.19047705829143524, -0.014903010800480843, -0.13644175231456757, 0.07604720443487167, 0.0032242636661976576, -0.084207683801651, -0.22651903331279755, -0.126322403550148, -0.09562398493289948, 0.09660942852497101, 0.00024980984744615853, 0.06155570223927498, 0.15731744468212128, 0.06009676307439804, -0.0244034081697464, -0.02642984315752983, 0.07057341188192368, 0.08123616874217987, 0.23498429358005524, -0.05216294527053833, 0.14061543345451355, -0.0678652748465538, -0.1610029637813568, 0.052244726568460464, 0.07461648434400558, 0.07155902683734894, 0.1107977107167244, 0.07148970663547516, 0.019747868180274963, 0.016561198979616165, 0.12331245094537735, 0.11115948855876923, 0.03005276247859001, -0.0540253221988678, -0.011119947768747807, -0.04026537761092186, -0.0485934354364872, 0.054403722286224365, -0.03375063091516495, -0.11584800481796265, -0.03376332297921181, -0.022560641169548035, 0.10954409837722778, 0.09395140409469604, 0.06063874065876007, -0.2138088345527649, 0.026448555290699005, 0.14244037866592407, -0.04876992106437683, -0.1223517656326294, 0.12937629222869873, 0.06964831799268723, -0.058426376432180405, 0.06909232586622238, -0.018582820892333984, 0.11061175912618637, -0.058059338480234146, 0.09999794512987137, -0.1287984997034073, -0.07316040247678757, -0.012104823254048824, 0.09071819484233856, -0.3126277029514313, 0.19577564299106598, 0.022816332057118416, -0.013106076046824455, -0.08348371088504791, -0.015754448249936104, 0.013272712007164955, 0.1266280710697174, 0.13551689684391022, -0.045895420014858246, -0.0955289825797081, -0.0646936371922493, -0.022265557199716568, 0.026649802923202515, 0.1482473909854889, 0.00595521554350853, 0.029619425535202026, -0.0650700032711029, -0.017340974882245064, -0.006072720047086477, -0.06812583655118942, -0.026326630264520645, -0.19840677082538605, 0.02360416017472744, 0.13606047630310059, 0.12256800383329391, 0.0014982448192313313, 0.039464663714170456, -0.11887175589799881, 0.19843877851963043, -0.06768449395895004, -0.04759429022669792, -0.11415869742631912, -0.11676844954490662, 0.010214829817414284, -0.02535797841846943, 0.04793476313352585, -0.056975964456796646, 0.06520027667284012, -0.08365407586097717, -0.18023896217346191, 0.12234903872013092, -0.10858073085546494, -0.008684741333127022, -0.0418848916888237, 0.16962437331676483, -0.07694901525974274, -0.038357388228178024, 0.05735105276107788, 0.024102438241243362, -0.0580444410443306, -0.07226841151714325, -0.0035823555663228035, 0.03464148938655853, 0.020372893661260605, 0.04864555597305298, -0.11943572759628296, -0.11703262478113174, -0.0424012616276741, -0.049753814935684204, 0.30113157629966736, 0.20983846485614777, -0.026654191315174103, 0.13981656730175018, 0.1558649092912674, -0.09025920182466507, -0.3645683526992798, -0.0918256863951683, -0.1782369762659073, -0.028279978781938553, -0.02175390161573887, -0.09116114675998688, 0.0998367890715599, -0.0074931057170033455, -0.02089904248714447, 0.10465989261865616, -0.21163244545459747, -0.1064753606915474, 0.17580749094486237, 0.027802176773548126, 0.3998737931251526, -0.17657150328159332, -0.10443715751171112, -0.12020865082740784, -0.053027305752038956, 0.13639414310455322, -0.11627531796693802, 0.09333537518978119, 0.041628919541835785, 0.08539074659347534, 0.06269007921218872, -0.019135665148496628, 0.10197185724973679, -0.0368410162627697, 0.04620083048939705, -0.11882465332746506, -0.0200614295899868, -0.016482889652252197, -0.027294140309095383, 0.0441446527838707, -0.11869785189628601, 0.015368025749921799, -0.05680955573916435, -0.04553980752825737, -0.013584290631115437, 0.05955515429377556, 0.03133932501077652, -0.0461336188018322, -0.006661695893853903, -0.08673324435949326, 0.027059074491262436, 0.01477604266256094, 0.2635206878185272, -0.11354316025972366, 0.19465459883213043, 0.16638296842575073, 0.18219342827796936, -0.11213821172714233, 0.11234962195158005, -0.01807386614382267, -0.07519395649433136, 0.07486662268638611, -0.10798448324203491, 0.08766572922468185, 0.0759439468383789, -0.06329281628131866, 0.09033329784870148, 0.07919285446405411, 0.03290214389562607, -0.0011615362018346786, 0.14796893298625946, -0.22750964760780334, -0.07133785635232925, -0.05041647329926491, 0.049418818205595016, 0.06961678713560104, 0.09313073009252548, 0.20748074352741241, 0.005486558191478252, 0.02192315272986889, -0.016811173409223557, 0.04367512837052345, -0.026599762961268425, 0.05816223472356796, 0.0036970777437090874, 0.02199432998895645, -0.12491278350353241, 0.10324721783399582, -0.003027765778824687, -0.16516795754432678, 0.04365913197398186, 0.13664250075817108, -0.1138964369893074, -0.12909278273582458, -0.04879843443632126, 0.17107878625392914, -0.09885092079639435, -0.06105170398950577, -0.05316783860325813, -0.17282411456108093, 0.03692576661705971, 0.2537405490875244, 0.0360688641667366, 0.0917600616812706, -0.007725795730948448, -0.03868739679455757, -0.04298750311136246, 0.044365283101797104, -0.01226353831589222, 0.009534861892461777, -0.10782791674137115, -0.007152588572353125, -0.05647993087768555, 0.08234236389398575, -0.10365161299705505, -0.057793889194726944, -0.17347759008407593, 0.03843281418085098, -0.16608543694019318, -0.03421758860349655, -0.08377578854560852, -0.030765797942876816, 0.01686285249888897, -0.008957606740295887, -0.05498324707150459, -0.07746899127960205, -0.09372275322675705, 0.03728627413511276, -0.030924972146749496, 0.03562753647565842, -0.09042296558618546, -0.024675052613019943, 0.06729073822498322, -0.043848127126693726, 0.11006414890289307, 0.08971117436885834, -0.11186059564352036, 0.09946658462285995, -0.2175433486700058, -0.059074193239212036, 0.1410350650548935, -0.004075439181178808, 0.03882874548435211, 0.10223325341939926, -0.01856347732245922, 0.10025724023580551, 0.042779624462127686, 0.051278501749038696, 0.0022497372701764107, -0.0977352112531662, 0.05799534171819687, -0.041316743940114975, -0.13134105503559113, -0.023752035573124886, -0.07974226027727127, 0.06156047061085701, -0.04129263758659363, 0.13914602994918823, -0.09478753060102463, 0.07371209561824799, -0.011230714619159698, 0.04232949763536453, 0.020522207021713257, -0.18775410950183868, -0.06381197273731232, -0.07879073172807693, 0.032048940658569336, -0.015215971507132053, 0.2489476501941681, 0.024385713040828705, -0.006635301746428013, 0.06504519283771515, 0.014402980916202068, 0.029134953394532204, 0.05430527776479721, 0.2253562957048416, 0.10775183886289597, -0.04838938266038895, -0.13686372339725494, 0.03453022986650467, 0.05361112207174301, -0.023831738159060478, 0.07669800519943237, 0.08267629891633987, -0.08845630288124084, 0.13028410077095032, 0.006354253739118576, 0.015577353537082672, -0.013431780971586704, -0.10442420095205307, -0.08140489459037781, 0.03437843546271324, -0.03410561382770538, 0.05697961151599884, 0.2024676352739334, -0.008777371607720852, 0.0023645227774977684, -0.05233602598309517, -0.05030462145805359, -0.1925695538520813, -0.10228648781776428, -0.11052185297012329, -0.11026357859373093, 0.011651244945824146, -0.11247284710407257, 0.042105041444301605, 0.045661553740501404, 0.06934577226638794, -0.03217383846640587, 0.17019154131412506, 0.0021598581224679947, -0.05991530418395996, 0.06134044751524925, -0.0349862240254879, 0.07822134345769882, -0.006571719888597727, -0.0414888970553875, -0.08300558477640152, -0.01904245652258396, -0.04331960529088974, 0.07747913151979446, -0.012304374948143959, 0.054676033556461334, -0.15863099694252014, -0.08210665732622147, -0.03488466888666153, 0.082920141518116, -0.05102287977933884, 0.11423389613628387, 0.030819203704595566, -0.05663673207163811, 0.055150821805000305, 0.2492240071296692, -0.07794606685638428, -0.07332594692707062, -0.05226489156484604, 0.16051895916461945, 0.01573839969933033, 0.1613352745771408, -0.08052916079759598, -0.021382827311754227, -0.062003329396247864, 0.3678371012210846, 0.2652568519115448, -0.09580700099468231, 0.031372301280498505, -0.06586165726184845, 0.05023866891860962, 0.0629703551530838, 0.09922095388174057, 0.09050029516220093, 0.2700527310371399, -0.033345676958560944, -0.02488705888390541, 0.0050016045570373535, -0.029071979224681854, -0.1293674111366272, 0.1041964739561081, 0.008970103226602077, -0.027019629254937172, -0.03640365228056908, 0.10851483792066574, -0.2176099568605423, 0.09219027310609818, -0.09855364263057709, -0.14598128199577332, -0.03149795904755592, -0.014565801247954369, 0.14770011603832245, -0.014341703616082668, 0.06081421300768852, -0.0070732454769313335, -0.11343711614608765, 0.0011401959927752614, 0.0098151545971632, -0.1743505448102951, 0.010138791054487228, 0.012199885211884975, -0.025744227692484856, 0.014526816084980965, -0.009584030136466026, -0.00053526705596596, 0.06922236829996109, 0.014901713468134403, -0.01737341471016407, 0.12666067481040955, 0.01602042280137539, -0.07007740437984467, 0.054121606051921844, 0.039558202028274536, -0.004553203005343676, 0.013854846358299255, 0.07529213279485703, -0.14801234006881714, 0.054008882492780685, -0.013388512656092644, -0.09978992491960526, -0.0055847433395683765, 0.020041825249791145, -0.06567534804344177, 0.0698474571108818, 0.05567099526524544, -0.011688404716551304, 0.03844815120100975, -0.004327620379626751, 0.011128907091915607, -0.04301310330629349, -0.13032175600528717, -0.057889629155397415, -0.16851510107517242, -0.09517494589090347, 0.1318431794643402, 0.0001366233336739242, -0.2783515453338623, 0.01587398536503315, -0.0944933220744133, 0.08385685831308365, -0.17766211926937103, 0.0738292783498764, 0.20067766308784485, 0.010003055445849895, -0.0289312694221735, -0.14717049896717072, 0.08185918629169464, 0.10657775402069092, -0.044379040598869324, -0.10549820214509964 ]
null
null
transformers
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/LxRUvkSATmy-UDKN54Q3H.jpeg) # 👑 NeuralMonarch-7B NeuralMonarch-7B is a DPO fine-tuned of [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B/) using the [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) and [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference datasets. It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0) * [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B) * [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), and [Argilla](https://huggingface.co/argilla) for the preference datasets. **Try the demo**: https://huggingface.co/spaces/mlabonne/NeuralMonarch-7B-GGUF-Chat ## 🔍 Applications This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio). Compared to other 7B models, it performs well in instruction following and reasoning tasks. For a chat/RP model with strong reasoning abilities, check out [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B). ## ⚡ Quantized models * **GGUF**: https://huggingface.co/mlabonne/NeuralMonarch-7B-GGUF ## 🏆 Evaluation ### Nous NeuralMonarch-7B is one of the best-performing 7B models on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |---|---:|---:|---:|---:|---:| | [**NeuralMonarch-7B**](https://huggingface.co/mlabonne/NeuralMonarch-7B) [📄](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | **62.73** | **45.31** | **76.99** | **78.35** | **50.28** | | [AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [📄](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 | | [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [📄](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 | | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 | | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 | | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [📄](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 | | [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) [📄](https://gist.github.com/mlabonne/0e49d591787185fa5ae92ca5d9d4a1fd) | 62.3 | 45.85 | 77.26 | 76.06 | 50.03 | | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [📄](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 | | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [📄](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 | ### EQ-bench NeuralMonarch-7B is also outperforming 70B and 120B parameter models on [EQ-bench](https://eqbench.com/) by [Samuel J. Paech](https://twitter.com/sam_paech), who kindly ran the evaluations. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/dnCFxieqLiAC3Ll6CfdZW.png) ### Open LLM Leaderboard NeuralMonarch-7B is one of the best-performing 7B models on the Open LLM Leaderboard. ### MT-Bench ``` ########## First turn ########## score model turn gpt-4 1 8.95625 OmniBeagle-7B 1 8.31250 AlphaMonarch-7B 1 8.23750 claude-v1 1 8.15000 NeuralMonarch-7B 1 8.09375 gpt-3.5-turbo 1 8.07500 claude-instant-v1 1 7.80000 ########## Second turn ########## score model turn gpt-4 2 9.025000 claude-instant-v1 2 8.012658 OmniBeagle-7B 2 7.837500 gpt-3.5-turbo 2 7.812500 claude-v1 2 7.650000 AlphaMonarch-7B 2 7.618750 NeuralMonarch-7B 2 7.375000 ########## Average ########## score model gpt-4 8.990625 OmniBeagle-7B 8.075000 gpt-3.5-turbo 7.943750 AlphaMonarch-7B 7.928125 claude-instant-v1 7.905660 claude-v1 7.900000 NeuralMonarch-7B 7.734375 NeuralBeagle14-7B 7.628125 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/NeuralMonarch-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"language": ["en"], "license": "cc-by-nc-4.0", "tags": ["merge", "lazymergekit", "dpo", "rlhf"], "dataset": ["mlabonne/truthy-dpo-v0.1", "mlabonne/distilabel-intel-orca-dpo-pairs"], "base_model": ["mlabonne/Monarch-7B"]}
text-generation
mlabonne/NeuralMonarch-7B
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "lazymergekit", "dpo", "rlhf", "conversational", "en", "base_model:mlabonne/Monarch-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:38:45+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #merge #lazymergekit #dpo #rlhf #conversational #en #base_model-mlabonne/Monarch-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
!image/jpeg NeuralMonarch-7B ================ NeuralMonarch-7B is a DPO fine-tuned of mlabonne/Monarch-7B using the jondurbin/truthy-dpo-v0.1 and argilla/distilabel-intel-orca-dpo-pairs preference datasets. It is based on a merge of the following models using LazyMergekit: * mlabonne/OmniTruthyBeagle-7B-v0 * mlabonne/NeuBeagle-7B * mlabonne/NeuralOmniBeagle-7B Special thanks to Jon Durbin, Intel, and Argilla for the preference datasets. Try the demo: URL Applications ------------ This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio). Compared to other 7B models, it performs well in instruction following and reasoning tasks. For a chat/RP model with strong reasoning abilities, check out mlabonne/AlphaMonarch-7B. Quantized models ---------------- * GGUF: URL Evaluation ---------- ### Nous NeuralMonarch-7B is one of the best-performing 7B models on Nous' benchmark suite (evaluation performed using LLM AutoEval). See the entire leaderboard here. ### EQ-bench NeuralMonarch-7B is also outperforming 70B and 120B parameter models on EQ-bench by Samuel J. Paech, who kindly ran the evaluations. !image/png ### Open LLM Leaderboard NeuralMonarch-7B is one of the best-performing 7B models on the Open LLM Leaderboard. ### MT-Bench Usage -----
[ "### Nous\n\n\nNeuralMonarch-7B is one of the best-performing 7B models on Nous' benchmark suite (evaluation performed using LLM AutoEval). See the entire leaderboard here.", "### EQ-bench\n\n\nNeuralMonarch-7B is also outperforming 70B and 120B parameter models on EQ-bench by Samuel J. Paech, who kindly ran the evaluations.\n\n\n!image/png", "### Open LLM Leaderboard\n\n\nNeuralMonarch-7B is one of the best-performing 7B models on the Open LLM Leaderboard.", "### MT-Bench\n\n\nUsage\n-----" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #merge #lazymergekit #dpo #rlhf #conversational #en #base_model-mlabonne/Monarch-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Nous\n\n\nNeuralMonarch-7B is one of the best-performing 7B models on Nous' benchmark suite (evaluation performed using LLM AutoEval). See the entire leaderboard here.", "### EQ-bench\n\n\nNeuralMonarch-7B is also outperforming 70B and 120B parameter models on EQ-bench by Samuel J. Paech, who kindly ran the evaluations.\n\n\n!image/png", "### Open LLM Leaderboard\n\n\nNeuralMonarch-7B is one of the best-performing 7B models on the Open LLM Leaderboard.", "### MT-Bench\n\n\nUsage\n-----" ]
[ 92, 45, 51, 33, 10 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #lazymergekit #dpo #rlhf #conversational #en #base_model-mlabonne/Monarch-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Nous\n\n\nNeuralMonarch-7B is one of the best-performing 7B models on Nous' benchmark suite (evaluation performed using LLM AutoEval). See the entire leaderboard here.### EQ-bench\n\n\nNeuralMonarch-7B is also outperforming 70B and 120B parameter models on EQ-bench by Samuel J. Paech, who kindly ran the evaluations.\n\n\n!image/png### Open LLM Leaderboard\n\n\nNeuralMonarch-7B is one of the best-performing 7B models on the Open LLM Leaderboard.### MT-Bench\n\n\nUsage\n-----" ]
[ -0.08177683502435684, 0.08755970746278763, -0.0048905108124017715, 0.07943679392337799, 0.019656125456094742, -0.004696696065366268, 0.09766203165054321, 0.11758754402399063, 0.0817393958568573, 0.02036917768418789, 0.06527546793222427, 0.14602375030517578, -0.021720334887504578, 0.11693748831748962, -0.04224027693271637, -0.11551295965909958, 0.02144947275519371, 0.0230873990803957, 0.004687846638262272, 0.08389978855848312, 0.0689137727022171, -0.053087882697582245, 0.037871185690164566, -0.0003623020020313561, -0.030869262292981148, 0.03451497107744217, -0.002559247426688671, -0.04117255657911301, 0.11214198917150497, 0.05243685841560364, 0.03026069514453411, 0.06451325863599777, -0.018990779295563698, -0.11685331910848618, 0.031070651486516, 0.023717988282442093, -0.0150279076769948, 0.07024917751550674, 0.01825924962759018, -0.08675622940063477, 0.02928829751908779, -0.016367897391319275, 0.004741923417896032, 0.02548482082784176, -0.06144925579428673, -0.06626508384943008, -0.06128145009279251, -0.006551391910761595, 0.0524858683347702, 0.0841611921787262, -0.018303554505109787, 0.2364608645439148, -0.08061376959085464, 0.06310167908668518, 0.1992187798023224, -0.2239471971988678, -0.010410713963210583, 0.04788949340581894, -0.008373812772333622, -0.061955902725458145, -0.10741326212882996, -0.019908923655748367, 0.05357338488101959, -0.04069190099835396, 0.08295811712741852, -0.030946893617510796, 0.13284878432750702, -0.03777457773685455, -0.14781257510185242, 0.07388337701559067, 0.1426045447587967, 0.06681854277849197, -0.028802476823329926, -0.07482991367578506, -0.1267842948436737, 0.07440874725580215, 0.025755269452929497, -0.015916308388113976, 0.03867275267839432, -0.01904398761689663, 0.03703492507338524, -0.04160618409514427, -0.05086122453212738, -0.07741090655326843, -0.10868218541145325, 0.14632120728492737, 0.021372346207499504, 0.013046316802501678, 0.024737756699323654, 0.07952077686786652, -0.17427819967269897, -0.08982881158590317, -0.08394542336463928, -0.08399487286806107, -0.06921641528606415, 0.00918154139071703, 0.0011696470901370049, -0.0757712721824646, 0.056975238025188446, 0.17000167071819305, 0.03801441937685013, 0.03680219501256943, 0.008861638605594635, 0.04414670169353485, -0.01938239112496376, 0.10158731043338776, -0.04936070740222931, -0.029750412330031395, 0.12693646550178528, 0.08553808182477951, 0.075977623462677, 0.009440306574106216, -0.04663528501987457, -0.022112809121608734, 0.044959817081689835, 0.0019922927021980286, 0.002751847729086876, 0.05246281996369362, -0.05593428760766983, -0.04312306270003319, 0.1416243463754654, -0.10418381541967392, -0.016954638063907623, 0.005936173722147942, -0.0680285319685936, -0.009562935680150986, 0.07454799860715866, -0.03213156387209892, -0.021860942244529724, 0.011398850940167904, -0.06632953137159348, -0.06152812018990517, -0.11475968360900879, -0.06877347081899643, 0.015666725113987923, 0.015484010800719261, 0.011689463630318642, -0.11843038350343704, -0.20171710848808289, 0.00041990933823399246, -0.01115971989929676, -0.029342282563447952, -0.04685172438621521, -0.06209111586213112, -0.06340578198432922, -0.021768756210803986, -0.017681121826171875, 0.01670696958899498, -0.036796122789382935, 0.06046102195978165, 0.09111002087593079, 0.03776106610894203, -0.11371459811925888, -0.009627191349864006, -0.07027333974838257, 0.05648745223879814, -0.16397139430046082, 0.0908869206905365, -0.06813622266054153, -0.005981143563985825, -0.0452500656247139, 0.009609648026525974, -0.10222239047288895, 0.015074449591338634, 0.06656135618686676, 0.10485238581895828, -0.16221310198307037, -0.027703726664185524, 0.1181042268872261, -0.08083734661340714, -0.15349730849266052, 0.1023218184709549, -0.057789597660303116, 0.0071477629244327545, 0.06244853138923645, 0.19530311226844788, 0.06344366818666458, -0.09841417521238327, -0.10527452081441879, -0.025335071608424187, -0.0019984059035778046, -0.06225825846195221, 0.08965039253234863, 0.02620466984808445, 0.029833685606718063, 0.012186404317617416, -0.05825279653072357, 0.03282643482089043, -0.014681843109428883, -0.040534984320402145, -0.027747742831707, -0.07883825153112411, 0.039937056601047516, -0.024115366861224174, 0.03470681980252266, -0.06850375235080719, -0.1217091977596283, 0.06839090585708618, 0.11362548172473907, -0.012373000383377075, 0.004492220003157854, -0.10319501161575317, 0.08800166100263596, -0.09467925876379013, 0.02668476477265358, -0.11518791317939758, -0.07040921598672867, 0.010743989609181881, -0.05108336731791496, 0.05559317395091057, 0.027739858254790306, 0.0367855466902256, 0.03313421458005905, -0.0421685054898262, -0.018260203301906586, 0.012930628843605518, -0.023886941373348236, -0.023239916190505028, -0.17162354290485382, 0.059215348213911057, -0.04847760871052742, 0.09193171560764313, -0.13808424770832062, 0.027362938970327377, -0.03022724948823452, 0.10813099890947342, 0.03002150170505047, -0.00770895229652524, 0.050108402967453, -0.013008695095777512, -0.02154729701578617, -0.013767036609351635, 0.051052071154117584, 0.005243603605777025, -0.11964377015829086, 0.04039983078837395, -0.16786350309848785, 0.1225644201040268, 0.11412830650806427, 0.01517639309167862, -0.009108224883675575, 0.023677324876189232, -0.03469011187553406, -0.03419746831059456, -0.03643106296658516, -0.04507149010896683, 0.12433701008558273, 0.022283878177404404, 0.09881014376878738, -0.12112583220005035, -0.10132362693548203, -0.03038138709962368, -0.004900495056062937, 0.0064492132514715195, 0.10913674533367157, 0.12141638249158859, -0.11320670694112778, 0.0645693764090538, 0.11294792592525482, -0.075279600918293, 0.16852986812591553, 0.009625784121453762, -0.0416291207075119, -0.040378138422966, 0.038938891142606735, -0.0025810739025473595, 0.1452198475599289, -0.09830086678266525, 0.06346501410007477, 0.009710289537906647, 0.03035140596330166, 0.08783704042434692, -0.11010362207889557, -0.002466377569362521, -0.008149256929755211, -0.02325955405831337, -0.020342689007520676, 0.08585023880004883, 0.008069412782788277, 0.09226297587156296, -0.000995938084088266, -0.029248090460896492, 0.007266408763825893, -0.03868459165096283, -0.0843711867928505, 0.17564329504966736, -0.10095811635255814, -0.12561215460300446, -0.0491379089653492, -0.02158011868596077, -0.1016882061958313, 0.017227889969944954, 0.02381426841020584, 0.010445473715662956, -0.033922940492630005, -0.05724797397851944, 0.0548047199845314, 0.05087568983435631, -0.017902914434671402, 0.05731368809938431, 0.0036642695777118206, 0.06890199333429337, -0.12141445279121399, -0.014088522642850876, -0.04301620274782181, -0.055415522307157516, 0.01590808294713497, -0.01562851294875145, 0.09859979897737503, 0.08887402713298798, 0.017440928146243095, -0.014043577946722507, -0.028968550264835358, 0.19690218567848206, -0.07519660890102386, -0.004666049033403397, 0.0993552878499031, -0.00083764927694574, 0.018354739993810654, 0.08434723317623138, 0.008444405160844326, -0.10526157915592194, 0.02874712087213993, 0.08136378973722458, -0.05927794799208641, -0.2224734127521515, -0.037519678473472595, -0.05143619328737259, 0.0028685485012829304, -0.04283580183982849, 0.07006629556417465, -0.02402341552078724, 0.023570872843265533, 0.005028354004025459, -0.03462836518883705, 0.026704885065555573, 0.05443969741463661, 0.10652444511651993, 0.00041937752394005656, 0.09522140771150589, -0.03442174568772316, -0.06122893840074539, 0.09107097238302231, 0.08305391669273376, 0.10909363627433777, -0.06649100035429001, 0.1007700264453888, 0.07247673720121384, 0.04500827565789223, 0.024819575250148773, 0.06441043317317963, -0.04298637807369232, -0.009120252914726734, -0.01798378676176071, -0.0563460998237133, -0.05134224891662598, 0.04200119152665138, -0.014648795127868652, 0.07489325106143951, -0.029510673135519028, 0.08683683723211288, 0.11340555548667908, 0.11110951751470566, 0.04635029286146164, -0.15601879358291626, -0.02706904336810112, 0.019565319642424583, -0.02809484861791134, -0.011938696727156639, 0.07492154091596603, 0.005309225060045719, -0.02297651581466198, 0.07855550944805145, 0.010328402742743492, 0.09910399466753006, -0.11205539852380753, 0.010218953713774681, -0.1064099445939064, 0.12100362032651901, -0.0037400757428258657, 0.07148122042417526, -0.20366746187210083, 0.13070698082447052, 0.01975521259009838, 0.07368725538253784, -0.010435277596116066, -0.030516691505908966, 0.07203279435634613, 0.001422423985786736, 0.11946363002061844, -0.014818892814218998, 0.06455980241298676, 0.01440079789608717, -0.1463850438594818, 0.024249037727713585, -0.003763860324397683, -0.0352773442864418, 0.08529089391231537, -0.00039026615559123456, -0.020485615357756615, 0.03048821911215782, 0.10935159027576447, -0.12067081034183502, -0.07606715708971024, 0.01658855751156807, 0.028495091944932938, -0.06351012736558914, -0.0886731967329979, -0.05137622728943825, -0.00045638016308657825, 0.12320556491613388, -0.14297233521938324, -0.060315050184726715, -0.08223021775484085, 0.013619535602629185, 0.06086011976003647, -0.08738682419061661, -0.04499555751681328, -0.01648920401930809, 0.10568555444478989, -0.006717221345752478, -0.10004814714193344, 0.07100684940814972, -0.06514163315296173, -0.08841371536254883, -0.006360029336065054, 0.14441519975662231, 0.008876183070242405, 0.039804864674806595, 0.011031041853129864, -0.018703263252973557, -0.026467733085155487, -0.10692916810512543, 0.03005407564342022, 0.11273543536663055, -0.05679313838481903, 0.04499051347374916, -0.08750685304403305, 0.03652950003743172, -0.03514687344431877, -0.014502004720270634, 0.142253577709198, 0.297361820936203, -0.032633569091558456, 0.071930892765522, 0.14323493838310242, -0.10018745064735413, -0.18549364805221558, -0.04373249411582947, 0.03236787021160126, 0.026215337216854095, -0.04838015139102936, -0.06608548760414124, 0.07892802357673645, 0.08641030639410019, -0.010648922994732857, 0.031832147389650345, -0.14734597504138947, -0.1465572714805603, 0.11011555045843124, 0.05773454159498215, 0.25229334831237793, -0.08943746984004974, -0.027135280892252922, -0.05613104999065399, -0.045987922698259354, 0.1278076320886612, -0.11120573431253433, 0.11757905781269073, -0.033478833734989166, 0.029465816915035248, 0.005846434738487005, -0.03450751304626465, 0.09176711738109589, -0.033605027943849564, 0.054692983627319336, -0.011411279439926147, 0.054307762533426285, 0.04507022723555565, -0.07058852165937424, 0.0660448670387268, -0.006912171840667725, 0.051472023129463196, -0.053653210401535034, -0.07060541957616806, -0.05700692534446716, 0.02758341282606125, -0.01699111796915531, -0.06007060781121254, -0.020710622891783714, 0.06005311384797096, 0.04557723179459572, 0.004247843287885189, 0.05457776039838791, -0.0464712455868721, 0.0435064323246479, 0.11495611816644669, 0.15774165093898773, -0.0860360786318779, -0.0584748312830925, 0.03090176172554493, 0.004807155579328537, 0.04454660043120384, -0.0855918601155281, 0.06619031727313995, 0.13299819827079773, 0.015074428170919418, 0.08290484547615051, 0.0522785484790802, -0.12213119864463806, 0.01312802080065012, 0.07866222411394119, -0.16047856211662292, -0.12797540426254272, -0.024949973449110985, 0.04551904276013374, -0.014294818975031376, 0.04948795959353447, 0.18137556314468384, -0.05436057597398758, -0.008762335404753685, 0.030882472172379494, -0.023593202233314514, -0.021908653900027275, 0.14538252353668213, 0.06822752952575684, 0.048406705260276794, -0.0475815087556839, 0.06445055454969406, -0.01906106062233448, 0.021725734695792198, -0.005268490873277187, 0.09301309287548065, -0.06198634207248688, -0.05348348245024681, -0.02507130056619644, 0.2448575645685196, -0.06930144876241684, -0.03463101387023926, -0.16471780836582184, -0.04349501058459282, 0.05565955862402916, 0.20135191082954407, 0.08921955525875092, -0.0014004482654854655, 0.0029391213320195675, 0.0038632082287222147, -0.06709940731525421, 0.11081131547689438, -0.016406046226620674, 0.03349871560931206, -0.11970362812280655, -0.11714963614940643, -0.01596030965447426, 0.025256576016545296, -0.05457928031682968, 0.004442165605723858, -0.1335533857345581, -0.013181854039430618, -0.15159499645233154, 0.024620629847049713, -0.02776179648935795, 0.011793983168900013, -0.006966171786189079, -0.01779666356742382, -0.07610946148633957, 0.035860102623701096, -0.07442811131477356, -0.02162344940006733, 0.019132455810904503, 0.03928418457508087, -0.10594185441732407, -0.03693333640694618, 0.002094599884003401, -0.04412226751446724, 0.08033313602209091, 0.00011393440945539623, 0.02586645632982254, 0.038699183613061905, -0.0623442679643631, -0.010276727378368378, 0.028408251702785492, 0.053204022347927094, 0.029291300103068352, -0.14634963870048523, 0.033691421151161194, 0.024395739659667015, 0.0039225611835718155, -0.02183154970407486, 0.06826131045818329, -0.0937589630484581, -0.03518669307231903, -0.03688708692789078, -0.032611116766929626, -0.03854135051369667, -0.004468551836907864, 0.039352867752313614, 0.14833708107471466, 0.11791686713695526, -0.048605725169181824, 0.03539225459098816, -0.15773804485797882, 0.0007813174743205309, 0.05146830901503563, -0.0601629912853241, 0.042001791298389435, 0.006940535735338926, 0.05023253709077835, -0.05859259516000748, 0.2184167355298996, -0.052065130323171616, -0.05383797734975815, 0.032376933842897415, -0.06612545251846313, -0.054590560495853424, -0.017332537099719048, 0.08899667114019394, -4.1427796304560616e-8, 0.029586058109998703, 0.060408156365156174, 0.033458542078733444, 0.07366205006837845, 0.04357382282614708, 0.1460152566432953, 0.1280074566602707, 0.10126323252916336, 0.0708976536989212, 0.09767445921897888, -0.0007502291700802743, -0.0740804374217987, 0.0691266730427742, 0.025140028446912766, 0.014204819686710835, -0.020821822807192802, 0.07132954150438309, 0.12594184279441833, -0.05686888471245766, 0.04822442680597305, -0.014550386928021908, -0.05262157320976257, -0.14807340502738953, -0.07588500529527664, -0.08976395428180695, -0.09695471078157425, 0.03070646896958351, -0.1437213271856308, -0.0764830932021141, -0.01293131336569786, 0.056499626487493515, -0.020941946655511856, 0.11910588294267654, -0.07552776485681534, -0.04089605435729027, 0.03267834335565567, -0.023432893678545952, -0.05361410230398178, -0.03389781340956688, -0.005273370072245598, 0.00565893342718482, 0.017678501084446907, -0.009221753105521202, -0.017369281500577927, -0.03558892756700516, 0.020353415980935097, -0.030708452686667442, -0.03914899006485939, -0.010727091692388058, 0.05117874592542648, 0.06540762633085251, 0.1556311547756195, -0.004586647730320692, -0.08516773581504822, -0.00892834085971117, 0.25591808557510376, -0.014768444932997227, -0.07208318263292313, -0.1332377940416336, 0.14760901033878326, -0.010983369313180447, 0.008690488524734974, 0.013836522586643696, -0.07201315462589264, 0.004094534553587437, 0.21853238344192505, 0.16701126098632812, -0.10285089164972305, 0.009075655601918697, -0.011250157840549946, 0.013784263283014297, 0.02517247200012207, 0.03464571759104729, 0.09178374707698822, 0.22083419561386108, -0.02092704549431801, -0.020330015569925308, -0.050876885652542114, 0.02349020168185234, 0.03189849480986595, 0.11283836513757706, 0.059056688100099564, 0.025597715750336647, -0.08214318007230759, 0.02676434814929962, -0.06362928450107574, -0.1408710777759552, -0.10308711975812912, -0.15453432500362396, -0.13927359879016876, -0.040743593126535416, -0.0051159025169909, -0.07152915745973587, 0.02691972255706787, -0.03045450523495674, -0.015338249504566193, 0.03929769992828369, -0.02068699710071087, -0.13421739637851715, -0.01830499991774559, 0.024207670241594315, 0.10937723517417908, 0.16183990240097046, -0.018517455086112022, 0.05846475437283516, 0.12539079785346985, -0.014804385602474213, -0.12078574299812317, 0.12344656139612198, -0.00731372507289052, -0.13474299013614655, 0.02191356010735035, 0.1376981884241104, -0.03504041209816933, 0.11900327354669571, 0.05734814330935478, -0.1104097068309784, -0.019977979362010956, -0.014156349934637547, -0.11034923791885376, -0.10303767025470734, 0.11948511749505997, -0.12255792319774628, 0.13072143495082855, 0.12216885387897491, -0.025560759007930756, 0.0018050583312287927, -0.04658656567335129, 0.10279755294322968, -0.005458364263176918, -0.033772435039281845, -0.022214610129594803, -0.19372203946113586, 0.03083379752933979, 0.04669014364480972, -0.06354637444019318, -0.2688104212284088, -0.10713191330432892, -0.07004033029079437, -0.03844503313302994, -0.0518358014523983, 0.09176396578550339, 0.06307064741849899, 0.058671753853559494, -0.06065626069903374, -0.12023980170488358, -0.055148229002952576, 0.018040550872683525, -0.11126904934644699, -0.11148124188184738 ]
null
null
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ripayani -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ripayani -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ripayani ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "565.50 +/- 136.76", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
ripayani/dqn-SpaceInvadersNoFrameskip-v4
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T04:40:14+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 43, 90, 73, 9, 5, 7 ]
[ "passage: TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
[ 0.043572068214416504, 0.2414778620004654, -0.0026879787910729647, 0.012635791674256325, 0.05784223601222038, 0.0030472534708678722, 0.08585051447153091, 0.10650663822889328, 0.024212315678596497, -0.001382096204906702, 0.003954293206334114, 0.17533031105995178, 0.03632635250687599, 0.13125447928905487, -0.018073517829179764, -0.2066594809293747, -0.013479253277182579, -0.06247470900416374, -0.07153085619211197, 0.036099132150411606, 0.07206681370735168, -0.030116932466626167, 0.036061208695173264, -0.051406677812337875, -0.057161085307598114, 0.036824777722358704, -0.03157254680991173, 0.007067287806421518, 0.15158706903457642, -0.1222257912158966, 0.12329676002264023, 0.020955175161361694, 0.1896144151687622, -0.12332789599895477, 0.0339222252368927, 0.08982209116220474, -0.036988191306591034, 0.013221588917076588, 0.00975361280143261, -0.052562564611434937, 0.1590864509344101, -0.09371145814657211, 0.07146181166172028, 0.010926910676062107, -0.07592244446277618, -0.1774153709411621, -0.09356249868869781, 0.07947742193937302, 0.0617753230035305, 0.005319166928529739, 0.03726791962981224, 0.11306490749120712, -0.020991774275898933, 0.06488905102014542, 0.11562903225421906, -0.17549200356006622, 0.013578375801444054, 0.17859570682048798, 0.003242473118007183, 0.15767055749893188, -0.05546637624502182, 0.019877681508660316, 0.02752300351858139, 0.04758313298225403, 0.06873945891857147, -0.08186400681734085, -0.1364826112985611, -0.056155186146497726, -0.15456219017505646, -0.03352400287985802, 0.05195203423500061, -0.011860138736665249, -0.05783402919769287, -0.010724928230047226, -0.04010869935154915, 0.0008851495804265141, -0.028637725859880447, 0.01805497519671917, 0.07031578570604324, -0.01226285845041275, 0.02092539705336094, -0.08391954004764557, -0.0390290804207325, -0.038563769310712814, -0.018022390082478523, 0.12054917961359024, 0.08285853266716003, 0.0266572255641222, -0.04135355353355408, 0.10274127870798111, -0.07091585546731949, -0.05454207584261894, 0.04555258899927139, -0.03786851093173027, -0.10615779459476471, 0.02120024710893631, -0.05905991420149803, 0.026879185810685158, 0.09943640232086182, 0.18048083782196045, -0.09862488508224487, 0.012620617635548115, -0.03430783003568649, 0.08121664822101593, -0.03196052461862564, 0.03197542577981949, -0.0840383991599083, -0.016251085326075554, 0.17835216224193573, 0.0030782297253608704, 0.022272996604442596, 0.002074616262689233, -0.049819961190223694, -0.02881433069705963, -0.017756454646587372, 0.06631895154714584, 0.07032092660665512, 0.010587303899228573, -0.0037596761249005795, -0.027667716145515442, -0.036921944469213486, -0.05629328638315201, -0.04952820762991905, 0.018803736194968224, -0.04712437093257904, -0.047942135483026505, 0.06027210131287575, -0.005624116864055395, 0.11337806284427643, -0.025607796385884285, 0.026316547766327858, -0.019410157576203346, -0.07494441419839859, -0.13221681118011475, -0.0304415225982666, 0.0691632330417633, 0.04371757060289383, -0.22497159242630005, -0.16994807124137878, -0.008539012633264065, 0.017946386709809303, -0.018741264939308167, -0.11334165185689926, 0.02453240379691124, -0.007166135590523481, -0.049758363515138626, -0.01601579785346985, 0.10474669933319092, -0.020438622683286667, 0.018010856583714485, -0.05593825876712799, 0.16603368520736694, -0.14290283620357513, 0.031004127115011215, -0.08706212788820267, 0.023509707301855087, -0.21286657452583313, 0.041208744049072266, -0.177636057138443, 0.04863585904240608, -0.08500861376523972, 0.02327173389494419, 0.021320728585124016, 0.01968831568956375, 0.08580207824707031, 0.10143322497606277, -0.23631145060062408, 0.05405791476368904, 0.07900930196046829, -0.022739801555871964, -0.04218491166830063, 0.06798892468214035, -0.06558530032634735, 0.1382148116827011, 0.046505436301231384, 0.24831900000572205, 0.10361487418413162, -0.2036508023738861, 0.061786454170942307, 0.0578593946993351, -0.08880111575126648, -0.004730981774628162, -0.020022382959723473, 0.11598580330610275, -0.01114928349852562, 0.03338807821273804, -0.12186288088560104, 0.1456439197063446, 0.02738998830318451, -0.0165485180914402, -0.04454165697097778, -0.1614885926246643, 0.10309953987598419, -0.015504824928939342, 0.09532155096530914, -0.042415786534547806, 0.0001161050095106475, -0.011168917641043663, 0.18012429773807526, -0.043841805309057236, 0.0007168867159634829, 0.07871408760547638, 0.10895700752735138, 0.028009075671434402, -0.020230965688824654, -0.20380273461341858, -0.0423048660159111, 0.02367858961224556, 0.044489551335573196, 0.2190362960100174, 0.19936694204807281, 0.07770156860351562, -0.022313760593533516, -0.025487221777439117, -0.003248062450438738, -0.05106664076447487, 0.03467361256480217, -0.027858436107635498, -0.024532482028007507, 0.06065356358885765, -0.09305168688297272, 0.02817818708717823, -0.13112716376781464, 0.06307920068502426, -0.17345242202281952, 0.06863926351070404, 0.021998396143317223, -0.005436043255031109, 0.024577690288424492, -0.011292695067822933, -0.034188106656074524, -0.06233125180006027, 0.07110602408647537, 0.06098933145403862, 0.014702376909554005, 0.0021991983521729708, -0.0683600977063179, -0.13828523457050323, 0.08231553435325623, -0.04042381793260574, -0.14305958151817322, 0.06392676383256912, 0.011172642931342125, 0.04875864461064339, -0.05975872278213501, 0.016254881396889687, 0.22900153696537018, 0.05321883037686348, 0.09785865992307663, -0.04092191904783249, -0.022525805979967117, -0.06617844104766846, -0.06677833944559097, 0.09694591909646988, 0.10812206566333771, 0.060318704694509506, -0.0030071530491113663, 0.07626225054264069, 0.10942911356687546, -0.1035122498869896, -0.0651884600520134, 0.03220061957836151, -0.05973697826266289, 0.019652515649795532, 0.049140311777591705, 0.02971293032169342, 0.08619047701358795, 0.1833551675081253, 0.008245792239904404, 0.0386311337351799, -0.025997694581747055, 0.026109617203474045, -0.15547916293144226, -0.03145433962345123, 0.04308181628584862, 0.00886955764144659, -0.07408110797405243, 0.04994636029005051, 0.051439400762319565, 0.13607151806354523, -0.08217083662748337, -0.13170577585697174, -0.059745315462350845, -0.03804200142621994, -0.04239124804735184, 0.14975430071353912, -0.08507520705461502, -0.19221234321594238, -0.017164425924420357, -0.15751953423023224, -0.02518727444112301, -0.005179801490157843, 0.002318724524229765, -0.08325926214456558, 0.017780914902687073, 0.010001576505601406, -0.03129372000694275, -0.0684933215379715, -0.06596160680055618, -0.05786636844277382, 0.09124112874269485, 0.06932931393384933, -0.12240120023488998, -0.00961651187390089, -0.03742414712905884, -0.020465577021241188, 0.04516167193651199, 0.08452648669481277, -0.007267598994076252, 0.07773483544588089, -0.13209199905395508, -0.06962883472442627, 0.02834828943014145, 0.2766247093677521, 0.02882981114089489, 0.004668009467422962, 0.17051753401756287, -0.03629542142152786, 0.04912714660167694, 0.16181479394435883, 0.030781643465161324, -0.14196757972240448, 0.07090470939874649, -0.011341600678861141, -0.09542687982320786, -0.1706860214471817, -0.10215658694505692, -0.037867411971092224, -0.05015881359577179, 0.05638284236192703, 0.004951419774442911, -0.04476970434188843, 0.05910305306315422, 0.08782228082418442, -0.017004497349262238, -0.06151578947901726, 0.11129767447710037, 0.032263003289699554, -0.030136963352560997, 0.08078382909297943, -0.042354047298431396, -0.04206389561295509, 0.0032403599470853806, 0.22643887996673584, 0.0937788337469101, -0.01775507442653179, -0.042567066848278046, 0.019317636266350746, 0.05095715448260307, 0.03613382205367088, 0.11312435567378998, -0.06975842267274857, -0.06826137751340866, -0.035185977816581726, 0.027829548344016075, -0.02945687249302864, 0.08205190300941467, 0.0630207508802414, 0.005563626065850258, -0.04653681069612503, -0.07972332090139389, -0.04849022626876831, 0.08408913016319275, -0.027642227709293365, -0.10093270242214203, 0.09321888536214828, 0.048575710505247116, 0.0016974330646917224, 0.03055831417441368, 0.027994604781270027, 0.01462269201874733, -0.07982148975133896, -0.06775744259357452, 0.011468625627458096, 0.07076629996299744, -0.06822766363620758, -0.027886953204870224, -0.19817815721035004, 0.14578363299369812, 0.010630400851368904, 0.04118429124355316, -0.13048617541790009, 0.1209396943449974, -0.023116756230592728, -0.026430301368236542, 0.013811616227030754, 0.0014643745962530375, 0.08203291147947311, -0.04806509613990784, 0.15762180089950562, 0.009528410620987415, -0.28092408180236816, -0.1418946087360382, -0.08416824042797089, -0.051183976233005524, -0.022873088717460632, 0.014752174727618694, 0.0642135739326477, 0.01516205258667469, 0.003868846921250224, -0.013076163828372955, 0.03185269236564636, -0.09826882928609848, -0.06493937969207764, -0.04839126765727997, -0.02250157669186592, -0.06525848805904388, -0.05647949501872063, -0.0006809153710491955, -0.17226077616214752, 0.12522587180137634, 0.11787347495555878, -0.06451737880706787, -0.041814323514699936, -0.06554657220840454, 0.046191465109586716, -0.07571537792682648, 0.0469326451420784, 0.003414976177737117, 0.019198855385184288, -0.06806991249322891, -0.17922484874725342, 0.016097763553261757, -0.10899919271469116, 0.03772687539458275, -0.05070559307932854, 0.020257100462913513, 0.08594245463609695, 0.17520126700401306, 0.05856714025139809, 0.01460097823292017, -0.07239776104688644, -0.07543374598026276, -0.0017121878918260336, -0.06344114243984222, 0.05762333422899246, -0.009151889942586422, -0.20333483815193176, 0.02763226442039013, -0.11414948850870132, 0.06860900670289993, 0.3310066759586334, 0.3324824273586273, -0.10698744654655457, 0.1177443116903305, 0.04819539934396744, -0.042202454060316086, -0.21051374077796936, -0.002244179602712393, 0.012272895313799381, 0.024992236867547035, 0.13725964725017548, -0.12924811244010925, 0.05453680083155632, 0.0794181227684021, -0.024458877742290497, 0.01456840243190527, -0.09078162908554077, -0.10816970467567444, 0.20847418904304504, 0.14226987957954407, 0.04421741142868996, -0.09421348571777344, 0.08391669392585754, 0.004295284394174814, 0.08375877887010574, 0.2107764035463333, -0.052112679928541183, 0.10695768147706985, 0.005195184610784054, 0.19852910935878754, 0.0328996516764164, -0.023768596351146698, 0.10834760218858719, -0.009801650419831276, 0.07911337912082672, 0.03985166177153587, -0.007676942739635706, 0.010487722232937813, -0.04522453248500824, 0.014148596674203873, -0.028376007452607155, 0.010284217074513435, -0.2274095118045807, 0.0582297146320343, -0.06368855386972427, 0.04604509472846985, 0.008256820961833, -0.0999874547123909, -0.03583388403058052, 0.06431841105222702, 0.08014573156833649, 0.01975327916443348, 0.0436067171394825, -0.03867863491177559, 0.11051398515701294, 0.20660489797592163, -0.009811338968575, 0.17751595377922058, -0.0615963339805603, 0.01464168168604374, -0.023011628538370132, -0.04223164543509483, -0.1462583988904953, -0.035259708762168884, 0.03498423472046852, 0.057734888046979904, 0.015203364193439484, 0.049647457897663116, -0.05656236410140991, 0.08498423546552658, 0.021687336266040802, -0.041541360318660736, 0.033579520881175995, 0.08835696429014206, 0.12415177375078201, 0.010754258371889591, -0.030121933668851852, 0.06147436052560806, -0.08128108084201813, -0.09446098655462265, -0.004497923422604799, -0.029991207644343376, -0.1083834245800972, 0.11353230476379395, 0.16914646327495575, 0.039594944566488266, -0.057076629251241684, 0.10688766092061996, -0.02768099494278431, 0.10047874599695206, 0.009198128245770931, 0.06507332623004913, -0.014091075398027897, -0.03691792115569115, 0.10611724853515625, -0.05442855879664421, -0.01637818105518818, 0.07645545154809952, -0.06522727757692337, -0.023877469822764397, -0.0801999643445015, 0.06034626066684723, 0.09222240000963211, -0.16854619979858398, -0.0639432892203331, -0.032122284173965454, -0.08628080040216446, 0.013965039514005184, 0.012447911314666271, 0.0710059329867363, -0.08589600026607513, 0.06316167116165161, -0.024337708950042725, 0.015639442950487137, -0.03689891844987869, 0.019222697243094444, -0.19525384902954102, -0.002140450058504939, -0.11280795186758041, -0.00348020251840353, -0.002931603929027915, 0.04463808611035347, -0.04961875081062317, -0.029358822852373123, -0.0030675032176077366, 0.044366419315338135, -0.16609135270118713, 0.002798673929646611, -0.011639905162155628, 0.03210212290287018, -0.0002893915225286037, -0.0983390137553215, 0.014195028692483902, -0.04294256120920181, -0.04198618605732918, 0.04925514757633209, 0.009436776861548424, 0.06470516324043274, -0.2795179784297943, -0.14905457198619843, 0.030816160142421722, 0.0683867484331131, 0.05483196675777435, -0.1830425262451172, 0.03568267077207565, -0.08042316138744354, -0.02253127470612526, -0.037770628929138184, 0.018491698428988457, -0.0539514496922493, 0.0018174031283706427, -0.04225044324994087, -0.023033907637000084, -0.028055014088749886, -0.07556360960006714, 0.0826747715473175, 0.12462522834539413, 0.07555580884218216, -0.03807181864976883, 0.09595896303653717, -0.10009756684303284, -0.04657831788063049, -0.04052736237645149, -0.036951083689928055, 0.017965637147426605, -0.0870552659034729, 0.048530060797929764, 0.05188591405749321, 0.18719671666622162, -0.08520494401454926, -0.058800119906663895, -0.014255574904382229, 0.0746525228023529, 0.07849094271659851, 0.005095830652862787, 0.17779210209846497, -0.045693784952163696, 0.05693846940994263, 0.021304311230778694, 0.046699028462171555, 0.10497613251209259, -0.023569339886307716, 0.14490213990211487, 0.21171095967292786, -0.037196725606918335, -0.11048602312803268, 0.043668005615472794, 0.01745123788714409, -0.002401199424639344, 0.05968761444091797, 0.11983796209096909, -0.050589341670274734, -0.10903856158256531, 0.23442286252975464, 0.054169271141290665, -0.11218088120222092, 0.09546315670013428, 0.039532262831926346, -0.015890996903181076, -0.1301896870136261, 0.010444961488246918, -0.0013640925753861666, -0.11233190447092056, 0.03386834263801575, -0.06087532266974449, -0.025547027587890625, 0.11809267848730087, 0.008789865300059319, 0.03317064419388771, -0.04139537364244461, -0.03756232187151909, -0.04352104663848877, -0.04273213446140289, -0.012549578212201595, -0.02991986647248268, -0.030186517164111137, -0.07621737569570541, -0.007770835887640715, -0.012012424878776073, 0.030795488506555557, -0.015285328030586243, -0.02503054589033127, -0.021192016080021858, -0.06697061657905579, -0.0026312144473195076, -0.008178025484085083, 0.015549594536423683, 0.010121971368789673, 0.2358063906431198, 0.07042546570301056, -0.10260069370269775, -0.01036880537867546, 0.22197756171226501, -0.03853277862071991, -0.06528383493423462, -0.07849395275115967, 0.25128230452537537, -0.10482002794742584, 0.051095426082611084, -0.005819917656481266, -0.06550488620996475, -0.07153836637735367, 0.2309868484735489, 0.13502730429172516, -0.1677926480770111, 0.06329060345888138, -0.0368385910987854, -0.009490780532360077, -0.14286863803863525, 0.16013580560684204, 0.1865294873714447, 0.09480160474777222, -0.12259847670793533, 0.0023130534682422876, -0.03518044203519821, -0.018328361213207245, -0.1660851687192917, -0.004593863617628813, -0.029364850372076035, -0.0427238829433918, -0.050771355628967285, 0.029773715883493423, -0.15205919742584229, -0.0927426889538765, -0.1916799396276474, -0.11482496559619904, -0.12386849522590637, -0.04549141973257065, -0.11142764985561371, -0.0019938007462769747, 0.02257080189883709, -0.0641874223947525, 0.021061956882476807, -0.0212461706250906, -0.05887424945831299, 0.015386379323899746, -0.08395619690418243, 0.0674985870718956, 0.06488548219203949, 0.15327942371368408, -0.0790991559624672, 0.025424562394618988, 0.07090727984905243, -0.057595450431108475, -0.10164349526166916, 0.06067253649234772, 0.015708057209849358, -0.1972588747739792, 0.007548294495791197, 0.17712996900081635, -0.10420889407396317, 0.09745754301548004, 0.048501528799533844, -0.012951982207596302, 0.0867827981710434, -0.024721821770071983, -0.016682926565408707, -0.04852180927991867, -0.011212974786758423, -0.10143939405679703, 0.09892100840806961, 0.0876845121383667, -0.0517118014395237, 0.07436849176883698, -0.09508965909481049, -0.04068392515182495, 0.13103286921977997, -0.010057874955236912, -0.08450483530759811, -0.11667824536561966, -0.04081142693758011, 0.09684515744447708, -0.018041390925645828, -0.20185889303684235, -0.11639472097158432, -0.11752668023109436, -0.00014377340266946703, -0.03563340753316879, 0.061800602823495865, 0.02430674433708191, -0.02556120604276657, -0.008150683715939522, -0.17615078389644623, -0.06614746153354645, 0.13479791581630707, -0.10176112502813339, -0.07456064969301224 ]
null
null
diffusers
### mydow Dreambooth model trained by alisesemilysavio with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
{"license": "creativeml-openrail-m", "tags": ["text-to-image", "stable-diffusion"]}
text-to-image
alisesemilysavio/mydow
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-02-14T04:42:16+00:00
[]
[]
TAGS #diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
### mydow Dreambooth model trained by alisesemilysavio with TheLastBen's fast-DreamBooth notebook Test the concept via A1111 Colab fast-Colab-A1111 Sample pictures of this concept:
[ "### mydow Dreambooth model trained by alisesemilysavio with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:" ]
[ "TAGS\n#diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "### mydow Dreambooth model trained by alisesemilysavio with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:" ]
[ 61, 52 ]
[ "passage: TAGS\n#diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### mydow Dreambooth model trained by alisesemilysavio with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:" ]
[ -0.11438257247209549, 0.06124650686979294, -0.002995966235175729, 0.06357382237911224, 0.012574626132845879, -0.04224323853850365, 0.15133212506771088, -0.02613317035138607, 0.005911544896662235, 0.04809941351413727, 0.15033873915672302, -0.02499230019748211, -0.006813826039433479, 0.12741264700889587, -0.02699887380003929, -0.11632033437490463, 0.049019716680049896, 0.02152528055012226, -0.031904466450214386, 0.06862051039934158, 0.06119108945131302, -0.10004110634326935, 0.10911024361848831, -0.028014084324240685, -0.11898687481880188, -0.007775783538818359, -0.062381207942962646, -0.06128458306193352, 0.0692061185836792, 0.04192785173654556, 0.08342133462429047, 0.12978847324848175, 0.011266032233834267, -0.06379374116659164, 0.04704800620675087, -0.022624097764492035, -0.013877551071345806, 0.029739079996943474, 0.018777361139655113, 0.03949926793575287, 0.021061642095446587, 0.1118212640285492, 0.006219386123120785, -0.0022348875645548105, -0.06719055026769638, 0.06680786609649658, 0.009943636134266853, 0.11216866225004196, 0.06816026568412781, 0.06916230916976929, 0.0006100739701651037, 0.09328378736972809, 0.0017494438216090202, 0.10733938962221146, 0.15548378229141235, -0.21467216312885284, -0.09384293854236603, 0.22398000955581665, 0.14454182982444763, -0.09958968311548233, -0.02768310159444809, 0.05994674190878868, 0.0446743480861187, 0.0298885740339756, 0.0033351117745041847, -0.07788702100515366, -0.015172669664025307, -0.11246196925640106, -0.07116134464740753, 0.026479316875338554, 0.1515401154756546, 0.01791492849588394, -0.07155407965183258, -0.03157477825880051, -0.0899466723203659, 0.08774998784065247, -0.05549696832895279, -0.04117705672979355, -0.008502227254211903, 0.008745252154767513, -0.024338966235518456, -0.02169819176197052, -0.11569471657276154, -0.036439575254917145, -0.06966035813093185, 0.14851662516593933, -0.0396253876388073, 0.042695529758930206, -0.06323231756687164, 0.14127708971500397, 0.003796566743403673, -0.1517505645751953, -0.009294267743825912, -0.09704603999853134, 0.07353364676237106, 0.010878587141633034, 0.002853014040738344, -0.08070015162229538, 0.09902068227529526, 0.008073785342276096, 0.09645899385213852, -0.011371809989213943, 0.10163094103336334, 0.0739562138915062, 0.0008515298250131309, 0.000530980818439275, -0.000330120965372771, -0.1301763504743576, -0.009926799684762955, 0.012135840952396393, 0.026548154652118683, -0.008097200654447079, -0.06615696102380753, 0.007600405253469944, -0.037655308842659, 0.014103695750236511, 0.02929208241403103, -0.003998019732534885, -0.05923080071806908, -0.014281515032052994, 0.14373983442783356, -0.0032837498001754284, -0.028386550024151802, -0.05976814404129982, -0.039862509816884995, -0.0009311297326348722, 0.12345380336046219, -0.0274419654160738, -0.005320998374372721, 0.10105998069047928, -0.08430400490760803, -0.00858907401561737, -0.037126947194337845, -0.010203809477388859, 0.01621691882610321, -0.08119714260101318, 0.04366028308868408, -0.1376638561487198, -0.17423675954341888, -0.0179155096411705, 0.07598832994699478, -0.03606793284416199, -0.0007194554200395942, -0.04293499141931534, -0.10791797935962677, -0.0018113066907972097, 0.00713847391307354, 0.0024949712678790092, -0.019361570477485657, 0.036913562566041946, 0.03534632921218872, 0.09220640361309052, -0.11313783377408981, -0.03415141627192497, -0.11274174600839615, 0.04869657754898071, -0.06184686720371246, -0.002887369366362691, -0.0635947734117508, 0.144211545586586, -0.01725820265710354, -0.03331689164042473, 0.01764652691781521, 0.033442072570323944, 0.006560491863638163, 0.20005972683429718, -0.1568104773759842, 0.00471069011837244, 0.12317664176225662, -0.16703034937381744, -0.2106131762266159, 0.0508699044585228, 0.01220959983766079, 0.1460362672805786, 0.039593394845724106, 0.0716041773557663, 0.08617265522480011, -0.3107023537158966, -0.04215271398425102, 0.0008171343361027539, -0.08400385081768036, -0.10400114208459854, 0.016082895919680595, 0.1142185628414154, 0.029720962047576904, 0.03157506138086319, -0.02916869893670082, 0.05799541249871254, -0.07025784254074097, -0.041855063289403915, -0.06934155523777008, -0.061895109713077545, -0.04874229431152344, 0.005848014261573553, 0.02404477447271347, -0.08004235476255417, 0.019755268469452858, 0.021749557927250862, -0.01769392564892769, 0.023631617426872253, -0.03619146719574928, -0.09646303206682205, 0.05061616003513336, -0.042335398495197296, -0.03981738165020943, -0.022701619192957878, -0.10020212084054947, -0.011373517103493214, 0.11629600822925568, -0.027344288304448128, 0.11678238958120346, 0.07826849073171616, 0.09547355771064758, -0.011114513501524925, -0.057512443512678146, 0.06642603129148483, 0.04634913429617882, -0.026586204767227173, -0.13802795112133026, 0.09871785342693329, -0.0683942437171936, -0.0518563948571682, -0.10783273726701736, 0.03073573112487793, 0.06701893359422684, 0.18649190664291382, 0.06467996537685394, -0.0030506611801683903, 0.027559105306863785, -0.014866822399199009, -0.012413719668984413, -0.058996014297008514, 0.049336787313222885, 0.030585143715143204, -0.029733380302786827, 0.11090496927499771, -0.08124163746833801, 0.3298966586589813, 0.0988016277551651, 0.02170981653034687, -0.06073113903403282, -0.05141248553991318, -0.05042349547147751, -0.021952008828520775, -0.033832062035799026, 0.06007560342550278, 0.036244869232177734, -0.016066664829850197, 0.12626659870147705, -0.04498396813869476, 0.009213296696543694, 0.04946878179907799, -0.09374046325683594, -0.05973592400550842, 0.05407143011689186, -0.08823011815547943, -0.12869790196418762, 0.06921280920505524, 0.1607678383588791, -0.013107258826494217, 0.1591162085533142, -0.0017812424339354038, 0.0330057293176651, -0.09052474051713943, 0.04500337690114975, -0.03206716105341911, 0.24608102440834045, -0.08105242252349854, 0.03998376801609993, 0.010701652616262436, -0.002991853980347514, 0.03327574580907822, -0.08981094509363174, -0.030533740296959877, 0.027453072369098663, 0.022058609873056412, 0.1378038376569748, 0.05701354518532753, -0.11828534305095673, 0.03681662678718567, -0.06122994050383568, -0.15111717581748962, 0.02537226490676403, -0.008665451779961586, -0.00007600216486025602, 0.1425795555114746, -0.03336053714156151, -0.24788199365139008, -0.10918374359607697, -0.08259526640176773, 0.025843022391200066, -0.01784452609717846, 0.06397505104541779, -0.001040818402543664, -0.05716322734951973, -0.07821523398160934, 0.023214764893054962, 0.014840824529528618, 0.015307445079088211, 0.07064734399318695, 0.04732552915811539, -0.03870449215173721, -0.017314055934548378, -0.019767120480537415, -0.01539976429194212, 0.12690329551696777, 0.1335475891828537, -0.03362634405493736, 0.10469954460859299, 0.07543163001537323, -0.0030044030863791704, -0.0007396198925562203, 0.010638046078383923, 0.3021796643733978, -0.03330943360924721, 0.12149219959974289, 0.16494140028953552, 0.06673412024974823, 0.049145083874464035, 0.18304038047790527, 0.0301038920879364, -0.07437369972467422, 0.08744943141937256, -0.0823262631893158, -0.0763302743434906, -0.04666688293218613, -0.09200657159090042, 0.0062983655370771885, 0.05565475672483444, -0.01663084700703621, 0.04600515216588974, 0.01766294427216053, 0.15952976047992706, 0.0874127745628357, -0.02245999313890934, -0.05139661207795143, 0.0724758431315422, 0.11864446103572845, -0.07539031654596329, 0.04288400709629059, -0.058814581483602524, -0.09484932571649551, 0.08511176705360413, 0.007965643890202045, 0.01966589130461216, -0.031065672636032104, -0.08188611268997192, 0.07107080519199371, 0.08436857163906097, 0.10841871798038483, 0.10950058698654175, 0.008066533133387566, -0.08685227483510971, -0.025348426774144173, -0.09338285028934479, 0.06334599107503891, 0.042658716440200806, -0.09809659421443939, -0.009845905005931854, 0.020641054958105087, 0.11373933404684067, -0.019248025491833687, 0.046731848269701004, 0.1551613211631775, -0.26164907217025757, -0.05365832895040512, -0.018296757712960243, 0.039361532777547836, -0.10503082722425461, -0.010663749650120735, 0.23988814651966095, -0.010943111032247543, 0.0126675795763731, -0.056163106113672256, 0.046178873628377914, 0.08814944326877594, 0.01068929024040699, -0.08874980360269547, -0.031328070908784866, -0.017023824155330658, 0.023584064096212387, -0.1772325038909912, 0.11264561116695404, -0.03485063463449478, 0.09673348814249039, 0.021166885271668434, -0.01682908460497856, 0.01319817453622818, 0.1573505848646164, 0.16958221793174744, -0.008430001325905323, 0.03811177238821983, 0.033858057111501694, -0.17996229231357574, 0.00317686446942389, 0.04717233404517174, 0.07575752586126328, 0.053031906485557556, 0.06724277883768082, -0.013099217787384987, 0.002791327890008688, -0.010008198209106922, -0.17428253591060638, -0.042497921735048294, 0.036473348736763, 0.09199854731559753, 0.07042831927537918, -0.0818326473236084, -0.06835983693599701, 0.06466031074523926, 0.13205395638942719, -0.11748059839010239, -0.06234436482191086, -0.1087222546339035, -0.09727498143911362, 0.0637650266289711, -0.02384292706847191, 0.05862366035580635, -0.09671199321746826, 0.04466370493173599, -0.04930286854505539, -0.08675370365381241, 0.07217312604188919, -0.16588614881038666, -0.10459282249212265, -0.14367090165615082, 0.03639545291662216, -0.03316124156117439, -0.013804970309138298, 0.039910610765218735, -0.013220871798694134, -0.09566972404718399, -0.08003415167331696, -0.011327560059726238, 0.01010142918676138, -0.06360376626253128, -0.014258107170462608, 0.028067538514733315, -0.04330629110336304, 0.04562897980213165, -0.01625427044928074, 0.01809704676270485, 0.25647321343421936, -0.025412587448954582, 0.07142850011587143, 0.16447606682777405, -0.058453574776649475, -0.2594982385635376, -0.12342792004346848, -0.037296805530786514, 0.018058156594634056, -0.04466701298952103, -0.03567075356841087, 0.2181294858455658, 0.0032404777593910694, -0.056862447410821915, 0.18663382530212402, -0.2798697352409363, -0.09213259816169739, 0.09455213695764542, 0.13905271887779236, 0.3628852367401123, -0.10831676423549652, -0.05024990439414978, -0.03765479847788811, -0.2317904382944107, 0.12580057978630066, 0.0156758651137352, 0.060696184635162354, -0.08324509114027023, 0.004343289881944656, -0.02148710936307907, -0.06934795528650284, 0.12437315285205841, -0.0871911346912384, 0.060102429240942, -0.1197839081287384, 0.049263257533311844, 0.12727344036102295, -0.04664919152855873, 0.09700775891542435, -0.04172931984066963, 0.08149313926696777, -0.03949688374996185, -0.03791528567671776, -0.01945941336452961, 0.06629196554422379, -0.07684063911437988, -0.09220806509256363, -0.06046785041689873, 0.03770120069384575, -0.0317767858505249, -0.022005068138241768, -0.1039464995265007, 0.009949229657649994, -0.10219065845012665, 0.21581684052944183, 0.009791039861738682, -0.1053185760974884, -0.083158478140831, -0.00012002780567854643, -0.05029796436429024, 0.07413265854120255, -0.027271604165434837, -0.0509658120572567, 0.18369773030281067, 0.013487430289387703, 0.04532208666205406, 0.033691827207803726, -0.031756382435560226, -0.016170820221304893, 0.11996288597583771, -0.16779670119285583, -0.06761010736227036, -0.03728380799293518, 0.14688122272491455, 0.03801225870847702, -0.008640150539577007, 0.1629236340522766, -0.12613604962825775, 0.05350667983293533, -0.0496673658490181, -0.016195399686694145, 0.001091362559236586, 0.14283838868141174, 0.02245660312473774, 0.053107090294361115, -0.04259350523352623, 0.08295509964227676, -0.06840281188488007, -0.1545783281326294, -0.062464743852615356, 0.073429174721241, -0.10904790461063385, -0.07509493827819824, 0.07456205785274506, 0.19722320139408112, -0.17215405404567719, -0.048074040561914444, -0.14754711091518402, -0.13128547370433807, 0.02923186682164669, 0.19394555687904358, 0.09649966657161713, 0.06418886035680771, 0.017383649945259094, -0.0640886202454567, 0.011157296597957611, 0.07915440946817398, 0.07673923671245575, 0.09048420190811157, -0.1949022114276886, -0.03816959634423256, -0.03812595456838608, 0.01759534887969494, -0.09655854851007462, -0.017626186832785606, -0.11352790147066116, 0.004838296677917242, -0.09224032610654831, 0.12743666768074036, -0.07270679622888565, -0.05907231941819191, -0.005253193899989128, 0.0077933636493980885, 0.006972890812903643, 0.008867697790265083, -0.039728425443172455, 0.056152015924453735, -0.0029186552856117487, -0.01338148582726717, -0.04562360420823097, -0.0505480095744133, 0.042224593460559845, -0.05234115943312645, 0.055067259818315506, -0.03380913287401199, -0.09813787788152695, -0.044763825833797455, -0.20176911354064941, 0.01244086679071188, 0.12867671251296997, -0.02719530463218689, 0.02753543294966221, 0.03317785635590553, -0.03280956670641899, 0.023083658888936043, 0.07846083492040634, 0.014941737055778503, 0.07238828390836716, -0.10580260306596756, -0.08246725052595139, -0.025426840409636497, -0.029457785189151764, -0.08601923286914825, -0.021564707159996033, 0.11921097338199615, 0.06177651137113571, 0.16140979528427124, -0.13161994516849518, 0.031222017481923103, -0.05179711803793907, 0.0058973124250769615, 0.061754222959280014, -0.06935381144285202, 0.03628021106123924, 0.00484809884801507, -0.00824104342609644, 0.017681846395134926, 0.10210063308477402, 0.013141872361302376, -0.17690172791481018, 0.00468413345515728, -0.1550612598657608, 0.00044773187255486846, 0.017972273752093315, 0.21471920609474182, 0.013976771384477615, 0.01974441669881344, -0.1232072040438652, 0.06077006831765175, 0.09123160690069199, 0.08774435520172119, 0.03052113763988018, 0.13254141807556152, 0.00272672763094306, 0.1741548627614975, -0.0016418593004345894, 0.05618412420153618, -0.020105808973312378, -0.02295026183128357, -0.11362874507904053, 0.13528184592723846, -0.05637040361762047, -0.02934858575463295, 0.06184355169534683, 0.0029878539498895407, -0.03965777903795242, 0.009401559829711914, -0.057228390127420425, -0.015200899913907051, -0.020907973870635033, -0.08197005093097687, -0.040874917060136795, 0.019172102212905884, -0.07220113277435303, -0.04088403657078743, 0.012912905775010586, 0.04035786911845207, -0.02672591805458069, 0.15430273115634918, -0.01928580366075039, -0.001160342711955309, 0.1344624012708664, -0.02012133039534092, -0.03895678371191025, 0.03740004077553749, 0.0844198614358902, -0.07782839983701706, 0.06602627038955688, -0.061431389302015305, 0.06358655542135239, -0.017553316429257393, -0.01607017032802105, 0.05428893864154816, -0.06534872949123383, -0.027769384905695915, 0.020577935501933098, 0.01184721291065216, 0.06087042763829231, 0.024894045665860176, 0.019241055473685265, 0.0019066549139097333, 0.17010071873664856, -0.06408565491437912, -0.18879029154777527, -0.0789995789527893, 0.06710664182901382, -0.09668504446744919, 0.07907097041606903, -0.047053299844264984, -0.004606255330145359, -0.039988353848457336, 0.17219717800617218, 0.11438914388418198, -0.10372284054756165, -0.0025034055579453707, -0.033296454697847366, 0.0012087842915207148, -0.05652423948049545, 0.059296850115060806, 0.011471611447632313, 0.2573147118091583, -0.08814673870801926, -0.03956901654601097, -0.09804786741733551, -0.09950973838567734, -0.045010752975940704, -0.14417925477027893, 0.032160621136426926, 0.014786767773330212, -0.12600713968276978, 0.09120889008045197, -0.14728596806526184, -0.05564454570412636, 0.21664369106292725, -0.056897249072790146, -0.05546503886580467, -0.026209114119410515, 0.1252233386039734, 0.03443513065576553, 0.07864981889724731, -0.08802930265665054, 0.009028567932546139, 0.05294793099164963, -0.03225395083427429, -0.12409089505672455, 0.07736095041036606, -0.00030906894244253635, -0.1939612478017807, 0.19996972382068634, 0.008306911215186119, 0.07408598065376282, 0.07461310178041458, -0.04272039234638214, -0.1487467885017395, 0.08388791978359222, -0.011892769485712051, -0.0991915687918663, -0.0023977055680006742, 0.07474697381258011, 0.04347185790538788, 0.010408058762550354, -0.001231075613759458, -0.13099625706672668, -0.0376376211643219, 0.1345757097005844, 0.013502811081707478, -0.1339893788099289, 0.07577693462371826, -0.010173839516937733, 0.06943278014659882, 0.041447337716817856, -0.04424290359020233, 0.009356527589261532, -0.01339806243777275, 0.08460376411676407, -0.001380988978780806, -0.08779803663492203, 0.057738251984119415, -0.06252147257328033, 0.0005610708612948656, 0.009990102611482143, -0.03721301257610321, -0.25423121452331543, -0.07268161326646805, -0.15922310948371887, 0.0208976361900568, 0.00022631208412349224, 0.06839063763618469, 0.1986880600452423, 0.06903625279664993, 0.015859616920351982, 0.012757930904626846, -0.02235078066587448, 0.017695287242531776, -0.002733156317844987, -0.143719881772995 ]
null
null
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Fhermin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
Fhermin/q-FrozenLake-v1-4x4-noSlippery
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-14T04:48:42+00:00
[]
[]
TAGS #FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 FrozenLake-v1 This is a trained model of a Q-Learning agent playing FrozenLake-v1 . ## Usage
[ "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 40, 39 ]
[ "passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 0.04578453302383423, -0.08074592798948288, -0.00430759321898222, 0.10720831900835037, 0.05034215748310089, -0.040469273924827576, 0.11997015029191971, 0.018999949097633362, 0.20601962506771088, -0.010012076236307621, 0.1455274522304535, 0.007022971753031015, -0.006192410364747047, 0.1867983490228653, 0.04572829231619835, -0.26324528455734253, 0.01831899583339691, -0.09495259821414948, -0.07281816750764847, 0.11870454251766205, 0.05470194295048714, -0.01901467889547348, -0.0007633853238075972, 0.056141503155231476, -0.0673527717590332, 0.0007737681735306978, 0.031996939331293106, -0.012976245954632759, 0.19804789125919342, -0.02254498563706875, 0.06641989201307297, 0.054705578833818436, 0.0758768692612648, -0.1998077929019928, 0.0358855277299881, -0.04215473681688309, -0.09439758956432343, -0.03934839740395546, -0.018780618906021118, 0.05878105387091637, 0.053356342017650604, 0.03858819976449013, 0.058354366570711136, 0.09384993463754654, -0.0773480236530304, 0.04328357055783272, 0.04280758649110794, 0.024811049923300743, 0.04589218273758888, -0.0237203948199749, -0.027002155780792236, 0.08246652781963348, -0.22182892262935638, 0.10318073630332947, -0.010159241035580635, -0.5270710587501526, -0.00633762264624238, 0.24088262021541595, 0.11517096310853958, 0.05707438662648201, -0.06903956830501556, 0.10566288232803345, 0.03913382440805435, -0.007209456991404295, 0.03210983797907829, 0.02150118350982666, 0.12817370891571045, 0.06009242683649063, -0.09581366181373596, 0.040699947625398636, 0.13722525537014008, 0.012822695076465607, 0.020306183025240898, -0.08888901025056839, 0.0410032719373703, -0.03461858257651329, -0.007679527159780264, -0.09758518636226654, 0.05478060990571976, 0.012466507963836193, -0.0934976264834404, -0.09247440844774246, -0.04236573353409767, -0.06708304584026337, 0.11252415925264359, 0.046419668942689896, -0.0874939113855362, 0.03884070739150047, -0.06760413944721222, 0.05918780341744423, -0.16863860189914703, 0.02074250765144825, -0.06627868115901947, -0.09376336634159088, -0.11799788475036621, -0.01683047041296959, -0.07946427166461945, 0.009092256426811218, 0.056664444506168365, 0.1447116881608963, 0.22076484560966492, 0.06690320372581482, 0.09728849679231644, 0.07456006109714508, 0.06531001627445221, 0.1538129299879074, 0.10918238013982773, 0.019075315445661545, -0.015266558155417442, 0.0948706716299057, -0.06445580720901489, -0.1351388692855835, -0.15579092502593994, 0.005488025024533272, 0.0983937531709671, 0.08871900290250778, -0.044080477207899094, -0.006702381651848555, -0.024641724303364754, 0.08566431701183319, -0.11314457654953003, -0.024612564593553543, -0.002267979085445404, 0.06882024556398392, -0.024801667779684067, 0.020378148183226585, -0.06242705136537552, 0.12715265154838562, 0.04222423583269119, -0.059924717992544174, -0.055308472365140915, -0.03053177334368229, -0.014276440255343914, -0.027539284899830818, 0.02446848154067993, -0.07659092545509338, 0.04767750948667526, -0.16766095161437988, -0.042871296405792236, -0.04784649610519409, 0.025697942823171616, -0.03907240927219391, -0.13557587563991547, -0.17699143290519714, -0.048906855285167694, -0.022438718006014824, 0.03549358621239662, -0.038111843168735504, 0.006551501806825399, -0.006318534724414349, -0.1583600640296936, 0.09783563017845154, 0.09784027189016342, -0.03643378987908363, -0.02749447710812092, 0.056263517588377, -0.07194498926401138, 0.1561182290315628, -0.21054518222808838, -0.054014235734939575, -0.044764336198568344, -0.06595750898122787, 0.19673264026641846, 0.012690845876932144, -0.01202624011784792, 0.19873127341270447, -0.29073721170425415, -0.06078760325908661, 0.12533614039421082, -0.07834373414516449, -0.0936407670378685, 0.06941844522953033, -0.04206686094403267, 0.023345354944467545, 0.046047765761613846, 0.36345911026000977, -0.02069227211177349, -0.16197136044502258, -0.021782705560326576, 0.13971707224845886, -0.1184760183095932, 0.059895481914281845, 0.04240793362259865, 0.12543781101703644, -0.04250509291887283, -0.018672896549105644, -0.09023164212703705, 0.05999075248837471, -0.05241934582591057, -0.09016361832618713, -0.03393383324146271, -0.07645075023174286, 0.13294468820095062, -0.0629684180021286, 0.05601520463824272, -0.03255095332860947, -0.07133250683546066, -0.050324998795986176, -0.016492370516061783, 0.04460815340280533, 0.05951254442334175, -0.12794871628284454, 0.11029167473316193, 0.13025271892547607, -0.0006193425506353378, -0.07498852163553238, -0.17872096598148346, 0.003240168560296297, 0.009576505981385708, 0.039837226271629333, 0.17141658067703247, 0.12209978699684143, 0.033295199275016785, 0.008770671673119068, -0.06389404833316803, -0.18276847898960114, 0.058129217475652695, -0.056212130934000015, -0.14230976998806, -0.052409034222364426, -0.0728459507226944, 0.017381802201271057, -0.0859743058681488, -0.017379917204380035, 0.021926190704107285, 0.006908397190272808, 0.02990424446761608, -0.026645656675100327, -0.049561817198991776, 0.021254703402519226, 0.06490101665258408, -0.0037617047782987356, 0.12023693323135376, 0.008277264423668385, -0.18308481574058533, 0.07930773496627808, 0.08478537946939468, 0.09196605533361435, 0.013250201940536499, 0.02685922384262085, -0.021522263064980507, -0.08061408251523972, -0.054420311003923416, 0.02957955375313759, 0.11417073011398315, 0.1317172348499298, 0.2361993044614792, 0.08753683418035507, 0.04697408527135849, -0.02164587564766407, -0.016415923833847046, 0.002810494042932987, -0.06318057328462601, -0.029935607686638832, 0.10614971816539764, 0.05865858122706413, -0.067733034491539, -0.04576427489519119, 0.09590928256511688, 0.02732124738395214, 0.21205885708332062, -0.03342745825648308, 0.01286078616976738, -0.10957037657499313, -0.06550975888967514, -0.031982194632291794, 0.09201868623495102, 0.09498392790555954, 0.009755023755133152, -0.022056059911847115, -0.04259001836180687, 0.0012916827108711004, -0.1334889680147171, -0.10375088453292847, 0.026475343853235245, 0.013400445692241192, -0.11206940561532974, 0.11674030870199203, -0.11352457851171494, 0.039504457265138626, 0.06024791672825813, -0.13837239146232605, 0.04428480193018913, -0.029713207855820656, -0.07886212319135666, 0.16866780817508698, -0.11075661331415176, -0.094340018928051, -0.08831550180912018, 0.004082420375198126, 0.0075836325995624065, -0.03922267258167267, -0.009283260442316532, -0.19952571392059326, -0.005375816952437162, -0.03544965013861656, 0.013616434298455715, -0.06988783925771713, -0.11287739872932434, -0.010957922786474228, 0.07084179669618607, -0.043388739228248596, -0.07803605496883392, 0.007967432029545307, -0.08923084288835526, -0.10623309016227722, 0.028189711272716522, 0.019765101373195648, -0.022883659228682518, 0.16152891516685486, 0.01816628873348236, 0.05626589432358742, -0.03298520669341087, 0.30665266513824463, -0.038163769990205765, 0.08371731638908386, -0.02993497997522354, -0.07433546334505081, 0.06130730360746384, -0.022327827289700508, 0.06086638569831848, -0.020221687853336334, -0.02362890914082527, 0.0077952733263373375, -0.08579335361719131, -0.18365982174873352, -0.05417544022202492, 0.03724347800016403, 0.195254847407341, 0.031118987128138542, 0.01910330168902874, -0.0488768145442009, -0.010547760874032974, 0.1665220558643341, -0.10005921125411987, 0.04030545800924301, -0.05366240441799164, 0.11506262421607971, -0.08640182018280029, 0.06195629760622978, 0.020486772060394287, 0.04266135022044182, -0.04877188801765442, 0.09486009180545807, 0.0826394334435463, 0.1121082529425621, -0.02206910029053688, 0.046257395297288895, 0.019012698903679848, 0.07383184134960175, 0.11073657125234604, 0.0368414968252182, -0.0729052945971489, 0.001982470043003559, -0.006313489284366369, -0.039427030831575394, 0.11933320760726929, 0.17963355779647827, -0.11991413682699203, -0.05106910318136215, 0.27167606353759766, 0.0031242913100868464, 0.19481229782104492, -0.01315275114029646, 0.043591804802417755, -0.04484925419092178, 0.04572054371237755, -0.05338600277900696, -0.04086209088563919, 0.2094656229019165, 0.08045925945043564, -0.17165091633796692, -0.08549032360315323, -0.05912299454212189, 0.07081323862075806, 0.10728751868009567, 0.0013539529172703624, -0.04156802222132683, 0.0004610282776411623, 0.0014198932331055403, 0.08339415490627289, -0.14520122110843658, 0.11816094070672989, -0.03172019124031067, 0.05612684786319733, 0.017555562779307365, -0.045326150953769684, 0.04264266416430473, 0.07474290579557419, 0.26618310809135437, 0.0904107540845871, -0.040318213403224945, -0.0892091691493988, -0.12260187417268753, 0.010461576282978058, 0.029102616012096405, -0.03534553572535515, 0.0037547778338193893, -0.020087555050849915, 0.0318896509706974, 0.008264793083071709, 0.016230624169111252, -0.08987458795309067, -0.03175399824976921, -0.027736429125070572, -0.023839212954044342, 0.10733365267515182, -0.09495144337415695, -0.1444292515516281, -0.15713949501514435, 0.04191131144762039, -0.0766405463218689, -0.056593164801597595, -0.054507751017808914, -0.05239389091730118, -0.0311186034232378, -0.03773957118391991, 0.09099467098712921, -0.0021037792321294546, 0.14807306230068207, -0.1920108050107956, -0.04220759496092796, 0.051812779158353806, -0.07607918977737427, -0.08729588985443115, 0.03410962224006653, 0.12136995792388916, 0.05116051807999611, 0.11504370719194412, 0.013609255664050579, 0.09567681699991226, 0.0045484392903745174, -0.06713183224201202, 0.15302421152591705, -0.14069625735282898, -0.27875974774360657, -0.03836318850517273, 0.016946332529187202, 0.1615200787782669, -0.05613167956471443, 0.031766023486852646, 0.3335736393928528, 0.27782970666885376, -0.1428707242012024, 0.25916144251823425, 0.019178593531250954, 0.004398873541504145, -0.19130495190620422, -0.10125631093978882, 0.025324683636426926, 0.04740457236766815, 0.12032642960548401, -0.14564448595046997, -0.010732659138739109, -0.04543145373463631, -0.025908485054969788, 0.10386138409376144, -0.12300799041986465, -0.07263197749853134, 0.07765276730060577, 0.039809420704841614, 0.1808302253484726, 0.03932500258088112, 0.0014799144119024277, 0.13626977801322937, 0.06612244248390198, 0.019124457612633705, 0.05216038227081299, 0.08028066903352737, -0.018944554030895233, 0.14207926392555237, 0.05448179319500923, -0.02551644667983055, 0.052681710571050644, -0.0054580713622272015, -0.03219012916088104, 0.015605825930833817, -0.183198019862175, -0.10147556662559509, -0.0561356320977211, -0.10798973590135574, -0.04978342354297638, 0.056853994727134705, -0.12395523488521576, -0.007896827533841133, -0.03841273859143257, 0.03718273714184761, -0.07831971347332001, -0.09360362589359283, -0.036494381725788116, 0.1351792961359024, 0.07210618257522583, 0.04471297934651375, 0.035655103623867035, -0.07390819489955902, 0.07097936421632767, 0.21671734750270844, 0.08159157633781433, 0.028919655829668045, -0.19545674324035645, -0.024042490869760513, -0.0803457647562027, 0.06306298077106476, -0.08856996893882751, -0.016788700595498085, 0.11923003196716309, 0.08616556972265244, 0.05413002520799637, 0.09640096127986908, -0.045083072036504745, 0.021686913445591927, 0.02684609219431877, -0.15131035447120667, -0.18501274287700653, -0.08534606546163559, -0.03519878163933754, 0.11561143398284912, -0.06398691236972809, 0.10897188633680344, -0.13615410029888153, 0.010051886551082134, -0.006060056854039431, 0.02693452313542366, -0.03596206381917, -0.11251141875982285, 0.15348562598228455, 0.11999429017305374, -0.06767056882381439, 0.03127254918217659, -0.09527092427015305, -0.04423454403877258, 0.12686803936958313, -0.013623855076730251, -0.0371493324637413, -0.054547641426324844, -0.03628576174378395, 0.15247689187526703, -0.03436964750289917, 0.008244883269071579, -0.041229065507650375, -0.18217355012893677, 0.0798322781920433, 0.09045056998729706, 0.019827889278531075, -0.031874191015958786, -0.09797266125679016, -0.010231015272438526, -0.0011165260802954435, 0.11730700731277466, -0.10696814209222794, -0.10933240503072739, -0.15144047141075134, 0.06713984161615372, -0.0007159380475059152, 0.18502596020698547, -0.06394898891448975, -0.08904669433832169, -0.12429379671812057, 0.02344517596065998, -0.0027384376153349876, -0.042264558374881744, 0.01618490368127823, 0.07992301136255264, -0.04095321521162987, 0.02075677551329136, -0.06651144474744797, 0.06372585147619247, -0.11786920577287674, 0.09625071287155151, 0.01063506118953228, 0.016993753612041473, -0.0417880080640316, -0.01618220843374729, 0.039470795542001724, -0.057925306260585785, 0.07921463251113892, 0.011758086271584034, 0.0010938759660348296, 0.10196787863969803, -0.0034960443153977394, 0.06409632414579391, -0.05372481048107147, -0.023290161043405533, 0.06578411161899567, -0.05874887853860855, -0.03370826691389084, -0.1573946475982666, -0.0709633082151413, 0.020051732659339905, -0.04775108024477959, 0.002077929675579071, 0.03673801198601723, 0.062159497290849686, -0.06937079131603241, -0.12125655263662338, -0.043812792748212814, -0.028638383373618126, 0.021301284432411194, 0.10829301923513412, -0.07526551932096481, 0.1547859013080597, -0.052787959575653076, -0.00020603960729204118, 0.07437096536159515, 0.04048224538564682, 0.01393822580575943, -0.10422444343566895, -0.04698587954044342, -0.11035211384296417, 0.1502903699874878, -0.007902312092483044, -0.03533121198415756, 0.03719403222203255, -0.11946307867765427, -0.1572723090648651, 0.03418220207095146, 0.10199101269245148, 0.0448341928422451, 0.025807438418269157, 0.027079269289970398, -0.04042419046163559, -0.021270349621772766, -0.07034418731927872, 0.0882953479886055, -0.12085357308387756, -0.09669415652751923, 0.09555385261774063, 0.12178351730108261, -0.0036850625183433294, -0.07441367954015732, 0.11554073542356491, -0.021787192672491074, 0.05525410920381546, -0.02971339225769043, 0.10308072715997696, 0.0796005055308342, -0.12273547053337097, 0.005693064536899328, -0.036891788244247437, -0.0741485133767128, -0.12975730001926422, 0.019545545801520348, -0.061916105449199677, -0.13383042812347412, 0.12179028987884521, -0.09376577287912369, 0.030037038028240204, -0.10506992787122726, 0.021338803693652153, 0.01864001713693142, 0.061665527522563934, -0.10988292098045349, 0.08575301617383957, 0.13424484431743622, -0.043199893087148666, -0.07184189558029175, -0.12455986440181732, -0.05022053420543671, -0.04231856390833855, -0.13957437872886658, -0.11600435525178909, 0.0100301094353199, -0.023418782278895378, -0.05818291753530502, 0.0015462689334526658, -0.03659068048000336, 0.008594646118581295, 0.021907730028033257, 0.04032021388411522, -0.02693161368370056, 0.05134565755724907, -0.057569269090890884, -0.052510857582092285, 0.11489357799291611, 0.04113486409187317, -0.03561042994260788, -0.052359987050294876, 0.12997733056545258, -0.11959461867809296, 0.07662346214056015, -0.020313527435064316, 0.017129231244325638, -0.06435854732990265, 0.17131924629211426, 0.11673715710639954, -0.1367570012807846, -0.005008010193705559, -0.08210669457912445, 0.020409544929862022, 0.023555370047688484, 0.13693512976169586, -0.03411718085408211, -0.0012358218664303422, -0.1580323874950409, 0.018575575202703476, -0.18557456135749817, -0.03716109320521355, 0.04671547934412956, 0.09917585551738739, 0.15293832123279572, -0.0034432117827236652, -0.1263325810432434, 0.10424192249774933, -0.2118520885705948, 0.0907607227563858, 0.05121984705328941, -0.11874113976955414, -0.06765396893024445, -0.06795281916856766, 0.1198519766330719, 0.009196433238685131, 0.2040700763463974, -0.013615905307233334, -0.09132910519838333, -0.07060808688402176, -0.01980910450220108, -0.030524181202054024, 0.09714830666780472, 0.041414931416511536, 0.04653804749250412, 0.12821412086486816, 0.00368314771912992, 0.07533777505159378, 0.060310911387205124, 0.02759413793683052, -0.012300663627684116, 0.04076618701219559, 0.08261215686798096, -0.14588621258735657, -0.1659701019525528, 0.1326720416545868, 0.025149408727884293, 0.11792458593845367, 0.03658788278698921, -0.1549617499113083, 0.06687124073505402, 0.2523096203804016, -0.11147607117891312, 0.02505038119852543, 0.12737524509429932, -0.0366884209215641, 0.0672016367316246, 0.1144871786236763, -0.02633814327418804, -0.05217865854501724, -0.011363590136170387, 0.10233135521411896, 0.028660254552960396, -0.04646271467208862, -0.02340836264193058, -0.03373933956027031, -0.019070526584982872, -0.011738128960132599, -0.0909019410610199, -0.1543993502855301, -0.10471053421497345, -0.16619662940502167, 0.04399140924215317, -0.04626438021659851, 0.13418889045715332, 0.09469578415155411, -0.012723101302981377, 0.04568437114357948, 0.028575526550412178, 0.07275456190109253, 0.07916246354579926, -0.02939477376639843, -0.036159269511699677 ]
null
null
null
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Fhermin/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.52 +/- 2.69", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
Fhermin/Taxi-v3
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-14T04:50:15+00:00
[]
[]
TAGS #Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 Taxi-v3 This is a trained model of a Q-Learning agent playing Taxi-v3 . ## Usage
[ "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ "TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 32, 33 ]
[ "passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 0.048862796276807785, -0.16549694538116455, -0.005485367961227894, 0.02960980497300625, 0.1345081776380539, -0.01784728653728962, 0.11895976960659027, 0.07759871333837509, -0.07461097836494446, -0.055395450443029404, 0.1418241262435913, 0.09088201075792313, 0.055222880095243454, 0.05699880048632622, 0.09511256217956543, -0.27440664172172546, 0.048217080533504486, -0.02918700873851776, 0.05621987581253052, 0.11878681182861328, 0.0670095682144165, -0.040441032499074936, 0.061956584453582764, 0.11818158626556396, -0.1018151044845581, -0.007344264071434736, 0.035402704030275345, -0.09440053254365921, 0.17413531243801117, 0.07204403728246689, 0.12337774783372879, 0.05132639780640602, 0.179361954331398, -0.12762396037578583, 0.024310702458024025, -0.0010275895474478602, -0.10138072073459625, -0.03909514099359512, -0.012415820732712746, -0.08349097520112991, 0.03230205550789833, 0.23522862792015076, 0.07199250161647797, 0.06632792949676514, -0.17707863450050354, -0.06584878265857697, -0.04375573247671127, 0.069611094892025, 0.14951466023921967, 0.03758616745471954, -0.033800311386585236, 0.1684885323047638, -0.2564343810081482, 0.05066783353686333, 0.037275806069374084, -0.42313119769096375, 0.017119819298386574, 0.1507398933172226, 0.15090937912464142, 0.06909667700529099, -0.10573802888393402, 0.013512322679162025, 0.051325585693120956, -0.0005318621988408267, 0.024325110018253326, 0.006554204970598221, 0.15601307153701782, 0.08537693321704865, -0.1487821787595749, -0.058576688170433044, 0.17441977560520172, -0.03788546845316887, -0.02613203600049019, -0.039745692163705826, 0.0067160045728087425, -0.06427708268165588, -0.004067842848598957, -0.1777995079755783, 0.00734262028709054, 0.06666424125432968, -0.014348524622619152, 0.014901017770171165, -0.035522811114788055, -0.0966939702630043, -0.023098144680261612, -0.08592145889997482, 0.01677769608795643, -0.006319406442344189, -0.10187895596027374, 0.05002119392156601, -0.061138734221458435, 0.0014382408699020743, -0.05123179033398628, -0.15047866106033325, -0.049055423587560654, -0.03481535613536835, 0.1474713832139969, -0.0044205985032022, -0.01873963139951229, -0.03164304047822952, 0.15474793314933777, 0.049551334232091904, -0.05370146036148071, 0.05625450983643532, 0.07605006545782089, 0.23867930471897125, 0.10401605814695358, 0.10196955502033234, -0.06798075139522552, 0.10180158913135529, -0.12330973148345947, -0.08915644884109497, -0.17508824169635773, 0.11820860952138901, 0.00015364694991149008, 0.1317785084247589, -0.12023144960403442, 0.07898581773042679, -0.067511186003685, 0.013453764840960503, 0.01636839471757412, 0.0820009782910347, -0.012399360537528992, 0.10676060616970062, -0.005061192903667688, -0.06941985338926315, 0.014177112840116024, 0.05935845896601677, 0.03754841163754463, -0.038601722568273544, -0.03192409873008728, -0.05762290954589844, -0.05065649375319481, -0.10128600150346756, -0.06447898596525192, 0.018573462963104248, -0.007677143905311823, -0.1833900660276413, -0.06407523155212402, 0.00897200871258974, 0.015712225809693336, -0.03988850116729736, -0.05148044601082802, -0.15265507996082306, -0.042461175471544266, -0.015450406819581985, -0.03500641882419586, -0.06214277446269989, -0.0383245050907135, 0.046435944736003876, -0.07560601085424423, 0.013364278711378574, 0.023342855274677277, 0.05405820533633232, -0.025881100445985794, 0.06068144738674164, -0.08357544988393784, 0.09493788331747055, -0.1540430635213852, -0.03271956741809845, -0.025445878505706787, -0.041183918714523315, 0.1752462536096573, 0.06099751964211464, -0.015994304791092873, 0.15260063111782074, -0.17141541838645935, -0.058121129870414734, 0.15596486628055573, 0.008629098534584045, -0.09967197477817535, -0.003560945624485612, -0.09397093951702118, 0.1428760588169098, 0.08571921288967133, 0.2478504776954651, 0.12005335837602615, -0.22748184204101562, 0.055358242243528366, 0.12515293061733246, -0.14365963637828827, 0.10365243256092072, 0.07344598323106766, 0.005470725707709789, -0.18886831402778625, -0.06843198090791702, -0.06121627986431122, 0.1053021252155304, -0.08522345870733261, -0.0776243582367897, 0.09323626756668091, -0.05086790770292282, 0.24641476571559906, -0.028281206265091896, 0.06174173951148987, -0.026681531220674515, -0.1389324963092804, -0.01723906397819519, 0.060955192893743515, 0.05258452147245407, -0.024835573509335518, -0.25895482301712036, 0.13646544516086578, 0.048650871962308884, 0.025074828416109085, 0.004106190986931324, -0.05691491439938545, 0.016934165731072426, 0.1511998474597931, 0.020012924447655678, 0.13717477023601532, 0.027723990380764008, 0.0706823319196701, -0.006239562761038542, -0.10560829937458038, -0.04169593006372452, 0.061916545033454895, -0.08518962562084198, -0.06641357392072678, 0.011197872459888458, -0.06935211271047592, -0.11783787608146667, -0.12166737765073776, -0.026334572583436966, -0.02980303019285202, -0.07444227486848831, 0.02368103712797165, 0.06536602973937988, -0.06702698022127151, -0.0023908785078674555, 0.007125476840883493, -0.011537045240402222, 0.16434046626091003, 0.011393417604267597, -0.007796820718795061, 0.1328643560409546, -0.11533161997795105, 0.12461213022470474, 0.049438029527664185, -0.024806302040815353, -0.04662557691335678, 0.0014137453399598598, -0.057529181241989136, 0.029044216498732567, -0.04390640929341316, 0.02774495631456375, 0.20111067593097687, 0.02772962674498558, 0.11389166116714478, -0.0656520202755928, 0.04385066404938698, -0.007961965166032314, -0.009693224914371967, 0.018563594669103622, 0.07608018070459366, 0.07813210040330887, -0.1324140727519989, 0.02262016013264656, 0.22455167770385742, 0.1385764330625534, 0.18313980102539062, -0.010877152904868126, 0.06325667351484299, -0.04875868931412697, 0.027505528181791306, 0.024100203067064285, 0.10314226150512695, -0.10732068121433258, -0.0322517491877079, -0.025407759472727776, 0.023599207401275635, -0.08197105675935745, -0.1055799350142479, -0.090115025639534, 0.01222382951527834, -0.03125503659248352, -0.15570329129695892, 0.13300658762454987, -0.10451057553291321, 0.01802753657102585, 0.04692702740430832, -0.22163605690002441, 0.11530312895774841, 0.014291439205408096, -0.10303618758916855, 0.11281087249517441, -0.12051989883184433, -0.08699832111597061, -0.05777236074209213, -0.18658851087093353, 0.05280197039246559, 0.04673841595649719, 0.05166793242096901, -0.18521739542484283, 0.024835903197526932, 0.05545609071850777, 0.13426995277404785, -0.09743253141641617, -0.07142634689807892, -0.15038461983203888, 0.016068490222096443, -0.033661190420389175, -0.16029728949069977, -0.005609163548797369, -0.032781440764665604, -0.18849676847457886, -0.04539939761161804, -0.15086813271045685, -0.034627582877874374, 0.20464378595352173, 0.026907702907919884, 0.09480511397123337, -0.07926445454359055, 0.3802889585494995, -0.042039383202791214, -0.06146497279405594, -0.01321389526128769, -0.07072482258081436, 0.02512686513364315, 0.13271741569042206, 0.0036099457647651434, -0.017886579036712646, -0.0037857077550143003, 0.0024592927657067776, -0.06234965845942497, -0.13400450348854065, 0.0028710351325571537, 0.03905198723077774, 0.1874423623085022, 0.004639793653041124, 0.06659388542175293, 0.03133883699774742, 0.057546284049749374, 0.07748064398765564, 0.030926106497645378, 0.0011591583024710417, -0.01591806672513485, 0.06604493409395218, -0.11684755235910416, 0.042466625571250916, -0.030429253354668617, -0.10143838077783585, -0.013183288276195526, 0.07950251549482346, 0.12755028903484344, 0.17849206924438477, -0.04790908098220825, 0.17489230632781982, 0.13580141961574554, 0.16576050221920013, 0.049315933138132095, -0.020801831036806107, -0.08773037046194077, -0.06118565797805786, 0.004774159751832485, -0.031952597200870514, 0.04869702458381653, 0.3231290578842163, 0.037619613111019135, -0.09036035090684891, 0.11149907857179642, 0.009480619803071022, 0.05359881371259689, 0.022797370329499245, -0.11162138730287552, 0.11170321702957153, 0.07968773692846298, -0.06341761350631714, -0.07602835446596146, 0.16758501529693604, -0.1109386757016182, -0.26646625995635986, -0.11410990357398987, -0.012305386364459991, 0.07903840392827988, 0.005651174578815699, 0.05498376116156578, -0.11829282343387604, -0.16034497320652008, -0.034191906452178955, 0.1335442066192627, -0.3077351450920105, 0.2065143585205078, -0.0198091771453619, 0.06707923114299774, -0.039657969027757645, -0.07026876509189606, 0.09694647043943405, 0.13174086809158325, 0.29124146699905396, 0.01396956667304039, 0.04841272905468941, -0.15176129341125488, -0.0976925864815712, 0.0018439020495861769, 0.015482662245631218, -0.02563396655023098, 0.028520405292510986, -0.0540912002325058, 0.008404579944908619, -0.018086453899741173, 0.2102297693490982, -0.11316607892513275, 0.004344627261161804, -0.06968966871500015, -0.11707738786935806, 0.19409789144992828, -0.07178345322608948, -0.04543264955282211, -0.14959357678890228, -0.15512511134147644, -0.004174166824668646, -0.02413962036371231, -0.019664527848362923, -0.17603960633277893, -0.18804074823856354, -0.05204557999968529, -0.005645004566758871, -0.003464865731075406, 0.05867868289351463, -0.07517234236001968, -0.04805335775017738, 0.1009904220700264, -0.07743175327777863, -0.056063808500766754, -0.1103200614452362, 0.1391381323337555, 0.06248528137803078, 0.16743235290050507, 0.05907081440091133, 0.0006117874872870743, 0.11471151560544968, -0.02913086675107479, 0.11103474348783493, -0.11291708797216415, -0.17145049571990967, -0.08334989100694656, -0.018775060772895813, 0.09519003331661224, -0.04789286106824875, 0.0028788831550627947, 0.2550160884857178, 0.14880181849002838, -0.0897710770368576, 0.27680760622024536, 0.04414956644177437, -0.09375058114528656, -0.18432219326496124, -0.15961645543575287, 0.03759992495179176, 0.060025621205568314, 0.13095876574516296, -0.057205069810152054, -0.08483537286520004, -0.08492398262023926, -0.07478608191013336, -0.13140805065631866, -0.24232175946235657, -0.030598774552345276, 0.22874866425991058, 0.08656918257474899, 0.08219650387763977, -0.012482990510761738, -0.01186054851859808, 0.00526038184762001, 0.02680150233209133, 0.12018456310033798, -0.13341329991817474, 0.11107480525970459, 0.022198403254151344, 0.044267985969781876, 0.009712530300021172, 0.07929777354001999, 0.03375575691461563, -0.003218587953597307, -0.0006439819699153304, -0.0988350659608841, -0.2596651017665863, 0.0816885456442833, -0.01623627357184887, -0.09960969537496567, 0.014988959766924381, 0.02061903104186058, -0.2089255303144455, 0.011128270998597145, -0.019883770495653152, -0.03150356933474541, -0.06483490765094757, -0.10664787143468857, -0.056551624089479446, 0.04928823933005333, 0.10853826254606247, 0.011660109274089336, 0.05354316532611847, -0.0404130220413208, 0.07917837053537369, 0.0826287642121315, 0.15132710337638855, 0.06795957684516907, -0.190711110830307, -0.10953907668590546, -0.0414445661008358, 0.12121522426605225, -0.12505418062210083, 0.036917757242918015, 0.053161121904850006, -0.016534561291337013, 0.14621229469776154, 0.1070784479379654, -0.07452095299959183, 0.11915595084428787, 0.08904775977134705, -0.04094788804650307, -0.23367151618003845, -0.07120766490697861, 0.11133213341236115, 0.07195597887039185, -0.03961895406246185, 0.018120890483260155, -0.04960581287741661, -0.013980977237224579, 0.048759616911411285, -0.0538676381111145, -0.07230538129806519, 0.004421027842909098, 0.1247575581073761, 0.1029362753033638, -0.04655474051833153, 0.01296416949480772, 0.037371400743722916, 0.003788623260334134, 0.04730486497282982, 0.0407949760556221, -0.08269952982664108, -0.04124005511403084, 0.02782733179628849, 0.37552911043167114, -0.010165480896830559, -0.020456433296203613, 0.018555615097284317, -0.19949445128440857, 0.09135842323303223, 0.13205479085445404, 0.04697350412607193, 0.004247748292982578, -0.08139242231845856, 0.026877427473664284, -0.010625290684401989, 0.09936143457889557, -0.07806670665740967, -0.05493134260177612, -0.21631066501140594, -0.025010565295815468, 0.017490221187472343, 0.24077683687210083, -0.08458559215068817, -0.12801732122898102, -0.20628872513771057, 0.13128381967544556, -0.11333390325307846, -0.03695881739258766, -0.024473199620842934, 0.03926658630371094, -0.01989821158349514, 0.06291737407445908, -0.0710630789399147, 0.006373001262545586, -0.11024709790945053, 0.055267609655857086, 0.04204455390572548, 0.1229788213968277, 0.014207782223820686, 0.02016810141503811, 0.05822525918483734, -0.01837925612926483, 0.07173580676317215, -0.06203491613268852, -0.04550490900874138, 0.14224006235599518, -0.020255116745829582, -0.04152837023139, -0.0483345128595829, -0.036874305456876755, 0.11981741338968277, -0.05059147998690605, -0.007141099311411381, -0.054929375648498535, -0.06906463205814362, 0.03462086617946625, -0.009175732731819153, -0.008798843249678612, 0.06801853328943253, 0.04024988040328026, -0.026994358748197556, 0.005263668950647116, 0.03447828069329262, -0.10330043733119965, -0.04955084249377251, 0.16955432295799255, -0.0749620869755745, 0.10274054110050201, -0.031069839373230934, 0.018015999346971512, 0.005847334861755371, -0.022399673238396645, -0.015360680408775806, -0.1457086056470871, -0.06137600541114807, -0.09489979594945908, 0.11565322428941727, 0.08146517723798752, 0.03358805552124977, 0.04274565726518631, 0.019532648846507072, -0.04414922371506691, -0.038583990186452866, 0.12961317598819733, 0.08133101463317871, 0.012996876612305641, 0.01137041300535202, 0.01941833831369877, -0.020302120596170425, 0.0028480992186814547, -0.01250747125595808, -0.07239153981208801, -0.05874783173203468, 0.09400010108947754, 0.1600283533334732, -0.06127211079001427, -0.13325586915016174, -0.020593497902154922, 0.04988488554954529, 0.0014717020094394684, -0.08777432143688202, 0.04833676666021347, 0.15805292129516602, -0.05623878911137581, 0.03216489031910896, -0.09984751045703888, -0.07263360917568207, -0.16060975193977356, -0.10029061883687973, -0.06092562898993492, -0.28350353240966797, 0.09752398729324341, 0.006392303854227066, -0.014731393195688725, 0.059529416263103485, 0.051305368542671204, -0.052508849650621414, 0.07068239152431488, -0.18146829307079315, -0.007054794579744339, 0.03497592359781265, -0.13212306797504425, 0.02475893869996071, -0.2378365397453308, 0.10198072344064713, -0.04623803123831749, -0.1519704908132553, -0.04004510119557381, 0.0641569048166275, -0.09540136158466339, -0.01822364516556263, -0.0475153923034668, -0.01922670193016529, 0.01624443754553795, -0.009348669089376926, -0.031147832050919533, 0.13716529309749603, 0.02827494591474533, -0.03268734738230705, 0.005254602525383234, 0.0223685409873724, 0.03955082967877388, -0.0969657450914383, -0.05986930429935455, 0.08311155438423157, -0.031056145206093788, 0.14728976786136627, 0.000341245875461027, 0.04181376099586487, -0.06758682429790497, 0.2593761384487152, 0.2023983597755432, -0.12479214370250702, 0.008118697442114353, -0.021801479160785675, 0.012670028023421764, -0.041751839220523834, 0.13110700249671936, 0.013386172242462635, 0.12186761200428009, -0.17513342201709747, -0.01036517322063446, -0.0818324014544487, -0.04501292482018471, 0.06702108681201935, 0.14714950323104858, 0.15742522478103638, 0.03436789661645889, -0.07328428328037262, 0.06722653657197952, -0.30119743943214417, 0.20540550351142883, -0.1346001923084259, -0.01498429011553526, -0.040251150727272034, -0.058389630168676376, 0.061147745698690414, 0.11309876292943954, 0.10832664370536804, -0.021150551736354828, -0.0905047357082367, -0.04486766457557678, -0.039378076791763306, -0.13019338250160217, -0.02718670479953289, 0.1654091775417328, 0.06799814850091934, 0.31520840525627136, -0.017577875405550003, 0.07702425122261047, 0.034410297870635986, 0.06451138854026794, 0.004519328009337187, 0.09537279605865479, 0.07960964739322662, -0.06345855444669724, -0.07373003661632538, -0.001637450186535716, 0.05033271387219429, 0.14567798376083374, -0.03826142102479935, -0.18691548705101013, 0.15858715772628784, 0.07192251086235046, -0.13762691617012024, -0.05777517706155777, 0.08409425616264343, -0.0739973932504654, 0.0550808347761631, 0.08115427941083908, 0.015876613557338715, -0.017793258652091026, -0.004664506763219833, 0.06074233725667, 0.024694660678505898, -0.02343848906457424, 0.003570882137864828, -0.08337053656578064, -0.04151543974876404, 0.07267895340919495, -0.0844460055232048, -0.20546193420886993, -0.0957019031047821, -0.07551700621843338, 0.030557552352547646, -0.0649830624461174, 0.12575586140155792, 0.1717868149280548, 0.0593598335981369, -0.03307248651981354, -0.10721943527460098, -0.035562749952077866, 0.07602505385875702, -0.044773899018764496, -0.09409699589014053 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chat_150STEPS_1e7rate_01beta This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6933 - Rewards/chosen: -0.0025 - Rewards/rejected: -0.0022 - Rewards/accuracies: 0.4022 - Rewards/margins: -0.0003 - Logps/rejected: -18.8131 - Logps/chosen: -16.7695 - Logits/rejected: -0.5968 - Logits/chosen: -0.5967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6931 | 0.1 | 50 | 0.6934 | -0.0010 | -0.0005 | 0.4110 | -0.0005 | -18.7964 | -16.7546 | -0.5967 | -0.5965 | | 0.6923 | 0.2 | 100 | 0.6935 | -0.0018 | -0.0012 | 0.4044 | -0.0006 | -18.8033 | -16.7622 | -0.5978 | -0.5977 | | 0.6939 | 0.29 | 150 | 0.6933 | -0.0025 | -0.0022 | 0.4022 | -0.0003 | -18.8131 | -16.7695 | -0.5968 | -0.5967 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.0+cu117 - Datasets 2.17.0 - Tokenizers 0.15.2
{"tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "chat_150STEPS_1e7rate_01beta", "results": []}]}
text-generation
tsavage68/chat_150STEPS_1e7rate_01beta_DPO
[ "transformers", "safetensors", "llama", "text-generation", "trl", "dpo", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-2-7b-chat-hf", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:52:02+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
chat\_150STEPS\_1e7rate\_01beta =============================== This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6933 * Rewards/chosen: -0.0025 * Rewards/rejected: -0.0022 * Rewards/accuracies: 0.4022 * Rewards/margins: -0.0003 * Logps/rejected: -18.8131 * Logps/chosen: -16.7695 * Logits/rejected: -0.5968 * Logits/chosen: -0.5967 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-07 * train\_batch\_size: 4 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 100 * training\_steps: 150 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.0.0+cu117 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-07\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 150", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.0+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-07\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 150", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.0+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 84, 145, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-07\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 150### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.0+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.13070441782474518, 0.10302945971488953, -0.00346630671992898, 0.06611626595258713, 0.12161815911531448, 0.015852704644203186, 0.10931029915809631, 0.1431751251220703, -0.07223929464817047, 0.08447708189487457, 0.1385045051574707, 0.1278080940246582, 0.06559594720602036, 0.17439745366573334, -0.01952693611383438, -0.33460062742233276, -0.0005109217017889023, -0.018181975930929184, -0.17344295978546143, 0.12735119462013245, 0.08674224466085434, -0.11549676954746246, 0.04792128875851631, -0.034207697957754135, -0.09715859591960907, -0.04159113019704819, -0.04410392418503761, -0.047759413719177246, 0.13671235740184784, -0.007119901478290558, 0.09256204962730408, 0.05271756649017334, 0.0938105657696724, -0.24362532794475555, 0.014133156277239323, 0.0628928691148758, 0.03703676536679268, 0.08286814391613007, 0.07121475040912628, -0.028673067688941956, 0.10684241354465485, -0.11588941514492035, 0.08257119357585907, 0.03502827137708664, -0.1086430773139, -0.23627954721450806, -0.08292264491319656, 0.035443346947431564, 0.15000641345977783, 0.08008964359760284, -0.01915690302848816, 0.06465669721364975, -0.08885954320430756, 0.08667325973510742, 0.25788453221321106, -0.2484617382287979, -0.07477632164955139, 0.0592011958360672, 0.06991294771432877, 0.07137934863567352, -0.1258087456226349, -0.006302467081695795, 0.019545303657650948, 0.003310116473585367, 0.1378052532672882, 0.0014619840076193213, 0.09884896129369736, 0.014782465063035488, -0.1461717188358307, -0.03945813328027725, 0.09892965853214264, 0.0725395604968071, -0.024620192125439644, -0.11535942554473877, -0.05074349045753479, -0.21957287192344666, -0.04710246995091438, -0.013198821805417538, 0.030242959037423134, -0.05176079273223877, -0.0899837389588356, 0.009429617784917355, -0.059955745935440063, -0.10736922174692154, 0.0686437264084816, 0.16132612526416779, 0.047304797917604446, -0.04775907099246979, 0.02659280225634575, 0.1526413857936859, 0.08986875414848328, -0.16231033205986023, -0.005291682202368975, 0.016688276082277298, -0.08250319212675095, -0.0174549613147974, -0.024424074217677116, 0.014347275719046593, 0.03190017491579056, 0.1454811990261078, -0.03335510566830635, 0.06265600770711899, 0.0676116794347763, 0.01795974373817444, -0.09145484119653702, 0.13988764584064484, -0.07362209260463715, -0.08746470510959625, -0.03964627534151077, 0.14312902092933655, 0.011302346363663673, -0.01860428787767887, -0.08498384803533554, 0.014798099175095558, 0.11085230857133865, 0.07750719785690308, -0.02040572464466095, 0.04565487429499626, -0.06425442546606064, -0.026873957365751266, 0.027722803875803947, -0.11099880188703537, 0.017642365768551826, 0.015801437199115753, -0.07440456002950668, -0.047640345990657806, -0.001211217138916254, 0.012566723860800266, 0.0026989206671714783, 0.12457245588302612, -0.06827852129936218, -0.03307439386844635, -0.09149732440710068, -0.09106281399726868, 0.0037121011409908533, -0.0882880762219429, -0.0026635753456503153, -0.07042688131332397, -0.1453724056482315, -0.05212598666548729, 0.05485830083489418, -0.05504453554749489, -0.07462835311889648, -0.08920247107744217, -0.09654349833726883, 0.027706550434231758, -0.00212128390558064, 0.15451060235500336, -0.04809211567044258, 0.12872929871082306, -0.004570996854454279, 0.08508846163749695, 0.08811089396476746, 0.05149190127849579, -0.038994140923023224, 0.06580915302038193, -0.19411452114582062, 0.08505537360906601, -0.07597007602453232, 0.07508714497089386, -0.11954230815172195, -0.0970446765422821, -0.025831477716565132, -0.005295287352055311, 0.08428730070590973, 0.1720176488161087, -0.17599235475063324, -0.08330199122428894, 0.20986810326576233, -0.05385202541947365, -0.11440334469079971, 0.11119947582483292, -0.0341162346303463, 0.012062088586390018, 0.03161992132663727, 0.15491053462028503, 0.11005426943302155, -0.0849991962313652, 0.034872595220804214, -0.018611367791891098, 0.09403394162654877, 0.046692050993442535, 0.09495440125465393, -0.037700291723012924, 0.02781125344336033, 0.0019319995772093534, -0.05918945372104645, 0.050165075808763504, -0.09186311811208725, -0.0874430388212204, -0.00021054617536719888, -0.08785708248615265, 0.07148224115371704, 0.04360206052660942, 0.029028311371803284, -0.0860607922077179, -0.11875379830598831, -0.018909728154540062, 0.11226005852222443, -0.08679366111755371, 0.010696799494326115, -0.033337436616420746, 0.03461555019021034, 0.005360415205359459, 0.010516885668039322, -0.13619834184646606, -0.046613723039627075, 0.033245403319597244, 0.01029723510146141, -0.01997540518641472, -0.012998460792005062, 0.08603934198617935, 0.06333784013986588, -0.07165782898664474, -0.08264632523059845, -0.0642273873090744, -0.004664716776460409, -0.09268423169851303, -0.24460333585739136, -0.057535141706466675, -0.03850138559937477, 0.2060002088546753, -0.23309189081192017, 0.046069856733083725, 0.00738054234534502, 0.11854346841573715, 0.0302982609719038, -0.0390016995370388, 0.011055703274905682, 0.04436159506440163, -0.020178960636258125, -0.0950721874833107, 0.04349525272846222, -0.007119597867131233, -0.1391029953956604, -0.005751296877861023, -0.1322382688522339, 0.10974405705928802, 0.09636131674051285, 0.013311800546944141, -0.12750957906246185, -0.09729097783565521, -0.06771682947874069, -0.04760250821709633, -0.02288305200636387, -0.0085195517167449, 0.1277892142534256, 0.0344213992357254, 0.11575791984796524, -0.08160842210054398, -0.06314234435558319, 0.02652261033654213, 0.005033507011830807, 0.015092970803380013, 0.1557551920413971, 0.04271205514669418, -0.05420653522014618, 0.12431160360574722, 0.11368508636951447, -0.03970002010464668, 0.15624737739562988, -0.057491451501846313, -0.08786570280790329, -0.030484000220894814, 0.06342599540948868, 0.028430549427866936, 0.13251344859600067, -0.11790689826011658, -0.008796414360404015, 0.012592747807502747, 0.016316235065460205, 0.0016004936769604683, -0.1894751936197281, -0.044751159846782684, 0.053102973848581314, -0.06952840089797974, 0.006743007805198431, -0.02095889113843441, -0.013011149130761623, 0.10638371109962463, 0.03926299884915352, -0.059995878487825394, 0.005003800615668297, -0.01992700807750225, -0.07869042456150055, 0.22912520170211792, -0.09922736883163452, -0.14546605944633484, -0.08312620967626572, 0.031358812004327774, -0.013528880663216114, 0.013809922151267529, 0.022765113040804863, -0.10979269444942474, 0.0089064110070467, -0.06622128188610077, 0.015740344300866127, -0.043564338237047195, 0.042886413633823395, -0.02405603416264057, 0.01829604059457779, 0.029817568138241768, -0.08644482493400574, 0.018342334777116776, -0.02077389881014824, -0.04068475589156151, 0.048941079527139664, 0.013657751493155956, 0.09718627482652664, 0.1734413206577301, 0.029227087274193764, 0.024343762546777725, -0.04196742922067642, 0.13054171204566956, -0.13377997279167175, 0.013266116380691528, 0.09035848081111908, 0.03371109068393707, 0.05671416595578194, 0.1572818160057068, 0.03712374344468117, -0.08541549742221832, 0.043388981372117996, 0.03563019633293152, -0.028359072282910347, -0.20896339416503906, -0.008995822630822659, -0.04554867744445801, 0.03264624625444412, 0.11136462539434433, 0.03719966113567352, 0.022812725976109505, 0.05840623006224632, -0.033709004521369934, -0.019279716536402702, 0.027412811294198036, 0.06922086328268051, -0.0035693482495844364, 0.019593844190239906, 0.11221327632665634, -0.0030483866576105356, -0.05843493714928627, 0.006597336381673813, 0.01391693763434887, 0.23076188564300537, -0.029350953176617622, 0.1533634513616562, 0.03360385447740555, 0.14946572482585907, -0.013696528971195221, 0.07903814315795898, 0.036131296306848526, -0.03448887914419174, -0.00009720149682834744, -0.061592791229486465, -0.03574545681476593, 0.05723872780799866, 0.041073039174079895, 0.04384786635637283, -0.12153137475252151, 0.031526386737823486, 0.035212088376283646, 0.3179377317428589, 0.07075979560613632, -0.29334765672683716, -0.07288435846567154, 0.010171103291213512, -0.04237552732229233, -0.03531397134065628, 0.02064240723848343, 0.12507641315460205, -0.12156671285629272, 0.05588722229003906, -0.08740495145320892, 0.06693756580352783, -0.07604551315307617, 0.0053584156557917595, 0.04427718743681908, 0.08458295464515686, -0.02630368061363697, 0.06506476551294327, -0.2958846688270569, 0.29164618253707886, -0.011904818937182426, 0.05381838604807854, -0.05842242017388344, 0.023114541545510292, 0.030685827136039734, 0.013946246355772018, 0.11260171234607697, -0.00549528980627656, -0.012656796723604202, -0.16464324295520782, -0.10249895602464676, 0.004467750433832407, 0.14724229276180267, -0.14219292998313904, 0.11777562648057938, -0.019071189686655998, -0.03602142632007599, 0.04726587235927582, -0.064567431807518, -0.06877315789461136, -0.09300297498703003, 0.02661372721195221, -0.04809199646115303, 0.07831821590662003, -0.10602152347564697, -0.09654925763607025, -0.051447756588459015, 0.16420522332191467, -0.09362942725419998, -0.051411837339401245, -0.14999902248382568, 0.06164511665701866, 0.12459631264209747, -0.0735267922282219, 0.05389600247144699, 0.015639442950487137, 0.10428362339735031, 0.005152449011802673, 0.0018181600607931614, 0.12711188197135925, -0.08064242452383041, -0.23790477216243744, -0.07318969070911407, 0.18507306277751923, 0.05190073326230049, 0.057971566915512085, -0.02870888262987137, 0.00722517492249608, -0.006907918024808168, -0.08530048280954361, 0.06660514324903488, 0.03233935683965683, 0.05303638055920601, 0.04724768549203873, -0.04657358676195145, 0.09135890007019043, -0.07056058943271637, -0.05362822115421295, 0.1353212594985962, 0.29904335737228394, -0.09867527335882187, 0.046606287360191345, 0.05309995263814926, -0.027440136298537254, -0.1821146160364151, 0.0029745076317340136, 0.11219995468854904, 0.033254291862249374, 0.002654274692758918, -0.21129347383975983, 0.019057296216487885, 0.08534331619739532, -0.025540390983223915, 0.10544019192457199, -0.3338314890861511, -0.12725496292114258, 0.0882488489151001, 0.11567696183919907, -0.006527354940772057, -0.17271050810813904, -0.06020621955394745, -0.011062397621572018, -0.053446099162101746, 0.06510090827941895, -0.04360342025756836, 0.1202068030834198, -0.01819642074406147, 0.014804339036345482, 0.035704415291547775, -0.06101828068494797, 0.13808487355709076, 0.0038362496998161077, 0.06911037862300873, -0.03257249295711517, 0.0056758057326078415, -0.00661010155454278, -0.08234523236751556, 0.01213404443114996, -0.10388728976249695, 0.04056483879685402, -0.09946363419294357, -0.022229868918657303, -0.09497740119695663, 0.030266257002949715, -0.06089825555682182, -0.0846785306930542, -0.024744970723986626, 0.04670599102973938, 0.07842690497636795, -0.0013164901174604893, 0.11158286780118942, -0.03353182226419449, 0.15637709200382233, 0.09186043590307236, 0.10739170759916306, 0.0005566426552832127, -0.07390177249908447, -0.009449509903788567, -0.0052820174023509026, 0.05205928161740303, -0.13919028639793396, 0.009238381870090961, 0.13088934123516083, 0.06082327663898468, 0.1302708089351654, 0.0685034990310669, -0.06950736045837402, -0.02648777700960636, 0.06442125886678696, -0.11225753277540207, -0.12701229751110077, -0.02281252108514309, -0.0032283910550177097, -0.1469607949256897, 0.05079064145684242, 0.09465155750513077, -0.04889075830578804, -0.0044858455657958984, 0.003860657336190343, 0.028266770765185356, -0.012643290683627129, 0.20836009085178375, 0.0655505359172821, 0.10593652725219727, -0.0843566507101059, 0.07950372248888016, 0.030825084075331688, -0.12071189284324646, 0.023174094036221504, 0.10748810321092606, -0.09334530681371689, -0.019004445523023605, 0.049397215247154236, 0.06765642762184143, 0.017881490290164948, -0.008760800585150719, -0.12944500148296356, -0.142054483294487, 0.06701166927814484, 0.09605724364519119, 0.04050987958908081, 0.03577049821615219, -0.014391026459634304, 0.05030326172709465, -0.12384706735610962, 0.11938038468360901, 0.0596301443874836, 0.08529050648212433, -0.13800927996635437, 0.14635774493217468, -0.00933208130300045, 0.021996933966875076, -0.00824245996773243, 0.015552380122244358, -0.12239938974380493, 0.009953023865818977, -0.054349515587091446, -0.06455645710229874, -0.05870545282959938, -0.02111913077533245, -0.016621870920062065, -0.036272503435611725, 0.0019258348038420081, -0.004796795081347227, -0.10391590744256973, -0.05640542507171631, -0.02276446670293808, 0.03478506579995155, -0.09254865348339081, -0.0381782241165638, 0.02518303319811821, -0.12964726984500885, 0.1043170839548111, 0.038104232400655746, 0.04154807701706886, -0.0024426348973065615, -0.09073547273874283, 0.04909457266330719, 0.027584927156567574, -0.025809070095419884, 0.026510458439588547, -0.1420508474111557, -0.027232374995946884, -0.0735137015581131, 0.007874683476984501, 0.012231309898197651, 0.015429852530360222, -0.14342361688613892, 0.024564635008573532, -0.03960903733968735, -0.049215033650398254, -0.07097724080085754, 0.051283325999975204, 0.04751439765095711, 0.003404471091926098, 0.13031093776226044, -0.06854567676782608, 0.07214110344648361, -0.22201797366142273, -0.022791115567088127, -0.010937996208667755, -0.0659506618976593, -0.04596782475709915, -0.024859173223376274, 0.09547843784093857, -0.05729195475578308, 0.06539955735206604, -0.04873010516166687, 0.04439574107527733, 0.017194664105772972, -0.10390584915876389, 0.10427554696798325, 0.05794934555888176, 0.18391984701156616, 0.057041335850954056, -0.04375198110938072, 0.054631300270557404, 0.04006167873740196, 0.07656979560852051, 0.07218092679977417, 0.16804632544517517, 0.1306031048297882, 0.02594352513551712, 0.07909107953310013, 0.03685395047068596, -0.12743966281414032, -0.144455686211586, 0.08787983655929565, -0.032516103237867355, 0.09111830592155457, -0.024012867361307144, 0.2087174952030182, 0.12731614708900452, -0.20355845987796783, 0.035478588193655014, -0.018582161515951157, -0.09914704412221909, -0.09091438353061676, -0.0604536272585392, -0.06348434090614319, -0.1771760731935501, -0.0017658676952123642, -0.10155334323644638, 0.01620219275355339, 0.08174952119588852, 0.027141252532601357, 0.0317259207367897, 0.16804897785186768, 0.08633356541395187, 0.009961877949535847, 0.10458322614431381, 0.04504859447479248, 0.0023307818919420242, -0.033352017402648926, -0.11235131323337555, 0.00757983373478055, -0.05033945292234421, 0.027855008840560913, -0.07561744004487991, -0.09836670011281967, 0.061046164482831955, 0.036020420491695404, -0.098948635160923, 0.02625342458486557, -0.005397595465183258, 0.05903321132063866, 0.09307440370321274, 0.019018398597836494, -0.02559121884405613, -0.03157103434205055, 0.2585605978965759, -0.10408550500869751, -0.04724036529660225, -0.10109107196331024, 0.24720557034015656, 0.021551867946982384, 0.004524212330579758, 0.020910928025841713, -0.08668991923332214, 0.001267599523998797, 0.16868503391742706, 0.18463504314422607, -0.044056475162506104, -0.003669966943562031, 0.015295161865651608, -0.016291959211230278, -0.023853911086916924, 0.08033675700426102, 0.1241818219423294, 0.04449573531746864, -0.0674920305609703, -0.00866722036153078, -0.011004474945366383, -0.06515254080295563, -0.0603673979640007, 0.0807853490114212, 0.053156644105911255, 0.0038093954790383577, -0.027784306555986404, 0.10817895829677582, -0.04325731471180916, -0.14841915667057037, 0.050918176770210266, -0.19585095345973969, -0.16676214337348938, -0.06338472664356232, 0.02147330343723297, 0.01084333285689354, 0.07019052654504776, 0.012861490249633789, -0.020512744784355164, 0.09993260353803635, 0.007921373471617699, -0.04557078704237938, -0.09735171496868134, 0.06525646150112152, -0.08007851988077164, 0.1827981024980545, -0.0559377521276474, -0.005365706980228424, 0.1303849071264267, 0.03156933933496475, -0.07708591967821121, 0.04073441028594971, 0.10161391645669937, -0.09384379535913467, 0.04713661968708038, 0.16581259667873383, -0.03251039981842041, 0.08961213380098343, 0.046623412519693375, -0.12427958846092224, 0.013489886187016964, -0.08058130741119385, -0.05672137066721916, -0.08098407089710236, 0.01867951825261116, -0.02615213766694069, 0.1412685066461563, 0.22930032014846802, -0.07061569392681122, 0.017323965206742287, -0.054098933935165405, -0.001953975297510624, 0.05153265595436096, 0.08984386920928955, -0.028177013620734215, -0.24799028038978577, 0.0027223106008023024, 0.05101288855075836, 0.0075320289470255375, -0.24706880748271942, -0.09437794238328934, 0.030185051262378693, -0.05063489452004433, -0.07708734273910522, 0.08761873096227646, 0.028253503143787384, 0.052745621651411057, -0.04355553165078163, -0.07406071573495865, -0.060019124299287796, 0.19118906557559967, -0.18948520720005035, -0.06041454151272774 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-base-patch16-224-finetuned-ind-14-imbalanced-pan-10847-train This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1857 - Accuracy: 0.9487 - Recall: 0.9487 - F1: 0.9465 - Precision: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.3819 | 1.0 | 217 | 0.3823 | 0.8870 | 0.8870 | 0.8710 | 0.8632 | | 0.3024 | 2.0 | 434 | 0.2411 | 0.9274 | 0.9274 | 0.9185 | 0.9151 | | 0.2168 | 3.0 | 651 | 0.2285 | 0.9291 | 0.9291 | 0.9243 | 0.9278 | | 0.1078 | 4.0 | 868 | 0.2166 | 0.9303 | 0.9303 | 0.9253 | 0.9302 | | 0.2236 | 5.0 | 1085 | 0.1925 | 0.9452 | 0.9452 | 0.9433 | 0.9480 | | 0.1805 | 6.0 | 1302 | 0.1886 | 0.9418 | 0.9418 | 0.9400 | 0.9431 | | 0.1353 | 7.0 | 1519 | 0.1656 | 0.9481 | 0.9481 | 0.9470 | 0.9472 | | 0.0732 | 8.0 | 1736 | 0.1677 | 0.9447 | 0.9447 | 0.9428 | 0.9442 | | 0.1142 | 9.0 | 1953 | 0.1629 | 0.9539 | 0.9539 | 0.9510 | 0.9509 | | 0.0805 | 10.0 | 2170 | 0.1620 | 0.9556 | 0.9556 | 0.9535 | 0.9552 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy", "recall", "f1", "precision"], "base_model": "facebook/deit-base-patch16-224", "model-index": [{"name": "deit-base-patch16-224-finetuned-ind-14-imbalanced-pan-10847-train", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9487031700288184, "name": "Accuracy"}, {"type": "recall", "value": 0.9487031700288184, "name": "Recall"}, {"type": "f1", "value": 0.9465122151830686, "name": "F1"}, {"type": "precision", "value": 0.9503032930061409, "name": "Precision"}]}]}]}
image-classification
jaydip-tss/deit-base-patch16-224-finetuned-ind-14-imbalanced-pan-10847-train
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T04:52:30+00:00
[]
[]
TAGS #transformers #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-facebook/deit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
deit-base-patch16-224-finetuned-ind-14-imbalanced-pan-10847-train ================================================================= This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.1857 * Accuracy: 0.9487 * Recall: 0.9487 * F1: 0.9465 * Precision: 0.9503 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.1.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-facebook/deit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 80, 144, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-facebook/deit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.12625695765018463, 0.1517920047044754, -0.0019972934387624264, 0.09102177619934082, 0.1407836675643921, 0.01994428038597107, 0.11600615084171295, 0.11732153594493866, -0.07706435024738312, 0.1138533428311348, 0.12392186373472214, 0.1027989611029625, 0.06282350420951843, 0.1710750162601471, -0.03043428249657154, -0.2686258554458618, 0.028564443811774254, -0.012045182287693024, -0.1091984286904335, 0.11477509886026382, 0.07619122415781021, -0.12927331030368805, 0.08877788484096527, -0.005516027566045523, -0.1425640732049942, -0.024556655436754227, -0.018152831122279167, -0.05113459751009941, 0.10549924522638321, 0.0299465861171484, 0.09419067949056625, 0.03501606360077858, 0.09812276810407639, -0.2206047922372818, 0.007955406792461872, 0.07595252245664597, -0.00031892542028799653, 0.08084674924612045, 0.09819571673870087, -0.012376376427710056, 0.1196514442563057, -0.10793932527303696, 0.06539769470691681, 0.041198115795850754, -0.10414117574691772, -0.24260754883289337, -0.08736932277679443, 0.09529108554124832, 0.13530610501766205, 0.07562487572431564, -0.02499980665743351, 0.08048579841852188, -0.08070778846740723, 0.08338472247123718, 0.21530106663703918, -0.2646994888782501, -0.0815165564417839, 0.03790121525526047, 0.026715174317359924, 0.04814974218606949, -0.1360567957162857, -0.012212149798870087, 0.05243895947933197, 0.010640312917530537, 0.12231477349996567, 0.022581854835152626, 0.06364668160676956, -0.010055208578705788, -0.15613271296024323, -0.050716422498226166, 0.1323193907737732, 0.12358152866363525, -0.03763478621840477, -0.08556442707777023, -0.04313855990767479, -0.183206707239151, -0.046508416533470154, -0.002225380390882492, 0.035021718591451645, -0.051955293864011765, -0.08914212882518768, 0.034488875418901443, -0.08117258548736572, -0.06744679063558578, 0.04390741512179375, 0.10704445838928223, 0.0610041618347168, -0.02019401639699936, 0.018352270126342773, 0.12168697267770767, 0.056885842233896255, -0.15862371027469635, 0.004539643879979849, 0.0005789240240119398, -0.05359075963497162, -0.0225521232932806, -0.0025755504611879587, 0.0036299568600952625, 0.02726151794195175, 0.1380794197320938, -0.05776596441864967, 0.054847124963998795, 0.040087077766656876, 0.03049001283943653, -0.09063298255205154, 0.1486908346414566, -0.07883385568857193, -0.0774989128112793, -0.016524555161595345, 0.1349901258945465, 0.02424040623009205, 0.0018325533019378781, -0.08056056499481201, 0.034089844673871994, 0.12273623049259186, 0.03581918776035309, -0.017661457881331444, 0.039762482047080994, -0.06466672569513321, -0.020918766036629677, 0.08286014944314957, -0.07479394972324371, 0.03764786943793297, 0.027198610827326775, -0.07067111879587173, -0.025398878380656242, 0.022328486666083336, 0.004574870690703392, 0.010216929018497467, 0.11666551232337952, -0.09658248722553253, -0.02377817966043949, -0.07831703126430511, -0.09625847637653351, 0.025756098330020905, -0.07122749090194702, 0.009753725491464138, -0.10731901228427887, -0.12769944965839386, -0.0421292781829834, 0.05919232964515686, -0.043380316346883774, -0.05901160091161728, -0.056982122361660004, -0.10513339936733246, 0.04204096272587776, 0.005769643001258373, 0.0908866673707962, -0.06404738128185272, 0.1129872053861618, 0.01285221055150032, 0.0659809336066246, 0.05347394198179245, 0.03794076293706894, -0.07527070492506027, 0.05882524326443672, -0.18815772235393524, 0.041196368634700775, -0.0811867043375969, 0.08077581971883774, -0.11293831467628479, -0.1129237711429596, -0.011549238115549088, -0.019297735765576363, 0.07057218998670578, 0.14126400649547577, -0.14935356378555298, -0.07598873972892761, 0.17254303395748138, -0.1009240597486496, -0.14529693126678467, 0.12137085944414139, -0.015956267714500427, -0.041909608989953995, 0.03216053172945976, 0.14131705462932587, 0.08624356240034103, -0.10394775867462158, -0.043840616941452026, -0.03526143357157707, 0.08414415270090103, 0.010867337696254253, 0.10588616877794266, 0.0025717972312122583, -0.019376598298549652, 0.007909188978374004, -0.07095521688461304, 0.0778307244181633, -0.10537388175725937, -0.08323924988508224, -0.03179517388343811, -0.09920745342969894, 0.05167055130004883, 0.05896914750337601, 0.028720082715153694, -0.08906184136867523, -0.12803898751735687, 0.007428111974149942, 0.11719697713851929, -0.07870575785636902, -0.009258161298930645, -0.052441585808992386, 0.11109776794910431, -0.05567189306020737, -0.00941249169409275, -0.1229948177933693, -0.07111863046884537, 0.03561408445239067, -0.06578993052244186, -0.02127767913043499, -0.02903071604669094, 0.06450919061899185, 0.10177779942750931, -0.0663418397307396, -0.10254904627799988, -0.07328128814697266, 0.007379921618849039, -0.0808861255645752, -0.24559174478054047, -0.06661470979452133, -0.025302723050117493, 0.1793997436761856, -0.2737603187561035, 0.028274737298488617, 0.0007036771858111024, 0.1338730901479721, 0.043870072811841965, -0.04097427800297737, -0.011154425330460072, 0.029817501083016396, -0.04490799829363823, -0.08656158298254013, 0.03466334193944931, 0.005014361348003149, -0.08825930953025818, -0.037315983325242996, -0.11476559937000275, 0.15554454922676086, 0.117155522108078, 0.0030482623260468245, -0.1016000285744667, -0.042683884501457214, -0.08233492076396942, -0.04627702385187149, -0.034339506179094315, 0.010159224271774292, 0.05575293302536011, 0.012650128453969955, 0.11770708113908768, -0.08366724103689194, -0.03180136904120445, 0.057809557765722275, -0.01185053400695324, -0.026357989758253098, 0.13210594654083252, 0.0959281250834465, -0.1006525531411171, 0.142715185880661, 0.1576012521982193, -0.04382443428039551, 0.11870452761650085, -0.04475409910082817, -0.08881056308746338, -0.029014261439442635, 0.036504752933979034, 0.025480136275291443, 0.1490734964609146, -0.10462519526481628, 0.0059812297113239765, 0.012951604090631008, 0.012810996733605862, 0.00039337342604994774, -0.18657177686691284, -0.024405360221862793, 0.0375715047121048, -0.041713595390319824, 0.011449672281742096, -0.023311588913202286, -0.012476394884288311, 0.09799619019031525, 0.01981651782989502, -0.05528636276721954, 0.001182903302833438, 0.002973242662847042, -0.08323042094707489, 0.21076056361198425, -0.08503837138414383, -0.1601766049861908, -0.11846472322940826, 0.01819177158176899, -0.05314081162214279, 0.0011060944525524974, 0.051702290773391724, -0.11305508017539978, -0.03851039335131645, -0.08341386169195175, 0.015102765522897243, -0.0036253922153264284, 0.037497278302907944, 0.008956210687756538, 0.019971003755927086, 0.08218558877706528, -0.07711964845657349, 0.009730204939842224, -0.00917690247297287, -0.03855497017502785, 0.031143909320235252, 0.0405588373541832, 0.12092704325914383, 0.1300642043352127, 0.015138229355216026, 0.02085908316075802, -0.02454245649278164, 0.2048776000738144, -0.09255098551511765, 0.00975614134222269, 0.11680111289024353, 0.01882505603134632, 0.05714504420757294, 0.14559009671211243, 0.043111108243465424, -0.09075641632080078, 0.03135953098535538, 0.048227641731500626, -0.009879578836262226, -0.18864206969738007, -0.03682047128677368, -0.03193197399377823, 0.013697808608412743, 0.13100069761276245, 0.03852439299225807, 0.011124519631266594, 0.0719912126660347, -0.021791700273752213, 0.01604398526251316, -0.0038228605408221483, 0.08341049402952194, 0.010939947329461575, 0.04468464106321335, 0.10750456154346466, -0.02857978083193302, -0.023771215230226517, 0.03863496705889702, -0.020752297714352608, 0.20915071666240692, -0.02165372669696808, 0.0666310265660286, 0.05665387213230133, 0.18977290391921997, -0.0018823673017323017, 0.054098956286907196, 0.014384227804839611, -0.040212955325841904, 0.00827984232455492, -0.05977163463830948, -0.022052600979804993, 0.0518643856048584, 0.007396525703370571, 0.07463552057743073, -0.1528276652097702, 0.04893122613430023, 0.06009742245078087, 0.2858165502548218, 0.09210584312677383, -0.35496243834495544, -0.11080538481473923, 0.007966727949678898, -0.029370060190558434, -0.047963958233594894, 0.0231810063123703, 0.1229933500289917, -0.08690127730369568, 0.06861909478902817, -0.0809105634689331, 0.0713667944073677, -0.044131916016340256, 0.006079813465476036, 0.08303112536668777, 0.0932716354727745, -0.002375280484557152, 0.07119143009185791, -0.21910405158996582, 0.2804829478263855, -0.005769089795649052, 0.0622907355427742, -0.03916821628808975, 0.01620977558195591, 0.03755488991737366, 0.06100539118051529, 0.11660430580377579, 0.002104350831359625, -0.044642724096775055, -0.20253995060920715, -0.09922561794519424, 0.014854049310088158, 0.10931477695703506, -0.09414167702198029, 0.1208774670958519, -0.02640875242650509, -0.037501148879528046, 0.045080505311489105, -0.017349787056446075, -0.11592753976583481, -0.09485089778900146, -0.009022034704685211, -0.031236877664923668, 0.06089509278535843, -0.10721131414175034, -0.1023087427020073, -0.1090182512998581, 0.1494302898645401, -0.08172941952943802, -0.015181878581643105, -0.13346658647060394, 0.10851484537124634, 0.10820314288139343, -0.08564697951078415, 0.06419932842254639, -0.012829819694161415, 0.12897908687591553, 0.02536913938820362, -0.036029353737831116, 0.10419844090938568, -0.09916124492883682, -0.2287607043981552, -0.059010788798332214, 0.13224905729293823, 0.04082494601607323, 0.04100370034575462, -0.013386563397943974, 0.015715744346380234, -0.001940436428412795, -0.0824279859662056, 0.06081738695502281, 0.026806050911545753, 0.07235654443502426, 0.03883727639913559, -0.04194188490509987, -0.0043213688768446445, -0.05751976743340492, -0.03950947895646095, 0.10434848815202713, 0.3073189854621887, -0.1030084416270256, -0.007325994316488504, 0.06174461916089058, -0.034338198602199554, -0.1659509688615799, 0.030858051031827927, 0.09400027245283127, 0.014670908451080322, 0.023633310571312904, -0.16398362815380096, 0.09094008803367615, 0.10326335579156876, -0.03021172247827053, 0.08818572014570236, -0.2907997667789459, -0.115886390209198, 0.09375940263271332, 0.1506464034318924, -0.0059278286062181, -0.17037707567214966, -0.04459703341126442, -0.01553514413535595, -0.0947895348072052, 0.08706091344356537, -0.047454629093408585, 0.09826068580150604, -0.01803627796471119, -0.022690515965223312, 0.019519731402397156, -0.06836215406656265, 0.1476035714149475, -0.016680298373103142, 0.09332843869924545, -0.031799573451280594, 0.007950243540108204, 0.01667632721364498, -0.08977168053388596, 0.0338459350168705, -0.08299510180950165, 0.059587277472019196, -0.08355996757745743, -0.012310096994042397, -0.0910893976688385, 0.03681137040257454, -0.05279012769460678, -0.045638203620910645, -0.039350323379039764, 0.0675111785531044, 0.08120997995138168, 0.000025818273570621386, 0.1342436969280243, 0.019528675824403763, 0.1529914140701294, 0.08384464681148529, 0.037462588399648666, -0.012537412345409393, -0.08081784099340439, -0.03610161691904068, -0.02082883194088936, 0.05904826521873474, -0.13755406439304352, 0.021243643015623093, 0.12472503632307053, 0.03231830149888992, 0.15176688134670258, 0.05702286213636398, -0.050460513681173325, -0.002363071544095874, 0.09037823230028152, -0.12395352870225906, -0.12503406405448914, -0.029092226177453995, 0.007199717685580254, -0.14262719452381134, 0.040673527866601944, 0.08864973485469818, -0.08287589251995087, 0.004724347498267889, -0.009631003253161907, 0.04873146861791611, -0.019254231825470924, 0.17464880645275116, 0.07053904235363007, 0.07864508777856827, -0.08298534154891968, 0.10635951906442642, 0.04371917247772217, -0.15853960812091827, 0.013499617576599121, 0.060623832046985626, -0.08729900419712067, -0.027658317238092422, 0.05973175913095474, 0.10612381994724274, -0.01589798927307129, -0.04777824506163597, -0.12572787702083588, -0.12459997832775116, 0.06796623021364212, 0.10653935372829437, 0.06053351238369942, 0.024487433955073357, 0.0014310191618278623, 0.03854147717356682, -0.11924252659082413, 0.12681762874126434, 0.07415883988142014, 0.09683948010206223, -0.2105690985918045, 0.09846505522727966, 0.01627390831708908, 0.0171101912856102, -0.008869878016412258, 0.0371897891163826, -0.1315840780735016, -0.017821915447711945, -0.08405565470457077, -0.015229349955916405, -0.07254992425441742, 0.0004692020593211055, -0.00531070027500391, -0.0472726970911026, -0.04387015849351883, 0.008426201529800892, -0.09620434790849686, -0.05327639728784561, 0.016728483140468597, 0.07690325379371643, -0.1159738153219223, -0.01773754693567753, 0.029590241611003876, -0.11846200376749039, 0.08989865332841873, 0.026471933349967003, 0.05048830807209015, 0.02174370549619198, -0.11224760115146637, 0.028625866398215294, 0.06436802446842194, -0.014607146382331848, 0.035839829593896866, -0.13966509699821472, 0.004922196269035339, -0.043927617371082306, -0.00931378360837698, -0.006224206183105707, 0.05296097323298454, -0.13405635952949524, -0.010574675165116787, -0.03139191120862961, -0.04117794334888458, -0.05731223151087761, 0.04981755465269089, 0.06768075376749039, -0.019638484343886375, 0.1769687384366989, -0.08291574567556381, 0.02958754450082779, -0.23291689157485962, -0.016643470153212547, -0.021372193470597267, -0.07521530240774155, -0.08261816203594208, -0.016917923465371132, 0.07361335307359695, -0.05582883954048157, 0.07357237488031387, -0.02860432118177414, 0.05321510508656502, 0.0273591335862875, -0.060625217854976654, 0.03364516794681549, 0.05027179419994354, 0.17155835032463074, 0.013679890893399715, -0.02792399562895298, 0.039556458592414856, 0.019240347668528557, 0.0910504013299942, 0.058451928198337555, 0.16828253865242004, 0.16349881887435913, -0.039636075496673584, 0.08622439205646515, 0.05299859866499901, -0.10640082508325577, -0.1672750562429428, 0.09139630198478699, -0.07675208151340485, 0.13547903299331665, -0.019345398992300034, 0.16762195527553558, 0.12003948539495468, -0.19270804524421692, 0.015635965391993523, -0.028654634952545166, -0.0728054940700531, -0.07577255368232727, -0.07806872576475143, -0.08862172812223434, -0.18461745977401733, 0.016713257879018784, -0.10588907450437546, 0.0070684561505913734, 0.059339333325624466, 0.017949605360627174, 0.006352229509502649, 0.175893634557724, 0.060844115912914276, 0.024881094694137573, 0.08204097300767899, 0.034322191029787064, -0.05060923099517822, -0.024823108687996864, -0.08839533478021622, 0.025741348043084145, -0.040533553808927536, 0.036048464477062225, -0.06280039250850677, -0.08399020880460739, 0.08479335159063339, 0.044406041502952576, -0.10283982008695602, 0.03538326919078827, -0.017506534233689308, 0.03878379240632057, 0.060378093272447586, 0.00897273700684309, 0.010813464410603046, -0.024993356317281723, 0.2239636927843094, -0.09187102317810059, -0.018411846831440926, -0.12416340410709381, 0.22159454226493835, 0.007934228517115116, -0.010076032020151615, 0.02460845187306404, -0.1007390171289444, 0.008819733746349812, 0.16293402016162872, 0.14789186418056488, -0.03376812860369682, -0.01554945670068264, 0.013342947699129581, -0.017984934151172638, -0.05426986142992973, 0.0870029479265213, 0.11274537444114685, 0.04938799887895584, -0.06674155592918396, -0.021073386073112488, -0.056223269551992416, -0.046446654945611954, -0.017658157274127007, 0.06364835053682327, 0.0315278135240078, 0.001940581714734435, -0.046335864812135696, 0.09533855319023132, -0.03112681210041046, -0.11870843172073364, 0.08127108961343765, -0.180626779794693, -0.17327755689620972, -0.04764971882104874, 0.07642916589975357, 0.014744431711733341, 0.05432521179318428, -0.009442267008125782, -0.03186682239174843, 0.09343338757753372, -0.006976570002734661, -0.04652988910675049, -0.11961674690246582, 0.042464494705200195, -0.04173503443598747, 0.25151047110557556, -0.04063867777585983, -0.011387435719370842, 0.13017699122428894, 0.03224894776940346, -0.11391928791999817, 0.03690418601036072, 0.07505956292152405, -0.08344900608062744, 0.03912169486284256, 0.14740042388439178, -0.03428969532251358, 0.12732605636119843, 0.04524998366832733, -0.13088200986385345, -0.0007083455566316843, -0.07566916942596436, -0.062055036425590515, -0.06374549865722656, 0.014769377186894417, -0.03414898365736008, 0.14397136867046356, 0.2089298814535141, -0.059645719826221466, -0.013062983751296997, -0.056152403354644775, 0.04229304566979408, 0.06002909690141678, 0.09582386165857315, 0.004983503837138414, -0.24811266362667084, 0.03619660437107086, -0.013185380958020687, 0.019883356988430023, -0.2341071218252182, -0.09189984947443008, 0.020093435421586037, -0.048341646790504456, -0.09844820946455002, 0.10491853207349777, 0.0810568556189537, 0.05092758312821388, -0.06495470553636551, -0.05968432500958443, -0.06986873596906662, 0.18464967608451843, -0.15145616233348846, -0.08578832447528839 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
tyson0420/stack-codellama
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:53:18+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 56, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06061961501836777, 0.15481999516487122, -0.004844071343541145, 0.02074851468205452, 0.0983177199959755, 0.007407687604427338, 0.07119518518447876, 0.11185134947299957, -0.023851769044995308, 0.1167980208992958, 0.031993988901376724, 0.09781743586063385, 0.11217817664146423, 0.16186554729938507, 0.0015333457849919796, -0.22897611558437347, 0.049678247421979904, -0.125278040766716, -0.0294334813952446, 0.11977242678403854, 0.1422213912010193, -0.10954539477825165, 0.0752737894654274, -0.038042325526475906, -0.005828251596540213, -0.0323176346719265, -0.06205610930919647, -0.05266609415411949, 0.05311284959316254, 0.06794639676809311, 0.07308239489793777, 0.01171939354389906, 0.09106900542974472, -0.2724283039569855, 0.02348201349377632, 0.0805930644273758, -0.0006441773730330169, 0.07586129754781723, 0.04993962123990059, -0.08749990910291672, 0.07524524629116058, -0.060156844556331635, 0.1498761922121048, 0.07955671846866608, -0.09018243104219437, -0.19217631220817566, -0.07921334356069565, 0.09916994720697403, 0.1890910118818283, 0.05953684076666832, -0.026427440345287323, 0.11642678081989288, -0.08593545109033585, 0.013638701289892197, 0.06446459144353867, -0.06054406240582466, -0.055855002254247665, 0.06904532760381699, 0.08335285633802414, 0.08567540347576141, -0.12976622581481934, -0.010767064057290554, 0.015032444149255753, 0.008952446281909943, 0.08948688954114914, 0.017146794125437737, 0.1335189938545227, 0.040557652711868286, -0.13501930236816406, -0.043155476450920105, 0.09761431813240051, 0.03665134683251381, -0.04888195917010307, -0.2485782504081726, -0.023432478308677673, -0.04339504987001419, -0.03198111802339554, -0.03649339824914932, 0.043764639645814896, -0.014506848528981209, 0.07738617807626724, -0.004502781666815281, -0.0837155357003212, -0.04301247000694275, 0.07241875678300858, 0.06128999963402748, 0.02571401372551918, -0.015821760520339012, 0.0059297760017216206, 0.12327717989683151, 0.11431120336055756, -0.126715749502182, -0.052547648549079895, -0.06306339055299759, -0.08449548482894897, -0.044861067086458206, 0.030838407576084137, 0.037995077669620514, 0.045936476439237595, 0.23867325484752655, 0.007765117567032576, 0.053257301449775696, 0.04455438256263733, 0.014407169073820114, 0.06501194834709167, 0.11008983850479126, -0.05894824117422104, -0.09719445556402206, -0.028582042083144188, 0.10156717151403427, 0.007986726239323616, -0.04139331728219986, -0.05712985619902611, 0.07059531658887863, 0.018587570637464523, 0.12360043078660965, 0.08000938594341278, 0.003056557849049568, -0.0755772516131401, -0.062465377151966095, 0.17764076590538025, -0.15825673937797546, 0.04532013460993767, 0.03055616281926632, -0.0341108962893486, -0.009745313785970211, 0.012105142697691917, 0.025474950671195984, -0.021481726318597794, 0.09522198140621185, -0.05601342022418976, -0.034448131918907166, -0.11389608681201935, -0.03694311901926994, 0.030394554138183594, 0.011153047904372215, -0.02865210548043251, -0.03502652049064636, -0.08865131437778473, -0.06405586749315262, 0.09101516753435135, -0.07148737460374832, -0.04784895107150078, -0.016645915806293488, -0.07833752781152725, 0.021804187446832657, 0.01691517047584057, 0.09064167737960815, -0.0222476739436388, 0.03985358029603958, -0.0550384595990181, 0.061440225690603256, 0.11723454296588898, 0.027987057343125343, -0.05787884071469307, 0.061519939452409744, -0.2424532175064087, 0.10252492874860764, -0.07715212553739548, 0.04971238598227501, -0.15203025937080383, -0.02478341944515705, 0.03986154496669769, 0.01284773275256157, -0.008251311257481575, 0.14196595549583435, -0.21994100511074066, -0.030957341194152832, 0.16964265704154968, -0.10025953501462936, -0.08109250664710999, 0.060782887041568756, -0.05354252830147743, 0.11210215091705322, 0.04557164013385773, -0.02375967986881733, 0.05775221437215805, -0.14725260436534882, -0.011030761525034904, -0.041942402720451355, -0.0180682260543108, 0.16207332909107208, 0.0703711211681366, -0.06047816202044487, 0.07456906884908676, 0.01960151270031929, -0.014246034435927868, -0.04887177795171738, -0.02822130173444748, -0.1047162413597107, 0.01184528972953558, -0.06102835759520531, 0.018109694123268127, -0.021768750622868538, -0.09445013850927353, -0.029118487611413002, -0.17402999103069305, -0.0031633328180760145, 0.08821269869804382, -0.011630427092313766, -0.021509924903512, -0.11245372891426086, 0.009332616813480854, 0.030967719852924347, 0.0002618339203763753, -0.13677829504013062, -0.06033218279480934, 0.026970699429512024, -0.16097871959209442, 0.029791243374347687, -0.05741601809859276, 0.04530094936490059, 0.04005871340632439, -0.03433511033654213, -0.03489551320672035, 0.010874404571950436, 0.010431389324367046, -0.01894843392074108, -0.25422003865242004, -0.01882786676287651, -0.0234990194439888, 0.1751047968864441, -0.22956320643424988, 0.042598169296979904, 0.07489731162786484, 0.1460893303155899, 0.007349682506173849, -0.03550100699067116, 0.015185600146651268, -0.07262228429317474, -0.03268764168024063, -0.06316669285297394, -0.01207790058106184, -0.038400664925575256, -0.05820201337337494, 0.04906858503818512, -0.1686294972896576, -0.030321966856718063, 0.10717973858118057, 0.06342670321464539, -0.1473218947649002, -0.02780107781291008, -0.04056945815682411, -0.04624456167221069, -0.06676914542913437, -0.05461418256163597, 0.11812574416399002, 0.056411582976579666, 0.04860803112387657, -0.07140495628118515, -0.07455260306596756, 0.008036690764129162, -0.01956399530172348, -0.014917809516191483, 0.09334591031074524, 0.07554110884666443, -0.12264352291822433, 0.09177418053150177, 0.09668384492397308, 0.08576478064060211, 0.10314212739467621, -0.014663571491837502, -0.08914592862129211, -0.040637146681547165, 0.02245822176337242, 0.016187267377972603, 0.15129362046718597, -0.012961224652826786, 0.055492039769887924, 0.0358695350587368, -0.014034898020327091, 0.011105312965810299, -0.09736533463001251, 0.02655916102230549, 0.030835967510938644, -0.016302183270454407, 0.03745110332965851, -0.0447014644742012, 0.019208140671253204, 0.09039704501628876, 0.040895868092775345, 0.040978945791721344, 0.010155045427381992, -0.04354988783597946, -0.11037563532590866, 0.1787576973438263, -0.12389461696147919, -0.24818050861358643, -0.13812170922756195, 0.010281167924404144, 0.04737642779946327, -0.010411068797111511, 0.006690691225230694, -0.06616118550300598, -0.1175973042845726, -0.09878289699554443, 0.018617089837789536, 0.045352302491664886, -0.07590975612401962, -0.06842505931854248, 0.06414616107940674, 0.03875524550676346, -0.13939815759658813, 0.024007495492696762, 0.04662325978279114, -0.08205481618642807, -0.0029386086389422417, 0.0791812464594841, 0.06965780258178711, 0.17661017179489136, 0.013885351829230785, -0.023669935762882233, 0.026634456589818, 0.20819635689258575, -0.1436755359172821, 0.10975687950849533, 0.13545554876327515, -0.08767466992139816, 0.08120133727788925, 0.1998777538537979, 0.03777998685836792, -0.10680917650461197, 0.03608465939760208, 0.028374753892421722, -0.028325283899903297, -0.2502254545688629, -0.06958996504545212, 0.0019060121849179268, -0.05172049254179001, 0.07064855098724365, 0.08791537582874298, 0.09593888372182846, 0.016860228031873703, -0.09976044297218323, -0.07697858661413193, 0.046900223940610886, 0.10824491083621979, -0.00015424020239152014, -0.015208319760859013, 0.0904119610786438, -0.03033481352031231, 0.01743943803012371, 0.09215071052312851, 0.0030607767403125763, 0.17535938322544098, 0.051709048449993134, 0.17189906537532806, 0.07866133749485016, 0.06444311141967773, 0.02004685252904892, 0.007725914940237999, 0.021817529574036598, 0.017227526754140854, -0.0030957073904573917, -0.08709781616926193, -0.0034981227945536375, 0.1202581599354744, 0.049845851957798004, 0.029173865914344788, 0.012042860500514507, -0.030704669654369354, 0.08337877690792084, 0.1770893782377243, 0.0029054484330117702, -0.1893385946750641, -0.07169844210147858, 0.07795937359333038, -0.08648337423801422, -0.10729733109474182, -0.029470939189195633, 0.041069481521844864, -0.1729043871164322, 0.016882894560694695, -0.019335895776748657, 0.10788324475288391, -0.13190391659736633, -0.01772487722337246, 0.05657728388905525, 0.06932812184095383, -0.009677323512732983, 0.06694949418306351, -0.16090403497219086, 0.11770165711641312, 0.01751571334898472, 0.06636732816696167, -0.09608277678489685, 0.09618937969207764, -0.007830657996237278, 0.0041499207727611065, 0.1410749852657318, 0.010120149701833725, -0.05952107161283493, -0.09608154743909836, -0.10546442121267319, -0.009841260500252247, 0.1306990385055542, -0.14852415025234222, 0.08813067525625229, -0.02661319263279438, -0.044553373008966446, 0.003614129964262247, -0.12497276812791824, -0.13103094696998596, -0.18366187810897827, 0.05707118660211563, -0.12947207689285278, 0.04045100137591362, -0.10902881622314453, -0.045833900570869446, -0.02098964899778366, 0.20040063560009003, -0.23137451708316803, -0.06714103370904922, -0.1551055610179901, -0.08061286807060242, 0.14446212351322174, -0.046455029398202896, 0.08550118654966354, 0.0008278203313238919, 0.19068008661270142, 0.021319707855582237, -0.017237508669495583, 0.1072206199169159, -0.10052918642759323, -0.2010865956544876, -0.09273224323987961, 0.15895552933216095, 0.13766798377037048, 0.03809428587555885, -0.004381525795906782, 0.03171157464385033, -0.02098114788532257, -0.12076930701732635, 0.020226983353495598, 0.17317426204681396, 0.08982043713331223, 0.025265544652938843, -0.02972041629254818, -0.11267432570457458, -0.07061342149972916, -0.03774050623178482, 0.024755435064435005, 0.18072067201137543, -0.07222156971693039, 0.18405316770076752, 0.13775517046451569, -0.05534014105796814, -0.19904261827468872, 0.021996473893523216, 0.04293542355298996, 0.0070380112156271935, 0.0323902890086174, -0.20307663083076477, 0.09384101629257202, 0.0008334947633557022, -0.05131231248378754, 0.1379684954881668, -0.1823476254940033, -0.151598259806633, 0.06042521819472313, 0.043563615530729294, -0.19374065101146698, -0.12374074012041092, -0.08848230540752411, -0.04693066328763962, -0.15487661957740784, 0.10312657803297043, 0.0020827590487897396, 0.008401188999414444, 0.03778626397252083, 0.02252252586185932, 0.012139533646404743, -0.04198719933629036, 0.1914343535900116, -0.025891713798046112, 0.03347287327051163, -0.0790715217590332, -0.060851071029901505, 0.062408581376075745, -0.058187782764434814, 0.0755455270409584, -0.025226406753063202, 0.015947066247463226, -0.10598332434892654, -0.048235729336738586, -0.02852320298552513, 0.019321219995617867, -0.09431382268667221, -0.09348297864198685, -0.04829427972435951, 0.09367614984512329, 0.09042316675186157, -0.03652578964829445, -0.03649144619703293, -0.078715980052948, 0.038977332413196564, 0.17627815902233124, 0.18159319460391998, 0.04659178853034973, -0.07959239184856415, -0.001915142871439457, -0.014336181804537773, 0.04684065282344818, -0.22077152132987976, 0.060553863644599915, 0.04557652771472931, 0.016117896884679794, 0.11537692695856094, -0.0208132341504097, -0.16198977828025818, -0.06710557639598846, 0.061360616236925125, -0.06944561004638672, -0.17825035750865936, 0.0039279889315366745, 0.07344977557659149, -0.16578389704227448, -0.037031736224889755, 0.04200848564505577, -0.01189455483108759, -0.0403641052544117, 0.012352054007351398, 0.08063354343175888, 0.007078902795910835, 0.07699975371360779, 0.055281639099121094, 0.09124495089054108, -0.10227900743484497, 0.07410510629415512, 0.08149529248476028, -0.08644098788499832, 0.030720343813300133, 0.09573426842689514, -0.06469762325286865, -0.0346054881811142, 0.04237886518239975, 0.08354541659355164, 0.024281201884150505, -0.04682289808988571, 0.0023111123591661453, -0.09734189510345459, 0.05927345156669617, 0.11483542621135712, 0.03496333956718445, 0.011234734207391739, 0.03813567012548447, 0.04486291855573654, -0.08093374222517014, 0.11926916986703873, 0.023795632645487785, 0.020354853942990303, -0.04112942889332771, -0.040553025901317596, 0.035851649940013885, -0.026020776480436325, -0.011440055444836617, -0.035174157470464706, -0.0722682997584343, -0.014069457538425922, -0.16000694036483765, -0.0076758842915296555, -0.03660871088504791, 0.005114538595080376, 0.022510098293423653, -0.03652830421924591, 0.00792311318218708, 0.012217256240546703, -0.06868947297334671, -0.05553458258509636, -0.023233558982610703, 0.09422210603952408, -0.16494666039943695, 0.0220257006585598, 0.0823851153254509, -0.12121747434139252, 0.09289738535881042, 0.016782134771347046, 0.00412249518558383, 0.026962365955114365, -0.1545863002538681, 0.04763968288898468, -0.020152103155851364, 0.013473534025251865, 0.04222847521305084, -0.21637047827243805, -0.004404853098094463, -0.04015503451228142, -0.05566934496164322, -0.008993052877485752, -0.0319182425737381, -0.11338426172733307, 0.09645436704158783, 0.011025024577975273, -0.08443772792816162, -0.02965564839541912, 0.03353232145309448, 0.07690354436635971, -0.027447547763586044, 0.1498211771249771, -0.004663881380110979, 0.07559948414564133, -0.17581342160701752, -0.02282017655670643, -0.011197620071470737, 0.022367527708411217, -0.021871577948331833, -0.01622559316456318, 0.04623444378376007, -0.02704801969230175, 0.19120801985263824, -0.024701936170458794, 0.049393873661756516, 0.06364397704601288, 0.009232889860868454, -0.013832193799316883, 0.11151392012834549, 0.05708572641015053, 0.024334950372576714, 0.022262847051024437, 0.003451440716162324, -0.04008655622601509, -0.009981024079024792, -0.18596695363521576, 0.06803664565086365, 0.14585918188095093, 0.09060460329055786, -0.012669353745877743, 0.0707244873046875, -0.10161512345075607, -0.12005364894866943, 0.10127941519021988, -0.06415384262800217, -0.010188822634518147, -0.06542414426803589, 0.14027701318264008, 0.14953285455703735, -0.1886233240365982, 0.06583356112241745, -0.06602055579423904, -0.0566304549574852, -0.11457879096269608, -0.1930263340473175, -0.057075321674346924, -0.050602465867996216, -0.018466074019670486, -0.05384097993373871, 0.06939727067947388, 0.05750798434019089, 0.01126816775649786, 0.00868057832121849, 0.08568526059389114, -0.009656033478677273, 0.00248199631460011, 0.030120067298412323, 0.06713981181383133, 0.016768986359238625, -0.0321255661547184, 0.0179112758487463, -0.00597198773175478, 0.034156378358602524, 0.059282708913087845, 0.03608176112174988, -0.028436895459890366, 0.015559280291199684, -0.034912437200546265, -0.11309733241796494, 0.042801856994628906, -0.029640642926096916, -0.0749855786561966, 0.1347348988056183, 0.026981467381119728, 0.005015076603740454, -0.023140020668506622, 0.2503887414932251, -0.07436972856521606, -0.09334370493888855, -0.14373961091041565, 0.11701542884111404, -0.04212593287229538, 0.0635172426700592, 0.03596310690045357, -0.10810714215040207, 0.017985546961426735, 0.1320217251777649, 0.15442703664302826, -0.04732590913772583, 0.019251897931098938, 0.028577854856848717, 0.00439635943621397, -0.04075566306710243, 0.05177190154790878, 0.07100846618413925, 0.14500564336776733, -0.05157303810119629, 0.08530787378549576, 0.002609728369861841, -0.1021018698811531, -0.041973695158958435, 0.11415864527225494, -0.014296893030405045, 0.017620453611016273, -0.057136841118335724, 0.124222531914711, -0.05874236673116684, -0.23697422444820404, 0.06316976249217987, -0.0765061303973198, -0.1432730257511139, -0.024886758998036385, 0.071670763194561, -0.016632623970508575, 0.02605951391160488, 0.07167234271764755, -0.0754380151629448, 0.18880942463874817, 0.03957989811897278, -0.05233397334814072, -0.05954399332404137, 0.0744764655828476, -0.11850855499505997, 0.27879106998443604, 0.010482731275260448, 0.051307905465364456, 0.1042102724313736, -0.02021743729710579, -0.13270841538906097, 0.023401619866490364, 0.09579801559448242, -0.08917027711868286, 0.04087764397263527, 0.21448291838169098, -0.00629545608535409, 0.11935057491064072, 0.07611140608787537, -0.07468950748443604, 0.047562725841999054, -0.11468592286109924, -0.07639975845813751, -0.08699081838130951, 0.09244474768638611, -0.06785612553358078, 0.14258281886577606, 0.12599852681159973, -0.05530165135860443, 0.011584274470806122, -0.028389399871230125, 0.045467376708984375, 0.005578654818236828, 0.100032277405262, 0.011115525849163532, -0.18496567010879517, 0.024811718612909317, 0.016259413212537766, 0.10884406417608261, -0.18112654983997345, -0.09105053544044495, 0.046958595514297485, 0.0005061255069449544, -0.06443515419960022, 0.12483241409063339, 0.057313691824674606, 0.04654949903488159, -0.0451689288020134, -0.026830285787582397, -0.006042256020009518, 0.14264579117298126, -0.10707559436559677, -0.005129707511514425 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "apache-2.0"}
text-generation
FelixChao/Scorpio-7B
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T04:57:06+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using this raw template. ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 64, 29, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.05098743364214897, 0.18119150400161743, -0.005546347238123417, 0.017277177423238754, 0.09535548090934753, 0.012573855929076672, 0.06850744038820267, 0.10837393999099731, -0.018621204420924187, 0.10630100220441818, 0.025171682238578796, 0.08657454699277878, 0.11164019256830215, 0.14977188408374786, -0.0008030658354982734, -0.23681508004665375, 0.04359348490834236, -0.1266832947731018, -0.02974628657102585, 0.11300726234912872, 0.15117916464805603, -0.09237026423215866, 0.07796194404363632, -0.026965906843543053, -0.009547654539346695, -0.029042350128293037, -0.059507694095373154, -0.045686688274145126, 0.045702628791332245, 0.0660756453871727, 0.06690677255392075, 0.00041688629426062107, 0.09292758256196976, -0.26813268661499023, 0.02008185349404812, 0.0664597749710083, -0.0012793500209227204, 0.07728859782218933, 0.056240301579236984, -0.07440850883722305, 0.09802885353565216, -0.048399534076452255, 0.1422666758298874, 0.08229760825634003, -0.090943343937397, -0.18338368833065033, -0.09160289168357849, 0.09443580359220505, 0.18546488881111145, 0.05044415965676308, -0.021347247064113617, 0.08999335765838623, -0.08516385406255722, 0.005957415793091059, 0.05279853194952011, -0.07463932782411575, -0.05264570191502571, 0.06564901769161224, 0.07107672840356827, 0.07033055275678635, -0.12056542932987213, -0.023800790309906006, 0.008731144480407238, 0.010739918798208237, 0.07595204561948776, 0.021117212250828743, 0.1447419822216034, 0.03368578106164932, -0.12334440648555756, -0.042693156749010086, 0.1282794326543808, 0.04175516963005066, -0.04885222390294075, -0.24373401701450348, -0.02595498040318489, -0.022665152326226234, -0.03248772770166397, -0.03886206075549126, 0.0448467992246151, 0.002830381039530039, 0.09096220880746841, -0.018628129735589027, -0.07835695892572403, -0.029315827414393425, 0.06328904628753662, 0.04903733730316162, 0.02423769235610962, -0.013522015884518623, 0.005825151689350605, 0.1200474426150322, 0.0931648537516594, -0.12698234617710114, -0.0494733527302742, -0.0625515952706337, -0.07075663655996323, -0.04515935108065605, 0.03235740587115288, 0.0397205576300621, 0.051469046622514725, 0.2505846917629242, 0.014960609376430511, 0.05136311799287796, 0.04400661960244179, 0.012981995940208435, 0.05845816805958748, 0.1074749305844307, -0.05520668625831604, -0.10785319656133652, -0.02126893773674965, 0.08356046676635742, 0.015483551658689976, -0.034644994884729385, -0.05889322608709335, 0.05063844472169876, 0.01071514468640089, 0.12029755860567093, 0.09420150518417358, -0.0020220226142555475, -0.07016023993492126, -0.0628134235739708, 0.19292974472045898, -0.16400295495986938, 0.0473443940281868, 0.029314545914530754, -0.0365741103887558, -0.001238433294929564, 0.007521297782659531, 0.028401484712958336, -0.0246182419359684, 0.08293787389993668, -0.05586033686995506, -0.03929503634572029, -0.1104612872004509, -0.02357238531112671, 0.03238487243652344, 0.02302432991564274, -0.030460160225629807, -0.0243829432874918, -0.08628323674201965, -0.07036904245615005, 0.09920728206634521, -0.07587142288684845, -0.06134931370615959, -0.021133728325366974, -0.07577592134475708, 0.025946343317627907, 0.02078121155500412, 0.06897282600402832, -0.01944863609969616, 0.030176213011145592, -0.052048422396183014, 0.05514887720346451, 0.09825149923563004, 0.033667098730802536, -0.0565333254635334, 0.06152923405170441, -0.23782724142074585, 0.10050790756940842, -0.05885869637131691, 0.05631159618496895, -0.15306192636489868, -0.018819015473127365, 0.04125715419650078, 0.0019174626795575023, -0.011306731961667538, 0.13673482835292816, -0.21845147013664246, -0.023373503237962723, 0.16045258939266205, -0.09470109641551971, -0.07761828601360321, 0.05749881640076637, -0.049321115016937256, 0.11392152309417725, 0.04453955963253975, -0.020814193412661552, 0.06921925395727158, -0.13386112451553345, 0.008098425343632698, -0.03911484777927399, -0.009868915192782879, 0.14855000376701355, 0.07630777359008789, -0.07961857318878174, 0.06684968620538712, 0.02708585001528263, -0.036954548209905624, -0.04370904341340065, -0.012701238505542278, -0.11127448827028275, 0.006379514001309872, -0.057350050657987595, 0.012217618525028229, -0.029090026393532753, -0.09010448306798935, -0.02476555109024048, -0.16960756480693817, -0.021764647215604782, 0.0858255922794342, -0.008199622854590416, -0.020143786445260048, -0.11031179130077362, 0.01924167200922966, 0.03676341474056244, -0.0024156419094651937, -0.12995371222496033, -0.05207955837249756, 0.02718118391931057, -0.1663770228624344, 0.035771261900663376, -0.054468683898448944, 0.04823897406458855, 0.031382765620946884, -0.031815558671951294, -0.02675204910337925, 0.018448038026690483, 0.0020498076919466257, -0.010357827879488468, -0.241690531373024, -0.026199771091341972, -0.024984603747725487, 0.16617265343666077, -0.21149884164333344, 0.03924327343702316, 0.06548555940389633, 0.14468514919281006, 0.00908830389380455, -0.03872833773493767, 0.00325130857527256, -0.07682507485151291, -0.02375245839357376, -0.06197876110672951, -0.006265480071306229, -0.029592575505375862, -0.056297365576028824, 0.0474017933011055, -0.16155876219272614, -0.03318116441369057, 0.0943460464477539, 0.06758622825145721, -0.13294118642807007, -0.030522173270583153, -0.03080666810274124, -0.04256385564804077, -0.05002477392554283, -0.05415209010243416, 0.11267362534999847, 0.056675393134355545, 0.04424947872757912, -0.06770579516887665, -0.07564353197813034, -0.0059568556025624275, -0.024364864453673363, -0.021629072725772858, 0.0876426175236702, 0.06839006394147873, -0.11861623078584671, 0.09229876846075058, 0.10877985507249832, 0.07871770113706589, 0.09374723583459854, -0.02219315804541111, -0.08298259973526001, -0.05079648643732071, 0.03239036351442337, 0.0106898108497262, 0.12816645205020905, -0.011133784428238869, 0.055088043212890625, 0.039088018238544464, -0.013070518150925636, 0.017940703779459, -0.09119090437889099, 0.02961762435734272, 0.030785411596298218, -0.02225067839026451, 0.0391770638525486, -0.03700961172580719, 0.01944563537836075, 0.08695637434720993, 0.049476608633995056, 0.04310998693108559, 0.011310328729450703, -0.0507609024643898, -0.11596490442752838, 0.16487768292427063, -0.1310916393995285, -0.22092364728450775, -0.15299998223781586, 0.012620022520422935, 0.03313823789358139, -0.011554974131286144, 0.0014600668800994754, -0.06272313743829727, -0.11571827530860901, -0.0922229140996933, 0.01242272648960352, 0.05040787532925606, -0.09326481074094772, -0.059908997267484665, 0.05969405174255371, 0.039082664996385574, -0.1428091824054718, 0.020056407898664474, 0.05564342439174652, -0.09713013470172882, -0.019626006484031677, 0.07774446159601212, 0.06338733434677124, 0.17780159413814545, 0.011641085147857666, -0.023729432374238968, 0.03950480371713638, 0.22507025301456451, -0.1325329691171646, 0.11577421426773071, 0.14521914720535278, -0.0826810896396637, 0.08551780879497528, 0.20404234528541565, 0.043351635336875916, -0.09732220321893692, 0.03335292264819145, 0.01921760104596615, -0.022651171311736107, -0.2431226670742035, -0.07194231450557709, -0.0063305203802883625, -0.07651257514953613, 0.07641167938709259, 0.09124799072742462, 0.08904707431793213, 0.01695016771554947, -0.09704168140888214, -0.0876987874507904, 0.06060664728283882, 0.10453283786773682, 0.020114712417125702, -0.011224123649299145, 0.08347021788358688, -0.034951116889715195, 0.016350839287042618, 0.08870627731084824, 0.014143294654786587, 0.1766888052225113, 0.06362227350473404, 0.1846485137939453, 0.07776474207639694, 0.07361125946044922, 0.01232505775988102, 0.00872134417295456, 0.01642940193414688, 0.02886364236474037, -0.003145672148093581, -0.08890394866466522, -0.008976506069302559, 0.11655743420124054, 0.05968529358506203, 0.023473775014281273, 0.013177607208490372, -0.045911915600299835, 0.07631321251392365, 0.19093434512615204, -0.0009153723949566483, -0.17904233932495117, -0.06162286922335625, 0.08616357296705246, -0.08956354111433029, -0.10062851011753082, -0.023238040506839752, 0.03308749198913574, -0.17246176302433014, 0.02651992067694664, -0.018314840272068977, 0.1141413077712059, -0.13121241331100464, -0.022874070331454277, 0.0691872388124466, 0.07217199355363846, 0.003470273455604911, 0.06070614606142044, -0.1480747014284134, 0.1045488715171814, 0.014614338986575603, 0.07220901548862457, -0.08818291872739792, 0.10457614064216614, -0.0062637836672365665, -0.0010398438898846507, 0.12917250394821167, 0.012704622000455856, -0.08315494656562805, -0.07081159949302673, -0.08896414935588837, -0.005403646733611822, 0.1177091896533966, -0.14973147213459015, 0.0827237069606781, -0.039415400475263596, -0.04000493884086609, 0.0012276272755116224, -0.11071229726076126, -0.1310325264930725, -0.19558793306350708, 0.05247398838400841, -0.12856444716453552, 0.04142291471362114, -0.10432637482881546, -0.02850436232984066, -0.01316818967461586, 0.18452438712120056, -0.23713962733745575, -0.07338899374008179, -0.14616690576076508, -0.10958345979452133, 0.15083934366703033, -0.05047786235809326, 0.08364177495241165, -0.009070590138435364, 0.17759136855602264, 0.02192075550556183, -0.02559496834874153, 0.09046733379364014, -0.09006041288375854, -0.18359091877937317, -0.07509500533342361, 0.1547618806362152, 0.1364850252866745, 0.03137340396642685, -0.00009236243204213679, 0.03403643146157265, -0.025934826582670212, -0.12580923736095428, 0.012445051223039627, 0.17905670404434204, 0.07442319393157959, 0.02061055228114128, -0.03987543284893036, -0.11310092359781265, -0.06931383907794952, -0.026115750893950462, 0.03206980600953102, 0.18743392825126648, -0.06983482837677002, 0.18250030279159546, 0.1439635306596756, -0.06464575976133347, -0.1876271665096283, 0.01272567454725504, 0.03231727331876755, 0.007271517999470234, 0.03296826779842377, -0.20840111374855042, 0.09315025806427002, 0.005137091036885977, -0.05071651563048363, 0.1370120495557785, -0.17887669801712036, -0.14646044373512268, 0.07223373651504517, 0.028904680162668228, -0.19215600192546844, -0.11724954843521118, -0.08848059177398682, -0.05218749865889549, -0.17890824377536774, 0.0928690955042839, 0.035659998655319214, 0.006328529212623835, 0.029228543862700462, 0.04099976271390915, 0.017570940777659416, -0.034000616520643234, 0.1953754723072052, -0.025309110060334206, 0.03348270058631897, -0.08410539478063583, -0.0634893923997879, 0.04695089906454086, -0.057213250547647476, 0.08370446413755417, -0.029913514852523804, 0.014560804702341557, -0.10276637226343155, -0.038615114986896515, -0.028055282309651375, 0.01990450732409954, -0.09439650923013687, -0.08324754238128662, -0.04971373453736305, 0.09117461740970612, 0.09475960582494736, -0.034476231783628464, -0.025337999686598778, -0.07224450260400772, 0.050935011357069016, 0.17326311767101288, 0.1753956526517868, 0.04247729107737541, -0.0770951434969902, 0.00020656864217016846, -0.009295777417719364, 0.04424283653497696, -0.20921464264392853, 0.06171146035194397, 0.04861802980303764, 0.015397347509860992, 0.11190910637378693, -0.02175346575677395, -0.1547207087278366, -0.06734275072813034, 0.0655275210738182, -0.05564737319946289, -0.19119581580162048, -0.0015418418915942311, 0.05998261272907257, -0.1725488007068634, -0.04902401193976402, 0.043246448040008545, -0.004179911222308874, -0.04368313401937485, 0.019003113731741905, 0.09280961006879807, -0.004413523245602846, 0.06393697112798691, 0.05462450534105301, 0.07884405553340912, -0.09972895681858063, 0.07550083100795746, 0.08475533127784729, -0.06779135018587112, 0.021509729325771332, 0.09533023089170456, -0.05755164474248886, -0.032326262444257736, 0.03258265554904938, 0.07859939336776733, 0.012596184387803078, -0.041238002479076385, 0.01913696900010109, -0.09541146457195282, 0.05581831559538841, 0.07808537036180496, 0.03262934461236, 0.011093069799244404, 0.03359393775463104, 0.03784278780221939, -0.0644177570939064, 0.11518306285142899, 0.02587002143263817, 0.014913653023540974, -0.037573423236608505, -0.05676570162177086, 0.021193647757172585, -0.033675044775009155, -0.00463699409738183, -0.038403820246458054, -0.06861646473407745, -0.019439343363046646, -0.16266533732414246, -0.012191741727292538, -0.05826016142964363, 0.013241472654044628, 0.03000813163816929, -0.03695882856845856, 0.004327703267335892, 0.007653922773897648, -0.07277437299489975, -0.06814969331026077, -0.028041290119290352, 0.09671425074338913, -0.1584416776895523, 0.0319603756070137, 0.08783707767724991, -0.11725916713476181, 0.08885382115840912, 0.016516920179128647, -0.00037986721144989133, 0.030176682397723198, -0.15937243402004242, 0.03337664157152176, -0.03232354298233986, 0.012355729006230831, 0.04085836187005043, -0.22666671872138977, -0.001465921988710761, -0.030821116641163826, -0.060066789388656616, -0.012130483984947205, -0.020190633833408356, -0.11788560450077057, 0.09418036788702011, 0.010323213413357735, -0.09105202555656433, -0.034208908677101135, 0.03431219235062599, 0.09318374842405319, -0.02494099922478199, 0.15748997032642365, -0.004250435158610344, 0.07382263988256454, -0.16479109227657318, -0.019081395119428635, -0.012243317440152168, 0.0292672086507082, -0.02226962335407734, -0.014464865438640118, 0.034872230142354965, -0.020914284512400627, 0.17916569113731384, -0.027987400069832802, 0.02451128326356411, 0.06518793851137161, 0.02345157414674759, -0.018241364508867264, 0.10278960317373276, 0.056563593447208405, 0.02294408157467842, 0.018069501966238022, 0.010073256678879261, -0.038073886185884476, -0.03105715662240982, -0.2051125019788742, 0.06024419143795967, 0.14490185678005219, 0.0803639218211174, -0.013404328376054764, 0.07971688359975815, -0.09786573052406311, -0.10358753800392151, 0.12096197158098221, -0.037024762481451035, -0.01178735215216875, -0.06821750849485397, 0.12925268709659576, 0.15778256952762604, -0.1957709789276123, 0.07497909665107727, -0.060612305998802185, -0.046610940247774124, -0.12327694147825241, -0.20910800993442535, -0.05508040264248848, -0.047508079558610916, -0.02215556427836418, -0.05385427549481392, 0.06967004388570786, 0.05055632442235947, 0.0030300726648420095, -0.002720841206610203, 0.055767983198165894, -0.022411813959479332, -0.013799558393657207, 0.028742652386426926, 0.06666351854801178, 0.022012729197740555, -0.03296925500035286, 0.019523845985531807, -0.0068005952052772045, 0.041506461799144745, 0.06027986854314804, 0.05017794668674469, -0.02476835623383522, 0.015370680019259453, -0.04556899890303612, -0.10415440052747726, 0.04394756630063057, -0.02317158132791519, -0.07887127995491028, 0.14471043646335602, 0.026771942153573036, 0.0015075445408001542, -0.017098277807235718, 0.24631071090698242, -0.07347014546394348, -0.09652724862098694, -0.15004828572273254, 0.10078779608011246, -0.042118173092603683, 0.061743881553411484, 0.04199874401092529, -0.10357179492712021, 0.019095564261078835, 0.11929444968700409, 0.1714634746313095, -0.04140309989452362, 0.019019711762666702, 0.02337595634162426, 0.0031649600714445114, -0.036799654364585876, 0.04888617619872093, 0.06792740523815155, 0.1605997532606125, -0.049703408032655716, 0.10666686296463013, -0.0016597626963630319, -0.089536651968956, -0.04966892674565315, 0.11527734249830246, -0.025868743658065796, 0.013937955722212791, -0.0522877499461174, 0.13030187785625458, -0.059832725673913956, -0.21440553665161133, 0.05762794613838196, -0.060670070350170135, -0.14221197366714478, -0.022004295140504837, 0.07185368239879608, -0.016225198283791542, 0.02670050971210003, 0.069224514067173, -0.07622170448303223, 0.20599152147769928, 0.038055576384067535, -0.054234836250543594, -0.06403503566980362, 0.08333315700292587, -0.10256686806678772, 0.27284157276153564, 0.020483549684286118, 0.043097127228975296, 0.1018582135438919, -0.011639008298516273, -0.13639964163303375, 0.01857207715511322, 0.09395286440849304, -0.08456414937973022, 0.044102296233177185, 0.19214273989200592, -0.0023759787436574697, 0.12534835934638977, 0.08313769847154617, -0.0665183737874031, 0.04617252200841904, -0.09977047890424728, -0.06693964451551437, -0.0931321457028389, 0.09399199485778809, -0.08075552433729172, 0.14307093620300293, 0.1299404501914978, -0.0568833202123642, 0.009563712403178215, -0.027316907420754433, 0.04724361002445221, 0.009638158604502678, 0.09812209010124207, 0.008474581874907017, -0.1704498678445816, 0.019718635827302933, 0.01983269676566124, 0.10463733971118927, -0.15966567397117615, -0.09304337203502655, 0.04343968629837036, 0.003504045307636261, -0.059013694524765015, 0.1283906102180481, 0.05894576758146286, 0.043327439576387405, -0.041388269513845444, -0.03907050937414169, -0.007298397831618786, 0.13337571918964386, -0.1050582155585289, -0.002106369473040104 ]
null
null
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jainamk -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jainamk -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jainamk ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "648.00 +/- 205.26", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
jainamk/dqn-SpaceInvadersNoFrameskip-v4
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T05:14:00+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 43, 90, 73, 9, 5, 7 ]
[ "passage: TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
[ 0.043572068214416504, 0.2414778620004654, -0.0026879787910729647, 0.012635791674256325, 0.05784223601222038, 0.0030472534708678722, 0.08585051447153091, 0.10650663822889328, 0.024212315678596497, -0.001382096204906702, 0.003954293206334114, 0.17533031105995178, 0.03632635250687599, 0.13125447928905487, -0.018073517829179764, -0.2066594809293747, -0.013479253277182579, -0.06247470900416374, -0.07153085619211197, 0.036099132150411606, 0.07206681370735168, -0.030116932466626167, 0.036061208695173264, -0.051406677812337875, -0.057161085307598114, 0.036824777722358704, -0.03157254680991173, 0.007067287806421518, 0.15158706903457642, -0.1222257912158966, 0.12329676002264023, 0.020955175161361694, 0.1896144151687622, -0.12332789599895477, 0.0339222252368927, 0.08982209116220474, -0.036988191306591034, 0.013221588917076588, 0.00975361280143261, -0.052562564611434937, 0.1590864509344101, -0.09371145814657211, 0.07146181166172028, 0.010926910676062107, -0.07592244446277618, -0.1774153709411621, -0.09356249868869781, 0.07947742193937302, 0.0617753230035305, 0.005319166928529739, 0.03726791962981224, 0.11306490749120712, -0.020991774275898933, 0.06488905102014542, 0.11562903225421906, -0.17549200356006622, 0.013578375801444054, 0.17859570682048798, 0.003242473118007183, 0.15767055749893188, -0.05546637624502182, 0.019877681508660316, 0.02752300351858139, 0.04758313298225403, 0.06873945891857147, -0.08186400681734085, -0.1364826112985611, -0.056155186146497726, -0.15456219017505646, -0.03352400287985802, 0.05195203423500061, -0.011860138736665249, -0.05783402919769287, -0.010724928230047226, -0.04010869935154915, 0.0008851495804265141, -0.028637725859880447, 0.01805497519671917, 0.07031578570604324, -0.01226285845041275, 0.02092539705336094, -0.08391954004764557, -0.0390290804207325, -0.038563769310712814, -0.018022390082478523, 0.12054917961359024, 0.08285853266716003, 0.0266572255641222, -0.04135355353355408, 0.10274127870798111, -0.07091585546731949, -0.05454207584261894, 0.04555258899927139, -0.03786851093173027, -0.10615779459476471, 0.02120024710893631, -0.05905991420149803, 0.026879185810685158, 0.09943640232086182, 0.18048083782196045, -0.09862488508224487, 0.012620617635548115, -0.03430783003568649, 0.08121664822101593, -0.03196052461862564, 0.03197542577981949, -0.0840383991599083, -0.016251085326075554, 0.17835216224193573, 0.0030782297253608704, 0.022272996604442596, 0.002074616262689233, -0.049819961190223694, -0.02881433069705963, -0.017756454646587372, 0.06631895154714584, 0.07032092660665512, 0.010587303899228573, -0.0037596761249005795, -0.027667716145515442, -0.036921944469213486, -0.05629328638315201, -0.04952820762991905, 0.018803736194968224, -0.04712437093257904, -0.047942135483026505, 0.06027210131287575, -0.005624116864055395, 0.11337806284427643, -0.025607796385884285, 0.026316547766327858, -0.019410157576203346, -0.07494441419839859, -0.13221681118011475, -0.0304415225982666, 0.0691632330417633, 0.04371757060289383, -0.22497159242630005, -0.16994807124137878, -0.008539012633264065, 0.017946386709809303, -0.018741264939308167, -0.11334165185689926, 0.02453240379691124, -0.007166135590523481, -0.049758363515138626, -0.01601579785346985, 0.10474669933319092, -0.020438622683286667, 0.018010856583714485, -0.05593825876712799, 0.16603368520736694, -0.14290283620357513, 0.031004127115011215, -0.08706212788820267, 0.023509707301855087, -0.21286657452583313, 0.041208744049072266, -0.177636057138443, 0.04863585904240608, -0.08500861376523972, 0.02327173389494419, 0.021320728585124016, 0.01968831568956375, 0.08580207824707031, 0.10143322497606277, -0.23631145060062408, 0.05405791476368904, 0.07900930196046829, -0.022739801555871964, -0.04218491166830063, 0.06798892468214035, -0.06558530032634735, 0.1382148116827011, 0.046505436301231384, 0.24831900000572205, 0.10361487418413162, -0.2036508023738861, 0.061786454170942307, 0.0578593946993351, -0.08880111575126648, -0.004730981774628162, -0.020022382959723473, 0.11598580330610275, -0.01114928349852562, 0.03338807821273804, -0.12186288088560104, 0.1456439197063446, 0.02738998830318451, -0.0165485180914402, -0.04454165697097778, -0.1614885926246643, 0.10309953987598419, -0.015504824928939342, 0.09532155096530914, -0.042415786534547806, 0.0001161050095106475, -0.011168917641043663, 0.18012429773807526, -0.043841805309057236, 0.0007168867159634829, 0.07871408760547638, 0.10895700752735138, 0.028009075671434402, -0.020230965688824654, -0.20380273461341858, -0.0423048660159111, 0.02367858961224556, 0.044489551335573196, 0.2190362960100174, 0.19936694204807281, 0.07770156860351562, -0.022313760593533516, -0.025487221777439117, -0.003248062450438738, -0.05106664076447487, 0.03467361256480217, -0.027858436107635498, -0.024532482028007507, 0.06065356358885765, -0.09305168688297272, 0.02817818708717823, -0.13112716376781464, 0.06307920068502426, -0.17345242202281952, 0.06863926351070404, 0.021998396143317223, -0.005436043255031109, 0.024577690288424492, -0.011292695067822933, -0.034188106656074524, -0.06233125180006027, 0.07110602408647537, 0.06098933145403862, 0.014702376909554005, 0.0021991983521729708, -0.0683600977063179, -0.13828523457050323, 0.08231553435325623, -0.04042381793260574, -0.14305958151817322, 0.06392676383256912, 0.011172642931342125, 0.04875864461064339, -0.05975872278213501, 0.016254881396889687, 0.22900153696537018, 0.05321883037686348, 0.09785865992307663, -0.04092191904783249, -0.022525805979967117, -0.06617844104766846, -0.06677833944559097, 0.09694591909646988, 0.10812206566333771, 0.060318704694509506, -0.0030071530491113663, 0.07626225054264069, 0.10942911356687546, -0.1035122498869896, -0.0651884600520134, 0.03220061957836151, -0.05973697826266289, 0.019652515649795532, 0.049140311777591705, 0.02971293032169342, 0.08619047701358795, 0.1833551675081253, 0.008245792239904404, 0.0386311337351799, -0.025997694581747055, 0.026109617203474045, -0.15547916293144226, -0.03145433962345123, 0.04308181628584862, 0.00886955764144659, -0.07408110797405243, 0.04994636029005051, 0.051439400762319565, 0.13607151806354523, -0.08217083662748337, -0.13170577585697174, -0.059745315462350845, -0.03804200142621994, -0.04239124804735184, 0.14975430071353912, -0.08507520705461502, -0.19221234321594238, -0.017164425924420357, -0.15751953423023224, -0.02518727444112301, -0.005179801490157843, 0.002318724524229765, -0.08325926214456558, 0.017780914902687073, 0.010001576505601406, -0.03129372000694275, -0.0684933215379715, -0.06596160680055618, -0.05786636844277382, 0.09124112874269485, 0.06932931393384933, -0.12240120023488998, -0.00961651187390089, -0.03742414712905884, -0.020465577021241188, 0.04516167193651199, 0.08452648669481277, -0.007267598994076252, 0.07773483544588089, -0.13209199905395508, -0.06962883472442627, 0.02834828943014145, 0.2766247093677521, 0.02882981114089489, 0.004668009467422962, 0.17051753401756287, -0.03629542142152786, 0.04912714660167694, 0.16181479394435883, 0.030781643465161324, -0.14196757972240448, 0.07090470939874649, -0.011341600678861141, -0.09542687982320786, -0.1706860214471817, -0.10215658694505692, -0.037867411971092224, -0.05015881359577179, 0.05638284236192703, 0.004951419774442911, -0.04476970434188843, 0.05910305306315422, 0.08782228082418442, -0.017004497349262238, -0.06151578947901726, 0.11129767447710037, 0.032263003289699554, -0.030136963352560997, 0.08078382909297943, -0.042354047298431396, -0.04206389561295509, 0.0032403599470853806, 0.22643887996673584, 0.0937788337469101, -0.01775507442653179, -0.042567066848278046, 0.019317636266350746, 0.05095715448260307, 0.03613382205367088, 0.11312435567378998, -0.06975842267274857, -0.06826137751340866, -0.035185977816581726, 0.027829548344016075, -0.02945687249302864, 0.08205190300941467, 0.0630207508802414, 0.005563626065850258, -0.04653681069612503, -0.07972332090139389, -0.04849022626876831, 0.08408913016319275, -0.027642227709293365, -0.10093270242214203, 0.09321888536214828, 0.048575710505247116, 0.0016974330646917224, 0.03055831417441368, 0.027994604781270027, 0.01462269201874733, -0.07982148975133896, -0.06775744259357452, 0.011468625627458096, 0.07076629996299744, -0.06822766363620758, -0.027886953204870224, -0.19817815721035004, 0.14578363299369812, 0.010630400851368904, 0.04118429124355316, -0.13048617541790009, 0.1209396943449974, -0.023116756230592728, -0.026430301368236542, 0.013811616227030754, 0.0014643745962530375, 0.08203291147947311, -0.04806509613990784, 0.15762180089950562, 0.009528410620987415, -0.28092408180236816, -0.1418946087360382, -0.08416824042797089, -0.051183976233005524, -0.022873088717460632, 0.014752174727618694, 0.0642135739326477, 0.01516205258667469, 0.003868846921250224, -0.013076163828372955, 0.03185269236564636, -0.09826882928609848, -0.06493937969207764, -0.04839126765727997, -0.02250157669186592, -0.06525848805904388, -0.05647949501872063, -0.0006809153710491955, -0.17226077616214752, 0.12522587180137634, 0.11787347495555878, -0.06451737880706787, -0.041814323514699936, -0.06554657220840454, 0.046191465109586716, -0.07571537792682648, 0.0469326451420784, 0.003414976177737117, 0.019198855385184288, -0.06806991249322891, -0.17922484874725342, 0.016097763553261757, -0.10899919271469116, 0.03772687539458275, -0.05070559307932854, 0.020257100462913513, 0.08594245463609695, 0.17520126700401306, 0.05856714025139809, 0.01460097823292017, -0.07239776104688644, -0.07543374598026276, -0.0017121878918260336, -0.06344114243984222, 0.05762333422899246, -0.009151889942586422, -0.20333483815193176, 0.02763226442039013, -0.11414948850870132, 0.06860900670289993, 0.3310066759586334, 0.3324824273586273, -0.10698744654655457, 0.1177443116903305, 0.04819539934396744, -0.042202454060316086, -0.21051374077796936, -0.002244179602712393, 0.012272895313799381, 0.024992236867547035, 0.13725964725017548, -0.12924811244010925, 0.05453680083155632, 0.0794181227684021, -0.024458877742290497, 0.01456840243190527, -0.09078162908554077, -0.10816970467567444, 0.20847418904304504, 0.14226987957954407, 0.04421741142868996, -0.09421348571777344, 0.08391669392585754, 0.004295284394174814, 0.08375877887010574, 0.2107764035463333, -0.052112679928541183, 0.10695768147706985, 0.005195184610784054, 0.19852910935878754, 0.0328996516764164, -0.023768596351146698, 0.10834760218858719, -0.009801650419831276, 0.07911337912082672, 0.03985166177153587, -0.007676942739635706, 0.010487722232937813, -0.04522453248500824, 0.014148596674203873, -0.028376007452607155, 0.010284217074513435, -0.2274095118045807, 0.0582297146320343, -0.06368855386972427, 0.04604509472846985, 0.008256820961833, -0.0999874547123909, -0.03583388403058052, 0.06431841105222702, 0.08014573156833649, 0.01975327916443348, 0.0436067171394825, -0.03867863491177559, 0.11051398515701294, 0.20660489797592163, -0.009811338968575, 0.17751595377922058, -0.0615963339805603, 0.01464168168604374, -0.023011628538370132, -0.04223164543509483, -0.1462583988904953, -0.035259708762168884, 0.03498423472046852, 0.057734888046979904, 0.015203364193439484, 0.049647457897663116, -0.05656236410140991, 0.08498423546552658, 0.021687336266040802, -0.041541360318660736, 0.033579520881175995, 0.08835696429014206, 0.12415177375078201, 0.010754258371889591, -0.030121933668851852, 0.06147436052560806, -0.08128108084201813, -0.09446098655462265, -0.004497923422604799, -0.029991207644343376, -0.1083834245800972, 0.11353230476379395, 0.16914646327495575, 0.039594944566488266, -0.057076629251241684, 0.10688766092061996, -0.02768099494278431, 0.10047874599695206, 0.009198128245770931, 0.06507332623004913, -0.014091075398027897, -0.03691792115569115, 0.10611724853515625, -0.05442855879664421, -0.01637818105518818, 0.07645545154809952, -0.06522727757692337, -0.023877469822764397, -0.0801999643445015, 0.06034626066684723, 0.09222240000963211, -0.16854619979858398, -0.0639432892203331, -0.032122284173965454, -0.08628080040216446, 0.013965039514005184, 0.012447911314666271, 0.0710059329867363, -0.08589600026607513, 0.06316167116165161, -0.024337708950042725, 0.015639442950487137, -0.03689891844987869, 0.019222697243094444, -0.19525384902954102, -0.002140450058504939, -0.11280795186758041, -0.00348020251840353, -0.002931603929027915, 0.04463808611035347, -0.04961875081062317, -0.029358822852373123, -0.0030675032176077366, 0.044366419315338135, -0.16609135270118713, 0.002798673929646611, -0.011639905162155628, 0.03210212290287018, -0.0002893915225286037, -0.0983390137553215, 0.014195028692483902, -0.04294256120920181, -0.04198618605732918, 0.04925514757633209, 0.009436776861548424, 0.06470516324043274, -0.2795179784297943, -0.14905457198619843, 0.030816160142421722, 0.0683867484331131, 0.05483196675777435, -0.1830425262451172, 0.03568267077207565, -0.08042316138744354, -0.02253127470612526, -0.037770628929138184, 0.018491698428988457, -0.0539514496922493, 0.0018174031283706427, -0.04225044324994087, -0.023033907637000084, -0.028055014088749886, -0.07556360960006714, 0.0826747715473175, 0.12462522834539413, 0.07555580884218216, -0.03807181864976883, 0.09595896303653717, -0.10009756684303284, -0.04657831788063049, -0.04052736237645149, -0.036951083689928055, 0.017965637147426605, -0.0870552659034729, 0.048530060797929764, 0.05188591405749321, 0.18719671666622162, -0.08520494401454926, -0.058800119906663895, -0.014255574904382229, 0.0746525228023529, 0.07849094271659851, 0.005095830652862787, 0.17779210209846497, -0.045693784952163696, 0.05693846940994263, 0.021304311230778694, 0.046699028462171555, 0.10497613251209259, -0.023569339886307716, 0.14490213990211487, 0.21171095967292786, -0.037196725606918335, -0.11048602312803268, 0.043668005615472794, 0.01745123788714409, -0.002401199424639344, 0.05968761444091797, 0.11983796209096909, -0.050589341670274734, -0.10903856158256531, 0.23442286252975464, 0.054169271141290665, -0.11218088120222092, 0.09546315670013428, 0.039532262831926346, -0.015890996903181076, -0.1301896870136261, 0.010444961488246918, -0.0013640925753861666, -0.11233190447092056, 0.03386834263801575, -0.06087532266974449, -0.025547027587890625, 0.11809267848730087, 0.008789865300059319, 0.03317064419388771, -0.04139537364244461, -0.03756232187151909, -0.04352104663848877, -0.04273213446140289, -0.012549578212201595, -0.02991986647248268, -0.030186517164111137, -0.07621737569570541, -0.007770835887640715, -0.012012424878776073, 0.030795488506555557, -0.015285328030586243, -0.02503054589033127, -0.021192016080021858, -0.06697061657905579, -0.0026312144473195076, -0.008178025484085083, 0.015549594536423683, 0.010121971368789673, 0.2358063906431198, 0.07042546570301056, -0.10260069370269775, -0.01036880537867546, 0.22197756171226501, -0.03853277862071991, -0.06528383493423462, -0.07849395275115967, 0.25128230452537537, -0.10482002794742584, 0.051095426082611084, -0.005819917656481266, -0.06550488620996475, -0.07153836637735367, 0.2309868484735489, 0.13502730429172516, -0.1677926480770111, 0.06329060345888138, -0.0368385910987854, -0.009490780532360077, -0.14286863803863525, 0.16013580560684204, 0.1865294873714447, 0.09480160474777222, -0.12259847670793533, 0.0023130534682422876, -0.03518044203519821, -0.018328361213207245, -0.1660851687192917, -0.004593863617628813, -0.029364850372076035, -0.0427238829433918, -0.050771355628967285, 0.029773715883493423, -0.15205919742584229, -0.0927426889538765, -0.1916799396276474, -0.11482496559619904, -0.12386849522590637, -0.04549141973257065, -0.11142764985561371, -0.0019938007462769747, 0.02257080189883709, -0.0641874223947525, 0.021061956882476807, -0.0212461706250906, -0.05887424945831299, 0.015386379323899746, -0.08395619690418243, 0.0674985870718956, 0.06488548219203949, 0.15327942371368408, -0.0790991559624672, 0.025424562394618988, 0.07090727984905243, -0.057595450431108475, -0.10164349526166916, 0.06067253649234772, 0.015708057209849358, -0.1972588747739792, 0.007548294495791197, 0.17712996900081635, -0.10420889407396317, 0.09745754301548004, 0.048501528799533844, -0.012951982207596302, 0.0867827981710434, -0.024721821770071983, -0.016682926565408707, -0.04852180927991867, -0.011212974786758423, -0.10143939405679703, 0.09892100840806961, 0.0876845121383667, -0.0517118014395237, 0.07436849176883698, -0.09508965909481049, -0.04068392515182495, 0.13103286921977997, -0.010057874955236912, -0.08450483530759811, -0.11667824536561966, -0.04081142693758011, 0.09684515744447708, -0.018041390925645828, -0.20185889303684235, -0.11639472097158432, -0.11752668023109436, -0.00014377340266946703, -0.03563340753316879, 0.061800602823495865, 0.02430674433708191, -0.02556120604276657, -0.008150683715939522, -0.17615078389644623, -0.06614746153354645, 0.13479791581630707, -0.10176112502813339, -0.07456064969301224 ]
null
null
peft
# Low-rank decomposition of [mitultiwari/mistral-7B-instruct-dpo](https://huggingface.co/mitultiwari/mistral-7B-instruct-dpo) using [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) as base Created using [LoRD](https://github.com/thomasgauthier/LoRD)
{"language": ["en"], "license": "apache-2.0", "library_name": "peft", "datasets": ["Anthropic/hh-rlhf"], "base_model": "mistralai/Mistral-7B-Instruct-v0.1"}
null
sethuiyer/mistral-anthropic-adapter-7b
[ "peft", "safetensors", "en", "dataset:Anthropic/hh-rlhf", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
2024-02-14T05:28:36+00:00
[]
[ "en" ]
TAGS #peft #safetensors #en #dataset-Anthropic/hh-rlhf #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us
# Low-rank decomposition of mitultiwari/mistral-7B-instruct-dpo using mistralai/Mistral-7B-Instruct-v0.1 as base Created using LoRD
[ "# Low-rank decomposition of mitultiwari/mistral-7B-instruct-dpo using mistralai/Mistral-7B-Instruct-v0.1 as base\n\nCreated using LoRD" ]
[ "TAGS\n#peft #safetensors #en #dataset-Anthropic/hh-rlhf #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us \n", "# Low-rank decomposition of mitultiwari/mistral-7B-instruct-dpo using mistralai/Mistral-7B-Instruct-v0.1 as base\n\nCreated using LoRD" ]
[ 56, 45 ]
[ "passage: TAGS\n#peft #safetensors #en #dataset-Anthropic/hh-rlhf #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us \n# Low-rank decomposition of mitultiwari/mistral-7B-instruct-dpo using mistralai/Mistral-7B-Instruct-v0.1 as base\n\nCreated using LoRD" ]
[ -0.13759690523147583, 0.05299929529428482, -0.004872900899499655, 0.09093263000249863, 0.02692016027867794, 0.008257756009697914, 0.1018698588013649, 0.0918617695569992, 0.10473518073558807, 0.030145375058054924, 0.10730905085802078, 0.12388988584280014, -0.005815388634800911, 0.07755830138921738, -0.05574309453368187, -0.11595471948385239, 0.0892639011144638, -0.03751605376601219, -0.019192077219486237, 0.06720396131277084, 0.11261069774627686, -0.023041801527142525, 0.05783141031861305, -0.07936835289001465, -0.003003827529028058, 0.008900638669729233, -0.03562235087156296, 0.00001636005617910996, 0.07417403906583786, -0.0014713369309902191, 0.06900623440742493, 0.043620288372039795, 0.09082892537117004, -0.09212777018547058, 0.032477233558893204, 0.04387183114886284, -0.016310878098011017, 0.08954259753227234, 0.02593962289392948, 0.03767186403274536, 0.03144349157810211, -0.001967576565220952, -0.05678367242217064, 0.008432640694081783, -0.05055118724703789, -0.16513293981552124, -0.1377221941947937, 0.089961476624012, 0.10774687677621841, 0.068891741335392, 0.05433711037039757, 0.13185755908489227, 0.005833439063280821, 0.05584040284156799, 0.17979730665683746, -0.16446612775325775, -0.051376134157180786, 0.12558405101299286, -0.03337819129228592, 0.10546629130840302, -0.0017792866565287113, -0.025230977684259415, 0.07942547649145126, -0.01542119961231947, -0.0821857824921608, -0.020693138241767883, 0.08712272346019745, 0.0011680983006954193, -0.10511051118373871, 0.02204240672290325, 0.22662831842899323, 0.02827923186123371, -0.034326888620853424, 0.10042945295572281, -0.11215294152498245, 0.036646436899900436, -0.015466542914509773, -0.0034065910149365664, 0.0005352834705263376, 0.10179829597473145, 0.17878973484039307, 0.008664038963615894, -0.061926405876874924, -0.0960734412074089, -0.05716455727815628, 0.08955951780080795, 0.04140820354223251, 0.06457363069057465, -0.041861582547426224, 0.06993669271469116, -0.033124472945928574, -0.08684155344963074, -0.039543185383081436, -0.08903230726718903, 0.10795629769563675, 0.003646567929536104, -0.015641286969184875, 0.02683686837553978, 0.12540172040462494, 0.1968090832233429, -0.11211618781089783, 0.01912914402782917, 0.04323403537273407, 0.07237277179956436, -0.03217898681759834, -0.08743134140968323, -0.13101255893707275, -0.07331176102161407, 0.12783849239349365, 0.06239566206932068, 0.13018785417079926, 0.031335413455963135, -0.02604043111205101, -0.01407446525990963, 0.03914722427725792, 0.04279327765107155, 0.030794329941272736, 0.005609526298940182, -0.03554060682654381, -0.027650583535432816, 0.22316251695156097, -0.09799040108919144, -0.07680895924568176, 0.018664613366127014, -0.003160656662657857, 0.005290392320603132, 0.08787963539361954, -0.00955454632639885, 0.03834817558526993, -0.01979890465736389, -0.05118758976459503, -0.007414689287543297, -0.023136666044592857, -0.058778032660484314, 0.013457697816193104, 0.011598754674196243, 0.03211122378706932, -0.1267014741897583, -0.24200282990932465, 0.034235768020153046, 0.08813384920358658, -0.05859556794166565, 0.023736361414194107, 0.01568097248673439, -0.011594487354159355, -0.04172768443822861, -0.000344334461260587, -0.019599610939621925, -0.041578128933906555, 0.05336408689618111, -0.026798078790307045, 0.03853576257824898, -0.23013770580291748, 0.026421325281262398, -0.11673947423696518, 0.08022259175777435, -0.11879464983940125, -0.016634773463010788, -0.09538578987121582, 0.13485001027584076, -0.13390891253948212, -0.022014636546373367, -0.0768919363617897, -0.03194534033536911, 0.08900181204080582, 0.11243947595357895, -0.17449228465557098, 0.040574535727500916, -0.02141454815864563, -0.15737009048461914, -0.1038573756814003, 0.081140898168087, 0.023749392479658127, 0.11296488344669342, 0.0043585579842329025, 0.13388076424598694, 0.06892659515142441, -0.032909538596868515, 0.04359288886189461, 0.09028695523738861, 0.03089216724038124, -0.080556720495224, 0.08465210348367691, -0.004257647320628166, -0.16673412919044495, 0.034597091376781464, -0.1621716320514679, 0.03599003329873085, -0.0030308726709336042, -0.10566292703151703, -0.06735700368881226, -0.06674564629793167, 0.033960241824388504, -0.011213992722332478, 0.04841451719403267, 0.004883856512606144, 0.0270747821778059, 0.030106693506240845, 0.14439792931079865, -0.018888160586357117, 0.01304903905838728, -0.009706511162221432, 0.17745837569236755, -0.10954131931066513, -0.0019986398983746767, -0.12833596765995026, 0.03845740854740143, -0.011293292045593262, 0.01853727363049984, -0.05327063798904419, 0.006241946015506983, 0.07877975702285767, 0.06451180577278137, -0.03754199668765068, -0.0191163532435894, 0.04356619343161583, 0.04391026124358177, -0.044098418205976486, -0.16852369904518127, 0.0029724547639489174, -0.0904802680015564, 0.079241082072258, -0.07459364086389542, 0.019068673253059387, -0.04475555941462517, 0.0589892715215683, -0.00838264636695385, 0.04404814913868904, 0.03087768517434597, -0.0168947521597147, 0.00008276040898635983, -0.0610906220972538, 0.07530207931995392, 0.010000730864703655, -0.08076804131269455, -0.02267816849052906, -0.011151548475027084, 0.07649464160203934, 0.11266355961561203, 0.01534714549779892, 0.027605179697275162, -0.06816139072179794, -0.038016222417354584, -0.028567375615239143, 0.0655948668718338, -0.0181654654443264, -0.03797096014022827, -0.02754935808479786, 0.02371056005358696, -0.07146097719669342, -0.015019568614661694, -0.04220312088727951, -0.041587959975004196, -0.0720105916261673, 0.0666835606098175, 0.06679216772317886, -0.22589607536792755, 0.12429767847061157, 0.30820930004119873, -0.08976538479328156, 0.02750038355588913, -0.05554885044693947, -0.05037684738636017, 0.006843850947916508, 0.11696070432662964, -0.03854956850409508, 0.09878702461719513, -0.012776438146829605, 0.0888906717300415, 0.04747821390628815, -0.027392800897359848, 0.024549858644604683, -0.09531569480895996, -0.032039787620306015, -0.052627742290496826, -0.026335934177041054, -0.09708204865455627, 0.06118299439549446, -0.06428892910480499, 0.07131531089544296, -0.047770969569683075, -0.12519410252571106, 0.0693974643945694, 0.018534714356064796, -0.035240814089775085, 0.14157865941524506, -0.1727985441684723, -0.02098681777715683, -0.08198569715023041, 0.06915494054555893, -0.06359317153692245, -0.017574846744537354, 0.04551075026392937, -0.08140049874782562, -0.06464695930480957, -0.11038799583911896, -0.048744071274995804, 0.04215327277779579, -0.02944239415228367, 0.10375358909368515, 0.007800104562193155, 0.04445992037653923, -0.12561936676502228, 0.01644637994468212, -0.0006457223789766431, -0.005303644109517336, 0.09425955265760422, -0.06470958143472672, -0.021768352016806602, 0.03621232509613037, 0.038856543600559235, -0.008146743290126324, 0.03901360556483269, 0.21750938892364502, -0.000759475864470005, 0.07796861231327057, 0.1627214401960373, -0.0039532370865345, 0.05680285394191742, 0.17880317568778992, 0.035213205963373184, -0.0796700268983841, 0.020811257883906364, -0.03909270092844963, -0.03564925491809845, -0.18131040036678314, -0.05370562896132469, -0.05288252234458923, -0.03926042839884758, 0.01568850874900818, 0.08402141183614731, -0.007478535640984774, 0.0948074534535408, -0.07509958744049072, 0.01409641932696104, 0.03476845100522041, 0.014714458025991917, -0.05215730518102646, -0.011652087792754173, 0.02234405279159546, -0.07327008247375488, 0.030377808958292007, 0.0805359035730362, 0.12668050825595856, 0.2211688607931137, -0.001280140015296638, 0.04251645877957344, 0.06677795946598053, 0.19806963205337524, -0.0005931621417403221, 0.1327390819787979, -0.08419541269540787, 0.02119448594748974, -0.06612509489059448, -0.08517679572105408, -0.01809958554804325, 0.052820075303316116, -0.17074225842952728, 0.09403382241725922, 0.08860819041728973, 0.07314416766166687, 0.061826687306165695, 0.21958492696285248, -0.010627517476677895, -0.19128602743148804, -0.06991364061832428, 0.06914517283439636, 0.11951388418674469, 0.00393424928188324, 0.03592722862958908, 0.04396898299455643, 0.09779959172010422, 0.011055190116167068, -0.019713474437594414, 0.030565161257982254, 0.09845463931560516, 0.0007621849072165787, 0.007615848444402218, 0.11740858107805252, 0.010280536487698555, 0.03130316734313965, -0.178892120718956, 0.1951088160276413, 0.03042522631585598, 0.034639302641153336, -0.0021451411303132772, 0.010455919429659843, 0.09630517661571503, 0.15742997825145721, 0.11187989264726639, 0.03514024615287781, -0.07961990684270859, -0.0038325395435094833, -0.1510074883699417, 0.028935959562659264, -0.04322073981165886, 0.024703625589609146, -0.03035692498087883, -0.03800182417035103, 0.0013269168557599187, 0.011494246311485767, 0.06780609488487244, -0.17568983137607574, -0.03524033725261688, 0.04867742583155632, 0.0034973700530827045, -0.06225591525435448, -0.08392069488763809, -0.03658345714211464, -0.04994563013315201, 0.03540705144405365, -0.06812143325805664, -0.08729943633079529, -0.06908766180276871, -0.05603660270571709, 0.10212581604719162, -0.05431608483195305, -0.0016594920307397842, -0.0159812793135643, -0.07156945765018463, -0.023774253204464912, -0.15069615840911865, 0.1017337441444397, -0.1113123670220375, -0.05151927098631859, -0.008506519719958305, 0.02049342729151249, -0.008581697009503841, -0.010141718201339245, 0.007765148300677538, -0.019543204456567764, -0.02809409610927105, -0.07566729933023453, -0.05406763032078743, 0.14598721265792847, 0.0015752296894788742, -0.01590058207511902, -0.13116896152496338, -0.06890469789505005, -0.013202046044170856, -0.03558075428009033, 0.04246030002832413, 0.18514522910118103, -0.03748204559087753, 0.060226112604141235, 0.26428869366645813, -0.02923618257045746, -0.23706479370594025, -0.0550583153963089, -0.06481736153364182, -0.05565187707543373, -0.011654173023998737, -0.08177946507930756, 0.10958683490753174, 0.18303583562374115, -0.032171547412872314, 0.07355006039142609, -0.2343246042728424, -0.036599352955818176, 0.16883955895900726, 0.14750346541404724, 0.23887500166893005, -0.125074565410614, -0.036712560802698135, -0.0708547830581665, -0.16149942576885223, -0.03199596703052521, -0.16455984115600586, 0.01999497599899769, -0.05225362628698349, -0.05076408013701439, -0.030830640345811844, -0.026099354028701782, 0.18570590019226074, -0.002360994229093194, 0.11037330329418182, -0.06228654086589813, 0.034380581229925156, 0.08005043119192123, -0.024482399225234985, 0.13634467124938965, -0.07245315611362457, 0.080415740609169, 0.025840740650892258, 0.04212212935090065, -0.019978100433945656, 0.036549005657434464, -0.03439583629369736, -0.08525547385215759, -0.001997176557779312, 0.06501898914575577, -0.040258876979351044, -0.010459557175636292, 0.15835165977478027, 0.06000983715057373, 0.012209047563374043, 0.06874565035104752, 0.00639274250715971, -0.10101153701543808, 0.07952328771352768, 0.007402083836495876, -0.020807815715670586, 0.11669296771287918, -0.14626377820968628, 0.0071364943869411945, 0.0709683746099472, 0.014117013663053513, 0.037903327494859695, 0.010884434916079044, 0.0023874198086559772, 0.00093220075359568, 0.0861586183309555, -0.07955168187618256, -0.14411073923110962, 0.01408532913774252, 0.0914871022105217, -0.018587134778499603, 0.11260665953159332, 0.14141784608364105, -0.04615425691008568, -0.008663352578878403, 0.02836482599377632, 0.08315575867891312, -0.1079137995839119, 0.12497927248477936, 0.046783845871686935, -0.0007406705408357084, -0.08640147000551224, 0.11128569394350052, 0.007577899377793074, 0.08445527404546738, -0.052170924842357635, 0.010263672098517418, -0.12228869646787643, -0.14869284629821777, -0.04621143266558647, -0.01593318022787571, 0.02834831364452839, -0.016261497512459755, -0.07590480148792267, -0.08941546827554703, -0.025492195039987564, -0.03690246120095253, 0.0709000751376152, -0.0326535701751709, 0.016668865457177162, -0.08717566728591919, 0.013005424290895462, 0.0552615225315094, -0.010584060102701187, 0.06239188835024834, -0.10744065046310425, -0.13706687092781067, -0.08655484765768051, 0.0026887357234954834, -0.006199868395924568, 0.03894446790218353, -0.0840492993593216, 0.005434500053524971, -0.20825451612472534, 0.03650503233075142, -0.11699743568897247, 0.03662139177322388, -0.013283546082675457, -0.007641525939106941, 0.01274141389876604, 0.09419175982475281, -0.058407146483659744, 0.0220973901450634, -0.0009778743842616677, 0.06385807693004608, -0.04106556624174118, -0.04417159780859947, 0.03379391133785248, -0.026688845828175545, 0.07353562116622925, 0.07972311228513718, -0.03956526890397072, 0.052611637860536575, -0.2103593796491623, -0.04579317942261696, 0.07982667535543442, 0.04155159369111061, 0.025534411892294884, -0.06819696724414825, -0.05090191215276718, 0.010391855612397194, -0.05907970294356346, -0.015215796418488026, 0.18286728858947754, -0.06822504103183746, -0.032838717103004456, -0.10996701568365097, -0.01850122958421707, -0.01945674605667591, -0.06110094115138054, 0.1684117317199707, 0.04856642335653305, 0.11337339133024216, -0.01696195639669895, -0.053058378398418427, -0.09127533435821533, -0.012914049439132214, 0.013621069490909576, -0.06454940140247345, -0.1256653219461441, -0.023265602067112923, 0.0008617530111223459, -0.00994846597313881, 0.03354128077626228, -0.11635912954807281, -0.17700427770614624, -0.009492159821093082, -0.0022684098221361637, 0.046479325741529465, -0.0024092798121273518, 0.25205448269844055, 0.02956869639456272, 0.06570030748844147, -0.10028619319200516, 0.028010934591293335, 0.04127579182386398, 0.07530400156974792, 0.056438811123371124, 0.26687362790107727, 0.027087748050689697, 0.06064869835972786, 0.01966780051589012, -0.029163701459765434, 0.08041306585073471, 0.09900146722793579, 0.0687621459364891, -0.005434703081846237, 0.02084575779736042, 0.06471354514360428, 0.224714457988739, -0.05892936885356903, -0.027992093935608864, -0.05278882384300232, -0.037657689303159714, -0.06848057359457016, -0.10545863211154938, -0.056642379611730576, -0.1173894852399826, -0.01645674929022789, -0.055992159992456436, -0.1016378402709961, 0.04429622367024422, 0.032010044902563095, -0.0018966010538861156, 0.09526672959327698, 0.02343195676803589, -0.0055256616324186325, -0.037271227687597275, 0.009770775213837624, -0.06685537844896317, 0.015301265753805637, -0.1059308722615242, 0.06696517765522003, -0.034268490970134735, -0.008516605012118816, -0.030822357162833214, 0.008670301176607609, 0.04762741178274155, -0.025677086785435677, -0.056333672255277634, -0.059005264192819595, 0.029404662549495697, -0.08970657736063004, 0.19993814826011658, 0.05007237568497658, -0.011859459802508354, 0.04696821793913841, 0.026450498029589653, 0.0035240771248936653, -0.130678191781044, -0.09449882805347443, 0.11734950542449951, -0.006823176518082619, 0.021819863468408585, 0.0409279428422451, -0.056300949305295944, 0.05001292750239372, -0.00503426743671298, 0.1922963708639145, -0.07424388825893402, 0.031761981546878815, -0.025272101163864136, 0.00023547979071736336, -0.12790825963020325, 0.0626148208975792, 0.14390939474105835, -0.046534862369298935, -0.03849638253450394, -0.009335620328783989, -0.08064514398574829, 0.02178400196135044, -0.1514473706483841, -0.06369077414274216, -0.009949752129614353, -0.07450173050165176, -0.015824776142835617, 0.0704101100564003, -0.0022168122231960297, -0.056495774537324905, 0.02718152292072773, -0.01390236895531416, -0.10191751271486282, -0.07390782237052917, 0.014444049447774887, 0.019711513072252274, -0.029936106875538826, -0.09837576746940613, 0.02176644466817379, 0.18927273154258728, -0.029686378315091133, -0.08682643622159958, -0.12446403503417969, 0.060069236904382706, 0.031042316928505898, 0.12233036756515503, 0.033362552523612976, 0.008748235180974007, 0.060011714696884155, 0.015670286491513252, -0.14450083673000336, 0.1383456140756607, 0.023401537910103798, -0.0384480357170105, -0.01826828345656395, -0.07507412880659103, -0.06254354119300842, 0.08705417066812515, 0.029747098684310913, 0.005841407924890518, -0.03892076760530472, 0.1547187864780426, -0.09282850474119186, -0.07341229915618896, 0.07044905424118042, -0.1080414354801178, 0.12096656858921051, 0.03824339061975479, -0.04667679965496063, -0.021793780848383904, -0.06767211854457855, 0.10356058180332184, 0.05073978379368782, -0.0960116907954216, -0.02749154530465603, -0.0855085700750351, 0.02257617749273777, -0.047666035592556, 0.038000911474227905, -0.07094983011484146, -0.053518399596214294, -0.12755590677261353, -0.032119300216436386, -0.08093339949846268, 0.009617685340344906, 0.10012353956699371, 0.027800582349300385, 0.0068367538042366505, -0.1129172220826149, -0.05425906926393509, 0.03948701545596123, -0.047752831131219864, -0.06788530200719833 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Vietnamese This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_16_0 vi dataset. It achieves the following results on the evaluation set: - Loss: 0.7770 - Wer: 37.8024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.6043 | 33.0 | 500 | 0.9039 | 42.6408 | | 0.2836 | 66.0 | 1000 | 0.7761 | 38.3106 | | 0.1593 | 99.0 | 1500 | 0.7770 | 37.8024 | | 0.0835 | 133.0 | 2000 | 0.8019 | 37.8634 | | 0.0395 | 166.0 | 2500 | 0.8317 | 38.1582 | | 0.0217 | 199.0 | 3000 | 0.8563 | 38.2395 | | 0.0146 | 233.0 | 3500 | 0.8744 | 38.2801 | | 0.0107 | 266.0 | 4000 | 0.8893 | 38.4733 | | 0.0082 | 299.0 | 4500 | 0.9031 | 38.3310 | | 0.0065 | 333.0 | 5000 | 0.9155 | 38.4326 | | 0.0053 | 366.0 | 5500 | 0.9267 | 38.6156 | | 0.0044 | 399.0 | 6000 | 0.9381 | 38.7579 | | 0.0037 | 433.0 | 6500 | 0.9486 | 38.7782 | | 0.0032 | 466.0 | 7000 | 0.9580 | 39.0120 | | 0.0028 | 499.0 | 7500 | 0.9669 | 39.1441 | | 0.0025 | 533.0 | 8000 | 0.9747 | 39.1746 | | 0.0022 | 566.0 | 8500 | 0.9810 | 39.2864 | | 0.0021 | 599.0 | 9000 | 0.9866 | 39.2763 | | 0.002 | 633.0 | 9500 | 0.9899 | 39.3271 | | 0.0019 | 666.0 | 10000 | 0.9911 | 39.3271 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
{"language": ["vi"], "license": "apache-2.0", "tags": ["whisper-event", "generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_16_0"], "metrics": ["wer"], "base_model": "openai/whisper-base", "model-index": [{"name": "Whisper Base Vietnamese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "mozilla-foundation/common_voice_16_0 vi", "type": "mozilla-foundation/common_voice_16_0", "config": "vi", "split": "test", "args": "vi"}, "metrics": [{"type": "wer", "value": 37.80239886155723, "name": "Wer"}]}]}]}
automatic-speech-recognition
arun100/whisper-base-vi-1
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "vi", "dataset:mozilla-foundation/common_voice_16_0", "base_model:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-14T05:29:59+00:00
[]
[ "vi" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #vi #dataset-mozilla-foundation/common_voice_16_0 #base_model-openai/whisper-base #license-apache-2.0 #model-index #endpoints_compatible #region-us
Whisper Base Vietnamese ======================= This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common\_voice\_16\_0 vi dataset. It achieves the following results on the evaluation set: * Loss: 0.7770 * Wer: 37.8024 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-07 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 10000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.16.2.dev0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-07\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 10000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #vi #dataset-mozilla-foundation/common_voice_16_0 #base_model-openai/whisper-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-07\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 10000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ 99, 159, 4, 39 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #vi #dataset-mozilla-foundation/common_voice_16_0 #base_model-openai/whisper-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-07\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 10000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ -0.1251366138458252, 0.15249048173427582, -0.005340701900422573, 0.06958041340112686, 0.09827856719493866, 0.01460627093911171, 0.11167434602975845, 0.1491692215204239, -0.04285060614347458, 0.11258815973997116, 0.08657485991716385, 0.08202581107616425, 0.07720961421728134, 0.13796140253543854, -0.0219915471971035, -0.27517542243003845, 0.012200160883367062, -0.04520304501056671, -0.10359934717416763, 0.09776574373245239, 0.08128854632377625, -0.10918886959552765, 0.030887600034475327, -0.012289293110370636, -0.050909049808979034, -0.021291539072990417, -0.03902212902903557, -0.04811954125761986, 0.09937842935323715, 0.01809847168624401, 0.04313116893172264, 0.030418436974287033, 0.11095457524061203, -0.2501871585845947, 0.00487977871671319, 0.05947638675570488, 0.03701110556721687, 0.0570412203669548, 0.10210820287466049, -0.008089403621852398, 0.06421308219432831, -0.09767663478851318, 0.05360270291566849, 0.044427525252103806, -0.09549052268266678, -0.2640795111656189, -0.06821810454130173, 0.02364545688033104, 0.14456221461296082, 0.05996602028608322, -0.022235514596104622, 0.02955721877515316, -0.03941665589809418, 0.09223298728466034, 0.2076864093542099, -0.23606479167938232, -0.06759081780910492, -0.017575642094016075, 0.034236758947372437, 0.04945420101284981, -0.09868057072162628, -0.0062210652977228165, 0.007069406099617481, 0.015558258630335331, 0.1015036329627037, 0.008241222240030766, 0.031844280660152435, -0.007394139189273119, -0.13328610360622406, -0.048486217856407166, 0.11162156611680984, 0.06395889818668365, -0.027378251776099205, -0.1096779853105545, -0.04419519379734993, -0.14202424883842468, -0.05525646358728409, 0.026178868487477303, 0.030644411221146584, -0.0333726666867733, -0.042040396481752396, 0.011496667750179768, -0.04099031165242195, -0.08632899075746536, 0.060274701565504074, 0.13238927721977234, 0.04100838303565979, -0.02590954303741455, 0.02500036358833313, 0.09109600633382797, 0.050422266125679016, -0.1717483252286911, -0.012971719726920128, 0.03214172273874283, -0.10062840580940247, -0.0016393548576161265, -0.0067685930989682674, 0.011142149567604065, 0.05940217152237892, 0.13867899775505066, 0.004696414805948734, 0.0875331237912178, 0.030286086723208427, -0.0000828142583486624, -0.08634846657514572, 0.15528911352157593, -0.053917963057756424, -0.11769066005945206, -0.022406818345189095, 0.13511952757835388, 0.02581454999744892, -0.0119691276922822, -0.0613672249019146, 0.02112586237490177, 0.08271265774965286, 0.0704142153263092, 0.00263124518096447, 0.029904138296842575, -0.06652218103408813, -0.016102155670523643, 0.006680368911474943, -0.12948516011238098, 0.034528277814388275, 0.04961289465427399, -0.07246088981628418, -0.049764472991228104, -0.002409155946224928, 0.003259797813370824, -0.036517128348350525, 0.07201945036649704, -0.041994206607341766, -0.022282667458057404, -0.07001245766878128, -0.09136965125799179, 0.016663212329149246, -0.0366365872323513, -0.001134770456701517, -0.04542631655931473, -0.1341693252325058, -0.06171073392033577, 0.06184418499469757, -0.06884154677391052, -0.05976671725511551, -0.08054601401090622, -0.0846434235572815, 0.0440768226981163, -0.008239470422267914, 0.13176150619983673, -0.05439865216612816, 0.08779866993427277, 0.012580287642776966, 0.059577375650405884, 0.10731443762779236, 0.05434031039476395, -0.03151834383606911, 0.07592558860778809, -0.14905691146850586, 0.09924468398094177, -0.11314715445041656, 0.06991039961576462, -0.14300093054771423, -0.08964668214321136, 0.029225777834653854, -0.012540575116872787, 0.10967358946800232, 0.14750124514102936, -0.17906802892684937, -0.05631672218441963, 0.16989178955554962, -0.06458433717489243, -0.09155242145061493, 0.12435179203748703, -0.011668482795357704, -0.04883160442113876, 0.02560281753540039, 0.18517526984214783, 0.1259583681821823, -0.09233633428812027, 0.024343645200133324, -0.026100218296051025, 0.12031193822622299, 0.04209679737687111, 0.08965739607810974, -0.04435219615697861, 0.028551384806632996, 0.006029446609318256, -0.055959731340408325, 0.044089727103710175, -0.07920300960540771, -0.08318492025136948, -0.015015092678368092, -0.08205574750900269, 0.009427930228412151, 0.03791426494717598, -0.003504529595375061, -0.08407343178987503, -0.11840895563364029, -0.017808521166443825, 0.11454229056835175, -0.10095442831516266, 0.005043606739491224, -0.0801938846707344, 0.0707884281873703, -0.004659859463572502, 0.00009167996176984161, -0.1317339837551117, -0.019666798412799835, 0.04997033253312111, -0.07099602371454239, -0.0026985793374478817, -0.05535361170768738, 0.07996999472379684, 0.06957382708787918, -0.029793059453368187, -0.07459293305873871, -0.02615194208920002, -0.0035797643940895796, -0.0606771744787693, -0.23348696529865265, -0.07469446957111359, -0.03056916780769825, 0.14419487118721008, -0.20190994441509247, 0.01619960367679596, 0.02088131196796894, 0.11931725591421127, 0.02177790366113186, -0.0454973466694355, 0.029624508693814278, 0.03394662216305733, -0.010780662298202515, -0.08996060490608215, 0.02804950624704361, 0.00627230666577816, -0.10989397764205933, 0.007862572558224201, -0.14197121560573578, 0.07467956095933914, 0.06701637804508209, 0.0332118384540081, -0.05901655927300453, -0.05273031070828438, -0.049492303282022476, -0.05094156041741371, -0.00961086805909872, -0.004729322157800198, 0.15430013835430145, 0.019236383959650993, 0.09696166962385178, -0.07573705911636353, -0.04740460216999054, 0.026685431599617004, 0.00630541518330574, -0.005328324623405933, 0.15240569412708282, 0.039969686418771744, -0.05784919112920761, 0.07938625663518906, 0.061544571071863174, -0.04541243612766266, 0.12330301105976105, -0.07785370200872421, -0.07492846995592117, -0.0424492210149765, 0.04316501319408417, 0.03095356374979019, 0.11257295310497284, -0.15321093797683716, -0.011129067279398441, 0.027434740215539932, 0.007897983305156231, -0.00031917126034386456, -0.16673122346401215, -0.0026381248608231544, 0.038708288222551346, -0.08836016058921814, 0.0010922820074483752, -0.014188563451170921, -0.013069086708128452, 0.08463504910469055, -0.0010466225212439895, -0.07196355611085892, -0.028916267678141594, -0.04872940480709076, -0.07578875869512558, 0.17693953216075897, -0.1074737161397934, -0.1163136437535286, -0.10831712931394577, -0.013873687013983727, -0.012519165873527527, -0.004690890666097403, 0.02842826023697853, -0.08315741270780563, -0.05267002061009407, -0.0790850892663002, 0.016170278191566467, -0.002846837043762207, 0.03209284693002701, 0.04066222533583641, 0.0010462341597303748, 0.07698118686676025, -0.09801366925239563, 0.01220042072236538, -0.0036325689870864153, -0.026756254956126213, 0.0018397558014839888, 0.0340687595307827, 0.08666477352380753, 0.14409294724464417, 0.04910121485590935, 0.0270759966224432, -0.011932507157325745, 0.20035646855831146, -0.11207830160856247, 0.02382947877049446, 0.13031457364559174, -0.0028467304073274136, 0.05473965406417847, 0.17012476921081543, 0.03682323545217514, -0.09769896417856216, 0.010709237307310104, 0.022813700139522552, -0.017923684790730476, -0.2197759598493576, -0.03492162749171257, -0.055172525346279144, -0.00006538334127981216, 0.10481389611959457, 0.03530752658843994, -0.03793192654848099, 0.025787554681301117, -0.019902141764760017, -0.02568068727850914, 0.04977743327617645, 0.056177109479904175, 0.05812197923660278, 0.03036353550851345, 0.10233158618211746, -0.0027842007111757994, -0.022125979885458946, 0.02669241838157177, -0.004159585572779179, 0.2265806794166565, -0.025159385055303574, 0.19532997906208038, 0.03447454795241356, 0.12958702445030212, -0.01910640485584736, 0.05345287173986435, 0.002004249719902873, 0.011411326937377453, 0.015245738439261913, -0.05565670505166054, -0.028251109644770622, 0.024400563910603523, 0.05165542662143707, 0.034241918474435806, -0.09351222962141037, 0.04720143973827362, 0.04026562348008156, 0.32577404379844666, 0.0824570581316948, -0.27848541736602783, -0.07920815050601959, 0.02327808178961277, -0.06664706021547318, -0.04667873680591583, 0.026681991294026375, 0.14149883389472961, -0.06171141564846039, 0.0694841593503952, -0.06046230345964432, 0.07793285697698593, -0.07341277599334717, 0.009344245307147503, 0.08270813524723053, 0.10842511802911758, 0.003565539140254259, 0.055535875260829926, -0.23159049451351166, 0.26202118396759033, -0.005196268670260906, 0.0752813071012497, -0.050096750259399414, 0.0457201711833477, 0.020967580378055573, -0.014421522617340088, 0.10672876983880997, -0.005407834425568581, -0.09004838019609451, -0.14260666072368622, -0.11278298497200012, 0.015094812028110027, 0.12637904286384583, -0.06291452050209045, 0.11434082686901093, -0.03810261934995651, -0.05131429061293602, 0.030679190531373024, -0.09272681921720505, -0.08880874514579773, -0.08694421499967575, 0.03136521577835083, -0.005924826487898827, 0.04478849098086357, -0.09137561172246933, -0.0784536823630333, -0.0493578165769577, 0.13782955706119537, -0.11192060261964798, -0.04473922401666641, -0.13235965371131897, 0.045726485550403595, 0.17101073265075684, -0.06763746589422226, 0.05234771966934204, 0.012979581952095032, 0.11951325833797455, 0.029776938259601593, -0.015019961632788181, 0.10105936974287033, -0.09120315313339233, -0.21402134001255035, -0.05690618231892586, 0.17518384754657745, 0.02374933660030365, 0.05659235641360283, -0.014817302115261555, 0.020303351804614067, -0.0007907797116786242, -0.08003291487693787, 0.06273956596851349, 0.03949781879782677, 0.005619808565825224, 0.0330369658768177, -0.024106886237859726, 0.0070199319161474705, -0.06975828856229782, -0.040972329676151276, 0.08964063972234726, 0.27409639954566956, -0.08032508939504623, 0.05253913998603821, 0.04559571295976639, -0.06686708331108093, -0.16930249333381653, -0.03251047804951668, 0.10972779244184494, 0.040037401020526886, -0.005076079163700342, -0.18751822412014008, 0.03346794471144676, 0.05589161068201065, -0.030392536893486977, 0.0815022885799408, -0.3390236496925354, -0.13715122640132904, 0.08297685533761978, 0.09304454177618027, -0.02077726647257805, -0.160582035779953, -0.07230820506811142, -0.009541885927319527, -0.0449950136244297, 0.028987601399421692, -0.025121105834841728, 0.11217395216226578, 0.0019237601663917303, 0.013006148859858513, 0.029704326763749123, -0.05476732552051544, 0.15428763628005981, -0.0012478576973080635, 0.053982894867658615, -0.0335647352039814, 0.031878430396318436, 0.00745457923039794, -0.07222682237625122, 0.012058903463184834, -0.09660937637090683, 0.04472590237855911, -0.12191572040319443, -0.02419928088784218, -0.0686025470495224, 0.014456602744758129, -0.0500505156815052, -0.03103248029947281, 0.0006365092704072595, 0.05167081579566002, 0.09776628762483597, 0.014011912047863007, 0.08875293284654617, -0.040298670530319214, 0.0940726101398468, 0.13969644904136658, 0.10528133809566498, 0.032365769147872925, -0.0711423009634018, 0.004399855155497789, 0.005440800450742245, 0.030305270105600357, -0.12307456135749817, 0.045945338904857635, 0.14032471179962158, 0.04243728518486023, 0.1280033141374588, 0.03941408172249794, -0.06835450977087021, -0.009651970118284225, 0.05406685173511505, -0.09073230624198914, -0.1705477088689804, -0.0064731924794614315, 0.014651685953140259, -0.13050462305545807, 0.0006211870349943638, 0.11321014165878296, -0.030347930267453194, -0.00014592058141715825, 0.008367586880922318, 0.059986550360918045, -0.014760167337954044, 0.23271971940994263, 0.024417055770754814, 0.09386007487773895, -0.09535910189151764, 0.0865468978881836, 0.042631857097148895, -0.08413656055927277, 0.03857797756791115, 0.11127512156963348, -0.06346992403268814, -0.021962201222777367, 0.04123072326183319, 0.08311950415372849, 0.06878657639026642, -0.02909811958670616, -0.12281070649623871, -0.14000055193901062, 0.08182479441165924, 0.07535579055547714, 0.02386203221976757, 0.01734902150928974, -0.01481300126761198, 0.02563009411096573, -0.0805925726890564, 0.13705147802829742, 0.10072258859872818, 0.05514530837535858, -0.12233161181211472, 0.11493943631649017, -0.009477593004703522, 0.004543921444565058, -0.004732752218842506, 0.016427379101514816, -0.1082371398806572, 0.011361733078956604, -0.12415578216314316, 0.011838131584227085, -0.05065798759460449, 0.0035885742399841547, -0.0014909093733876944, -0.05735725909471512, -0.04222027212381363, 0.026211896911263466, -0.095058873295784, -0.053498800843954086, -0.03026510961353779, 0.05880312994122505, -0.09308623522520065, -0.04269978776574135, 0.02684900164604187, -0.13127270340919495, 0.10328913480043411, 0.03043644316494465, 0.01840420812368393, 0.010528238490223885, -0.08799158036708832, 0.01415739394724369, 0.02227688953280449, 0.014905671589076519, 0.02485545538365841, -0.16259227693080902, -0.01742330938577652, -0.04164382815361023, -0.013287750072777271, -0.024368226528167725, 0.02912282757461071, -0.11720411479473114, 0.010050157085061073, -0.032918043434619904, -0.03723318129777908, -0.04254257306456566, 0.04992000386118889, 0.0694635733962059, 0.01116875745356083, 0.1370263397693634, -0.07830869406461716, 0.06782026588916779, -0.22642870247364044, 0.00024198245955631137, -0.006496794521808624, -0.0674513652920723, -0.06943261623382568, -0.016397835686802864, 0.10818351805210114, -0.06482009589672089, 0.07330288738012314, -0.030724236741662025, 0.048156749457120895, 0.0189790278673172, -0.07600104063749313, 0.0352480486035347, 0.06401047855615616, 0.1545703113079071, 0.028764262795448303, -0.021300286054611206, 0.06547520309686661, -0.02006717026233673, 0.06022460758686066, 0.10359318554401398, 0.12011435627937317, 0.14890903234481812, 0.08400034159421921, 0.0586606003344059, 0.08421485871076584, -0.13469375669956207, -0.15482665598392487, 0.1295362114906311, -0.04837821051478386, 0.14073513448238373, -0.030895277857780457, 0.18412891030311584, 0.09064271301031113, -0.18851792812347412, 0.06084304302930832, -0.028493031859397888, -0.0945853665471077, -0.10313677042722702, -0.10824097692966461, -0.08215343207120895, -0.1406184583902359, 0.007249102927744389, -0.10960390418767929, 0.05908103659749031, 0.037605877965688705, 0.0348530039191246, 0.03190172463655472, 0.10656216740608215, 0.06282341480255127, 0.015607920475304127, 0.10389415919780731, 0.023227408528327942, -0.018093416467308998, -0.002555870683863759, -0.1083921417593956, 0.03424813225865364, -0.013219477608799934, 0.046903714537620544, -0.032221537083387375, -0.0832744911313057, 0.05176185443997383, 0.013888872228562832, -0.10021395236253738, 0.026427049189805984, -0.0231553353369236, 0.03859346732497215, 0.09104137867689133, 0.042089976370334625, -0.012075291946530342, -0.01059051975607872, 0.22923485934734344, -0.09211617708206177, -0.06566185504198074, -0.118443064391613, 0.18055769801139832, -0.011305532418191433, 0.002283454407006502, 0.03174683451652527, -0.06477536261081696, -0.012753431685268879, 0.1457945853471756, 0.14811129868030548, -0.04350718483328819, -0.015141317620873451, 0.01042858511209488, -0.008362184278666973, -0.03203218802809715, 0.07805745303630829, 0.11431454122066498, 0.0380670428276062, -0.04683936387300491, -0.009683823212981224, -0.021594323217868805, -0.060123343020677567, -0.054787442088127136, 0.08370669186115265, 0.010547702200710773, 0.004839218221604824, -0.01264860201627016, 0.10233943909406662, -0.07496467977762222, -0.15313878655433655, 0.028054196387529373, -0.17732442915439606, -0.19164255261421204, -0.04732191935181618, 0.04307853803038597, 0.054664887487888336, 0.05241120979189873, 0.005077837500721216, -0.023197170346975327, 0.11366604268550873, -0.0039525325410068035, -0.03384769707918167, -0.0894944816827774, 0.06260112673044205, -0.12883828580379486, 0.20496638119220734, -0.026076972484588623, 0.008152664639055729, 0.11458005756139755, 0.03201807662844658, -0.11210966855287552, 0.036465246230363846, 0.09493692964315414, -0.11633361130952835, 0.057194456458091736, 0.17821474373340607, -0.045194707810878754, 0.13106079399585724, 0.03541671484708786, -0.07860378921031952, -0.00556520838290453, -0.02857605367898941, -0.05481836944818497, -0.061031524091959, -0.0031121850479394197, -0.04430973157286644, 0.14081302285194397, 0.20291709899902344, -0.07513608038425446, -0.004331720061600208, -0.038228146731853485, 0.009616350755095482, 0.022507330402731895, 0.11699846386909485, -0.02764544077217579, -0.25152677297592163, 0.014805435203015804, 0.00036927653127349913, 0.03800198435783386, -0.17904488742351532, -0.08159425109624863, 0.01469741016626358, -0.044014886021614075, -0.0770907998085022, 0.11975071579217911, 0.07463116198778152, 0.034314390271902084, -0.050966933369636536, -0.08699599653482437, -0.028299810364842415, 0.17632082104682922, -0.17181703448295593, -0.05849972367286682 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
hellomyoh/mistral_ft_test_v0.1
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T05:31:33+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.08389580249786377, 0.19830818474292755, -0.0013316317927092314, 0.02313883788883686, 0.11396584659814835, 0.01961737498641014, 0.053626976907253265, 0.14538456499576569, 0.0060051376931369305, 0.10656800121068954, 0.066679947078228, 0.09131570905447006, 0.09678101539611816, 0.20042605698108673, 0.04371999576687813, -0.17659740149974823, 0.010636410675942898, -0.06930278241634369, -0.010073255747556686, 0.11651819199323654, 0.141214057803154, -0.10151198506355286, 0.07627976685762405, -0.03319970890879631, -0.02870541252195835, -0.0070160143077373505, -0.07769215852022171, -0.05755697935819626, 0.07573003321886063, 0.054863471537828445, 0.04207949340343475, -0.0008347301045432687, 0.08447454124689102, -0.2674994468688965, 0.013753628358244896, 0.07452993094921112, 0.010659529827535152, 0.05990942195057869, 0.07833302766084671, -0.04036625102162361, 0.12881849706172943, -0.06320446729660034, 0.13035163283348083, 0.0906217098236084, -0.0681561604142189, -0.24378153681755066, -0.08239314705133438, 0.06505522131919861, 0.12533815205097198, 0.07694927603006363, -0.02823091857135296, 0.16422191262245178, -0.07247646898031235, 0.019290022552013397, 0.09481704235076904, -0.1151006743311882, -0.060644298791885376, 0.08318385481834412, 0.14101974666118622, 0.10340547561645508, -0.1255619376897812, -0.012289565056562424, 0.04275871813297272, 0.045979104936122894, 0.07389909774065018, 0.011339850723743439, 0.1143413558602333, 0.05629947781562805, -0.13526225090026855, -0.05700986459851265, 0.14547574520111084, 0.023872992023825645, -0.057064127177000046, -0.2138909548521042, -0.002902575535699725, -0.07730814069509506, -0.011685127392411232, -0.06846728920936584, 0.0291305985301733, -0.01194276288151741, 0.060226380825042725, -0.0496203787624836, -0.09797755628824234, -0.046314824372529984, 0.1015089675784111, 0.054820988327264786, 0.011354796588420868, -0.01489334274083376, 0.03576440364122391, 0.13432876765727997, 0.04213530570268631, -0.10012737661600113, -0.07065672427415848, -0.0701170489192009, -0.09620913118124008, -0.03947552293539047, 0.04272124543786049, 0.020167991518974304, 0.042202774435281754, 0.2283228635787964, 0.024096308276057243, 0.05459817871451378, 0.029667891561985016, 0.0026177873369306326, 0.03211980313062668, 0.1073630079627037, -0.041210614144802094, -0.188126802444458, -0.03292805701494217, 0.0931866466999054, -0.009821015410125256, -0.028658604249358177, -0.033444397151470184, 0.035014089196920395, 0.08379437029361725, 0.11821532249450684, 0.08875755965709686, -0.012828069739043713, -0.037612639367580414, -0.03493109717965126, 0.2115669697523117, -0.14141373336315155, 0.045799970626831055, -0.022097334265708923, -0.018195297569036484, -0.06905751675367355, 0.030103791505098343, 0.01831657998263836, -0.003142025787383318, 0.06966056674718857, -0.061253178864717484, -0.05794486775994301, -0.11518853157758713, -0.045523155480623245, 0.04711875319480896, -0.024105608463287354, -0.024469668045639992, -0.07765042781829834, -0.11219723522663116, -0.06417357176542282, 0.06612563133239746, -0.04156653955578804, -0.03974827378988266, 0.005308232270181179, -0.07131324708461761, 0.008387917652726173, 0.008993842639029026, 0.12122467905282974, -0.030063031241297722, 0.05833350867033005, -0.002476902212947607, 0.05916252359747887, 0.10643328726291656, 0.03227818012237549, -0.08492200076580048, 0.057466037571430206, -0.20633617043495178, 0.08371785283088684, -0.11420095711946487, 0.034276340156793594, -0.17048145830631256, -0.024183684960007668, 0.008447963744401932, 0.023597201332449913, 0.023726604878902435, 0.1338067352771759, -0.2097422182559967, -0.016196569427847862, 0.14133213460445404, -0.09649793803691864, -0.12422871589660645, 0.07990546524524689, -0.03459475561976433, 0.1747698187828064, 0.038475677371025085, -0.019652999937534332, 0.09909367561340332, -0.15559963881969452, -0.05852397903800011, -0.026064254343509674, -0.008927824907004833, 0.08823978155851364, 0.07542291283607483, -0.05844951793551445, 0.02285866066813469, 0.02562655322253704, -0.04727208614349365, -0.0268824752420187, -0.05256075784564018, -0.10127434879541397, -0.023140445351600647, -0.09642518311738968, 0.026515161618590355, 0.000058677000197349116, -0.07310442626476288, -0.028560271486639977, -0.17347893118858337, -0.02563360333442688, 0.10103316605091095, 0.004820956848561764, -0.007559072691947222, -0.08540112525224686, 0.022149885073304176, -0.05362366884946823, -0.006164622958749533, -0.16996455192565918, -0.03558015450835228, 0.051895126700401306, -0.14917676150798798, 0.015460150316357613, -0.07327745854854584, 0.07047311216592789, 0.02098717913031578, -0.05859505757689476, -0.03108096309006214, 0.0007694467785768211, 0.004292082041501999, -0.06229274719953537, -0.1903683841228485, -0.058886781334877014, -0.041500482708215714, 0.15720732510089874, -0.24841000139713287, 0.0300158578902483, 0.03247617185115814, 0.13185922801494598, 0.007058668415993452, -0.06344027817249298, 0.02096918225288391, -0.04676475748419762, -0.050621338188648224, -0.06898977607488632, -0.009901339188218117, -0.014539826661348343, -0.031393732875585556, 0.012980648316442966, -0.14970256388187408, -0.060514215379953384, 0.09452559798955917, 0.11224991828203201, -0.14555825293064117, 0.00204002158716321, -0.0460561066865921, -0.07002599537372589, -0.07487804442644119, -0.0761631652712822, 0.07739497721195221, 0.044650159776210785, 0.049250341951847076, -0.06317461282014847, -0.06234706938266754, 0.023210179060697556, 0.005524294450879097, -0.019023682922124863, 0.0948529988527298, 0.074309803545475, -0.09122881293296814, 0.07973480224609375, 0.08461450785398483, 0.04414684325456619, 0.086973637342453, 0.005991141777485609, -0.11396963149309158, -0.03062884695827961, 0.037754856050014496, 0.024159027263522148, 0.15351562201976776, -0.08692087233066559, 0.030462130904197693, 0.052177220582962036, -0.03854219615459442, 0.03157065063714981, -0.0923321321606636, 0.025362705811858177, 0.021495236083865166, -0.006555700208991766, 0.05864228308200836, -0.018769768998026848, -0.01403577346354723, 0.06336429715156555, 0.05677810311317444, 0.044270504266023636, 0.02595379762351513, -0.02093072421848774, -0.1278371512889862, 0.16537296772003174, -0.09028079360723495, -0.2540280222892761, -0.17074446380138397, 0.015454737469553947, 0.03706491366028786, -0.021728800609707832, 0.039588842540979385, -0.06286025792360306, -0.10237989574670792, -0.09417891502380371, 0.0029635571409016848, 0.023925531655550003, -0.058347854763269424, -0.0817074254155159, 0.060779985040426254, 0.04047083482146263, -0.13689260184764862, 0.0349188968539238, 0.06170675903558731, -0.03042641654610634, 0.0018567070364952087, 0.07321398705244064, 0.12743599712848663, 0.14838241040706635, -0.006730219814926386, -0.012446845881640911, 0.035035960376262665, 0.229813352227211, -0.1490442156791687, 0.10630457103252411, 0.14053207635879517, -0.021705523133277893, 0.06635113060474396, 0.1461038440465927, 0.023231739178299904, -0.07546708732843399, 0.04147516191005707, 0.04027445614337921, -0.04228919371962547, -0.2589097023010254, -0.05694316700100899, -0.00946022942662239, -0.07043391466140747, 0.09718906134366989, 0.09238530695438385, 0.11972260475158691, 0.0337289460003376, -0.05568677559494972, -0.025771914049983025, -0.003401360474526882, 0.114128477871418, -0.027640055865049362, -0.004564122296869755, 0.07965842634439468, -0.05878787487745285, 0.011684526689350605, 0.09941446036100388, 0.019347423687577248, 0.17601320147514343, 0.02533329278230667, 0.10681075602769852, 0.06725578010082245, 0.09347675740718842, -0.0015635732561349869, 0.034774236381053925, 0.05337131395936012, 0.022044572979211807, 0.010453542694449425, -0.09408048540353775, -0.012431944720447063, 0.13713060319423676, 0.019816776737570763, 0.009031654335558414, 0.008926562033593655, -0.01010479498654604, 0.03131420537829399, 0.20501568913459778, 0.0009575071162544191, -0.22537250816822052, -0.09500737488269806, 0.059459153562784195, -0.06931101530790329, -0.143676295876503, -0.02094252221286297, 0.030270220711827278, -0.17292405664920807, 0.016790566965937614, -0.0316389761865139, 0.09112390875816345, -0.07145322859287262, -0.028050832450389862, 0.06891903281211853, 0.07569212466478348, -0.012108199298381805, 0.07973295450210571, -0.19069278240203857, 0.12254468351602554, 0.03037673607468605, 0.08605273067951202, -0.11708726733922958, 0.07849059253931046, -0.0019813794642686844, -0.014807495288550854, 0.17999744415283203, -0.014062200672924519, -0.0586031936109066, -0.08878950774669647, -0.08704045414924622, -0.011727320961654186, 0.10361312329769135, -0.09322915226221085, 0.09586969763040543, -0.02775636687874794, -0.03705112263560295, 0.012418309226632118, -0.10469507426023483, -0.1636953055858612, -0.18679304420948029, 0.06244563311338425, -0.07802703976631165, 0.012347841635346413, -0.11227322369813919, -0.06334327906370163, -0.01575082167983055, 0.23160123825073242, -0.16648635268211365, -0.07049825042486191, -0.1498587429523468, -0.03997112438082695, 0.17463743686676025, -0.042160745710134506, 0.06849376112222672, -0.021383514627814293, 0.1873992383480072, -0.008081548847258091, -0.013158116489648819, 0.06569221615791321, -0.09637628495693207, -0.16879262030124664, -0.05748843029141426, 0.14160962402820587, 0.10863390564918518, 0.05731578543782234, -0.0038195757661014795, 0.013171887956559658, -0.03383830562233925, -0.09896382689476013, 0.013824623078107834, 0.13817466795444489, 0.0034514935687184334, 0.00682973163202405, -0.03995988517999649, -0.07027145475149155, -0.05825701728463173, -0.07912654429674149, 0.057147104293107986, 0.187900573015213, -0.09512355923652649, 0.1602867990732193, 0.12431421875953674, -0.06468851119279861, -0.2306901067495346, 0.03996593505144119, 0.04701630026102066, 0.007666614837944508, 0.022401191294193268, -0.19138796627521515, 0.09788824617862701, 0.0009011493530124426, -0.06807263940572739, 0.14616990089416504, -0.16564498841762543, -0.1461436152458191, 0.08002161979675293, 0.025075770914554596, -0.22560662031173706, -0.14821304380893707, -0.1037549376487732, -0.03735695406794548, -0.13707835972309113, 0.048581719398498535, 0.02614329755306244, 0.019834673032164574, 0.025222565978765488, 0.005338077899068594, 0.029657263308763504, -0.07272187620401382, 0.1870686560869217, -0.020297454670071602, 0.0072362530045211315, -0.050640691071748734, -0.04617878794670105, 0.09227550774812698, -0.06150037795305252, 0.11741586774587631, 0.018679620698094368, 0.018796883523464203, -0.1431548148393631, -0.049209367483854294, -0.060803934931755066, 0.04456847906112671, -0.07284719496965408, -0.09393193572759628, -0.04137463867664337, 0.08888561278581619, 0.07211937010288239, -0.032792408019304276, -0.0027768779546022415, -0.07569456845521927, 0.09405932575464249, 0.184477761387825, 0.17357055842876434, 0.009977072477340698, -0.07020942866802216, 0.024555526673793793, -0.042279548943042755, 0.03349342197179794, -0.24652716517448425, 0.03456863760948181, 0.066053606569767, 0.03803660348057747, 0.08509242534637451, -0.016836483031511307, -0.1781480610370636, -0.04086102172732353, 0.08498652279376984, -0.06206206604838371, -0.19876568019390106, -0.02703288197517395, 0.08424776047468185, -0.20383712649345398, -0.032998621463775635, 0.041543323546648026, -0.03834589570760727, -0.02396267279982567, -0.002415500348433852, 0.06396626681089401, -0.008327016606926918, 0.12156640738248825, 0.06747189164161682, 0.10266115516424179, -0.09284433722496033, 0.08920657634735107, 0.10416955500841141, -0.09140542894601822, 0.03545991703867912, 0.10264154523611069, -0.05670900270342827, -0.04460543021559715, 0.033935222774744034, 0.05925208330154419, -0.028357384726405144, -0.06409841030836105, -0.000502707262057811, -0.0359574519097805, 0.04993389546871185, 0.08058220148086548, 0.036113787442445755, -0.01202210783958435, 0.06544706225395203, 0.028145326301455498, -0.11693570017814636, 0.10949387401342392, 0.04405685141682625, 0.04509059712290764, -0.07182393968105316, -0.012280966155230999, 0.015999672934412956, 0.032540347427129745, -0.019734015688300133, -0.014576527290046215, -0.03146412968635559, -0.007561005651950836, -0.1553635597229004, -0.02064543403685093, -0.06516171246767044, 0.006067827809602022, 0.022207623347640038, -0.03830232471227646, -0.012014663778245449, 0.01381110493093729, -0.07979435473680496, -0.07571027427911758, -0.01700955256819725, 0.08539021760225296, -0.1381402313709259, 0.006627439055591822, 0.07182712107896805, -0.10980239510536194, 0.07347989827394485, -0.0048679932951927185, 0.017079560086131096, 0.010923396795988083, -0.11654401570558548, 0.04386281594634056, -0.005810429807752371, 0.01551580335944891, 0.022556742653250694, -0.171111062169075, 0.011553828604519367, -0.038553636521101, -0.03114982508122921, 0.011926400475203991, -0.025060230866074562, -0.11875922232866287, 0.08676479011774063, -0.028097305446863174, -0.037512701004743576, -0.03292486071586609, 0.06296087801456451, 0.08736220002174377, -0.011740099638700485, 0.09667140990495682, -0.025766119360923767, 0.04818311333656311, -0.1756584197282791, -0.01910574547946453, -0.050167568027973175, 0.02537350542843342, -0.01759655587375164, -0.0070639788173139095, 0.055272240191698074, -0.004191063344478607, 0.20991376042366028, -0.03921036794781685, 0.1548677533864975, 0.05199402943253517, -0.009925156831741333, 0.010884369723498821, 0.05032730847597122, 0.06423956155776978, 0.031145188957452774, 0.00853167474269867, 0.04660189896821976, -0.004552975296974182, -0.020357951521873474, -0.13699717819690704, 0.02791593410074711, 0.16117429733276367, 0.061918217688798904, 0.0392887257039547, 0.03704594820737839, -0.1422400325536728, -0.09538721293210983, 0.10306388139724731, -0.0331864058971405, 0.014331420883536339, -0.08317886292934418, 0.17621558904647827, 0.12328410148620605, -0.1574767529964447, 0.0577850341796875, -0.07234696298837662, -0.05066767707467079, -0.1024852767586708, -0.11832084506750107, -0.06293155997991562, -0.06027044355869293, -0.004747506696730852, -0.042489297688007355, 0.05734556168317795, 0.026751231402158737, -0.003270963439717889, -0.006759525276720524, 0.12665949761867523, -0.0249644722789526, -0.004145825747400522, 0.04152364656329155, 0.0326087586581707, 0.019319625571370125, -0.05872373282909393, 0.017997145652770996, 0.018602589145302773, 0.022180357947945595, 0.06835069507360458, 0.0260987039655447, -0.059317342936992645, 0.044286735355854034, 0.00319746439345181, -0.11313364654779434, 0.018146557733416557, -0.00002245741598017048, -0.05020225793123245, 0.13557326793670654, 0.04076748713850975, 0.01548024732619524, -0.029270920902490616, 0.24342355132102966, -0.07199113070964813, -0.08681939542293549, -0.13965600728988647, 0.11511493474245071, -0.023563209921121597, 0.03755274787545204, 0.016542524099349976, -0.12659503519535065, 0.011511262506246567, 0.18531471490859985, 0.12824349105358124, 0.012459068559110165, -0.007656481582671404, 0.05736639350652695, -0.0007639875984750688, -0.05985576659440994, 0.05051197111606598, 0.0664999932050705, 0.16097788512706757, -0.09069112688302994, 0.0652846097946167, -0.008405503816902637, -0.0831485390663147, -0.027498632669448853, 0.11705785244703293, -0.022675158455967903, 0.02148384228348732, -0.03778035193681717, 0.11204422265291214, -0.052532415837049484, -0.2719486355781555, 0.02952493168413639, -0.09503202140331268, -0.13993041217327118, -0.02591860294342041, 0.041448429226875305, -0.03349510580301285, 0.01577647216618061, 0.06254769116640091, -0.045389387756586075, 0.18837277591228485, 0.025987716391682625, -0.08679025620222092, -0.07755549252033234, 0.05874146893620491, -0.08695939928293228, 0.2789687216281891, 0.003863075515255332, 0.04782010242342949, 0.12108923494815826, -0.03053574077785015, -0.18664880096912384, 0.014769754372537136, 0.11989909410476685, -0.09114406257867813, 0.07780203968286514, 0.18139931559562683, -0.005561648402363062, 0.12649618089199066, 0.04705416411161423, -0.03877115994691849, 0.03976387158036232, -0.02721380814909935, -0.03821522742509842, -0.12209630757570267, 0.05661242455244064, -0.0612691193819046, 0.15957388281822205, 0.1158948540687561, -0.05964287370443344, 0.001120698289014399, -0.06126941740512848, 0.06300627440214157, 0.014774397015571594, 0.12115653604269028, 0.018452486023306847, -0.2023056596517563, 0.05087360367178917, -0.03283824771642685, 0.08166342973709106, -0.254973828792572, -0.08186668157577515, 0.07622263580560684, -0.019022729247808456, -0.04275642707943916, 0.12311509251594543, 0.06101066991686821, 0.03676839917898178, -0.03853875398635864, -0.08537755906581879, -0.01412904355674982, 0.15376435220241547, -0.14123432338237762, -0.029574336484074593 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Tagalog This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs fil_ph dataset. It achieves the following results on the evaluation set: - Loss: 0.7222 - Wer: 30.8106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5804 | 38.0 | 500 | 0.7836 | 36.0478 | | 0.1934 | 76.0 | 1000 | 0.6861 | 31.5220 | | 0.0589 | 115.0 | 1500 | 0.7040 | 32.4415 | | 0.0251 | 153.0 | 2000 | 0.7222 | 30.8106 | | 0.0154 | 192.0 | 2500 | 0.7362 | 31.3593 | | 0.0109 | 230.0 | 3000 | 0.7470 | 31.7604 | | 0.0085 | 269.0 | 3500 | 0.7562 | 31.7112 | | 0.0071 | 307.0 | 4000 | 0.7630 | 31.9874 | | 0.0064 | 346.0 | 4500 | 0.7675 | 32.0064 | | 0.0061 | 384.0 | 5000 | 0.7692 | 32.0669 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["whisper-event", "generated_from_trainer"], "datasets": ["google/fleurs"], "metrics": ["wer"], "base_model": "openai/whisper-base", "model-index": [{"name": "Whisper Base Tagalog", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "google/fleurs fil_ph", "type": "google/fleurs", "config": "fil_ph", "split": "test", "args": "fil_ph"}, "metrics": [{"type": "wer", "value": 30.810565352304547, "name": "Wer"}]}]}]}
automatic-speech-recognition
arun100/whisper-base-tl-1
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:google/fleurs", "base_model:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-14T05:33:11+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #dataset-google/fleurs #base_model-openai/whisper-base #license-apache-2.0 #model-index #endpoints_compatible #region-us
Whisper Base Tagalog ==================== This model is a fine-tuned version of openai/whisper-base on the google/fleurs fil\_ph dataset. It achieves the following results on the evaluation set: * Loss: 0.7222 * Wer: 30.8106 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-06 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.16.2.dev0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #dataset-google/fleurs #base_model-openai/whisper-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ 86, 158, 4, 41 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #dataset-google/fleurs #base_model-openai/whisper-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ -0.13298195600509644, 0.17050312459468842, -0.0031544005032628775, 0.07111597806215286, 0.10432225465774536, 0.014577453956007957, 0.10374484956264496, 0.14659619331359863, -0.014070170000195503, 0.13120150566101074, 0.12225289642810822, 0.07009623944759369, 0.06871704757213593, 0.20273619890213013, -0.009088714607059956, -0.31139591336250305, 0.013696492649614811, -0.05845875293016434, -0.11805355548858643, 0.11027631908655167, 0.0708225667476654, -0.10372978448867798, 0.024885250255465508, -0.0249106977134943, -0.06757434457540512, -0.044721316546201706, -0.03241877630352974, -0.05951927229762077, 0.10357663035392761, 0.0080057792365551, 0.044253118336200714, 0.04164288565516472, 0.10463476181030273, -0.2747174799442291, 0.00883209053426981, 0.053611598908901215, 0.04438725858926773, 0.07185512781143188, 0.07414542138576508, -0.022473370656371117, 0.03400842100381851, -0.09366004914045334, 0.09063808619976044, 0.04820621386170387, -0.10442160815000534, -0.26267167925834656, -0.07927674055099487, 0.037957046180963516, 0.14570552110671997, 0.07168003916740417, -0.03265975043177605, 0.03270792216062546, -0.057796090841293335, 0.07122992724180222, 0.20511305332183838, -0.25452566146850586, -0.06451894342899323, -0.005811420269310474, 0.03503939509391785, 0.05651380121707916, -0.1084003895521164, -0.007097112946212292, 0.016064705327153206, 0.008240969851613045, 0.11196792125701904, 0.02264263667166233, 0.06795471906661987, 0.00014161366561893374, -0.13189931213855743, -0.049579378217458725, 0.09514827281236649, 0.08409003168344498, -0.024839922785758972, -0.14882642030715942, -0.028957949951291084, -0.18688012659549713, -0.05211178585886955, 0.005858256481587887, 0.03270682319998741, -0.02974901907145977, -0.09776439517736435, 0.01993374340236187, -0.04145375266671181, -0.09817741811275482, 0.058916300535202026, 0.1305878758430481, 0.03309362381696701, -0.039879921823740005, 0.03666151687502861, 0.09517836570739746, 0.0661725103855133, -0.1626979410648346, -0.016892632469534874, 0.0334407314658165, -0.13509601354599, -0.005329039413481951, -0.005369456950575113, 0.04251433536410332, 0.04525185376405716, 0.18135206401348114, 0.0050964984111487865, 0.10848335176706314, 0.04318433254957199, 0.014504581689834595, -0.07937635481357574, 0.15485523641109467, -0.05314350128173828, -0.11587651818990707, -0.042360443621873856, 0.13779863715171814, 0.009013528004288673, -0.023212803527712822, -0.0504143163561821, 0.028803545981645584, 0.07800507545471191, 0.06080944091081619, 0.007273812312632799, 0.03438757359981537, -0.07698559015989304, -0.010088108479976654, 0.003955147694796324, -0.11773204803466797, 0.04775300621986389, 0.036886561661958694, -0.057015515863895416, -0.06798895448446274, 0.006518988404422998, 0.013615339994430542, -0.007002555299550295, 0.09502679109573364, -0.05550581216812134, -0.03928924351930618, -0.06415733695030212, -0.06568839401006699, 0.01910361647605896, -0.07702690362930298, -0.010229780338704586, -0.050078216940164566, -0.12201321125030518, -0.07195986807346344, 0.06708068400621414, -0.07025226205587387, -0.08262062817811966, -0.104194775223732, -0.07043710350990295, 0.05624592304229736, -0.016318973153829575, 0.1303584724664688, -0.05295705422759056, 0.09899265319108963, -0.006638553459197283, 0.08325350284576416, 0.10291098803281784, 0.06207021698355675, -0.02909071184694767, 0.07249721139669418, -0.17908507585525513, 0.13020651042461395, -0.11461331695318222, 0.07747602462768555, -0.1628078669309616, -0.08357176184654236, -0.006037062034010887, -0.0005067808087915182, 0.09949000179767609, 0.15464726090431213, -0.18783779442310333, -0.07887396216392517, 0.19951175153255463, -0.06621880829334259, -0.09320779889822006, 0.12041880935430527, -0.024815445765852928, -0.013371272943913937, 0.022409511730074883, 0.19998879730701447, 0.10140597075223923, -0.08107808977365494, 0.012407537549734116, -0.04780269414186478, 0.09058649092912674, 0.03434525802731514, 0.08991505950689316, -0.06430160999298096, 0.022972814738750458, 0.0030856728553771973, -0.050373028963804245, 0.062208693474531174, -0.07464898377656937, -0.08281668275594711, -0.005979933310300112, -0.0793129950761795, 0.025791192427277565, 0.03431528061628342, 0.009760960005223751, -0.08271050453186035, -0.12929725646972656, -0.0192616768181324, 0.0968097373843193, -0.0965416207909584, 0.008023937232792377, -0.07514531910419464, 0.035992201417684555, 0.013443605974316597, 0.003764272201806307, -0.1359817087650299, -0.014834626577794552, 0.04420924931764603, -0.040092114359140396, 0.0030485158786177635, -0.07374151051044464, 0.08490049839019775, 0.03907961770892143, -0.04239165037870407, -0.07560765743255615, -0.02640976570546627, -0.0030107239726930857, -0.07332618534564972, -0.23724719882011414, -0.05251019820570946, -0.04581990838050842, 0.19122806191444397, -0.21318475902080536, 0.019686132669448853, 0.02495712786912918, 0.11788949370384216, 0.03913099318742752, -0.06812906265258789, 0.02523946389555931, 0.03264966979622841, -0.0015628896653652191, -0.10026351362466812, 0.03033374808728695, 0.00619739294052124, -0.13375194370746613, 0.012721380218863487, -0.13202334940433502, 0.051024388521909714, 0.08609429001808167, 0.07284992188215256, -0.09957189857959747, -0.08588804304599762, -0.05565455183386803, -0.0492074079811573, -0.02967948280274868, 0.011939503252506256, 0.18268157541751862, 0.038386233150959015, 0.09541404992341995, -0.060732390731573105, -0.05322911590337753, 0.02715351991355419, 0.014827997423708439, -0.015493771061301231, 0.15001429617404938, 0.03900715336203575, -0.04123203083872795, 0.09632448107004166, 0.06067495048046112, -0.03012518584728241, 0.12859690189361572, -0.07355840504169464, -0.08065830171108246, -0.029737744480371475, 0.050692711025476456, 0.04173032566905022, 0.10908772051334381, -0.11655440181493759, -0.009254783391952515, 0.020864639431238174, 0.019598837941884995, 0.0011596204712986946, -0.16713014245033264, -0.018534483388066292, 0.03806564584374428, -0.07986809313297272, -0.02747640386223793, -0.032959070056676865, -0.02263568341732025, 0.0769403725862503, 0.030063049867749214, -0.04809989407658577, -0.009872999042272568, -0.0331413671374321, -0.09590741991996765, 0.18801741302013397, -0.10039424896240234, -0.13316485285758972, -0.1117379367351532, 0.0015779266832396388, 0.030688980594277382, -0.0035574014764279127, 0.029059629887342453, -0.10457336902618408, -0.03387977555394173, -0.07804251462221146, 0.003939149435609579, -0.010723535902798176, 0.047079604119062424, 0.03475787118077278, 0.01802082359790802, 0.06645124405622482, -0.07881640642881393, 0.022200768813490868, -0.018096575513482094, -0.014855286106467247, 0.024612296372652054, 0.01687026023864746, 0.08712645620107651, 0.1611078828573227, 0.051401782780885696, 0.04175107553601265, -0.03398013114929199, 0.1756933480501175, -0.13217389583587646, 0.012141325511038303, 0.08661401271820068, -0.0003020776784978807, 0.05163627490401268, 0.1790018379688263, 0.028615999966859818, -0.10254738479852676, 0.03700823709368706, 0.024339964613318443, -0.028182609006762505, -0.21766333281993866, -0.022624360397458076, -0.04722963273525238, 0.000270441931206733, 0.13167577981948853, 0.04137253016233444, -0.02792578563094139, 0.036764517426490784, -0.005990084260702133, -0.03620620444417, 0.03642160817980766, 0.05585075914859772, 0.02332046441733837, 0.028637709096074104, 0.09958024322986603, -0.004931282717734575, -0.02651788480579853, 0.019459906965494156, 0.0024340704549103975, 0.2628239393234253, -0.011691867373883724, 0.19409967958927155, 0.02365320362150669, 0.1260831654071808, 0.008766038343310356, 0.052964258939027786, 0.024737119674682617, -0.0035964869894087315, 0.009885581210255623, -0.04640771076083183, -0.03901159390807152, 0.05705576390028, 0.08188283443450928, 0.02185564488172531, -0.08706287294626236, 0.05355530232191086, 0.034234419465065, 0.35321885347366333, 0.08747725933790207, -0.29290035367012024, -0.07831528037786484, 0.01841544732451439, -0.07753898203372955, -0.035185739398002625, 0.03245742991566658, 0.14071184396743774, -0.08578237891197205, 0.07014170289039612, -0.06941675394773483, 0.0777648538351059, -0.09141118079423904, -0.004080928396433592, 0.07562141865491867, 0.08016379177570343, -0.014603858813643456, 0.033219628036022186, -0.2368054986000061, 0.2918414771556854, -0.022251436486840248, 0.07624056935310364, -0.04343614727258682, 0.03695147857069969, 0.024011999368667603, -0.05134710296988487, 0.12956780195236206, -0.00638407189399004, -0.13317307829856873, -0.15411999821662903, -0.13335388898849487, 0.01581168733537197, 0.1291428804397583, -0.09998063743114471, 0.1099344864487648, -0.028349000960588455, -0.04577399417757988, 0.03847496211528778, -0.10958809405565262, -0.07868417352437973, -0.10635606199502945, 0.011934331618249416, -0.011089514009654522, 0.07747656852006912, -0.09799900650978088, -0.08248730003833771, -0.044421885162591934, 0.12483610212802887, -0.13479015231132507, -0.03443596139550209, -0.15304827690124512, 0.06331570446491241, 0.1699068248271942, -0.0727636069059372, 0.06680437922477722, 0.0248277485370636, 0.10789616405963898, 0.0180806964635849, -0.001056356937624514, 0.12092036008834839, -0.07630334049463272, -0.21887245774269104, -0.07328048348426819, 0.17088769376277924, 0.04041317105293274, 0.06601377576589584, -0.025635916739702225, 0.04268783703446388, 0.007750277873128653, -0.08675682544708252, 0.10091444849967957, 0.03487015515565872, -0.004633970092982054, 0.027953390032052994, -0.006510606966912746, 0.014435702934861183, -0.07254238426685333, -0.05166466534137726, 0.1228817030787468, 0.2867404520511627, -0.10593516379594803, 0.07969971001148224, 0.06130605936050415, -0.035882625728845596, -0.1787375509738922, -0.00398044241592288, 0.12541159987449646, 0.04153887927532196, -0.0102388896048069, -0.221268430352211, 0.03926919773221016, 0.07386215776205063, -0.036873526871204376, 0.07459589093923569, -0.3098140060901642, -0.13882488012313843, 0.07647629082202911, 0.07798001170158386, -0.027575118467211723, -0.14482437074184418, -0.08799546957015991, -0.0022456517908722162, -0.051784638315439224, 0.02683408185839653, -0.003992149140685797, 0.11605793982744217, 0.008976763114333153, 0.004072277806699276, 0.02449900470674038, -0.05876389145851135, 0.13009314239025116, 0.006117772776633501, 0.05347393453121185, -0.022005975246429443, 0.012411549687385559, -0.046452365815639496, -0.07444178313016891, 0.018040111288428307, -0.08890648186206818, 0.037894751876592636, -0.1020982563495636, -0.03301200643181801, -0.0664583146572113, 0.005152441095560789, -0.03766292706131935, -0.03768223151564598, -0.004365113098174334, 0.057343002408742905, 0.09108828753232956, 0.006490590050816536, 0.07035677880048752, -0.047297846525907516, 0.09601212292909622, 0.08777391165494919, 0.10806674510240555, 0.021137185394763947, -0.08794498443603516, 0.0038487943820655346, -0.0172035563737154, 0.03288818895816803, -0.15564215183258057, 0.027634600177407265, 0.1297179013490677, 0.05308307334780693, 0.14157812297344208, 0.0532270111143589, -0.06897520273923874, 0.005876982118934393, 0.07083083689212799, -0.0705362856388092, -0.18826746940612793, 0.00033194071147590876, -0.001343029667623341, -0.1476605385541916, -0.005370792467147112, 0.09231515228748322, -0.03376619890332222, 0.0031804826576262712, 0.0016881456831470132, 0.047806330025196075, -0.008523324504494667, 0.21599939465522766, 0.03662684187293053, 0.09157194942235947, -0.09723951667547226, 0.09088745713233948, 0.04972337558865547, -0.11518502235412598, 0.06059468165040016, 0.11247004568576813, -0.07695640623569489, -0.0080241858959198, 0.026745367795228958, 0.06536480784416199, 0.08038485795259476, -0.019126219674944878, -0.10342932492494583, -0.13840830326080322, 0.09111957252025604, 0.06689232587814331, 0.012567936442792416, 0.02579667419195175, -0.01470265258103609, 0.04312295466661453, -0.09343209117650986, 0.11207140237092972, 0.08935320377349854, 0.059812381863594055, -0.11918975412845612, 0.11382824927568436, -0.0038184651639312506, -0.012724008411169052, -0.007572021801024675, 0.008766865357756615, -0.12835992872714996, 0.01505974493920803, -0.048060860484838486, -0.006765031721442938, -0.07333926111459732, -0.007483774796128273, 0.003006934653967619, -0.06114804372191429, -0.03066660650074482, 0.008815063163638115, -0.100831039249897, -0.06343594193458557, -0.03026437573134899, 0.061802592128515244, -0.09962520748376846, -0.03243128955364227, 0.04658794775605202, -0.1304302215576172, 0.12238141149282455, 0.031612057238817215, 0.019013475626707077, -0.0062024593353271484, -0.09941846877336502, 0.011008629575371742, 0.023617319762706757, -0.021589122712612152, 0.02115110121667385, -0.1704426407814026, -0.022687522694468498, -0.06540028750896454, 0.00004240614362061024, -0.0018207260873168707, 0.024283593520522118, -0.1322181075811386, 0.016040170565247536, -0.04407747834920883, -0.04092969372868538, -0.06355009227991104, 0.044884540140628815, 0.08507794886827469, 0.008501219563186169, 0.12804734706878662, -0.08751814067363739, 0.06555275619029999, -0.22438667714595795, -0.0015876945108175278, -0.012516172602772713, -0.050813257694244385, -0.07648169249296188, -0.009541925974190235, 0.1034674271941185, -0.057930007576942444, 0.07221619039773941, -0.06136779487133026, 0.013350586406886578, 0.02644382230937481, -0.09504790604114532, 0.03741602599620819, 0.06792566925287247, 0.17271719872951508, 0.05695458874106407, -0.038608845323324203, 0.07527008652687073, 0.0070329392328858376, 0.05184317007660866, 0.08816156536340714, 0.13423870503902435, 0.1619211882352829, 0.07751385122537613, 0.07691986858844757, 0.06313692778348923, -0.12852726876735687, -0.14414338767528534, 0.18264710903167725, -0.06762415915727615, 0.11030430346727371, -0.027078527957201004, 0.1862046718597412, 0.08283978700637817, -0.1979038417339325, 0.0539332814514637, -0.025597184896469116, -0.08922650665044785, -0.0969117060303688, -0.08081378787755966, -0.08719168603420258, -0.16646134853363037, 0.017989618703722954, -0.09270965307950974, 0.03486287221312523, 0.056923430413007736, 0.032118406146764755, 0.05494115129113197, 0.10031864047050476, 0.05795199051499367, 0.03095906972885132, 0.12041249126195908, 0.02715063840150833, -0.01600228250026703, -0.02270042523741722, -0.11205871403217316, 0.03572525084018707, -0.015112737193703651, 0.05585012957453728, -0.036560509353876114, -0.10671915858983994, 0.06955545395612717, 0.02493620291352272, -0.1025935709476471, 0.019074250012636185, -0.012402900494635105, 0.03715978190302849, 0.07406096160411835, 0.05112159997224808, -0.019793465733528137, -0.022502198815345764, 0.23937612771987915, -0.10036604851484299, -0.052553191781044006, -0.14513173699378967, 0.18758760392665863, -0.011950795538723469, 0.011042331345379353, 0.010605035349726677, -0.08509388566017151, -0.013634821400046349, 0.14064209163188934, 0.1527205854654312, -0.03016728162765503, -0.0160459503531456, 0.02177792228758335, -0.011396505869925022, -0.024465007707476616, 0.07962251454591751, 0.11115642637014389, 0.050230879336595535, -0.05443772301077843, -0.03017883002758026, -0.006735976319760084, -0.08827882260084152, -0.038392070680856705, 0.07966822385787964, 0.017522474750876427, 0.00756825041025877, -0.04106130450963974, 0.11592069268226624, -0.07647434622049332, -0.12915679812431335, 0.043952956795692444, -0.19261933863162994, -0.18967404961585999, -0.04066261649131775, 0.024703308939933777, 0.04377724230289459, 0.049963489174842834, 0.03282308951020241, -0.016490360721945763, 0.092329241335392, -0.0015202496433630586, -0.04881735518574715, -0.07264717668294907, 0.05288274213671684, -0.07255758345127106, 0.20824190974235535, -0.0348762683570385, -0.0058814045041799545, 0.11844289302825928, 0.05099848285317421, -0.10727739334106445, 0.033438682556152344, 0.08201895654201508, -0.10014066845178604, 0.05551410838961601, 0.17624293267726898, -0.04482046514749527, 0.12337371706962585, 0.05108502879738808, -0.08472476154565811, 0.015524503774940968, -0.07794217020273209, -0.060819435864686966, -0.08974233269691467, 0.00022254940995480865, -0.03381136432290077, 0.15001428127288818, 0.20393489301204681, -0.08117356151342392, -0.0048572830855846405, -0.031308531761169434, 0.0017152135260403156, 0.020254338160157204, 0.12420669943094254, -0.03333806246519089, -0.24512243270874023, 0.008552958257496357, 0.00806689914315939, 0.022318316623568535, -0.21250087022781372, -0.09296584129333496, 0.005446844268590212, -0.039646197110414505, -0.05302013084292412, 0.12303970754146576, 0.07668553292751312, 0.04983443394303322, -0.052461277693510056, -0.10421326756477356, -0.013277850113809109, 0.18700501322746277, -0.1729867309331894, -0.05185768008232117 ]
null
null
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA_2 <Gallery /> ## Model description These are DaiFunka/corgy_dog_LoRA_2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](DaiFunka/corgy_dog_LoRA_2/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of TOK dog", "widget": []}
text-to-image
DaiFunka/corgy_dog_LoRA_2
[ "diffusers", "text-to-image", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
2024-02-14T05:35:59+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion-xl #stable-diffusion-xl-diffusers #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA_2 <Gallery /> ## Model description These are DaiFunka/corgy_dog_LoRA_2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA_2\n\n<Gallery />", "## Model description\n\nThese are DaiFunka/corgy_dog_LoRA_2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion-xl #stable-diffusion-xl-diffusers #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA_2\n\n<Gallery />", "## Model description\n\nThese are DaiFunka/corgy_dog_LoRA_2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 78, 27, 92, 19, 28, 9, 5, 24, 16 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion-xl #stable-diffusion-xl-diffusers #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA_2\n\n<Gallery />## Model description\n\nThese are DaiFunka/corgy_dog_LoRA_2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
[ -0.0594940260052681, 0.1351432353258133, -0.0008979329140856862, 0.025662466883659363, 0.15507549047470093, 0.023894190788269043, 0.19075150787830353, 0.15961018204689026, 0.0020568689797073603, 0.10264488309621811, 0.0016405369387939572, 0.03990636020898819, 0.10058439522981644, 0.17559714615345, 0.003588505322113633, -0.26851123571395874, 0.042412422597408295, -0.02800161764025688, -0.04132843390107155, 0.03387969359755516, 0.056032732129096985, -0.07885497808456421, 0.09462755173444748, 0.002554185688495636, -0.09560307115316391, 0.05578310042619705, -0.04889165610074997, -0.0200907401740551, -0.007235692348331213, 0.03940775990486145, 0.03434068337082863, 0.02761073224246502, 0.10244538635015488, -0.22416429221630096, 0.006528730038553476, 0.09821239113807678, -0.022267431020736694, 0.07021841406822205, 0.07892971485853195, -0.09457793831825256, 0.11168567836284637, -0.15574005246162415, 0.08559213578701019, 0.05868981406092644, -0.04189060255885124, -0.09223412722349167, -0.03431437537074089, 0.06423036009073257, 0.1171145886182785, 0.1343361884355545, -0.021522851660847664, 0.03248882666230202, 0.04378919675946236, 0.0435204841196537, 0.25557735562324524, -0.10428736358880997, -0.0638434961438179, 0.18460685014724731, 0.0000368997389159631, 0.06785205006599426, -0.07697286456823349, 0.012302538380026817, 0.07829345017671585, -0.0447058267891407, 0.06310538947582245, -0.019902894273400307, 0.05761706829071045, -0.08342311531305313, -0.12616263329982758, -0.06936273723840714, 0.1538277268409729, 0.0027811212930828333, -0.06011388078331947, -0.1625400185585022, -0.054646819829940796, 0.03341471776366234, -0.030878974124789238, -0.009458263404667377, 0.036729250103235245, 0.006876213941723108, -0.004911096766591072, -0.10378588736057281, -0.0500054769217968, -0.07310351729393005, 0.07315035909414291, 0.1425151824951172, 0.018653621897101402, 0.021072031930088997, -0.0011698725866153836, 0.1389113813638687, 0.0030441756825894117, -0.14974281191825867, 0.0012218025512993336, -0.02409401535987854, -0.11087097227573395, -0.007240983657538891, 0.011588646098971367, -0.09534743428230286, 0.03907191753387451, 0.05511746555566788, 0.01918885111808777, 0.0176562387496233, -0.10003053396940231, 0.014666608534753323, 0.03373012691736221, 0.09868894517421722, -0.04047054424881935, -0.05029290169477463, 0.03249223530292511, 0.07425233721733093, -0.013614620082080364, -0.029967159032821655, -0.07402310520410538, -0.0277461726218462, -0.02400543913245201, 0.07942903786897659, 0.05586840212345123, 0.01370024960488081, -0.05547094717621803, -0.054807569831609726, 0.12608404457569122, -0.12050114572048187, -0.008079309947788715, -0.019608698785305023, -0.07420071959495544, 0.05030195042490959, 0.07161232829093933, 0.03521806001663208, -0.04815351963043213, 0.08446761220693588, -0.06282041221857071, -0.01252761110663414, -0.0980459675192833, -0.08691856265068054, -0.0075317625887691975, -0.11459086835384369, -0.01908259652554989, -0.055990058928728104, -0.25806599855422974, -0.06104707345366478, 0.024476030841469765, -0.07781192660331726, -0.04370878264307976, -0.06521879881620407, -0.08056382089853287, -0.0020610925275832415, 0.04831719771027565, 0.09858386963605881, -0.010217223316431046, 0.03868629038333893, -0.05482834577560425, 0.07100547850131989, 0.06288044154644012, 0.042737849056720734, -0.09885250777006149, 0.044807203114032745, -0.16294723749160767, 0.19380366802215576, -0.07050702720880508, 0.04239361733198166, -0.1262851506471634, -0.038372963666915894, -0.0383218415081501, -0.03440581634640694, -0.004062466323375702, 0.17423398792743683, -0.20652228593826294, -0.04029339551925659, 0.15558622777462006, -0.17701680958271027, -0.026488391682505608, 0.04494168609380722, -0.05432675778865814, 0.13361193239688873, 0.11035022139549255, 0.09910953789949417, 0.1299315243959427, -0.20923298597335815, -0.036901697516441345, -0.03547472134232521, 0.017273807898163795, 0.09352298080921173, 0.06603207439184189, 0.0020359340123832226, -0.009815203957259655, 0.0092548169195652, -0.09299200028181076, 0.020708708092570305, -0.02592543698847294, -0.04716038331389427, -0.019241496920585632, -0.08060751110315323, -0.0033492720685899258, 0.018216537311673164, -0.0053076427429914474, 0.036969803273677826, -0.060067858546972275, 0.06106878072023392, 0.113006092607975, -0.07853271067142487, -0.0008543228614144027, -0.021376175805926323, 0.0005429431912489235, -0.09321793168783188, 0.003961838781833649, -0.14689131081104279, -0.10399644821882248, 0.052747707813978195, -0.003435972146689892, 0.05875169858336449, 0.016541073098778725, 0.05095210298895836, 0.035933006554841995, -0.0403478778898716, -0.04608767852187157, -0.014674661681056023, -0.031154073774814606, -0.05822651833295822, -0.142354816198349, -0.007655900903046131, -0.07230676710605621, 0.1208093985915184, -0.189984530210495, 0.06333805620670319, 0.08333418518304825, 0.13325732946395874, 0.06593251973390579, -0.05473539978265762, 0.07159119099378586, -0.02604498155415058, -0.011110357008874416, -0.11471185088157654, -0.009786740876734257, -0.005984860938042402, -0.10591479390859604, 0.07838733494281769, -0.14254124462604523, -0.02322976291179657, 0.11319196969270706, 0.14230692386627197, -0.055240027606487274, -0.09425004571676254, -0.061763569712638855, -0.027390042319893837, -0.12731002271175385, -0.04991993308067322, 0.12498371303081512, 0.00928189605474472, 0.06863151490688324, -0.08145930618047714, -0.024377264082431793, 0.010110224597156048, 0.022036807611584663, -0.04612281918525696, 0.07546015083789825, -0.003947029821574688, -0.04499277472496033, 0.09587432444095612, -0.03187976032495499, 0.010129018686711788, 0.18381556868553162, 0.023336850106716156, -0.12491702288389206, 0.011561435647308826, 0.01986580714583397, 0.04259108379483223, 0.05639633536338806, 0.0622231550514698, 0.050821222364902496, 0.03424803167581558, -0.01744345761835575, 0.014189350418746471, -0.14441385865211487, 0.004683523438870907, 0.018176594749093056, -0.08931411057710648, 0.09778984636068344, 0.014830954372882843, -0.011174499988555908, 0.07785443216562271, -0.00607957923784852, 0.08008912205696106, 0.01977006159722805, -0.04916949197649956, -0.12210294604301453, 0.1082502081990242, -0.06725683063268661, -0.17783424258232117, -0.12430300563573837, 0.048889271914958954, -0.03655337542295456, 0.017188291996717453, 0.022094890475273132, -0.07510241866111755, -0.055927958339452744, -0.08778248727321625, 0.04034968465566635, -0.05100271850824356, 0.015612772665917873, 0.027512498199939728, 0.05460568889975548, 0.036599140614271164, -0.09177689254283905, -0.008395105600357056, 0.012615381740033627, -0.12676407396793365, -0.03457751125097275, -0.026907803490757942, 0.0945739895105362, 0.07596636563539505, 0.019982650876045227, 0.02889600582420826, -0.054811764508485794, 0.2244877964258194, -0.093205526471138, 0.07435169070959091, 0.21275274455547333, -0.009955288842320442, 0.0864173173904419, 0.16453257203102112, -0.012190563604235649, -0.08147069811820984, 0.070010706782341, 0.07162045687437057, -0.10437905043363571, -0.20208700001239777, -0.06809905171394348, -0.06450524926185608, -0.024073585867881775, 0.14995801448822021, 0.09111287444829941, 0.1544121503829956, 0.11538499593734741, -0.09504319727420807, 0.03802857547998428, 0.07451511919498444, 0.12290477752685547, -0.02715343050658703, 0.040141619741916656, 0.05249455198645592, -0.06853170692920685, -0.00585308438166976, 0.07813037931919098, 0.04413419961929321, 0.26553764939308167, -0.06821653246879578, 0.029711782932281494, 0.025358784943819046, 0.031478650867938995, 0.013166902586817741, 0.0600237101316452, -0.027300560846924782, 0.01603611372411251, -0.027342071756720543, -0.1369793564081192, 0.012460448779165745, 0.15736103057861328, 0.001839695032685995, 0.017033692449331284, -0.016929181292653084, 0.007096326909959316, 0.009932268410921097, 0.1877259761095047, -0.006195696536451578, -0.2769162952899933, -0.004159702453762293, 0.06311388313770294, 0.02499377354979515, -0.017026856541633606, -0.029553400352597237, 0.11345421522855759, -0.15235082805156708, 0.10035215318202972, -0.06108305603265762, 0.09710584580898285, -0.11347505450248718, -0.055745016783475876, 0.022473042830824852, 0.10700709372758865, -0.0427107997238636, 0.0803859531879425, -0.2426455318927765, 0.09976018965244293, 0.008143102750182152, 0.09580095112323761, -0.08923118561506271, 0.0798024833202362, 0.048550013452768326, 0.0009448722703382373, 0.16319923102855682, -0.03448345139622688, -0.01606845296919346, -0.0957048237323761, -0.10282424837350845, -0.023376593366265297, 0.03228507563471794, -0.14726625382900238, 0.0766390785574913, -0.010312305763363838, -0.004001378081738949, -0.01543225534260273, 0.016646966338157654, -0.15432578325271606, -0.16194093227386475, 0.01634148322045803, 0.034941546618938446, 0.0841497853398323, -0.060901839286088943, -0.0541580468416214, 0.032586295157670975, 0.10037641227245331, -0.03607640415430069, -0.1552039086818695, -0.16412705183029175, 0.013517522253096104, 0.15647727251052856, -0.040081921964883804, 0.007514026947319508, 0.02856876142323017, 0.23024585843086243, -0.0894157811999321, -0.12563294172286987, -0.009805314242839813, -0.10627841204404831, -0.21052350103855133, -0.047706425189971924, 0.10736692696809769, 0.09864769130945206, 0.0471968911588192, -0.000026084313503815793, 0.032838255167007446, 0.027160746976733208, -0.07886166125535965, 0.037976063787937164, 0.20505185425281525, 0.03863414749503136, 0.08579146862030029, -0.027761725708842278, -0.11339515447616577, -0.13031910359859467, 0.022794516757130623, -0.009787540882825851, 0.194227397441864, -0.04087761789560318, 0.10618618875741959, 0.006765092257410288, -0.11880461126565933, -0.15013164281845093, 0.09173603355884552, 0.1104186475276947, 0.005922475829720497, 0.030668985098600388, -0.2350139319896698, 0.08162382990121841, 0.04539617523550987, -0.03659903258085251, 0.08149676024913788, -0.3171423375606537, -0.12899169325828552, -0.028214003890752792, 0.10311174392700195, -0.000756415945943445, -0.15866558253765106, -0.04823041334748268, -0.06703098118305206, -0.02703038603067398, 0.16608081758022308, -0.05556649714708328, 0.04142668843269348, 0.03013548068702221, 0.02933437004685402, 0.056954797357320786, -0.027728917077183723, 0.09928017854690552, 0.029153702780604362, 0.05308298021554947, -0.0637982115149498, 0.005967856850475073, 0.07334382832050323, -0.08109162747859955, 0.07177912443876266, -0.06849538534879684, 0.02775157429277897, -0.11718141287565231, -0.04431909695267677, -0.005883568897843361, 0.048845432698726654, -0.03089245595037937, -0.11175297200679779, -0.08130037039518356, 0.0773039162158966, 0.13983599841594696, 0.0004691879730671644, -0.039622269570827484, -0.041951488703489304, 0.008168473839759827, 0.14004912972450256, 0.046116460114717484, 0.1628839522600174, -0.08331285417079926, -0.025924695655703545, -0.004937262739986181, 0.0839189663529396, -0.16201822459697723, 0.01144646480679512, 0.06430524587631226, 0.023887813091278076, 0.1314934641122818, 0.015750214457511902, -0.1046537235379219, 0.03066999278962612, 0.019519343972206116, -0.07051604986190796, -0.0819954052567482, -0.03081255778670311, -0.029323693364858627, -0.0808643251657486, -0.07271423935890198, 0.10359650105237961, -0.0827852338552475, 0.017347879707813263, -0.0007132161408662796, 0.06031624600291252, -0.003637049812823534, 0.10617660731077194, -0.023470038548111916, 0.031013483181595802, -0.09191028773784637, 0.10664546489715576, 0.09811296314001083, -0.07951539754867554, 0.05747368186712265, 0.060322701930999756, -0.07056787610054016, 0.03584347292780876, -0.07354732602834702, 0.1229867935180664, -0.04200267419219017, -0.026156453415751457, -0.044075533747673035, -0.07033135741949081, 0.030070673674345016, 0.06071341782808304, 0.025034446269273758, -0.0032202242873609066, 0.007905877195298672, 0.020093759521842003, -0.14386917650699615, 0.08860529959201813, 0.028196260333061218, 0.04785417765378952, -0.16220194101333618, 0.03552411496639252, 0.05100005865097046, -0.012525219470262527, -0.03770982846617699, -0.023436469957232475, -0.08514323085546494, -0.003071764949709177, 0.017792506143450737, 0.08087331801652908, -0.09757407754659653, -0.03162591531872749, -0.03639455884695053, -0.045793768018484116, 0.005777999293059111, 0.047018229961395264, -0.04806943237781525, -0.05194180831313133, -0.024484755471348763, 0.08180242031812668, -0.1209978461265564, -0.04685407504439354, 0.03557113930583, -0.10574298352003098, 0.050539348274469376, 0.015898045152425766, -0.03656401112675667, -0.04613447189331055, -0.1513882279396057, 0.050795458257198334, 0.08853600174188614, -0.011825901456177235, -0.011686164885759354, -0.062004126608371735, 0.0027990597300231457, -0.02767498791217804, -0.05449485033750534, -0.018487190827727318, -0.014255509711802006, -0.13083726167678833, 0.029600372537970543, -0.026290278881788254, 0.010648336261510849, -0.028233714401721954, 0.0707981064915657, 0.15906786918640137, 0.03240165486931801, 0.1083664670586586, -0.08316341042518616, 0.1112460121512413, -0.18242190778255463, -0.03826669976115227, 0.021270647644996643, 0.0077759698033332825, -0.04118584096431732, -0.07083959877490997, 0.05406130477786064, -0.012884940020740032, 0.1399383395910263, 0.05630281940102577, 0.02092813141644001, 0.024099446833133698, 0.004762408789247274, 0.08449159562587738, 0.0217930618673563, 0.19558212161064148, 0.05107155069708824, 0.023490509018301964, 0.0352286659181118, 0.011950602754950523, 0.06602741032838821, 0.01839520037174225, 0.08038070052862167, 0.06445683538913727, 0.04953010380268097, 0.04424773529171944, 0.0664428323507309, -0.03009156882762909, -0.10177948325872421, 0.08731862902641296, -0.005639649461954832, 0.031762972474098206, -0.06065090373158455, 0.09291113913059235, 0.15333291888237, -0.1743382215499878, 0.05779225379228592, 0.11363492161035538, -0.03460558131337166, -0.08127469569444656, -0.18410827219486237, -0.052669767290353775, -0.12275099009275436, 0.038108956068754196, -0.10739758610725403, 0.06289523839950562, 0.082065150141716, -0.006106181535869837, 0.030679311603307724, 0.13073612749576569, -0.03913886100053787, -0.03663402795791626, 0.04069714993238449, -0.00353255751542747, 0.0037130871787667274, 0.004366774577647448, -0.047779057174921036, 0.09254494309425354, 0.03494197875261307, 0.04034310579299927, 0.03129183501005173, 0.0735742449760437, 0.060314662754535675, -0.009988948702812195, -0.04871699959039688, 0.015334203839302063, 0.004119163379073143, 0.01777053438127041, 0.1869760900735855, 0.07526388764381409, -0.035522181540727615, -0.04333514720201492, 0.18089434504508972, -0.07726022601127625, -0.022324267774820328, -0.13776692748069763, 0.07822276651859283, -0.03564254567027092, 0.006208684761077166, 0.019449081271886826, -0.12050129473209381, -0.022770972922444344, 0.16315948963165283, 0.14223875105381012, 0.025713877752423286, -0.00040383427403867245, -0.057462457567453384, -0.005596475210040808, -0.02263852208852768, 0.03534950688481331, 0.016940241679549217, 0.19393056631088257, -0.07550892978906631, 0.07015925645828247, -0.018323330208659172, -0.08726181834936142, -0.05051596835255623, 0.026738082990050316, -0.03947468474507332, -0.018283553421497345, -0.010283035226166248, 0.11221989244222641, -0.10853184014558792, -0.22334891557693481, 0.13779738545417786, -0.08233486115932465, -0.07162610441446304, -0.04041562229394913, -0.05628781020641327, 0.027446839958429337, 0.03433290123939514, -0.025152601301670074, -0.0019300640560686588, 0.08909221738576889, -0.012671719305217266, -0.09024259448051453, -0.05529014766216278, 0.014625279232859612, -0.09207223355770111, 0.19354262948036194, -0.032431505620479584, 0.011722613126039505, 0.032660793513059616, -0.023577507585287094, -0.14810477197170258, -0.009238142520189285, 0.01777557283639908, -0.09893134981393814, -0.010131129063665867, 0.19444294273853302, -0.06899618357419968, 0.09569673985242844, 0.06184929609298706, -0.0979928970336914, 0.012495794333517551, -0.016853053122758865, 0.006862516049295664, -0.12003413587808609, 0.019057372584939003, -0.12413173913955688, 0.12357006222009659, 0.16624315083026886, -0.01478401105850935, 0.021855060011148453, -0.04358910024166107, 0.022201061248779297, 0.01406464446336031, 0.0749732181429863, 0.010300640016794205, -0.09768003970384598, -0.035528622567653656, 0.08823701739311218, 0.045391254127025604, -0.22006861865520477, -0.07151728868484497, -0.059031639248132706, -0.07619762420654297, -0.02835894748568535, 0.07479142397642136, 0.0890113115310669, -0.0013821396278217435, -0.023054638877511024, -0.24227134883403778, 0.019085677340626717, 0.13372604548931122, -0.10329530388116837, -0.02246798202395439 ]
null
null
stable-baselines3
# **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.17 +/- 0.12", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
haihuynh/a2c-PandaReachDense-v3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T05:44:17+00:00
[]
[]
TAGS #stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# A2C Agent playing PandaReachDense-v3 This is a trained model of a A2C agent playing PandaReachDense-v3 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 41, 45, 17 ]
[ "passage: TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.028780510649085045, 0.06549051403999329, -0.004174588713794947, 0.028733979910612106, 0.12748076021671295, -0.010029550641775131, 0.16130082309246063, 0.07903143763542175, 0.052706290036439896, -0.055043965578079224, 0.09157051891088486, -0.079488605260849, 0.04699381813406944, 0.3393711447715759, 0.029525093734264374, -0.186785027384758, 0.08573613315820694, 0.015584449283778667, 0.018966808915138245, 0.09867662936449051, 0.03466832637786865, -0.08736564218997955, 0.04568251967430115, 0.03800429776310921, -0.07686931639909744, -0.04319252818822861, -0.03975098207592964, -0.06744661927223206, 0.10361767560243607, -0.044310007244348526, 0.1670169234275818, -0.03489987552165985, 0.10219604521989822, -0.12577489018440247, 0.031373992562294006, -0.04813149571418762, -0.05141052231192589, 0.002818689215928316, -0.011371237225830555, 0.05937984213232994, 0.04167760908603668, 0.05197896435856819, 0.07366002351045609, 0.04871916025876999, -0.08704962581396103, -0.11396265029907227, -0.006845315918326378, 0.07931416481733322, 0.17974808812141418, 0.04054044932126999, -0.02474738284945488, 0.09696658700704575, -0.11350683122873306, 0.01657135598361492, -0.019304286688566208, -0.4018571078777313, 0.006876560393720865, 0.15550047159194946, 0.04677277058362961, 0.010903568007051945, -0.0061170910485088825, -0.004642391111701727, 0.02805398777127266, -0.037410516291856766, 0.08670840412378311, -0.09000635892152786, 0.06153826415538788, -0.019131680950522423, -0.04113767296075821, -0.01751464419066906, 0.2419518232345581, 0.01633240468800068, -0.08024721592664719, -0.07922019064426422, 0.009968155063688755, -0.028026137501001358, -0.0877801775932312, -0.06134319305419922, 0.07644549012184143, 0.057131536304950714, 0.10696670413017273, -0.030399860814213753, -0.058683689683675766, -0.04541248828172684, 0.08352918922901154, -0.03953780233860016, -0.017566127702593803, -0.01754307933151722, -0.06739802658557892, -0.003707833355292678, 0.015629740431904793, -0.06615205854177475, -0.015486059710383415, -0.044966671615839005, -0.1556774228811264, -0.009128551930189133, -0.0599384643137455, 0.03310214728116989, 0.10073909163475037, 0.13065455853939056, 0.06838785856962204, 0.09685135632753372, -0.08001106232404709, 0.0389438234269619, 0.06625691801309586, 0.09461154788732529, -0.044509198516607285, -0.011874453164637089, 0.14630302786827087, 0.10327376425266266, 0.09657767415046692, -0.09182082861661911, -0.12403369694948196, 0.04173071309924126, 0.10965418070554733, 0.03382069617509842, 0.0046537998132407665, 0.04452834278345108, -0.14144757390022278, 0.023916395381093025, 0.0006972529226914048, -0.045244041830301285, -0.03088594414293766, 0.06111180782318115, -0.04433412477374077, 0.02348744124174118, -0.012718633748590946, 0.10830001533031464, 0.10152670741081238, -0.023899899795651436, -0.052799396216869354, -0.04201658070087433, -0.0440504252910614, -0.05507666990160942, 0.04012975096702576, 0.01289378758519888, 0.04624854028224945, -0.1184653639793396, -0.13997629284858704, 0.051258668303489685, 0.019622454419732094, -0.026321161538362503, -0.13472233712673187, -0.09338399767875671, -0.03747362270951271, -0.011210841126739979, 0.0030350966844707727, -0.19588395953178406, -0.02434816211462021, -0.03428230062127113, 0.13725687563419342, 0.10810749977827072, -0.06433141976594925, -0.06369391083717346, -0.12834231555461884, 0.06795675307512283, -0.23485252261161804, 0.038750845938920975, -0.09932064265012741, 0.12411006540060043, 0.007471752353012562, 0.023616313934326172, 0.1410844624042511, 0.02330038882791996, 0.004575210623443127, 0.1702503114938736, -0.18833371996879578, -0.046672217547893524, 0.17527204751968384, -0.0857074186205864, -0.17703735828399658, 0.05021136254072189, -0.02124672941863537, -0.013779462315142155, 0.06350992619991302, 0.09937554597854614, -0.01727774553000927, -0.17061583697795868, 0.02558896690607071, -0.0014508399181067944, -0.05959303304553032, 0.021542999893426895, 0.12072649598121643, 0.08040176331996918, -0.027203790843486786, -0.0016989230643957853, -0.15452547371387482, 0.09701786935329437, -0.023543400689959526, -0.08447092026472092, 0.022736359387636185, -0.10411997884511948, 0.10016260296106339, -0.015677137300372124, 0.10591494292020798, -0.02265925332903862, -0.018805475905537605, -0.032891299575567245, 0.10408006608486176, -0.0068649593740701675, 0.039593957364559174, -0.17728297412395477, 0.1326225996017456, 0.02176543138921261, 0.046730607748031616, -0.10109715908765793, -0.10202061384916306, 0.06674831360578537, 0.15375585854053497, 0.05606463924050331, 0.03833417221903801, 0.07328703999519348, 0.03443831577897072, -0.0030986627098172903, -0.1205538883805275, -0.12789975106716156, 0.019881807267665863, 0.06068658083677292, -0.08039596676826477, -0.05172275751829147, -0.10460081696510315, 0.21138279139995575, -0.10705634206533432, 0.012047823518514633, -0.09333895146846771, 0.010153836570680141, 0.08388294279575348, 0.01348812971264124, 0.08132237941026688, 0.02585482969880104, -0.04426883906126022, 0.009419471956789494, 0.0882885605096817, 0.044275086373090744, -0.1379590630531311, 0.03784618154168129, 0.024114131927490234, 0.23272188007831573, 0.15174852311611176, -0.016499420627951622, -0.055556558072566986, 0.006534850224852562, 0.03740030899643898, 0.03533044084906578, 0.034956689924001694, 0.06951800733804703, 0.1090264692902565, 0.07713755965232849, 0.1276414394378662, -0.05066131055355072, 0.17763042449951172, -0.006530070677399635, -0.14888496696949005, 0.02993084490299225, -0.07033783197402954, 0.0941668227314949, -0.06030277907848358, 0.048379335552453995, 0.05410725995898247, 0.0304675605148077, 0.08504439890384674, -0.00693494314327836, 0.022639812901616096, -0.04341154545545578, 0.04943868890404701, 0.06790532171726227, 0.06545940041542053, 0.06452376395463943, -0.007423467002809048, 0.015456308610737324, -0.05288444459438324, -0.0518295019865036, -0.10519610345363617, -0.12370408326387405, 0.037892695516347885, -0.015912096947431564, -0.04463989660143852, -0.01629551686346531, -0.07266248762607574, 0.050321705639362335, 0.05250744894146919, -0.07199236750602722, 0.028561361134052277, -0.007090074475854635, -0.09633425623178482, 0.1130511462688446, -0.14269201457500458, -0.31355980038642883, -0.02000165916979313, -0.13154496252536774, -0.02077566273510456, 0.15819574892520905, -0.057956792414188385, -0.1681092083454132, 0.03305667266249657, -0.02401961199939251, -0.09238096326589584, 0.04225420579314232, -0.018061356619000435, 0.10221174359321594, 0.0857708528637886, 0.043082691729068756, 0.00862243864685297, -0.01184127852320671, -0.03903079405426979, -0.08788500726222992, 0.07608162611722946, -0.06721128523349762, 0.1173204705119133, 0.13519366085529327, 0.04123268276453018, -0.015909500420093536, -0.02043113484978676, 0.06215733662247658, 0.012027861550450325, -0.036599598824977875, 0.13453175127506256, -0.03608042374253273, -0.00864011887460947, 0.04470202699303627, 0.008029532618820667, -0.10533943772315979, 0.09432658553123474, -0.05022074654698372, -0.06974482536315918, -0.017500806599855423, -0.08790571242570877, -0.09950723499059677, 0.18995612859725952, 0.0490412712097168, 0.007856572046875954, -0.05151839926838875, 0.036120012402534485, 0.07772433012723923, 0.044773608446121216, 0.007161281071603298, 0.03985898196697235, -0.005716364365071058, -0.013170693069696426, 0.05278664082288742, -0.023887991905212402, 0.009960537776350975, -0.007844919338822365, 0.13077811896800995, -0.015673788264393806, 0.10317149013280869, 0.0030158995650708675, 0.008619097992777824, 0.08018261194229126, 0.12394148856401443, 0.08064290136098862, 0.019240466877818108, -0.11554506421089172, -0.04732639715075493, -0.030522609129548073, -0.18181301653385162, 0.11669926345348358, 0.10738886147737503, 0.05268440023064613, -0.05564067140221596, 0.22832486033439636, 0.0012100599706172943, 0.10802210867404938, 0.03496129810810089, -0.17664514482021332, 0.024751557037234306, 0.03574612736701965, 0.050895314663648605, 0.007034227252006531, 0.062039270997047424, -0.09453237801790237, -0.1839483082294464, 0.03968557342886925, 0.018860090523958206, 0.05523261800408363, -0.018427258357405663, 0.018512532114982605, -0.12044285237789154, -0.05746040865778923, 0.02161633037030697, 0.02076297253370285, -0.3029120862483978, 0.06816349923610687, -0.04133946821093559, 0.07392577081918716, 0.009542034938931465, 0.01343793235719204, 0.06604447960853577, 0.01652485318481922, 0.1375029981136322, -0.017935138195753098, 0.1707022786140442, -0.1572514772415161, -0.16084668040275574, 0.025680551305413246, -0.059293005615472794, 0.07245437800884247, 0.082563117146492, 0.017692390829324722, 0.0069250138476490974, -0.00047057756455615163, 0.20794180035591125, -0.13032017648220062, -0.0346711240708828, -0.035274047404527664, 0.019543148577213287, 0.022580156102776527, -0.03844551369547844, -0.021310672163963318, 0.06112392246723175, 0.1489492505788803, 0.07546767592430115, -0.02780069410800934, -0.04611911624670029, -0.03938353434205055, -0.09507237374782562, -0.044778671115636826, 0.10472412407398224, -0.07841785997152328, 0.10144548118114471, -0.07513871043920517, -0.04432075098156929, 0.11707907915115356, -0.09250949323177338, -0.053160861134529114, -0.07627046853303909, 0.05462219938635826, 0.008296831510961056, 0.13374868035316467, 0.03642493113875389, 0.02114485390484333, 0.10089845955371857, -0.05001259222626686, 0.08662480860948563, 0.03777577355504036, -0.03541218861937523, 0.03517242521047592, -0.05375073477625847, -0.04829130321741104, -0.010828596539795399, 0.03814345970749855, 0.24244728684425354, 0.302570104598999, -0.012830551713705063, 0.1897524893283844, 0.09193363785743713, 0.029696941375732422, -0.16292639076709747, -0.1200476586818695, 0.05548451840877533, 0.059938978403806686, 0.06154406815767288, -0.2788083851337433, 0.057189684361219406, -0.053967077285051346, -0.08999616652727127, -0.06829255819320679, -0.08560561388731003, -0.07613074034452438, 0.088682159781456, 0.08794322609901428, 0.09100460261106491, -0.12551987171173096, 0.015924450010061264, -0.012671655975282192, -0.1664767563343048, 0.12128932029008865, -0.039350032806396484, 0.07007917016744614, -0.025050386786460876, -0.06438229978084564, 0.025165842846035957, -0.02775278501212597, 0.04424511641263962, -0.1206880658864975, 0.0005293674184940755, -0.04527926817536354, -0.03749620169401169, 0.1088484600186348, 0.020565982908010483, -0.0028168195858597755, -0.09558401256799698, -0.011945599690079689, -0.3103867173194885, 0.01988539844751358, 0.02114551141858101, -0.039148375391960144, -0.0012507046340033412, -0.08678091317415237, -0.042053963989019394, 0.10508828610181808, 0.03930897265672684, 0.08641290664672852, 0.15335260331630707, -0.005581455305218697, -0.021082017570734024, 0.17506572604179382, 0.05701295658946037, -0.014002309180796146, 0.10069113969802856, -0.06732672452926636, -0.06576105207204819, 0.04418903961777687, -0.1016126498579979, -0.005435575265437365, 0.005642053205519915, -0.007821558974683285, 0.07107745110988617, 0.09962856024503708, -0.03340476378798485, 0.18194207549095154, 0.09798844903707504, -0.15048468112945557, 0.0030947427731007338, 0.052597809582948685, -0.032650984823703766, 0.04424609988927841, -0.04443032294511795, 0.05541829764842987, -0.07521786540746689, -0.03790169581770897, 0.02031708136200905, -0.01010141521692276, -0.07618512213230133, 0.00011962707503698766, 0.03176301345229149, 0.029956085607409477, -0.08340912312269211, 0.14036758244037628, 0.016359949484467506, 0.0652431845664978, 0.11902019381523132, 0.019259776920080185, -0.10460162162780762, -0.014167122542858124, -0.02339506521821022, 0.2028627097606659, -0.007937151938676834, -0.018536100164055824, -0.11391238868236542, -0.12847240269184113, 0.018047582358121872, -0.10348039865493774, 0.10282431542873383, -0.052032727748155594, -0.06570395082235336, -0.03704213351011276, -0.05561172217130661, 0.031932998448610306, 0.017090078443288803, -0.015642894431948662, -0.16111870110034943, -0.04170334339141846, 0.06846143305301666, 0.039452772587537766, -0.06145704537630081, -0.06289087235927582, -0.16302458941936493, 0.03506235405802727, -0.1278870701789856, 0.0010145133128389716, -0.047339316457509995, -0.05002537742257118, -0.05195476487278938, 0.01521157007664442, -0.0177876316010952, 0.008817745372653008, -0.05148332938551903, 0.03292781487107277, 0.011250603944063187, 0.0014076961670070887, -0.06952075660228729, -0.04419080913066864, 0.032172493636608124, -0.04430563375353813, 0.0661356970667839, 0.04131564497947693, -0.005653871223330498, 0.021474739536643028, -0.07005896419286728, -0.10248169302940369, 0.10313672572374344, -0.014939527027308941, 0.050572704523801804, -0.0603681318461895, -0.012018447741866112, 0.007195405196398497, -0.07569561898708344, -0.007751014549285173, 0.24328774213790894, -0.010914106853306293, -0.05394120141863823, -0.07426224648952484, -0.036970075219869614, -0.09100507944822311, -0.0004900419735349715, 0.1948854625225067, 0.05477539822459221, 0.14600017666816711, -0.0532439760863781, 0.08785777539014816, -0.06481330841779709, -0.01534446980804205, -0.08259234577417374, 0.030320849269628525, -0.157977893948555, -0.08130980283021927, -0.028043894097208977, -0.03728124126791954, 0.13441862165927887, -0.19242097437381744, 0.0032852457370609045, -0.010904400609433651, -0.04910553991794586, 0.11381126195192337, 0.0557032972574234, 0.24474471807479858, 0.1050342544913292, -0.035265225917100906, 0.10503548383712769, 0.12215624749660492, 0.0929517149925232, -0.03347417712211609, 0.058777112513780594, -0.05078745633363724, -0.0868106484413147, 0.09736774861812592, 0.012061800807714462, 0.036776214838027954, -0.08157306164503098, 0.022900743409991264, -0.10047483444213867, 0.002025678288191557, 0.02005080319941044, 0.2473200410604477, 0.1967000812292099, -0.09632564336061478, -0.012216159142553806, -0.05708231031894684, -0.032561756670475006, -0.04091155156493187, -0.002459051087498665, -0.07821618020534515, -0.21873407065868378, 0.051539067178964615, -0.0930585265159607, -0.07632365822792053, -0.06189138814806938, -0.04064059257507324, -0.02870149537920952, 0.046939339488744736, 0.03212931379675865, 0.04136762022972107, 0.05070297420024872, -0.0371626541018486, -0.09345480799674988, 0.06879863888025284, -0.11172787100076675, -0.042014576494693756, -0.03408866748213768, 0.014045859687030315, 0.032319605350494385, -0.07429610192775726, 0.07487598061561584, -0.012149554677307606, -0.07710553705692291, 0.036456044763326645, -0.03482281416654587, 0.02153356932103634, 0.07482071220874786, 0.04184282198548317, -0.09644174575805664, 0.015602846629917622, 0.18867559731006622, 0.020273970440030098, 0.008802177384495735, -0.14742465317249298, 0.2000039666891098, -0.02619965374469757, 0.07266447693109512, -0.03337041288614273, -0.015141828916966915, -0.10115411877632141, 0.19129611551761627, 0.11998134851455688, -0.24376079440116882, 0.024953339248895645, -0.12912821769714355, 0.022151969373226166, -0.13376696407794952, 0.20840151607990265, 0.05465596541762352, 0.10847201198339462, -0.06020665541291237, -0.02479162998497486, -0.1493310034275055, -0.09408020973205566, -0.08478302508592606, -0.0414455346763134, 0.10249399393796921, 0.0031611735466867685, -0.05072701349854469, -0.00887248944491148, -0.1566619724035263, 0.10201162099838257, -0.048264030367136, -0.11855816096067429, -0.0679796114563942, -0.059141192585229874, -0.06102965027093887, 0.11088541150093079, 0.11637356877326965, -0.01684124954044819, 0.024554423987865448, -0.07280154526233673, -0.012559473514556885, 0.011003518477082253, 0.005383014678955078, 0.0626269057393074, -0.04783647879958153, 0.1594477891921997, -0.021524829789996147, 0.0008918871753849089, 0.04285505786538124, 0.05263057351112366, -0.07584847509860992, 0.06380704790353775, 0.02512199431657791, 0.028178859502077103, -0.006920731160789728, 0.059795111417770386, -0.0196672473102808, 0.08964395523071289, 0.08038042485713959, -0.007235884666442871, 0.09868589043617249, -0.03191833570599556, 0.006547331809997559, -0.057698819786310196, 0.06932510435581207, -0.12982366979122162, 0.05436630919575691, 0.043436627835035324, -0.10945180803537369, 0.03841061517596245, 0.02560393325984478, 0.11603125184774399, 0.058632634580135345, -0.040632184594869614, -0.10494323819875717, -0.13799439370632172, 0.023235952481627464, 0.058803655207157135, -0.06312531977891922, -0.13800419867038727, -0.052970461547374725, -0.2062724232673645, 0.04198472201824188, -0.07393307238817215, 0.06842854619026184, 0.045238204300403595, 0.01849091611802578, -0.05578908324241638, -0.06200101599097252, 0.01771395653486252, 0.13669656217098236, -0.06059794872999191, -0.13932769000530243 ]
null
null
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga chelseadzd -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga chelseadzd -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga chelseadzd ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "329.00 +/- 157.97", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
chelseadzd/dqn-SpaceInvadersNoFrameskip-v4
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T05:45:28+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 43, 90, 73, 9, 5, 7 ]
[ "passage: TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
[ 0.043572068214416504, 0.2414778620004654, -0.0026879787910729647, 0.012635791674256325, 0.05784223601222038, 0.0030472534708678722, 0.08585051447153091, 0.10650663822889328, 0.024212315678596497, -0.001382096204906702, 0.003954293206334114, 0.17533031105995178, 0.03632635250687599, 0.13125447928905487, -0.018073517829179764, -0.2066594809293747, -0.013479253277182579, -0.06247470900416374, -0.07153085619211197, 0.036099132150411606, 0.07206681370735168, -0.030116932466626167, 0.036061208695173264, -0.051406677812337875, -0.057161085307598114, 0.036824777722358704, -0.03157254680991173, 0.007067287806421518, 0.15158706903457642, -0.1222257912158966, 0.12329676002264023, 0.020955175161361694, 0.1896144151687622, -0.12332789599895477, 0.0339222252368927, 0.08982209116220474, -0.036988191306591034, 0.013221588917076588, 0.00975361280143261, -0.052562564611434937, 0.1590864509344101, -0.09371145814657211, 0.07146181166172028, 0.010926910676062107, -0.07592244446277618, -0.1774153709411621, -0.09356249868869781, 0.07947742193937302, 0.0617753230035305, 0.005319166928529739, 0.03726791962981224, 0.11306490749120712, -0.020991774275898933, 0.06488905102014542, 0.11562903225421906, -0.17549200356006622, 0.013578375801444054, 0.17859570682048798, 0.003242473118007183, 0.15767055749893188, -0.05546637624502182, 0.019877681508660316, 0.02752300351858139, 0.04758313298225403, 0.06873945891857147, -0.08186400681734085, -0.1364826112985611, -0.056155186146497726, -0.15456219017505646, -0.03352400287985802, 0.05195203423500061, -0.011860138736665249, -0.05783402919769287, -0.010724928230047226, -0.04010869935154915, 0.0008851495804265141, -0.028637725859880447, 0.01805497519671917, 0.07031578570604324, -0.01226285845041275, 0.02092539705336094, -0.08391954004764557, -0.0390290804207325, -0.038563769310712814, -0.018022390082478523, 0.12054917961359024, 0.08285853266716003, 0.0266572255641222, -0.04135355353355408, 0.10274127870798111, -0.07091585546731949, -0.05454207584261894, 0.04555258899927139, -0.03786851093173027, -0.10615779459476471, 0.02120024710893631, -0.05905991420149803, 0.026879185810685158, 0.09943640232086182, 0.18048083782196045, -0.09862488508224487, 0.012620617635548115, -0.03430783003568649, 0.08121664822101593, -0.03196052461862564, 0.03197542577981949, -0.0840383991599083, -0.016251085326075554, 0.17835216224193573, 0.0030782297253608704, 0.022272996604442596, 0.002074616262689233, -0.049819961190223694, -0.02881433069705963, -0.017756454646587372, 0.06631895154714584, 0.07032092660665512, 0.010587303899228573, -0.0037596761249005795, -0.027667716145515442, -0.036921944469213486, -0.05629328638315201, -0.04952820762991905, 0.018803736194968224, -0.04712437093257904, -0.047942135483026505, 0.06027210131287575, -0.005624116864055395, 0.11337806284427643, -0.025607796385884285, 0.026316547766327858, -0.019410157576203346, -0.07494441419839859, -0.13221681118011475, -0.0304415225982666, 0.0691632330417633, 0.04371757060289383, -0.22497159242630005, -0.16994807124137878, -0.008539012633264065, 0.017946386709809303, -0.018741264939308167, -0.11334165185689926, 0.02453240379691124, -0.007166135590523481, -0.049758363515138626, -0.01601579785346985, 0.10474669933319092, -0.020438622683286667, 0.018010856583714485, -0.05593825876712799, 0.16603368520736694, -0.14290283620357513, 0.031004127115011215, -0.08706212788820267, 0.023509707301855087, -0.21286657452583313, 0.041208744049072266, -0.177636057138443, 0.04863585904240608, -0.08500861376523972, 0.02327173389494419, 0.021320728585124016, 0.01968831568956375, 0.08580207824707031, 0.10143322497606277, -0.23631145060062408, 0.05405791476368904, 0.07900930196046829, -0.022739801555871964, -0.04218491166830063, 0.06798892468214035, -0.06558530032634735, 0.1382148116827011, 0.046505436301231384, 0.24831900000572205, 0.10361487418413162, -0.2036508023738861, 0.061786454170942307, 0.0578593946993351, -0.08880111575126648, -0.004730981774628162, -0.020022382959723473, 0.11598580330610275, -0.01114928349852562, 0.03338807821273804, -0.12186288088560104, 0.1456439197063446, 0.02738998830318451, -0.0165485180914402, -0.04454165697097778, -0.1614885926246643, 0.10309953987598419, -0.015504824928939342, 0.09532155096530914, -0.042415786534547806, 0.0001161050095106475, -0.011168917641043663, 0.18012429773807526, -0.043841805309057236, 0.0007168867159634829, 0.07871408760547638, 0.10895700752735138, 0.028009075671434402, -0.020230965688824654, -0.20380273461341858, -0.0423048660159111, 0.02367858961224556, 0.044489551335573196, 0.2190362960100174, 0.19936694204807281, 0.07770156860351562, -0.022313760593533516, -0.025487221777439117, -0.003248062450438738, -0.05106664076447487, 0.03467361256480217, -0.027858436107635498, -0.024532482028007507, 0.06065356358885765, -0.09305168688297272, 0.02817818708717823, -0.13112716376781464, 0.06307920068502426, -0.17345242202281952, 0.06863926351070404, 0.021998396143317223, -0.005436043255031109, 0.024577690288424492, -0.011292695067822933, -0.034188106656074524, -0.06233125180006027, 0.07110602408647537, 0.06098933145403862, 0.014702376909554005, 0.0021991983521729708, -0.0683600977063179, -0.13828523457050323, 0.08231553435325623, -0.04042381793260574, -0.14305958151817322, 0.06392676383256912, 0.011172642931342125, 0.04875864461064339, -0.05975872278213501, 0.016254881396889687, 0.22900153696537018, 0.05321883037686348, 0.09785865992307663, -0.04092191904783249, -0.022525805979967117, -0.06617844104766846, -0.06677833944559097, 0.09694591909646988, 0.10812206566333771, 0.060318704694509506, -0.0030071530491113663, 0.07626225054264069, 0.10942911356687546, -0.1035122498869896, -0.0651884600520134, 0.03220061957836151, -0.05973697826266289, 0.019652515649795532, 0.049140311777591705, 0.02971293032169342, 0.08619047701358795, 0.1833551675081253, 0.008245792239904404, 0.0386311337351799, -0.025997694581747055, 0.026109617203474045, -0.15547916293144226, -0.03145433962345123, 0.04308181628584862, 0.00886955764144659, -0.07408110797405243, 0.04994636029005051, 0.051439400762319565, 0.13607151806354523, -0.08217083662748337, -0.13170577585697174, -0.059745315462350845, -0.03804200142621994, -0.04239124804735184, 0.14975430071353912, -0.08507520705461502, -0.19221234321594238, -0.017164425924420357, -0.15751953423023224, -0.02518727444112301, -0.005179801490157843, 0.002318724524229765, -0.08325926214456558, 0.017780914902687073, 0.010001576505601406, -0.03129372000694275, -0.0684933215379715, -0.06596160680055618, -0.05786636844277382, 0.09124112874269485, 0.06932931393384933, -0.12240120023488998, -0.00961651187390089, -0.03742414712905884, -0.020465577021241188, 0.04516167193651199, 0.08452648669481277, -0.007267598994076252, 0.07773483544588089, -0.13209199905395508, -0.06962883472442627, 0.02834828943014145, 0.2766247093677521, 0.02882981114089489, 0.004668009467422962, 0.17051753401756287, -0.03629542142152786, 0.04912714660167694, 0.16181479394435883, 0.030781643465161324, -0.14196757972240448, 0.07090470939874649, -0.011341600678861141, -0.09542687982320786, -0.1706860214471817, -0.10215658694505692, -0.037867411971092224, -0.05015881359577179, 0.05638284236192703, 0.004951419774442911, -0.04476970434188843, 0.05910305306315422, 0.08782228082418442, -0.017004497349262238, -0.06151578947901726, 0.11129767447710037, 0.032263003289699554, -0.030136963352560997, 0.08078382909297943, -0.042354047298431396, -0.04206389561295509, 0.0032403599470853806, 0.22643887996673584, 0.0937788337469101, -0.01775507442653179, -0.042567066848278046, 0.019317636266350746, 0.05095715448260307, 0.03613382205367088, 0.11312435567378998, -0.06975842267274857, -0.06826137751340866, -0.035185977816581726, 0.027829548344016075, -0.02945687249302864, 0.08205190300941467, 0.0630207508802414, 0.005563626065850258, -0.04653681069612503, -0.07972332090139389, -0.04849022626876831, 0.08408913016319275, -0.027642227709293365, -0.10093270242214203, 0.09321888536214828, 0.048575710505247116, 0.0016974330646917224, 0.03055831417441368, 0.027994604781270027, 0.01462269201874733, -0.07982148975133896, -0.06775744259357452, 0.011468625627458096, 0.07076629996299744, -0.06822766363620758, -0.027886953204870224, -0.19817815721035004, 0.14578363299369812, 0.010630400851368904, 0.04118429124355316, -0.13048617541790009, 0.1209396943449974, -0.023116756230592728, -0.026430301368236542, 0.013811616227030754, 0.0014643745962530375, 0.08203291147947311, -0.04806509613990784, 0.15762180089950562, 0.009528410620987415, -0.28092408180236816, -0.1418946087360382, -0.08416824042797089, -0.051183976233005524, -0.022873088717460632, 0.014752174727618694, 0.0642135739326477, 0.01516205258667469, 0.003868846921250224, -0.013076163828372955, 0.03185269236564636, -0.09826882928609848, -0.06493937969207764, -0.04839126765727997, -0.02250157669186592, -0.06525848805904388, -0.05647949501872063, -0.0006809153710491955, -0.17226077616214752, 0.12522587180137634, 0.11787347495555878, -0.06451737880706787, -0.041814323514699936, -0.06554657220840454, 0.046191465109586716, -0.07571537792682648, 0.0469326451420784, 0.003414976177737117, 0.019198855385184288, -0.06806991249322891, -0.17922484874725342, 0.016097763553261757, -0.10899919271469116, 0.03772687539458275, -0.05070559307932854, 0.020257100462913513, 0.08594245463609695, 0.17520126700401306, 0.05856714025139809, 0.01460097823292017, -0.07239776104688644, -0.07543374598026276, -0.0017121878918260336, -0.06344114243984222, 0.05762333422899246, -0.009151889942586422, -0.20333483815193176, 0.02763226442039013, -0.11414948850870132, 0.06860900670289993, 0.3310066759586334, 0.3324824273586273, -0.10698744654655457, 0.1177443116903305, 0.04819539934396744, -0.042202454060316086, -0.21051374077796936, -0.002244179602712393, 0.012272895313799381, 0.024992236867547035, 0.13725964725017548, -0.12924811244010925, 0.05453680083155632, 0.0794181227684021, -0.024458877742290497, 0.01456840243190527, -0.09078162908554077, -0.10816970467567444, 0.20847418904304504, 0.14226987957954407, 0.04421741142868996, -0.09421348571777344, 0.08391669392585754, 0.004295284394174814, 0.08375877887010574, 0.2107764035463333, -0.052112679928541183, 0.10695768147706985, 0.005195184610784054, 0.19852910935878754, 0.0328996516764164, -0.023768596351146698, 0.10834760218858719, -0.009801650419831276, 0.07911337912082672, 0.03985166177153587, -0.007676942739635706, 0.010487722232937813, -0.04522453248500824, 0.014148596674203873, -0.028376007452607155, 0.010284217074513435, -0.2274095118045807, 0.0582297146320343, -0.06368855386972427, 0.04604509472846985, 0.008256820961833, -0.0999874547123909, -0.03583388403058052, 0.06431841105222702, 0.08014573156833649, 0.01975327916443348, 0.0436067171394825, -0.03867863491177559, 0.11051398515701294, 0.20660489797592163, -0.009811338968575, 0.17751595377922058, -0.0615963339805603, 0.01464168168604374, -0.023011628538370132, -0.04223164543509483, -0.1462583988904953, -0.035259708762168884, 0.03498423472046852, 0.057734888046979904, 0.015203364193439484, 0.049647457897663116, -0.05656236410140991, 0.08498423546552658, 0.021687336266040802, -0.041541360318660736, 0.033579520881175995, 0.08835696429014206, 0.12415177375078201, 0.010754258371889591, -0.030121933668851852, 0.06147436052560806, -0.08128108084201813, -0.09446098655462265, -0.004497923422604799, -0.029991207644343376, -0.1083834245800972, 0.11353230476379395, 0.16914646327495575, 0.039594944566488266, -0.057076629251241684, 0.10688766092061996, -0.02768099494278431, 0.10047874599695206, 0.009198128245770931, 0.06507332623004913, -0.014091075398027897, -0.03691792115569115, 0.10611724853515625, -0.05442855879664421, -0.01637818105518818, 0.07645545154809952, -0.06522727757692337, -0.023877469822764397, -0.0801999643445015, 0.06034626066684723, 0.09222240000963211, -0.16854619979858398, -0.0639432892203331, -0.032122284173965454, -0.08628080040216446, 0.013965039514005184, 0.012447911314666271, 0.0710059329867363, -0.08589600026607513, 0.06316167116165161, -0.024337708950042725, 0.015639442950487137, -0.03689891844987869, 0.019222697243094444, -0.19525384902954102, -0.002140450058504939, -0.11280795186758041, -0.00348020251840353, -0.002931603929027915, 0.04463808611035347, -0.04961875081062317, -0.029358822852373123, -0.0030675032176077366, 0.044366419315338135, -0.16609135270118713, 0.002798673929646611, -0.011639905162155628, 0.03210212290287018, -0.0002893915225286037, -0.0983390137553215, 0.014195028692483902, -0.04294256120920181, -0.04198618605732918, 0.04925514757633209, 0.009436776861548424, 0.06470516324043274, -0.2795179784297943, -0.14905457198619843, 0.030816160142421722, 0.0683867484331131, 0.05483196675777435, -0.1830425262451172, 0.03568267077207565, -0.08042316138744354, -0.02253127470612526, -0.037770628929138184, 0.018491698428988457, -0.0539514496922493, 0.0018174031283706427, -0.04225044324994087, -0.023033907637000084, -0.028055014088749886, -0.07556360960006714, 0.0826747715473175, 0.12462522834539413, 0.07555580884218216, -0.03807181864976883, 0.09595896303653717, -0.10009756684303284, -0.04657831788063049, -0.04052736237645149, -0.036951083689928055, 0.017965637147426605, -0.0870552659034729, 0.048530060797929764, 0.05188591405749321, 0.18719671666622162, -0.08520494401454926, -0.058800119906663895, -0.014255574904382229, 0.0746525228023529, 0.07849094271659851, 0.005095830652862787, 0.17779210209846497, -0.045693784952163696, 0.05693846940994263, 0.021304311230778694, 0.046699028462171555, 0.10497613251209259, -0.023569339886307716, 0.14490213990211487, 0.21171095967292786, -0.037196725606918335, -0.11048602312803268, 0.043668005615472794, 0.01745123788714409, -0.002401199424639344, 0.05968761444091797, 0.11983796209096909, -0.050589341670274734, -0.10903856158256531, 0.23442286252975464, 0.054169271141290665, -0.11218088120222092, 0.09546315670013428, 0.039532262831926346, -0.015890996903181076, -0.1301896870136261, 0.010444961488246918, -0.0013640925753861666, -0.11233190447092056, 0.03386834263801575, -0.06087532266974449, -0.025547027587890625, 0.11809267848730087, 0.008789865300059319, 0.03317064419388771, -0.04139537364244461, -0.03756232187151909, -0.04352104663848877, -0.04273213446140289, -0.012549578212201595, -0.02991986647248268, -0.030186517164111137, -0.07621737569570541, -0.007770835887640715, -0.012012424878776073, 0.030795488506555557, -0.015285328030586243, -0.02503054589033127, -0.021192016080021858, -0.06697061657905579, -0.0026312144473195076, -0.008178025484085083, 0.015549594536423683, 0.010121971368789673, 0.2358063906431198, 0.07042546570301056, -0.10260069370269775, -0.01036880537867546, 0.22197756171226501, -0.03853277862071991, -0.06528383493423462, -0.07849395275115967, 0.25128230452537537, -0.10482002794742584, 0.051095426082611084, -0.005819917656481266, -0.06550488620996475, -0.07153836637735367, 0.2309868484735489, 0.13502730429172516, -0.1677926480770111, 0.06329060345888138, -0.0368385910987854, -0.009490780532360077, -0.14286863803863525, 0.16013580560684204, 0.1865294873714447, 0.09480160474777222, -0.12259847670793533, 0.0023130534682422876, -0.03518044203519821, -0.018328361213207245, -0.1660851687192917, -0.004593863617628813, -0.029364850372076035, -0.0427238829433918, -0.050771355628967285, 0.029773715883493423, -0.15205919742584229, -0.0927426889538765, -0.1916799396276474, -0.11482496559619904, -0.12386849522590637, -0.04549141973257065, -0.11142764985561371, -0.0019938007462769747, 0.02257080189883709, -0.0641874223947525, 0.021061956882476807, -0.0212461706250906, -0.05887424945831299, 0.015386379323899746, -0.08395619690418243, 0.0674985870718956, 0.06488548219203949, 0.15327942371368408, -0.0790991559624672, 0.025424562394618988, 0.07090727984905243, -0.057595450431108475, -0.10164349526166916, 0.06067253649234772, 0.015708057209849358, -0.1972588747739792, 0.007548294495791197, 0.17712996900081635, -0.10420889407396317, 0.09745754301548004, 0.048501528799533844, -0.012951982207596302, 0.0867827981710434, -0.024721821770071983, -0.016682926565408707, -0.04852180927991867, -0.011212974786758423, -0.10143939405679703, 0.09892100840806961, 0.0876845121383667, -0.0517118014395237, 0.07436849176883698, -0.09508965909481049, -0.04068392515182495, 0.13103286921977997, -0.010057874955236912, -0.08450483530759811, -0.11667824536561966, -0.04081142693758011, 0.09684515744447708, -0.018041390925645828, -0.20185889303684235, -0.11639472097158432, -0.11752668023109436, -0.00014377340266946703, -0.03563340753316879, 0.061800602823495865, 0.02430674433708191, -0.02556120604276657, -0.008150683715939522, -0.17615078389644623, -0.06614746153354645, 0.13479791581630707, -0.10176112502813339, -0.07456064969301224 ]
null
null
transformers
# Uploaded model - **Developed by:** bitsoko - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-2-7b-bnb-4bit"}
null
bitsoko/gumzo-llama-00
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-2-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-14T05:47:06+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-2-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: bitsoko - License: apache-2.0 - Finetuned from model : unsloth/llama-2-7b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: bitsoko\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-2-7b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-2-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: bitsoko\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-2-7b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 70, 79 ]
[ "passage: TAGS\n#transformers #safetensors #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-2-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: bitsoko\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-2-7b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ -0.07381754368543625, 0.07120836526155472, -0.002596519188955426, 0.0979078859090805, 0.05128747597336769, 0.022484075278043747, 0.12704706192016602, 0.11654487252235413, -0.030889881774783134, -0.029940199106931686, 0.10069715231657028, 0.11030203104019165, 0.030328601598739624, -0.008728982880711555, 0.008436269126832485, -0.1207394227385521, 0.0973714292049408, -0.04806342348456383, -0.10604825615882874, 0.04630349576473236, 0.04564226418733597, 0.0032228410709649324, 0.07642696797847748, -0.0626373365521431, -0.017652133479714394, 0.03281354904174805, -0.02938533015549183, -0.024777015671133995, -0.005104795563966036, 0.0748491957783699, -0.0372154526412487, 0.05694057047367096, 0.046281155198812485, -0.13074342906475067, 0.03574414551258087, 0.053705040365457535, -0.026569385081529617, 0.039062511175870895, -0.027500804513692856, 0.06939636170864105, 0.08959628641605377, -0.03282462805509567, -0.09050901234149933, 0.029996981844305992, 0.0014147161273285747, -0.11899518221616745, -0.01771405152976513, 0.16284748911857605, 0.031199639663100243, 0.0514114648103714, 0.022637806832790375, 0.08212709426879883, -0.05507788434624672, 0.05892953649163246, 0.14299848675727844, -0.2711208164691925, -0.06648840010166168, 0.1233014389872551, -0.006377322133630514, 0.08476351946592331, -0.029596379026770592, 0.038076434284448624, 0.04377567395567894, -0.027712859213352203, 0.03187725320458412, -0.06174596771597862, -0.13706102967262268, 0.0479041188955307, -0.09942491352558136, 0.00958400871604681, 0.18412445485591888, 0.08356055617332458, -0.04973188415169716, 0.020522626116871834, -0.107737235724926, 0.020293811336159706, -0.05447448790073395, 0.06293273717164993, 0.06220032647252083, 0.08922712504863739, -0.034534621983766556, -0.08614084869623184, -0.04613400623202324, -0.05170353502035141, -0.08031875640153885, 0.12587282061576843, 0.08547888696193695, 0.11021580547094345, -0.01276023406535387, 0.0791991651058197, 0.005427259020507336, -0.12438249588012695, -0.0671859011054039, -0.03863697871565819, 0.09915698319673538, 0.10308834910392761, -0.03141691908240318, 0.10513821989297867, 0.17406345903873444, 0.14577656984329224, 0.11134034395217896, 0.04320254549384117, 0.008431226015090942, 0.03275259956717491, -0.08135969936847687, 0.017305780202150345, -0.1567750871181488, -0.008053483441472054, 0.1513061672449112, 0.1050848737359047, 0.10213786363601685, 0.011553005315363407, -0.0834546834230423, -0.03262559324502945, 0.010581317357718945, 0.06084694713354111, 0.05123180150985718, 0.10396920889616013, 0.022017749026417732, -0.030909806489944458, 0.041099172085523605, -0.10428103059530258, -0.041152823716402054, -0.017405327409505844, -0.051312439143657684, 0.1028674989938736, 0.11606033146381378, -0.015963613986968994, -0.04690861701965332, -0.12950725853443146, -0.052932944148778915, -0.032077476382255554, -0.010288884863257408, -0.0019839745946228504, 0.06595993041992188, -0.03723413869738579, 0.018981073051691055, -0.17185744643211365, -0.2616463303565979, 0.049156371504068375, 0.11700659990310669, -0.03421146050095558, -0.008484614081680775, -0.03139537572860718, -0.05097508430480957, -0.0019201838877052069, -0.05800585076212883, 0.0075098625384271145, -0.08973927050828934, 0.06858816742897034, -0.019051140174269676, 0.08309446275234222, -0.13682080805301666, 0.016100067645311356, -0.10378391295671463, 0.04802747070789337, -0.024150680750608444, 0.06651626527309418, -0.08078162372112274, 0.08756320178508759, -0.0732397511601448, 0.024240242317318916, -0.08384113013744354, 0.02561076171696186, 0.0345311164855957, 0.15981072187423706, -0.1006755605340004, 0.02161157876253128, 0.1745636761188507, -0.07874593883752823, -0.1464701145887375, 0.133357971906662, 0.021158242598176003, 0.05947700887918472, 0.07416550070047379, 0.09624235332012177, 0.14082154631614685, -0.07786886394023895, -0.0070474473759531975, 0.1462678462266922, 0.027901826426386833, -0.12429409474134445, 0.06449531763792038, 0.06455699354410172, -0.18606334924697876, 0.08451613038778305, -0.09146521240472794, 0.12997286021709442, 0.018237652257084846, -0.06430739164352417, -0.12482912093400955, -0.1371949017047882, -0.025312131270766258, -0.018912501633167267, -0.004198508337140083, -0.006643007043749094, -0.06620500236749649, 0.0013221761910244823, 0.18911312520503998, -0.08393227308988571, 0.021186266094446182, -0.06333655118942261, 0.09823324531316757, -0.13208234310150146, 0.07941438257694244, -0.043794482946395874, -0.034908805042505264, -0.026843426749110222, -0.0524611696600914, 0.09277311712503433, -0.008164770901203156, 0.07162879407405853, -0.0017357454635202885, -0.05506233870983124, -0.004931820556521416, 0.07756038755178452, 0.001141041750088334, -0.03538134694099426, -0.11574537307024002, 0.04817809537053108, 0.0066459025256335735, 0.17228953540325165, -0.027302473783493042, 0.0387788861989975, -0.09218656271696091, 0.06945982575416565, -0.027100378647446632, 0.0488399863243103, 0.0498967207968235, -0.07962866872549057, -0.005056696943938732, -0.07842955738306046, 0.06475892663002014, 0.05845508724451065, -0.0809754803776741, 0.07442265003919601, -0.04375220835208893, 0.15099430084228516, 0.17978999018669128, 0.038669340312480927, 0.06501655280590057, 0.029545148834586143, 0.00012728474393952638, -0.01784687489271164, 0.045193225145339966, 0.0021289789583534002, -0.056186776608228683, -0.033499784767627716, 0.11178424209356308, -0.1276480257511139, 0.007491396740078926, 0.002627455396577716, -0.09656419605016708, 0.01856755092740059, 0.047766853123903275, 0.12816128134727478, -0.10828111320734024, 0.08262426406145096, 0.23753368854522705, -0.11636757850646973, 0.12806759774684906, -0.08172494918107986, -0.06731092929840088, 0.0028063307981938124, 0.058424077928066254, 0.0014070621691644192, 0.04849743843078613, -0.02185450680553913, 0.05513874441385269, 0.0342114083468914, -0.028658894822001457, 0.0519515797495842, -0.15261490643024445, -0.017847523093223572, -0.039843279868364334, -0.10796935856342316, 0.02715003490447998, 0.04970695450901985, -0.09142623841762543, 0.07724343985319138, -0.044405777007341385, -0.07637651264667511, 0.053629182279109955, 0.03907700255513191, -0.023392969742417336, 0.13004520535469055, -0.08537397533655167, -0.15546713769435883, -0.17545701563358307, -0.02229895442724228, -0.17971238493919373, -0.004740006756037474, 0.06036117672920227, -0.059882886707782745, -0.06379184871912003, -0.1234268769621849, -0.04185984283685684, 0.08077338337898254, 0.04827110469341278, 0.05886898934841156, 0.03712845593690872, 0.10398586839437485, -0.1083751767873764, 0.0019275222439318895, 0.02436591498553753, -0.06628347188234329, 0.003675348125398159, -0.08619190007448196, 0.06536693871021271, 0.11233694106340408, 0.036042775958776474, -0.017133822664618492, 0.06588060408830643, 0.12192186713218689, 0.04424862936139107, 0.05835289880633354, 0.21523387730121613, 0.04828338325023651, 0.07457634806632996, 0.09204567223787308, -0.003610035637393594, -0.06217602640390396, 0.00603485107421875, 0.02387011982500553, -0.07381792366504669, -0.13013333082199097, 0.004118281416594982, -0.06744807958602905, 0.06692351400852203, 0.0495392270386219, 0.08906126767396927, -0.0020059270318597555, 0.18038852512836456, -0.058441661298274994, 0.09175317734479904, 0.03182622790336609, 0.0512206107378006, 0.11254091560840607, 0.009862453676760197, 0.0610990896821022, -0.1445092409849167, -0.013973099179565907, 0.13237789273262024, 0.08242899179458618, 0.07589102536439896, -0.03278433904051781, -0.026382053270936012, 0.057939499616622925, 0.19562210142612457, 0.003273195354267955, 0.10506837069988251, -0.03653566911816597, -0.003172424389049411, -0.04694691300392151, -0.0690620094537735, -0.05311034247279167, 0.048172805458307266, -0.12393932789564133, -0.02482416294515133, 0.036689724773168564, 0.09319602698087692, 0.07427559047937393, 0.17615222930908203, 0.06805151700973511, -0.24567827582359314, -0.031448956578969955, 0.0784938633441925, 0.025593819096684456, -0.029532626271247864, 0.07453249394893646, 0.02056424878537655, 0.04720348119735718, 0.06638514995574951, -0.019550183787941933, 0.08339117467403412, 0.030980780720710754, 0.005676207598298788, 0.008426910266280174, 0.13815933465957642, 0.04029371961951256, 0.10867878049612045, -0.17105638980865479, 0.013200604356825352, 0.018397651612758636, 0.004454303998500109, -0.05042961984872818, -0.007798014208674431, 0.13598376512527466, 0.10834787040948868, 0.07160968333482742, 0.013673155568540096, 0.04478728398680687, 0.016774563118815422, -0.17734842002391815, 0.08760326355695724, 0.0034409731160849333, -0.0024305242113769054, 0.08043745160102844, -0.09153827279806137, -0.023789821192622185, 0.019172100350260735, 0.06703123450279236, -0.05550277978181839, -0.10004763305187225, -0.031797245144844055, 0.159851536154747, -0.029385672882199287, -0.06468036025762558, 0.009291493333876133, -0.10905136168003082, 0.13709315657615662, 0.04427977651357651, -0.09861783683300018, -0.05278485640883446, -0.0661502555012703, 0.1279362142086029, -0.06261511147022247, 0.011925172992050648, -0.08112337440252304, -0.023624660447239876, 0.053488798439502716, -0.2217293083667755, 0.03785434737801552, -0.10061072558164597, -0.05038801580667496, 0.01753133535385132, 0.04056435450911522, -0.12479165941476822, -0.031528595834970474, -0.00465089688077569, -0.06672262400388718, -0.06531257182359695, -0.11795265972614288, -0.08351874351501465, 0.16175276041030884, -0.0557321272790432, 0.05782901495695114, -0.11526205390691757, 0.009669161401689053, 0.0005122434813529253, -0.015595681965351105, -0.006814069114625454, 0.1895318478345871, -0.009978963062167168, 0.017193883657455444, 0.22536109387874603, -0.03360168635845184, -0.29894524812698364, -0.16700178384780884, -0.10619702935218811, -0.04216288402676582, -0.058972883969545364, -0.07566551864147186, 0.15995484590530396, 0.061039719730615616, -0.059704575687646866, 0.11612804979085922, -0.23442921042442322, -0.09795842319726944, 0.12770378589630127, 0.06235159933567047, 0.3340151607990265, -0.18171757459640503, -0.03206590563058853, -0.12763123214244843, -0.13160641491413116, 0.07177411764860153, -0.25871390104293823, 0.1204129010438919, -0.03367798030376434, 0.004103552550077438, -0.012226217426359653, -0.016618803143501282, 0.135410875082016, -0.02113080769777298, 0.07639205455780029, -0.10960323363542557, 0.1478671431541443, 0.05498652532696724, -0.09256642311811447, 0.18319429457187653, -0.2298564463853836, 0.09742178022861481, -0.037701498717069626, -0.020580001175403595, -0.00963502936065197, -0.024265510961413383, 0.02597763016819954, -0.036506544798612595, -0.08392384648323059, -0.007774785626679659, 0.05192093178629875, 0.007846768014132977, 0.0903841182589531, 0.026748916134238243, -0.07777810841798782, 0.21813027560710907, -0.018111106008291245, -0.07143273949623108, 0.010237584821879864, -0.09334399551153183, -0.06182393804192543, 0.07450461387634277, -0.25254061818122864, 0.05843573808670044, 0.025609297677874565, -0.050720613449811935, 0.042470213025808334, 0.014191176742315292, 0.013765293173491955, -0.0036290627904236317, 0.08982263505458832, -0.11837024241685867, -0.050809718668460846, -0.03652156889438629, -0.03535054996609688, -0.07186225056648254, 0.08321544528007507, 0.15326274931430817, -0.06713826954364777, 0.027856040745973587, 0.000020863573809037916, 0.04528548941016197, -0.07153992354869843, 0.06421635299921036, 0.09292978048324585, -0.01963682845234871, -0.094894640147686, 0.1712087094783783, -0.03934277221560478, 0.0720212385058403, 0.0009550118120387197, 0.017870064824819565, -0.13030143082141876, -0.08279009163379669, 0.0029418235644698143, 0.037468649446964264, -0.13935694098472595, -0.08517586439847946, -0.10064886510372162, -0.06181664019823074, 0.02326563000679016, 0.026632895693182945, 0.05826358497142792, 0.016185283660888672, 0.01164268609136343, -0.012758121825754642, -0.0518861785531044, 0.05738835036754608, 0.07963746786117554, 0.052946824580430984, -0.223374605178833, -0.06928509473800659, 0.013386371545493603, 0.050377700477838516, -0.048097651451826096, 0.04276004806160927, -0.09379580616950989, 0.0025474918074905872, -0.3269725739955902, 0.0589543879032135, -0.048759251832962036, 0.051286064088344574, 0.018851034343242645, -0.04074503853917122, -0.05325084924697876, 0.05758850276470184, -0.05618254840373993, -0.02246297523379326, -0.007247679401189089, -0.009590797126293182, -0.09206701070070267, -0.07207942754030228, 0.02312597446143627, -0.06252456456422806, 0.028452184051275253, 0.05210098251700401, -0.08809841424226761, 0.06819496303796768, -0.11710231751203537, -0.042344484478235245, 0.05320436879992485, 0.05590783432126045, -0.053308431059122086, 0.06826887279748917, 0.026975248008966446, 0.05462117865681648, 0.03933977708220482, -0.026084594428539276, 0.053932394832372665, -0.04759592562913895, -0.04094242677092552, -0.12374300509691238, 0.04499516636133194, -0.028921332210302353, -0.04917789250612259, 0.12759427726268768, 0.07139566540718079, 0.150288924574852, -0.05415051430463791, -0.07070040702819824, -0.14945971965789795, 0.008776228874921799, 0.0033315911423414946, -0.10762583464384079, -0.050128985196352005, -0.09946832060813904, 0.005086947698146105, -0.025768162682652473, 0.13218994438648224, -0.0025569619610905647, -0.07953435182571411, -0.037421815097332, 0.0014219018630683422, 0.12327596545219421, -0.03239942342042923, 0.2963699996471405, 0.04794468358159065, 0.046153463423252106, -0.11799053102731705, -0.028997059911489487, 0.1310259848833084, -0.028281711041927338, -0.04874439164996147, 0.1000184416770935, -0.07744649797677994, 0.1628437489271164, 0.05672594532370567, 0.041301023215055466, 0.06473170220851898, 0.05858205631375313, -0.07894757390022278, 0.06447718292474747, -0.03323856368660927, 0.14208883047103882, 0.14849598705768585, -0.035848986357450485, -0.038097888231277466, 0.008264591917395592, -0.019371505826711655, -0.13741955161094666, -0.16085128486156464, -0.11507906019687653, -0.20824240148067474, 0.009756909683346748, -0.04333343356847763, -0.012760700657963753, 0.15361842513084412, 0.019170474261045456, 0.03477606922388077, 0.09220706671476364, -0.05623774603009224, -0.060557469725608826, 0.04169394075870514, -0.02246081829071045, -0.10584897547960281, 0.11874353140592575, -0.08969379216432571, 0.08720340579748154, -0.03322870656847954, -0.007028413005173206, 0.02365577593445778, 0.08481348305940628, 0.09180567413568497, -0.06535406410694122, -0.040458180010318756, -0.06508863717317581, 0.03634396195411682, 0.041024044156074524, 0.10092272609472275, 0.04929663613438606, -0.05751071125268936, 0.04256022348999977, 0.13913902640342712, -0.08681906759738922, -0.15881434082984924, -0.09748874604701996, 0.04921393468976021, -0.09916216135025024, 0.011469295248389244, -0.00785447470843792, -0.045963507145643234, 0.010427720844745636, 0.31524035334587097, 0.11236164718866348, -0.13034588098526, 0.0018414065707474947, -0.046273984014987946, 0.004981618840247393, -0.06660272181034088, 0.15562859177589417, 0.14648398756980896, 0.05498848855495453, -0.016492057591676712, -0.05425729975104332, -0.009868461638689041, -0.007848736830055714, -0.13825350999832153, 0.014967449009418488, -0.10743576288223267, -0.041487157344818115, -0.04279770329594612, -0.01583651266992092, -0.09233300387859344, -0.052640266716480255, 0.03566420450806618, 0.050843603909015656, -0.034393321722745895, -0.10618489980697632, 0.02156982570886612, 0.06845088303089142, -0.03230447694659233, -0.1070810854434967, 0.07951130717992783, 0.0963698998093605, -0.0340740829706192, -0.15320749580860138, -0.0439637266099453, 0.03294631466269493, 0.0836259201169014, 0.11695322394371033, 0.05839521065354347, 0.035445090383291245, 0.06350502371788025, -0.07876081764698029, -0.13554365932941437, 0.14125686883926392, -0.02653600089251995, -0.0781276524066925, 0.020199589431285858, -0.06157108396291733, -0.07134013622999191, 0.010004079900681973, 0.03621519356966019, 0.14328278601169586, -0.07043198496103287, 0.07226990908384323, -0.044145774096250534, -0.09350425004959106, -0.02396075427532196, -0.10685781389474869, 0.11453674733638763, 0.06354551762342453, -0.0625932589173317, -0.023081114515662193, -0.08447030186653137, 0.10298864543437958, 0.006250826641917229, -0.16780316829681396, 0.06505047529935837, 0.0004890422569587827, -0.045602478086948395, 0.02558783069252968, 0.05938182771205902, -0.20628312230110168, -0.020559458062052727, -0.05906306207180023, -0.027125274762511253, -0.08699919283390045, 0.10334938764572144, 0.1811586320400238, 0.037502869963645935, -0.03123423270881176, -0.14884673058986664, -0.03024461306631565, 0.03415148705244064, -0.03491394966840744, -0.11274495720863342 ]
null
null
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga juliowaissman -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga juliowaissman -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga juliowaissman ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "591.00 +/- 295.96", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
juliowaissman/dqn-SpaceInvadersNoFrameskip-v4
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T05:54:00+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 43, 90, 73, 9, 5, 7 ]
[ "passage: TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
[ 0.043572068214416504, 0.2414778620004654, -0.0026879787910729647, 0.012635791674256325, 0.05784223601222038, 0.0030472534708678722, 0.08585051447153091, 0.10650663822889328, 0.024212315678596497, -0.001382096204906702, 0.003954293206334114, 0.17533031105995178, 0.03632635250687599, 0.13125447928905487, -0.018073517829179764, -0.2066594809293747, -0.013479253277182579, -0.06247470900416374, -0.07153085619211197, 0.036099132150411606, 0.07206681370735168, -0.030116932466626167, 0.036061208695173264, -0.051406677812337875, -0.057161085307598114, 0.036824777722358704, -0.03157254680991173, 0.007067287806421518, 0.15158706903457642, -0.1222257912158966, 0.12329676002264023, 0.020955175161361694, 0.1896144151687622, -0.12332789599895477, 0.0339222252368927, 0.08982209116220474, -0.036988191306591034, 0.013221588917076588, 0.00975361280143261, -0.052562564611434937, 0.1590864509344101, -0.09371145814657211, 0.07146181166172028, 0.010926910676062107, -0.07592244446277618, -0.1774153709411621, -0.09356249868869781, 0.07947742193937302, 0.0617753230035305, 0.005319166928529739, 0.03726791962981224, 0.11306490749120712, -0.020991774275898933, 0.06488905102014542, 0.11562903225421906, -0.17549200356006622, 0.013578375801444054, 0.17859570682048798, 0.003242473118007183, 0.15767055749893188, -0.05546637624502182, 0.019877681508660316, 0.02752300351858139, 0.04758313298225403, 0.06873945891857147, -0.08186400681734085, -0.1364826112985611, -0.056155186146497726, -0.15456219017505646, -0.03352400287985802, 0.05195203423500061, -0.011860138736665249, -0.05783402919769287, -0.010724928230047226, -0.04010869935154915, 0.0008851495804265141, -0.028637725859880447, 0.01805497519671917, 0.07031578570604324, -0.01226285845041275, 0.02092539705336094, -0.08391954004764557, -0.0390290804207325, -0.038563769310712814, -0.018022390082478523, 0.12054917961359024, 0.08285853266716003, 0.0266572255641222, -0.04135355353355408, 0.10274127870798111, -0.07091585546731949, -0.05454207584261894, 0.04555258899927139, -0.03786851093173027, -0.10615779459476471, 0.02120024710893631, -0.05905991420149803, 0.026879185810685158, 0.09943640232086182, 0.18048083782196045, -0.09862488508224487, 0.012620617635548115, -0.03430783003568649, 0.08121664822101593, -0.03196052461862564, 0.03197542577981949, -0.0840383991599083, -0.016251085326075554, 0.17835216224193573, 0.0030782297253608704, 0.022272996604442596, 0.002074616262689233, -0.049819961190223694, -0.02881433069705963, -0.017756454646587372, 0.06631895154714584, 0.07032092660665512, 0.010587303899228573, -0.0037596761249005795, -0.027667716145515442, -0.036921944469213486, -0.05629328638315201, -0.04952820762991905, 0.018803736194968224, -0.04712437093257904, -0.047942135483026505, 0.06027210131287575, -0.005624116864055395, 0.11337806284427643, -0.025607796385884285, 0.026316547766327858, -0.019410157576203346, -0.07494441419839859, -0.13221681118011475, -0.0304415225982666, 0.0691632330417633, 0.04371757060289383, -0.22497159242630005, -0.16994807124137878, -0.008539012633264065, 0.017946386709809303, -0.018741264939308167, -0.11334165185689926, 0.02453240379691124, -0.007166135590523481, -0.049758363515138626, -0.01601579785346985, 0.10474669933319092, -0.020438622683286667, 0.018010856583714485, -0.05593825876712799, 0.16603368520736694, -0.14290283620357513, 0.031004127115011215, -0.08706212788820267, 0.023509707301855087, -0.21286657452583313, 0.041208744049072266, -0.177636057138443, 0.04863585904240608, -0.08500861376523972, 0.02327173389494419, 0.021320728585124016, 0.01968831568956375, 0.08580207824707031, 0.10143322497606277, -0.23631145060062408, 0.05405791476368904, 0.07900930196046829, -0.022739801555871964, -0.04218491166830063, 0.06798892468214035, -0.06558530032634735, 0.1382148116827011, 0.046505436301231384, 0.24831900000572205, 0.10361487418413162, -0.2036508023738861, 0.061786454170942307, 0.0578593946993351, -0.08880111575126648, -0.004730981774628162, -0.020022382959723473, 0.11598580330610275, -0.01114928349852562, 0.03338807821273804, -0.12186288088560104, 0.1456439197063446, 0.02738998830318451, -0.0165485180914402, -0.04454165697097778, -0.1614885926246643, 0.10309953987598419, -0.015504824928939342, 0.09532155096530914, -0.042415786534547806, 0.0001161050095106475, -0.011168917641043663, 0.18012429773807526, -0.043841805309057236, 0.0007168867159634829, 0.07871408760547638, 0.10895700752735138, 0.028009075671434402, -0.020230965688824654, -0.20380273461341858, -0.0423048660159111, 0.02367858961224556, 0.044489551335573196, 0.2190362960100174, 0.19936694204807281, 0.07770156860351562, -0.022313760593533516, -0.025487221777439117, -0.003248062450438738, -0.05106664076447487, 0.03467361256480217, -0.027858436107635498, -0.024532482028007507, 0.06065356358885765, -0.09305168688297272, 0.02817818708717823, -0.13112716376781464, 0.06307920068502426, -0.17345242202281952, 0.06863926351070404, 0.021998396143317223, -0.005436043255031109, 0.024577690288424492, -0.011292695067822933, -0.034188106656074524, -0.06233125180006027, 0.07110602408647537, 0.06098933145403862, 0.014702376909554005, 0.0021991983521729708, -0.0683600977063179, -0.13828523457050323, 0.08231553435325623, -0.04042381793260574, -0.14305958151817322, 0.06392676383256912, 0.011172642931342125, 0.04875864461064339, -0.05975872278213501, 0.016254881396889687, 0.22900153696537018, 0.05321883037686348, 0.09785865992307663, -0.04092191904783249, -0.022525805979967117, -0.06617844104766846, -0.06677833944559097, 0.09694591909646988, 0.10812206566333771, 0.060318704694509506, -0.0030071530491113663, 0.07626225054264069, 0.10942911356687546, -0.1035122498869896, -0.0651884600520134, 0.03220061957836151, -0.05973697826266289, 0.019652515649795532, 0.049140311777591705, 0.02971293032169342, 0.08619047701358795, 0.1833551675081253, 0.008245792239904404, 0.0386311337351799, -0.025997694581747055, 0.026109617203474045, -0.15547916293144226, -0.03145433962345123, 0.04308181628584862, 0.00886955764144659, -0.07408110797405243, 0.04994636029005051, 0.051439400762319565, 0.13607151806354523, -0.08217083662748337, -0.13170577585697174, -0.059745315462350845, -0.03804200142621994, -0.04239124804735184, 0.14975430071353912, -0.08507520705461502, -0.19221234321594238, -0.017164425924420357, -0.15751953423023224, -0.02518727444112301, -0.005179801490157843, 0.002318724524229765, -0.08325926214456558, 0.017780914902687073, 0.010001576505601406, -0.03129372000694275, -0.0684933215379715, -0.06596160680055618, -0.05786636844277382, 0.09124112874269485, 0.06932931393384933, -0.12240120023488998, -0.00961651187390089, -0.03742414712905884, -0.020465577021241188, 0.04516167193651199, 0.08452648669481277, -0.007267598994076252, 0.07773483544588089, -0.13209199905395508, -0.06962883472442627, 0.02834828943014145, 0.2766247093677521, 0.02882981114089489, 0.004668009467422962, 0.17051753401756287, -0.03629542142152786, 0.04912714660167694, 0.16181479394435883, 0.030781643465161324, -0.14196757972240448, 0.07090470939874649, -0.011341600678861141, -0.09542687982320786, -0.1706860214471817, -0.10215658694505692, -0.037867411971092224, -0.05015881359577179, 0.05638284236192703, 0.004951419774442911, -0.04476970434188843, 0.05910305306315422, 0.08782228082418442, -0.017004497349262238, -0.06151578947901726, 0.11129767447710037, 0.032263003289699554, -0.030136963352560997, 0.08078382909297943, -0.042354047298431396, -0.04206389561295509, 0.0032403599470853806, 0.22643887996673584, 0.0937788337469101, -0.01775507442653179, -0.042567066848278046, 0.019317636266350746, 0.05095715448260307, 0.03613382205367088, 0.11312435567378998, -0.06975842267274857, -0.06826137751340866, -0.035185977816581726, 0.027829548344016075, -0.02945687249302864, 0.08205190300941467, 0.0630207508802414, 0.005563626065850258, -0.04653681069612503, -0.07972332090139389, -0.04849022626876831, 0.08408913016319275, -0.027642227709293365, -0.10093270242214203, 0.09321888536214828, 0.048575710505247116, 0.0016974330646917224, 0.03055831417441368, 0.027994604781270027, 0.01462269201874733, -0.07982148975133896, -0.06775744259357452, 0.011468625627458096, 0.07076629996299744, -0.06822766363620758, -0.027886953204870224, -0.19817815721035004, 0.14578363299369812, 0.010630400851368904, 0.04118429124355316, -0.13048617541790009, 0.1209396943449974, -0.023116756230592728, -0.026430301368236542, 0.013811616227030754, 0.0014643745962530375, 0.08203291147947311, -0.04806509613990784, 0.15762180089950562, 0.009528410620987415, -0.28092408180236816, -0.1418946087360382, -0.08416824042797089, -0.051183976233005524, -0.022873088717460632, 0.014752174727618694, 0.0642135739326477, 0.01516205258667469, 0.003868846921250224, -0.013076163828372955, 0.03185269236564636, -0.09826882928609848, -0.06493937969207764, -0.04839126765727997, -0.02250157669186592, -0.06525848805904388, -0.05647949501872063, -0.0006809153710491955, -0.17226077616214752, 0.12522587180137634, 0.11787347495555878, -0.06451737880706787, -0.041814323514699936, -0.06554657220840454, 0.046191465109586716, -0.07571537792682648, 0.0469326451420784, 0.003414976177737117, 0.019198855385184288, -0.06806991249322891, -0.17922484874725342, 0.016097763553261757, -0.10899919271469116, 0.03772687539458275, -0.05070559307932854, 0.020257100462913513, 0.08594245463609695, 0.17520126700401306, 0.05856714025139809, 0.01460097823292017, -0.07239776104688644, -0.07543374598026276, -0.0017121878918260336, -0.06344114243984222, 0.05762333422899246, -0.009151889942586422, -0.20333483815193176, 0.02763226442039013, -0.11414948850870132, 0.06860900670289993, 0.3310066759586334, 0.3324824273586273, -0.10698744654655457, 0.1177443116903305, 0.04819539934396744, -0.042202454060316086, -0.21051374077796936, -0.002244179602712393, 0.012272895313799381, 0.024992236867547035, 0.13725964725017548, -0.12924811244010925, 0.05453680083155632, 0.0794181227684021, -0.024458877742290497, 0.01456840243190527, -0.09078162908554077, -0.10816970467567444, 0.20847418904304504, 0.14226987957954407, 0.04421741142868996, -0.09421348571777344, 0.08391669392585754, 0.004295284394174814, 0.08375877887010574, 0.2107764035463333, -0.052112679928541183, 0.10695768147706985, 0.005195184610784054, 0.19852910935878754, 0.0328996516764164, -0.023768596351146698, 0.10834760218858719, -0.009801650419831276, 0.07911337912082672, 0.03985166177153587, -0.007676942739635706, 0.010487722232937813, -0.04522453248500824, 0.014148596674203873, -0.028376007452607155, 0.010284217074513435, -0.2274095118045807, 0.0582297146320343, -0.06368855386972427, 0.04604509472846985, 0.008256820961833, -0.0999874547123909, -0.03583388403058052, 0.06431841105222702, 0.08014573156833649, 0.01975327916443348, 0.0436067171394825, -0.03867863491177559, 0.11051398515701294, 0.20660489797592163, -0.009811338968575, 0.17751595377922058, -0.0615963339805603, 0.01464168168604374, -0.023011628538370132, -0.04223164543509483, -0.1462583988904953, -0.035259708762168884, 0.03498423472046852, 0.057734888046979904, 0.015203364193439484, 0.049647457897663116, -0.05656236410140991, 0.08498423546552658, 0.021687336266040802, -0.041541360318660736, 0.033579520881175995, 0.08835696429014206, 0.12415177375078201, 0.010754258371889591, -0.030121933668851852, 0.06147436052560806, -0.08128108084201813, -0.09446098655462265, -0.004497923422604799, -0.029991207644343376, -0.1083834245800972, 0.11353230476379395, 0.16914646327495575, 0.039594944566488266, -0.057076629251241684, 0.10688766092061996, -0.02768099494278431, 0.10047874599695206, 0.009198128245770931, 0.06507332623004913, -0.014091075398027897, -0.03691792115569115, 0.10611724853515625, -0.05442855879664421, -0.01637818105518818, 0.07645545154809952, -0.06522727757692337, -0.023877469822764397, -0.0801999643445015, 0.06034626066684723, 0.09222240000963211, -0.16854619979858398, -0.0639432892203331, -0.032122284173965454, -0.08628080040216446, 0.013965039514005184, 0.012447911314666271, 0.0710059329867363, -0.08589600026607513, 0.06316167116165161, -0.024337708950042725, 0.015639442950487137, -0.03689891844987869, 0.019222697243094444, -0.19525384902954102, -0.002140450058504939, -0.11280795186758041, -0.00348020251840353, -0.002931603929027915, 0.04463808611035347, -0.04961875081062317, -0.029358822852373123, -0.0030675032176077366, 0.044366419315338135, -0.16609135270118713, 0.002798673929646611, -0.011639905162155628, 0.03210212290287018, -0.0002893915225286037, -0.0983390137553215, 0.014195028692483902, -0.04294256120920181, -0.04198618605732918, 0.04925514757633209, 0.009436776861548424, 0.06470516324043274, -0.2795179784297943, -0.14905457198619843, 0.030816160142421722, 0.0683867484331131, 0.05483196675777435, -0.1830425262451172, 0.03568267077207565, -0.08042316138744354, -0.02253127470612526, -0.037770628929138184, 0.018491698428988457, -0.0539514496922493, 0.0018174031283706427, -0.04225044324994087, -0.023033907637000084, -0.028055014088749886, -0.07556360960006714, 0.0826747715473175, 0.12462522834539413, 0.07555580884218216, -0.03807181864976883, 0.09595896303653717, -0.10009756684303284, -0.04657831788063049, -0.04052736237645149, -0.036951083689928055, 0.017965637147426605, -0.0870552659034729, 0.048530060797929764, 0.05188591405749321, 0.18719671666622162, -0.08520494401454926, -0.058800119906663895, -0.014255574904382229, 0.0746525228023529, 0.07849094271659851, 0.005095830652862787, 0.17779210209846497, -0.045693784952163696, 0.05693846940994263, 0.021304311230778694, 0.046699028462171555, 0.10497613251209259, -0.023569339886307716, 0.14490213990211487, 0.21171095967292786, -0.037196725606918335, -0.11048602312803268, 0.043668005615472794, 0.01745123788714409, -0.002401199424639344, 0.05968761444091797, 0.11983796209096909, -0.050589341670274734, -0.10903856158256531, 0.23442286252975464, 0.054169271141290665, -0.11218088120222092, 0.09546315670013428, 0.039532262831926346, -0.015890996903181076, -0.1301896870136261, 0.010444961488246918, -0.0013640925753861666, -0.11233190447092056, 0.03386834263801575, -0.06087532266974449, -0.025547027587890625, 0.11809267848730087, 0.008789865300059319, 0.03317064419388771, -0.04139537364244461, -0.03756232187151909, -0.04352104663848877, -0.04273213446140289, -0.012549578212201595, -0.02991986647248268, -0.030186517164111137, -0.07621737569570541, -0.007770835887640715, -0.012012424878776073, 0.030795488506555557, -0.015285328030586243, -0.02503054589033127, -0.021192016080021858, -0.06697061657905579, -0.0026312144473195076, -0.008178025484085083, 0.015549594536423683, 0.010121971368789673, 0.2358063906431198, 0.07042546570301056, -0.10260069370269775, -0.01036880537867546, 0.22197756171226501, -0.03853277862071991, -0.06528383493423462, -0.07849395275115967, 0.25128230452537537, -0.10482002794742584, 0.051095426082611084, -0.005819917656481266, -0.06550488620996475, -0.07153836637735367, 0.2309868484735489, 0.13502730429172516, -0.1677926480770111, 0.06329060345888138, -0.0368385910987854, -0.009490780532360077, -0.14286863803863525, 0.16013580560684204, 0.1865294873714447, 0.09480160474777222, -0.12259847670793533, 0.0023130534682422876, -0.03518044203519821, -0.018328361213207245, -0.1660851687192917, -0.004593863617628813, -0.029364850372076035, -0.0427238829433918, -0.050771355628967285, 0.029773715883493423, -0.15205919742584229, -0.0927426889538765, -0.1916799396276474, -0.11482496559619904, -0.12386849522590637, -0.04549141973257065, -0.11142764985561371, -0.0019938007462769747, 0.02257080189883709, -0.0641874223947525, 0.021061956882476807, -0.0212461706250906, -0.05887424945831299, 0.015386379323899746, -0.08395619690418243, 0.0674985870718956, 0.06488548219203949, 0.15327942371368408, -0.0790991559624672, 0.025424562394618988, 0.07090727984905243, -0.057595450431108475, -0.10164349526166916, 0.06067253649234772, 0.015708057209849358, -0.1972588747739792, 0.007548294495791197, 0.17712996900081635, -0.10420889407396317, 0.09745754301548004, 0.048501528799533844, -0.012951982207596302, 0.0867827981710434, -0.024721821770071983, -0.016682926565408707, -0.04852180927991867, -0.011212974786758423, -0.10143939405679703, 0.09892100840806961, 0.0876845121383667, -0.0517118014395237, 0.07436849176883698, -0.09508965909481049, -0.04068392515182495, 0.13103286921977997, -0.010057874955236912, -0.08450483530759811, -0.11667824536561966, -0.04081142693758011, 0.09684515744447708, -0.018041390925645828, -0.20185889303684235, -0.11639472097158432, -0.11752668023109436, -0.00014377340266946703, -0.03563340753316879, 0.061800602823495865, 0.02430674433708191, -0.02556120604276657, -0.008150683715939522, -0.17615078389644623, -0.06614746153354645, 0.13479791581630707, -0.10176112502813339, -0.07456064969301224 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125m-cs-finetuning This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0305 | 1.0 | 622 | 3.1795 | | 2.9268 | 2.0 | 1244 | 3.1564 | | 2.8639 | 3.0 | 1866 | 3.1521 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1+cu117 - Datasets 2.14.6 - Tokenizers 0.15.0
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/gpt-neo-125m", "model-index": [{"name": "gpt-neo-125m-cs-finetuning", "results": []}]}
text-generation
KimByeongSu/gpt-neo-125m-cs-finetuning
[ "transformers", "tensorboard", "safetensors", "gpt_neo", "text-generation", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T05:55:01+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neo #text-generation #generated_from_trainer #base_model-EleutherAI/gpt-neo-125m #license-mit #autotrain_compatible #endpoints_compatible #region-us
gpt-neo-125m-cs-finetuning ========================== This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set: * Loss: 3.1521 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 1.13.1+cu117 * Datasets 2.14.6 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neo #text-generation #generated_from_trainer #base_model-EleutherAI/gpt-neo-125m #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ 73, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #gpt_neo #text-generation #generated_from_trainer #base_model-EleutherAI/gpt-neo-125m #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ -0.09333714842796326, 0.06371735036373138, -0.0018639714689925313, 0.10541881620883942, 0.13718606531620026, 0.016695506870746613, 0.15990960597991943, 0.1113293394446373, -0.07826294749975204, 0.05947274714708328, 0.13688629865646362, 0.11355126649141312, 0.018756872043013573, 0.13811373710632324, -0.054842595010995865, -0.226522758603096, 0.015130430459976196, 0.041206471621990204, -0.05182456970214844, 0.10650075972080231, 0.09017235040664673, -0.13306260108947754, 0.1047278344631195, -0.00562418345361948, -0.18627037107944489, 0.01505277305841446, 0.02181323803961277, -0.05284503474831581, 0.13399125635623932, 0.05122445151209831, 0.12780539691448212, 0.02641882747411728, 0.07869898527860641, -0.16333571076393127, 0.013609176501631737, 0.05940571427345276, -0.001893285778351128, 0.07986065745353699, 0.047927696257829666, 0.0034291534684598446, 0.0971035584807396, -0.07043381035327911, 0.05735025927424431, 0.015250480733811855, -0.1340687870979309, -0.20652221143245697, -0.08520612120628357, 0.023999113589525223, 0.09011334925889969, 0.09016052633523941, -0.016382889822125435, 0.1518709510564804, -0.02965218760073185, 0.09128057956695557, 0.2188798487186432, -0.3199068307876587, -0.07069399952888489, 0.05250854045152664, 0.05552126094698906, 0.10400506854057312, -0.09995434433221817, 0.009584054350852966, 0.0707545354962349, 0.027022477239370346, 0.13024739921092987, -0.026773503050208092, -0.02367338538169861, 0.016510939225554466, -0.150629922747612, -0.006336789112538099, 0.15784576535224915, 0.042314957827329636, -0.044820062816143036, -0.04323164001107216, -0.07068708539009094, -0.1434416025876999, -0.03797515109181404, -0.028163669630885124, 0.03889571875333786, -0.026136241853237152, -0.07971175014972687, -0.05080532655119896, -0.10769573599100113, -0.08387815952301025, -0.06719326227903366, 0.16403080523014069, 0.0326538123190403, -0.000021170408217585646, -0.010292381048202515, 0.10198109596967697, -0.04992549866437912, -0.1269741952419281, 0.013546058908104897, 0.023969653993844986, 0.014635289087891579, -0.05300334841012955, -0.05503105744719505, -0.10175535827875137, 0.010336421430110931, 0.13306695222854614, -0.042236328125, 0.03993042930960655, 0.006323011126369238, 0.04715683311223984, -0.10870096832513809, 0.17073853313922882, -0.0496147945523262, -0.04665587842464447, 0.013442019000649452, 0.08164902776479721, 0.050288137048482895, -0.019635841250419617, -0.13272985816001892, 0.023742031306028366, 0.10097985714673996, 0.003648526268079877, -0.059105146676301956, 0.0785311907529831, -0.04122638702392578, -0.0019411470275372267, 0.03178723528981209, -0.08116374164819717, 0.02100004255771637, -0.019298503175377846, -0.06503582745790482, -0.05145213380455971, 0.023077333346009254, 0.02442578412592411, 0.021403806284070015, 0.09811033308506012, -0.10921099781990051, 0.0020865171682089567, -0.08745785057544708, -0.13291867077350616, 0.007401932030916214, -0.07642136514186859, 0.021859075874090195, -0.12270379811525345, -0.18604327738285065, -0.0040591065771877766, 0.04654768481850624, -0.035664014518260956, -0.014520112425088882, -0.05111419036984444, -0.07483702898025513, 0.021197112277150154, -0.01699318364262581, 0.07192468643188477, -0.059202127158641815, 0.0946582704782486, 0.06630203127861023, 0.06622110307216644, -0.0638614371418953, 0.030898187309503555, -0.10007287561893463, 0.030893690884113312, -0.192282035946846, 0.01177152432501316, -0.05248468369245529, 0.06779751181602478, -0.07627630978822708, -0.07079257816076279, -0.013230318203568459, 0.01885625161230564, 0.07636239379644394, 0.08937958627939224, -0.16132107377052307, -0.07822632789611816, 0.16712741553783417, -0.09355425834655762, -0.14961250126361847, 0.14166629314422607, -0.04598546400666237, 0.038499750196933746, 0.07647985965013504, 0.18803369998931885, 0.057809896767139435, -0.09646271914243698, -0.021266715601086617, -0.021061178296804428, 0.053852181881666183, -0.04891091212630272, 0.07909641414880753, -0.0016238949028775096, 0.013477534055709839, 0.0056763216853141785, -0.04925062879920006, 0.0549614317715168, -0.08501927554607391, -0.07372832298278809, -0.035335857421159744, -0.1091625764966011, 0.06306756287813187, 0.040986135601997375, 0.06967293471097946, -0.12257083505392075, -0.10439680516719818, 0.06531038880348206, 0.07108920067548752, -0.0722791999578476, 0.018597997725009918, -0.08505214750766754, 0.09083610028028488, -0.09692402184009552, -0.020278150215744972, -0.13068673014640808, -0.07849093526601791, 0.014345240779221058, 0.011128449812531471, 0.033469777554273605, 0.019144298508763313, 0.08474740386009216, 0.0953662246465683, -0.07156211882829666, -0.03164614364504814, -0.014705459587275982, 0.006049536634236574, -0.12841397523880005, -0.18572402000427246, -0.009603820741176605, -0.03231390565633774, 0.12141016870737076, -0.23307554423809052, 0.05027712881565094, 0.006236525718122721, 0.09649580717086792, 0.04183279722929001, -0.01338203251361847, -0.050725486129522324, 0.060338303446769714, -0.047912225127220154, -0.06917494535446167, 0.04566658288240433, 0.005776527803391218, -0.10510971397161484, -0.024224091321229935, -0.19631776213645935, 0.2166188508272171, 0.14370650053024292, -0.07154642045497894, -0.07586048543453217, 0.008340904489159584, -0.033597782254219055, -0.03003815747797489, -0.028486015275120735, -0.019375842064619064, 0.13768762350082397, -0.01709764078259468, 0.15125955641269684, -0.0821646973490715, -0.03963493928313255, 0.029945235699415207, -0.044946424663066864, -0.003965838346630335, 0.09726569801568985, 0.08261827379465103, -0.10325578600168228, 0.1533985137939453, 0.16907106339931488, -0.09692562371492386, 0.1569386124610901, -0.018932603299617767, -0.06174616888165474, -0.027659449726343155, 0.00407063402235508, 0.020825158804655075, 0.12285580486059189, -0.10435862839221954, -0.00953389797359705, 0.00349160423502326, 0.015238010324537754, 0.02626861445605755, -0.2142305076122284, -0.0343962125480175, 0.038061123341321945, -0.043627381324768066, 0.03338625282049179, -0.013361452147364616, -0.02256469801068306, 0.10110169649124146, 0.004683697130531073, -0.07261539250612259, 0.035644467920064926, 0.012505145743489265, -0.07503341138362885, 0.2033882737159729, -0.08133745938539505, -0.1358044147491455, -0.14374203979969025, -0.0685819759964943, -0.0560305155813694, 0.041069429367780685, 0.05705113708972931, -0.08106964081525803, -0.04229794070124626, -0.10887648165225983, 0.03814765438437462, 0.011400549672544003, 0.033474378287792206, 0.02519749291241169, -0.024364281445741653, 0.05955968424677849, -0.1044907420873642, -0.009201746433973312, -0.03897498548030853, -0.06446760892868042, 0.03291934356093407, 0.030677491798996925, 0.12449102103710175, 0.14632683992385864, -0.023322561755776405, -0.0018467454938217998, -0.03892935812473297, 0.22169344127178192, -0.07859113067388535, -0.009126510471105576, 0.1359872668981552, -0.00958426482975483, 0.049643389880657196, 0.12520158290863037, 0.05460053309798241, -0.10169637948274612, 0.027536047622561455, 0.039553046226501465, -0.03861840441823006, -0.19826215505599976, -0.03341010585427284, -0.037376780062913895, 0.014571979641914368, 0.0808853805065155, 0.040999289602041245, 0.04603007808327675, 0.07490731030702591, 0.013915886171162128, 0.08819218724966049, -0.025951845571398735, 0.08170977234840393, 0.10865819454193115, 0.0409717820584774, 0.14472618699073792, -0.0462617501616478, -0.07017012685537338, 0.04011905938386917, 0.008045283146202564, 0.20379583537578583, 0.024440046399831772, 0.13736481964588165, 0.0444941520690918, 0.13311927020549774, 0.004348308313637972, 0.05223322659730911, -0.010108282789587975, -0.05920310318470001, -0.014518669806420803, -0.050138313323259354, -0.00870449561625719, 0.04309459403157234, -0.07622799277305603, 0.05088300630450249, -0.09971053153276443, 0.018555397167801857, 0.054850637912750244, 0.17993824183940887, 0.050319552421569824, -0.3610686957836151, -0.09095800668001175, 0.03183337301015854, -0.014611913822591305, -0.028052201494574547, 0.01923450082540512, 0.1322668045759201, -0.041378531605005264, 0.03991194814443588, -0.08078906685113907, 0.06814883649349213, -0.0313430018723011, 0.043999332934617996, 0.05824379250407219, 0.10558609664440155, -0.02653070166707039, 0.05488920956850052, -0.27476006746292114, 0.2727380394935608, 0.02357613854110241, 0.08328783512115479, -0.037712354212999344, 0.0037627164274454117, 0.02018924057483673, 0.08384199440479279, 0.07070665061473846, -0.027270482853055, -0.0703042522072792, -0.19244760274887085, -0.051685500890016556, 0.02867264114320278, 0.1148114949464798, -0.04556828737258911, 0.1205139085650444, -0.03290637955069542, 0.0062913610599935055, 0.08547848463058472, -0.0029327236115932465, -0.08028406649827957, -0.10072077810764313, 0.005598488729447126, 0.037475887686014175, -0.032863881438970566, -0.08140257000923157, -0.10218650102615356, -0.13687169551849365, 0.1624806523323059, -0.042357902973890305, -0.029615316540002823, -0.10377570241689682, 0.058966126292943954, 0.06119931861758232, -0.08610115200281143, 0.043036364018917084, 0.015524148941040039, 0.08844346553087234, 0.012642327696084976, -0.05256614089012146, 0.13606198132038116, -0.07498554140329361, -0.16573049128055573, -0.06261350214481354, 0.10241353511810303, 0.01590089127421379, 0.045680370181798935, -0.0077566225081682205, 0.018487101420760155, -0.019301941618323326, -0.07753344625234604, 0.03788039833307266, -0.01748616062104702, 0.05211007595062256, -0.0005909103201702237, -0.030868444591760635, 0.01276653353124857, -0.052790820598602295, -0.04428202286362648, 0.148856520652771, 0.2915627062320709, -0.0732322558760643, -0.01674359105527401, 0.06034267693758011, -0.06385748088359833, -0.19196292757987976, 0.056151993572711945, 0.008228927850723267, 0.002131017856299877, 0.04168347269296646, -0.14368095993995667, 0.0906539112329483, 0.10904619097709656, -0.0247018001973629, 0.12307121604681015, -0.2947070002555847, -0.13876685500144958, 0.11796295642852783, 0.15405072271823883, 0.13133177161216736, -0.1779228001832962, -0.041197266429662704, -0.033912498503923416, -0.1130961999297142, 0.09870055317878723, -0.12181689590215683, 0.11257792264223099, -0.010631846264004707, 0.06364855170249939, 0.005159973166882992, -0.06073618680238724, 0.1309819221496582, -0.02782934531569481, 0.10745666176080704, -0.07118375599384308, -0.009667670354247093, 0.060286570340394974, -0.04834409058094025, 0.023988036438822746, -0.11060311645269394, 0.021779609844088554, -0.046014830470085144, -0.03926333039999008, -0.046608515083789825, 0.038926705718040466, -0.022710302844643593, -0.07768067717552185, -0.054713740944862366, 0.027561819180846214, 0.012033801525831223, -0.017500247806310654, 0.15102405846118927, 0.008295807987451553, 0.1727888584136963, 0.09714075922966003, 0.07432562857866287, -0.0802503153681755, -0.012350714765489101, 0.00678073288872838, -0.033797625452280045, 0.06227097287774086, -0.13840149343013763, 0.02461615763604641, 0.1259983777999878, -0.003384241135790944, 0.14029338955879211, 0.07838834077119827, -0.04877546802163124, 0.030628712847828865, 0.07575427740812302, -0.16753771901130676, -0.12633897364139557, -0.021743234246969223, -0.02819329872727394, -0.10834763944149017, 0.08150210976600647, 0.13522063195705414, -0.07733746618032455, 0.007363446522504091, -0.010437016375362873, 0.002288802294060588, -0.03444655239582062, 0.18566825985908508, 0.06436901539564133, 0.040257181972265244, -0.071078822016716, 0.07009348273277283, 0.038974784314632416, -0.07193084806203842, 0.019422469660639763, 0.05271042883396149, -0.07248996943235397, -0.04019312560558319, 0.03002983331680298, 0.19267025589942932, -0.07327762991189957, -0.041272446513175964, -0.1574546843767166, -0.11314069479703903, 0.046182479709386826, 0.18373055756092072, 0.08234257251024246, 0.005144087597727776, -0.029470333829522133, 0.03631553053855896, -0.1200232207775116, 0.10985320061445236, 0.030133280903100967, 0.10289154201745987, -0.16687129437923431, 0.15345893800258636, -0.009512660093605518, 0.00314021622762084, -0.027871256694197655, 0.05203237384557724, -0.11371803283691406, -0.007834608666598797, -0.11322230100631714, -0.02704748883843422, -0.027378590777516365, -0.008920508436858654, -0.0038244116585701704, -0.062080420553684235, -0.07597662508487701, 0.006826489698141813, -0.0981496050953865, -0.017842253670096397, 0.04525968059897423, 0.03778262436389923, -0.11933276802301407, -0.031670887023210526, 0.01977280154824257, -0.05735066160559654, 0.06462360918521881, 0.013410789892077446, 0.03933646157383919, 0.06154663860797882, -0.1577427238225937, 0.045988183468580246, 0.060441307723522186, 0.006972388830035925, 0.04717155545949936, -0.05740083381533623, -0.017427746206521988, -0.012633531354367733, 0.06634985655546188, 0.0228649340569973, 0.06954918056726456, -0.1154220700263977, 0.006920152809470892, -0.03471985459327698, -0.04756730794906616, -0.057975392788648605, 0.035527702420949936, 0.07821778953075409, 0.00905668269842863, 0.18438701331615448, -0.09931477159261703, 0.004303400870412588, -0.2040829062461853, 0.012140431441366673, 0.006810470018535852, -0.1280335932970047, -0.08138471096754074, -0.04872710257768631, 0.05572883039712906, -0.058260031044483185, 0.14199039340019226, 0.006290093529969454, 0.022757766768336296, 0.03867069259285927, -0.024011705070734024, 0.054961398243904114, 0.01943143829703331, 0.22448663413524628, 0.03516733646392822, -0.0390511117875576, 0.007947192527353764, 0.047928664833307266, 0.12321431934833527, 0.05747591704130173, 0.1839996725320816, 0.13898375630378723, -0.045153722167015076, 0.11570870876312256, 0.050488781183958054, -0.06178100407123566, -0.16656532883644104, 0.029916273429989815, -0.04881385341286659, 0.08270308375358582, -0.02089741639792919, 0.2041086107492447, 0.13886070251464844, -0.1423140913248062, 0.000004207023721392034, -0.04491247981786728, -0.08070454001426697, -0.10952802747488022, -0.06629352271556854, -0.10002495348453522, -0.1543256789445877, 0.004101514350622892, -0.1143554300069809, 0.014738175086677074, 0.09600783884525299, 0.010584152303636074, -0.017862271517515182, 0.20366691052913666, 0.01429451908916235, 0.029209213331341743, 0.03288597986102104, -0.002097796881571412, -0.02781713753938675, -0.06937490403652191, -0.09074581414461136, 0.0013345928164198995, -0.019480478018522263, 0.025157585740089417, -0.05411949008703232, -0.03894875571131706, 0.04870361089706421, -0.003848518943414092, -0.10389020293951035, -0.0015237879706546664, 0.03283023461699486, 0.05028281360864639, 0.02561706304550171, 0.0016206118743866682, -0.0028383603785187006, -0.006029920186847448, 0.2192710041999817, -0.07768864184617996, -0.04932980611920357, -0.08372631669044495, 0.19445358216762543, 0.02420484460890293, 0.0241536982357502, -0.0021638795733451843, -0.08938410878181458, 0.026731230318546295, 0.2171187698841095, 0.18745504319667816, -0.08539046347141266, -0.0016847563674673438, -0.004326726775616407, -0.008274855092167854, -0.04574652761220932, 0.09165854752063751, 0.10075777024030685, 0.04001908004283905, -0.07477394491434097, -0.04908934608101845, -0.04367353394627571, 0.0052406140603125095, -0.03306595981121063, 0.053347714245319366, 0.040817178785800934, 0.028509940952062607, -0.04198576882481575, 0.055150363594293594, -0.030512038618326187, -0.08518825471401215, 0.017714329063892365, -0.19933047890663147, -0.1424824297428131, -0.007387873716652393, 0.11998894065618515, -0.028606252744793892, 0.06421314179897308, -0.03118511103093624, -0.008368423208594322, 0.033422693610191345, -0.011725104413926601, -0.082353875041008, -0.07890846580266953, 0.05940590426325798, -0.08247561007738113, 0.23648163676261902, -0.045191191136837006, 0.04031367599964142, 0.13384604454040527, 0.027930613607168198, -0.07722540199756622, 0.09773105382919312, 0.045319702476263046, -0.07417836040258408, 0.040715452283620834, 0.09426974505186081, -0.03643113002181053, 0.12580303847789764, 0.05681365728378296, -0.13202953338623047, 0.02082126773893833, -0.050922248512506485, -0.07355861365795135, -0.047305770218372345, -0.041626736521720886, -0.073402538895607, 0.14038310945034027, 0.16913694143295288, -0.03079986944794655, 0.00624671159312129, -0.036630336195230484, 0.028459038585424423, 0.079144686460495, 0.0811135321855545, -0.024776751175522804, -0.24801911413669586, 0.012232428416609764, 0.0754312127828598, -0.012753539718687534, -0.30907142162323, -0.08227357268333435, -0.01723640039563179, -0.03884661942720413, -0.09370839595794678, 0.08010932058095932, 0.14532779157161713, 0.05132948234677315, -0.0667964369058609, -0.0960732027888298, -0.08148881793022156, 0.15261825919151306, -0.1410609930753708, -0.10154735296964645 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalbench_summarizer This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the legal_bench dataset. It achieves the following results on the evaluation set: - Loss: 10.6817 - Rouge1: 0.0029 - Rouge2: 0.0 - Rougel: 0.003 - Rougelsum: 0.003 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 1 | 10.8579 | 0.0015 | 0.0 | 0.0016 | 0.0016 | 19.0 | | No log | 2.0 | 2 | 10.7719 | 0.0018 | 0.0 | 0.0019 | 0.0019 | 19.0 | | No log | 3.0 | 3 | 10.7123 | 0.0033 | 0.0 | 0.0033 | 0.0033 | 19.0 | | No log | 4.0 | 4 | 10.6817 | 0.0029 | 0.0 | 0.003 | 0.003 | 19.0 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["legal_bench"], "metrics": ["rouge"], "base_model": "t5-small", "model-index": [{"name": "legalbench_summarizer", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "legal_bench", "type": "legal_bench", "config": "consumer_contracts_qa", "split": "test", "args": "consumer_contracts_qa"}, "metrics": [{"type": "rouge", "value": 0.0029, "name": "Rouge1"}]}]}]}
text2text-generation
prithviraj-maurya/legalbench_summarizer
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:legal_bench", "base_model:t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T05:55:38+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #dataset-legal_bench #base_model-t5-small #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
legalbench\_summarizer ====================== This model is a fine-tuned version of t5-small on the legal\_bench dataset. It achieves the following results on the evaluation set: * Loss: 10.6817 * Rouge1: 0.0029 * Rouge2: 0.0 * Rougel: 0.003 * Rougelsum: 0.003 * Gen Len: 19.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.0 * Pytorch 2.1.2 * Datasets 2.1.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #dataset-legal_bench #base_model-t5-small #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ 89, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #dataset-legal_bench #base_model-t5-small #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ -0.10858111828565598, 0.13822130858898163, -0.0033759577199816704, 0.09751935303211212, 0.10035725682973862, 0.018695402890443802, 0.1628332883119583, 0.15771512687206268, -0.08675289899110794, 0.051243435591459274, 0.12636521458625793, 0.1037793979048729, 0.052365854382514954, 0.17628739774227142, -0.052290964871644974, -0.2331572324037552, 0.02008415199816227, 0.04029654711484909, -0.07565836608409882, 0.13883446156978607, 0.11792321503162384, -0.11486160010099411, 0.07185033708810806, 0.013232882134616375, -0.14646033942699432, -0.01570364460349083, 0.0026383420918136835, -0.06712912768125534, 0.11221728473901749, 0.014834033325314522, 0.09432519972324371, 0.05949372053146362, 0.07063304632902145, -0.1533869057893753, 0.011098646558821201, 0.05756823718547821, 0.005631186533719301, 0.1031738892197609, 0.07275539636611938, -0.012931098230183125, 0.07539993524551392, -0.09290899336338043, 0.04796342924237251, 0.02263064682483673, -0.1095694899559021, -0.2820502817630768, -0.09426533430814743, 0.07751091569662094, 0.08103344589471817, 0.06963249295949936, -0.005588540807366371, 0.1328212469816208, -0.02547205053269863, 0.08534985780715942, 0.2490256428718567, -0.30011942982673645, -0.05079030990600586, -0.014255075715482235, 0.042877376079559326, 0.07487760484218597, -0.08808465301990509, -0.03944474831223488, 0.04048413038253784, 0.04338373616337776, 0.15659327805042267, -0.006025318522006273, -0.000764615717343986, -0.018288034945726395, -0.13598933815956116, -0.07489491254091263, 0.20702649652957916, 0.044707249850034714, -0.0444156788289547, -0.093656025826931, -0.06624890118837357, -0.12172458320856094, -0.021463541314005852, 0.0018550589447841048, 0.030598372220993042, -0.03215057775378227, -0.07278988510370255, -0.043241992592811584, -0.12063007056713104, -0.05720125883817673, -0.006497752852737904, 0.11283883452415466, 0.05865279212594032, 0.024257728829979897, -0.031146200373768806, 0.10747985541820526, 0.04424029588699341, -0.15956290066242218, 0.008216102607548237, 0.005093154963105917, 0.031979549676179886, -0.00620603933930397, -0.04053816944360733, -0.06961233168840408, 0.026805315166711807, 0.12300771474838257, -0.07947047054767609, 0.02758817747235298, -0.006885814480483532, 0.05634428560733795, -0.08162584900856018, 0.12359260767698288, -0.039368193596601486, 0.000673428294248879, 0.02855035848915577, 0.1204482764005661, 0.06722051650285721, -0.0073875500820577145, -0.10105057060718536, 0.008679373189806938, 0.14086377620697021, 0.03941311687231064, 0.003350786166265607, 0.04257022589445114, -0.06725466996431351, -0.03917118161916733, 0.05641818419098854, -0.10584287345409393, 0.0037549939006567, 0.01746286265552044, -0.06613333523273468, -0.070328488945961, 0.031062250956892967, 0.01457950472831726, -0.029546840116381645, 0.04218000918626785, -0.06824493408203125, -0.012266618199646473, -0.0644586831331253, -0.09845026582479477, 0.03078046441078186, -0.046247586607933044, 0.005257193930447102, -0.09826058894395828, -0.19575902819633484, -0.013824625872075558, 0.04234303906559944, -0.037097249180078506, -0.09387698024511337, -0.03213685378432274, -0.07743704319000244, 0.02458125725388527, -0.03002486377954483, 0.10367853194475174, -0.04820801317691803, 0.1211886927485466, 0.029772823676466942, 0.05903750658035278, -0.013104057870805264, 0.047201573848724365, -0.10814604163169861, 0.04380378499627113, -0.13515537977218628, 0.05578084662556648, -0.03924323618412018, 0.019863758236169815, -0.10735487937927246, -0.1040445864200592, -0.0028422002214938402, -0.029482122510671616, 0.08314228802919388, 0.10843782126903534, -0.15580564737319946, -0.065526582300663, 0.20074020326137543, -0.11319571733474731, -0.1525898426771164, 0.1213473305106163, -0.02631561830639839, 0.0307292677462101, 0.043949052691459656, 0.19220595061779022, 0.07096917927265167, -0.06131306663155556, -0.011352146975696087, -0.0200177114456892, 0.06909278780221939, -0.0596567764878273, 0.12521027028560638, -0.0057263062335550785, 0.013969036750495434, 0.012904295697808266, -0.0759875699877739, 0.04910232871770859, -0.0907847061753273, -0.08934904634952545, -0.05348633974790573, -0.0884910598397255, 0.06756734102964401, 0.05471424758434296, 0.060694169253110886, -0.11422107368707657, -0.10701479017734528, 0.03844735026359558, 0.10197638720273972, -0.08971691876649857, 0.025015830993652344, -0.061464834958314896, 0.10779103636741638, -0.07797252386808395, -0.023213177919387817, -0.16637000441551208, -0.0548025444149971, 0.03817427158355713, -0.03886092081665993, -0.011747037060558796, -0.01151477824896574, 0.07019883394241333, 0.07702802121639252, -0.06504300981760025, -0.07285202294588089, -0.05425097793340683, -0.0001469642302254215, -0.09629910439252853, -0.20152197778224945, -0.05862627923488617, -0.02420022152364254, 0.14316193759441376, -0.18476057052612305, 0.04765933007001877, -0.01027345284819603, 0.13062994182109833, 0.03125137463212013, -0.025876818224787712, -0.0035496880300343037, 0.028645187616348267, -0.04143008217215538, -0.06539439409971237, 0.07150387018918991, 0.038896020501852036, -0.09203337132930756, 0.047399166971445084, -0.1352895051240921, 0.14291240274906158, 0.11709675192832947, -0.00014869605365674943, -0.04586012661457062, -0.011828462593257427, -0.0869392603635788, -0.04173479229211807, -0.03785286098718643, -0.008188668638467789, 0.08485697954893112, -0.00010661317355697975, 0.15552717447280884, -0.11740070581436157, -0.0608317106962204, 0.024942588061094284, -0.04341565817594528, -0.01409170776605606, 0.11260224133729935, 0.022645259276032448, -0.11288194358348846, 0.15035699307918549, 0.17412425577640533, -0.04131501168012619, 0.1323736011981964, -0.07355619966983795, -0.08723320811986923, -0.04143470525741577, 0.026194820180535316, 0.017478767782449722, 0.11038989573717117, -0.083897665143013, 0.02225188910961151, 0.050065189599990845, 0.010808070190250874, 0.02464633621275425, -0.20535409450531006, -0.011285283602774143, 0.027432778850197792, -0.06781005859375, 0.011231389828026295, -0.000920796359423548, 0.018566841259598732, 0.11122317612171173, -0.0072232321836054325, -0.0363023541867733, 0.05076628923416138, 0.00023093106574378908, -0.09392916411161423, 0.19142651557922363, -0.0852409079670906, -0.20500855147838593, -0.12452688813209534, 0.016126269474625587, -0.04228261113166809, 0.000048186597268795595, 0.06805531680583954, -0.039198048412799835, -0.02308151125907898, -0.1012624055147171, -0.0021731951273977757, -0.00907833781093359, 0.024548238143324852, 0.041852936148643494, 0.016382573172450066, 0.1011277586221695, -0.10676693916320801, -0.008756345137953758, -0.01101111900061369, -0.013106931000947952, 0.05190518498420715, 0.0299620870500803, 0.07507221400737762, 0.10890267789363861, -0.018192637711763382, 0.016754532232880592, -0.0354250967502594, 0.19196806848049164, -0.044222332537174225, -0.010590112768113613, 0.1586596965789795, -0.012818667106330395, 0.07736802846193314, 0.11603192985057831, 0.03146971017122269, -0.05905475467443466, 0.008145883679389954, 0.01359669677913189, -0.022708231583237648, -0.23196129500865936, -0.038697171956300735, -0.04078071936964989, 0.02044946886599064, 0.1090601235628128, 0.03670758381485939, 0.004189042374491692, 0.057477470487356186, -0.03121679089963436, 0.022219063714146614, 0.007619400508701801, 0.07891582697629929, 0.10443076491355896, 0.03348374366760254, 0.13280074298381805, -0.0391911156475544, -0.03540712967514992, 0.04729475826025009, 0.005448520183563232, 0.2011098712682724, -0.05045083537697792, 0.16761426627635956, 0.06402445584535599, 0.191745325922966, 0.007670751307159662, 0.06437205523252487, -0.0034389360807836056, 0.010670050047338009, -0.009038431569933891, -0.06101019307971001, -0.034579213708639145, 0.024465641006827354, -0.044332925230264664, 0.0691211000084877, -0.12416849285364151, 0.022592265158891678, 0.03246510773897171, 0.2903606593608856, 0.08506520837545395, -0.3362094759941101, -0.10276090353727341, 0.024231169372797012, -0.01893157884478569, -0.04226271063089371, 0.007015339098870754, 0.12119723111391068, -0.09048808366060257, 0.04762457683682442, -0.08977864682674408, 0.07322618365287781, -0.04455620422959328, 0.009706975892186165, 0.046648550778627396, 0.0748632401227951, 0.014668998308479786, 0.08566322177648544, -0.27627554535865784, 0.2574913203716278, 0.0019835529383271933, 0.05350690707564354, -0.071013443171978, 0.011925553902983665, 0.011705209501087666, 0.0062147462740540504, 0.09056945145130157, -0.0024289689026772976, -0.05789940431714058, -0.14980487525463104, -0.13191397488117218, 0.014390889555215836, 0.07803419977426529, -0.05070578306913376, 0.10857271403074265, -0.038759104907512665, 0.0028682774864137173, 0.05481044203042984, -0.024528101086616516, -0.08162317425012589, -0.09863094240427017, 0.03120790608227253, 0.027900127694010735, -0.01354119274765253, -0.11449559032917023, -0.127155601978302, -0.04004906117916107, 0.17490242421627045, -0.028309976682066917, -0.09376762807369232, -0.10755687952041626, 0.09222076088190079, 0.10773652046918869, -0.08694315701723099, 0.0252957995980978, -0.0063987900502979755, 0.1373138427734375, 0.014019675552845001, -0.08316637575626373, 0.07760696113109589, -0.07924867421388626, -0.22147448360919952, -0.0436377078294754, 0.16444438695907593, 0.009128465317189693, 0.059007614850997925, -0.004067560657858849, 0.021927950903773308, -0.025162767618894577, -0.05179424211382866, 0.04192685708403587, 0.012160871177911758, 0.09210468828678131, 0.010256867855787277, -0.04407893866300583, -0.0053434050641953945, -0.042616166174411774, -0.046922795474529266, 0.17121067643165588, 0.25850072503089905, -0.0885712057352066, 0.06955063343048096, 0.04282745346426964, -0.05823075398802757, -0.17398284375667572, -0.02722512185573578, 0.0893368348479271, 0.015497496351599693, 0.05309493467211723, -0.14807695150375366, 0.04055974632501602, 0.07665488123893738, -0.040664512664079666, 0.06198412925004959, -0.32626160979270935, -0.12720821797847748, 0.09598497301340103, 0.1314755380153656, 0.08443644642829895, -0.17050215601921082, -0.06220899894833565, 0.0038956226781010628, -0.10804607719182968, 0.14118604362010956, -0.08682631701231003, 0.10758441686630249, -0.0367685966193676, 0.028062043711543083, 0.01541693601757288, -0.06230781227350235, 0.13358451426029205, -0.043295130133628845, 0.05149991437792778, -0.05560998246073723, 0.023921599611639977, 0.11548866331577301, -0.07007220387458801, 0.05505021661520004, -0.09726234525442123, 0.0688280314207077, -0.1178799644112587, -0.021926576271653175, -0.09938342124223709, 0.036440130323171616, -0.041563380509614944, -0.052767448127269745, -0.024325573816895485, 0.03650452196598053, 0.06161126494407654, -0.015253215096890926, 0.1426645815372467, 0.04570966213941574, 0.14416474103927612, 0.15232418477535248, 0.07766842842102051, -0.015884075313806534, -0.06503105908632278, -0.050187937915325165, -0.036595772951841354, 0.03277941793203354, -0.1318076252937317, 0.036380961537361145, 0.11558036506175995, 0.014967165887355804, 0.1317092478275299, 0.055882323533296585, -0.06654532998800278, 0.016946736723184586, 0.06834976375102997, -0.1665353924036026, -0.14595669507980347, -0.032593242824077606, 0.01960534229874611, -0.16223052144050598, 0.032084230333566666, 0.11585398763418198, -0.06687483936548233, -0.03325754404067993, -0.00985810812562704, 0.039945513010025024, -0.01143650058656931, 0.1720677763223648, 0.0654379352927208, 0.06230465695261955, -0.08892470598220825, 0.10567609965801239, 0.056219980120658875, -0.08034481853246689, 0.04104464128613472, 0.06604288518428802, -0.07938173413276672, -0.027446726337075233, 0.07336628437042236, 0.11836399883031845, -0.02292431890964508, -0.06873226910829544, -0.15991495549678802, -0.1149345189332962, 0.07062538713216782, 0.08142977207899094, 0.07292595505714417, 0.037442877888679504, -0.0004293608362786472, -0.008157272823154926, -0.10428368300199509, 0.1475416123867035, 0.08085218071937561, 0.06920433044433594, -0.14439520239830017, 0.11942658573389053, -0.0014526690356433392, 0.05320225656032562, -0.011159524321556091, 0.029288439080119133, -0.077801913022995, -0.014810306951403618, -0.12784245610237122, 0.022154279053211212, -0.047284189611673355, -0.016073960810899734, -0.014802048914134502, -0.05909958481788635, -0.043732836842536926, 0.03999791666865349, -0.09258317202329636, -0.0475754588842392, 0.00015411207277793437, 0.05227123945951462, -0.13128744065761566, -0.043792448937892914, 0.020545197650790215, -0.09001166373491287, 0.09397061914205551, 0.04756159707903862, 0.02032189443707466, 0.018462959676980972, -0.06329792737960815, 0.011626319028437138, 0.04490483179688454, 0.008576327003538609, 0.02394361048936844, -0.13717606663703918, -0.012287132441997528, 0.020831869915127754, -0.0025476894807070494, 0.009782866574823856, 0.092357337474823, -0.1313895583152771, -0.007520084735006094, -0.021107608452439308, -0.029130462557077408, -0.06287473440170288, 0.044699180871248245, 0.04762645065784454, 0.03232796490192413, 0.18940764665603638, -0.08615770190954208, 0.0353107824921608, -0.23647540807724, 0.01117737777531147, -0.020742269232869148, -0.10213436186313629, -0.1041133850812912, -0.014517142437398434, 0.05907311290502548, -0.04859461262822151, 0.099378801882267, -0.010316994972527027, 0.02605649083852768, 0.03260083496570587, -0.020528824999928474, 0.054100606590509415, 0.02735387161374092, 0.21064697206020355, -0.011317247524857521, -0.037001028656959534, 0.058007556945085526, 0.003203317290171981, 0.07941784709692001, 0.06657136231660843, 0.1744762510061264, 0.1659553498029709, 0.012926340103149414, 0.07482749223709106, 0.055607423186302185, -0.04388897120952606, -0.1831953078508377, 0.05642261356115341, -0.005510975141078234, 0.10764456540346146, -0.0007762382738292217, 0.22230759263038635, 0.11838064342737198, -0.1816028356552124, 0.026848681271076202, -0.034545060247182846, -0.06986285001039505, -0.09971185773611069, -0.10148295015096664, -0.08867669850587845, -0.1352025270462036, -0.013847686350345612, -0.12698732316493988, 0.02185041271150112, 0.07289300113916397, 0.004367223475128412, -0.01868998445570469, 0.1100175529718399, 0.07619073987007141, -0.0011363187804818153, 0.04906570166349411, 0.00808860082179308, -0.00636058347299695, -0.05208650231361389, -0.09598787873983383, 0.02847536839544773, 0.02253568358719349, 0.04371992498636246, -0.0369831807911396, -0.016890399158000946, 0.03708191215991974, -0.01727345399558544, -0.118477463722229, 0.008973184041678905, 0.006323174573481083, 0.08016465604305267, 0.049265339970588684, 0.02135329879820347, 0.007517118006944656, -0.013277657330036163, 0.23461757600307465, -0.06138589605689049, -0.07231755554676056, -0.10800762474536896, 0.17997144162654877, -0.003965641837567091, -0.05222715064883232, 0.0704963430762291, -0.09676188230514526, -0.0010042486246675253, 0.17534992098808289, 0.1814897060394287, -0.028443699702620506, -0.0037425593473017216, 0.004753794055432081, -0.01684197038412094, -0.025025326758623123, 0.08748427778482437, 0.1147049069404602, 0.0430615209043026, -0.09302042424678802, -0.02398707903921604, -0.054863519966602325, 0.00892399251461029, -0.058705851435661316, 0.0961339995265007, -0.001894413842819631, -0.00022975736646912992, -0.02563343197107315, 0.04954599216580391, 0.003562753554433584, -0.0949840098619461, -0.0048229084350168705, -0.19530457258224487, -0.1673305481672287, -0.024414198473095894, 0.09056491404771805, -0.0015455742832273245, 0.04463367164134979, -0.009671620093286037, 0.028699815273284912, 0.08990979939699173, -0.016987724229693413, -0.08392579853534698, -0.04459021985530853, 0.08455751836299896, -0.12204422801733017, 0.21155184507369995, -0.028201278299093246, 0.06601379811763763, 0.11921306699514389, 0.02728317119181156, -0.1361646205186844, 0.04001208767294884, 0.05363255739212036, -0.007717621512711048, 0.04355894774198532, 0.13342037796974182, -0.018787696957588196, 0.07286874949932098, 0.052808042615652084, -0.11241336911916733, -0.02236142009496689, -0.03192680701613426, -0.0529395155608654, -0.044229283928871155, -0.022841280326247215, -0.04384033381938934, 0.12867984175682068, 0.17196588218212128, -0.07305055856704712, -0.018971819430589676, -0.06093693897128105, 0.012607826851308346, 0.07539975643157959, 0.05651945620775223, 0.010677088052034378, -0.2423730194568634, 0.009278652258217335, 0.047568429261446, 0.02047339454293251, -0.2915516197681427, -0.09240343421697617, -0.004275924991816282, -0.06902124732732773, -0.11119162291288376, 0.09574157744646072, 0.07804790139198303, 0.042845457792282104, -0.0480293333530426, 0.016211863607168198, -0.08719868957996368, 0.1536208987236023, -0.14948515594005585, -0.06991472840309143 ]
null
null
transformers
--- ## Developed by : * Changgil Song ## Model Number: * k2s3_test_24001 ## Base Model : * [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) ### Training Data * The model was trained on a diverse dataset comprising approximately 800 million tokens, including the Standard Korean Dictionary, KULLM training data from Korea University, dissertation abstracts from master's and doctoral theses, and Korean language samples from AI Hub. * 이 모델은 표준대국어사전, 고려대 KULLM의 훈련 데이터, 석박사학위자 서지정보 논문초록, ai_hub의 한국어 데이터 샘플들을 포함하여 약 8억 개의 토큰으로 구성된 다양한 데이터셋에서 훈련되었습니다. ### Training Method * This model was fine-tuned on the "meta-llama/Llama-2-13b-chat-hf" base model using PEFT (Parameter-Efficient Fine-Tuning) LoRA (Low-Rank Adaptation) techniques. * 이 모델은 "meta-llama/Llama-2-13b-chat-hf" 기반 모델을 PEFT LoRA를 사용하여 미세조정되었습니다. ### Hardware and Software * Hardware: Utilized two A100 (80G) GPUs for training. * Training Factors: This model was fine-tuned using PEFT LoRA with the HuggingFace SFTtrainer and applied fsdp. Key parameters included LoRA r = 8, LoRA alpha = 16, trained for 2 epochs, batch size of 1, and gradient accumulation of 32. * 이 모델은 PEFT LoRA를 사용하여 HuggingFace SFTtrainer와 fsdp를 적용하여 미세조정되었습니다. 주요 파라미터로는 LoRA r = 8, LoRA alpha = 16, 2 에폭 훈련, 배치 크기 1, 그리고 그라디언트 누적 32를 포함합니다. ### Caution * For fine-tuning this model, it is advised to consider the specific parameters used during training, such as LoRA r and LoRA alpha values, to ensure compatibility and optimal performance. * 이 모델을 미세조정할 때는 LoRA r 및 LoRA alpha 값과 같이 훈련 중에 사용된 특정 파라미터를 고려하는 것이 좋습니다. 이는 호환성 및 최적의 성능을 보장하기 위함입니다. ### Additional Information * The training leveraged the fsdp (Fully Sharded Data Parallel) feature through the HuggingFace SFTtrainer for efficient memory usage and accelerated training. * 훈련은 HuggingFace SFTtrainer를 통한 fsdp 기능을 활용하여 메모리 사용을 효율적으로 하고 훈련 속도를 가속화했습니다.
{"language": ["ko"], "license": "llama2"}
text-generation
Changgil/k2s3_test_24001
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T05:59:10+00:00
[]
[ "ko" ]
TAGS #transformers #safetensors #llama #text-generation #conversational #ko #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
--- ## Developed by : * Changgil Song ## Model Number: * k2s3_test_24001 ## Base Model : * meta-llama/Llama-2-13b-chat-hf ### Training Data * The model was trained on a diverse dataset comprising approximately 800 million tokens, including the Standard Korean Dictionary, KULLM training data from Korea University, dissertation abstracts from master's and doctoral theses, and Korean language samples from AI Hub. * 이 모델은 표준대국어사전, 고려대 KULLM의 훈련 데이터, 석박사학위자 서지정보 논문초록, ai_hub의 한국어 데이터 샘플들을 포함하여 약 8억 개의 토큰으로 구성된 다양한 데이터셋에서 훈련되었습니다. ### Training Method * This model was fine-tuned on the "meta-llama/Llama-2-13b-chat-hf" base model using PEFT (Parameter-Efficient Fine-Tuning) LoRA (Low-Rank Adaptation) techniques. * 이 모델은 "meta-llama/Llama-2-13b-chat-hf" 기반 모델을 PEFT LoRA를 사용하여 미세조정되었습니다. ### Hardware and Software * Hardware: Utilized two A100 (80G) GPUs for training. * Training Factors: This model was fine-tuned using PEFT LoRA with the HuggingFace SFTtrainer and applied fsdp. Key parameters included LoRA r = 8, LoRA alpha = 16, trained for 2 epochs, batch size of 1, and gradient accumulation of 32. * 이 모델은 PEFT LoRA를 사용하여 HuggingFace SFTtrainer와 fsdp를 적용하여 미세조정되었습니다. 주요 파라미터로는 LoRA r = 8, LoRA alpha = 16, 2 에폭 훈련, 배치 크기 1, 그리고 그라디언트 누적 32를 포함합니다. ### Caution * For fine-tuning this model, it is advised to consider the specific parameters used during training, such as LoRA r and LoRA alpha values, to ensure compatibility and optimal performance. * 이 모델을 미세조정할 때는 LoRA r 및 LoRA alpha 값과 같이 훈련 중에 사용된 특정 파라미터를 고려하는 것이 좋습니다. 이는 호환성 및 최적의 성능을 보장하기 위함입니다. ### Additional Information * The training leveraged the fsdp (Fully Sharded Data Parallel) feature through the HuggingFace SFTtrainer for efficient memory usage and accelerated training. * 훈련은 HuggingFace SFTtrainer를 통한 fsdp 기능을 활용하여 메모리 사용을 효율적으로 하고 훈련 속도를 가속화했습니다.
[ "## Developed by : \n* Changgil Song", "## Model Number:\n* k2s3_test_24001", "## Base Model : \n* meta-llama/Llama-2-13b-chat-hf", "### Training Data\n* The model was trained on a diverse dataset comprising approximately 800 million tokens, including the Standard Korean Dictionary, KULLM training data from Korea University, dissertation abstracts from master's and doctoral theses, and Korean language samples from AI Hub.\n* 이 모델은 표준대국어사전, 고려대 KULLM의 훈련 데이터, 석박사학위자 서지정보 논문초록, ai_hub의 한국어 데이터 샘플들을 포함하여 약 8억 개의 토큰으로 구성된 다양한 데이터셋에서 훈련되었습니다.", "### Training Method\n* This model was fine-tuned on the \"meta-llama/Llama-2-13b-chat-hf\" base model using PEFT (Parameter-Efficient Fine-Tuning) LoRA (Low-Rank Adaptation) techniques.\n* 이 모델은 \"meta-llama/Llama-2-13b-chat-hf\" 기반 모델을 PEFT LoRA를 사용하여 미세조정되었습니다.", "### Hardware and Software\n* Hardware: Utilized two A100 (80G) GPUs for training.\n* Training Factors: This model was fine-tuned using PEFT LoRA with the HuggingFace SFTtrainer and applied fsdp. Key parameters included LoRA r = 8, LoRA alpha = 16, trained for 2 epochs, batch size of 1, and gradient accumulation of 32.\n* 이 모델은 PEFT LoRA를 사용하여 HuggingFace SFTtrainer와 fsdp를 적용하여 미세조정되었습니다. 주요 파라미터로는 LoRA r = 8, LoRA alpha = 16, 2 에폭 훈련, 배치 크기 1, 그리고 그라디언트 누적 32를 포함합니다.", "### Caution \n* For fine-tuning this model, it is advised to consider the specific parameters used during training, such as LoRA r and LoRA alpha values, to ensure compatibility and optimal performance.\n* 이 모델을 미세조정할 때는 LoRA r 및 LoRA alpha 값과 같이 훈련 중에 사용된 특정 파라미터를 고려하는 것이 좋습니다. 이는 호환성 및 최적의 성능을 보장하기 위함입니다.", "### Additional Information\n* The training leveraged the fsdp (Fully Sharded Data Parallel) feature through the HuggingFace SFTtrainer for efficient memory usage and accelerated training.\n* 훈련은 HuggingFace SFTtrainer를 통한 fsdp 기능을 활용하여 메모리 사용을 효율적으로 하고 훈련 속도를 가속화했습니다." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #ko #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## Developed by : \n* Changgil Song", "## Model Number:\n* k2s3_test_24001", "## Base Model : \n* meta-llama/Llama-2-13b-chat-hf", "### Training Data\n* The model was trained on a diverse dataset comprising approximately 800 million tokens, including the Standard Korean Dictionary, KULLM training data from Korea University, dissertation abstracts from master's and doctoral theses, and Korean language samples from AI Hub.\n* 이 모델은 표준대국어사전, 고려대 KULLM의 훈련 데이터, 석박사학위자 서지정보 논문초록, ai_hub의 한국어 데이터 샘플들을 포함하여 약 8억 개의 토큰으로 구성된 다양한 데이터셋에서 훈련되었습니다.", "### Training Method\n* This model was fine-tuned on the \"meta-llama/Llama-2-13b-chat-hf\" base model using PEFT (Parameter-Efficient Fine-Tuning) LoRA (Low-Rank Adaptation) techniques.\n* 이 모델은 \"meta-llama/Llama-2-13b-chat-hf\" 기반 모델을 PEFT LoRA를 사용하여 미세조정되었습니다.", "### Hardware and Software\n* Hardware: Utilized two A100 (80G) GPUs for training.\n* Training Factors: This model was fine-tuned using PEFT LoRA with the HuggingFace SFTtrainer and applied fsdp. Key parameters included LoRA r = 8, LoRA alpha = 16, trained for 2 epochs, batch size of 1, and gradient accumulation of 32.\n* 이 모델은 PEFT LoRA를 사용하여 HuggingFace SFTtrainer와 fsdp를 적용하여 미세조정되었습니다. 주요 파라미터로는 LoRA r = 8, LoRA alpha = 16, 2 에폭 훈련, 배치 크기 1, 그리고 그라디언트 누적 32를 포함합니다.", "### Caution \n* For fine-tuning this model, it is advised to consider the specific parameters used during training, such as LoRA r and LoRA alpha values, to ensure compatibility and optimal performance.\n* 이 모델을 미세조정할 때는 LoRA r 및 LoRA alpha 값과 같이 훈련 중에 사용된 특정 파라미터를 고려하는 것이 좋습니다. 이는 호환성 및 최적의 성능을 보장하기 위함입니다.", "### Additional Information\n* The training leveraged the fsdp (Fully Sharded Data Parallel) feature through the HuggingFace SFTtrainer for efficient memory usage and accelerated training.\n* 훈련은 HuggingFace SFTtrainer를 통한 fsdp 기능을 활용하여 메모리 사용을 효율적으로 하고 훈련 속도를 가속화했습니다." ]
[ 60, 9, 14, 20, 123, 97, 166, 98, 82 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #ko #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## Developed by : \n* Changgil Song## Model Number:\n* k2s3_test_24001## Base Model : \n* meta-llama/Llama-2-13b-chat-hf### Training Data\n* The model was trained on a diverse dataset comprising approximately 800 million tokens, including the Standard Korean Dictionary, KULLM training data from Korea University, dissertation abstracts from master's and doctoral theses, and Korean language samples from AI Hub.\n* 이 모델은 표준대국어사전, 고려대 KULLM의 훈련 데이터, 석박사학위자 서지정보 논문초록, ai_hub의 한국어 데이터 샘플들을 포함하여 약 8억 개의 토큰으로 구성된 다양한 데이터셋에서 훈련되었습니다.### Training Method\n* This model was fine-tuned on the \"meta-llama/Llama-2-13b-chat-hf\" base model using PEFT (Parameter-Efficient Fine-Tuning) LoRA (Low-Rank Adaptation) techniques.\n* 이 모델은 \"meta-llama/Llama-2-13b-chat-hf\" 기반 모델을 PEFT LoRA를 사용하여 미세조정되었습니다.### Hardware and Software\n* Hardware: Utilized two A100 (80G) GPUs for training.\n* Training Factors: This model was fine-tuned using PEFT LoRA with the HuggingFace SFTtrainer and applied fsdp. Key parameters included LoRA r = 8, LoRA alpha = 16, trained for 2 epochs, batch size of 1, and gradient accumulation of 32.\n* 이 모델은 PEFT LoRA를 사용하여 HuggingFace SFTtrainer와 fsdp를 적용하여 미세조정되었습니다. 주요 파라미터로는 LoRA r = 8, LoRA alpha = 16, 2 에폭 훈련, 배치 크기 1, 그리고 그라디언트 누적 32를 포함합니다." ]
[ -0.042781032621860504, 0.10289148986339569, -0.009535915218293667, 0.03664783388376236, 0.09811753034591675, 0.04725833982229233, 0.17448720335960388, 0.06190209090709686, 0.011467261239886284, 0.01209330651909113, 0.016303829848766327, 0.04725125804543495, 0.05982261151075363, 0.07579155266284943, 0.032906174659729004, -0.22377265989780426, 0.028343968093395233, -0.028840115293860435, -0.041091423481702805, 0.05757094547152519, 0.08869457989931107, -0.038476698100566864, 0.04402801766991615, 0.01386443991214037, -0.10613659769296646, -0.02770145982503891, -0.01611195132136345, -0.01668330281972885, 0.07442645728588104, -0.004364349413663149, 0.08289951086044312, 0.01693626306951046, 0.08113498240709305, -0.1521553099155426, 0.019497724249958992, 0.01721741445362568, 0.0005039551178924739, 0.05530581250786781, 0.012348857708275318, 0.03794296085834503, 0.23215600848197937, -0.03149639070034027, 0.03971145674586296, -0.0036757781635969877, -0.05887037143111229, -0.0797586515545845, -0.08052989840507507, 0.06471859663724899, 0.10711203515529633, 0.0505174957215786, -0.004072156734764576, 0.05180143192410469, -0.096335269510746, 0.04083024710416794, -0.04542612284421921, -0.16936823725700378, -0.06579503417015076, 0.0713026151061058, -0.03941761702299118, 0.02772175706923008, -0.08003725111484528, -0.01643790304660797, 0.03427286818623543, 0.015593977645039558, 0.03522947430610657, -0.03076639026403427, 0.008065374568104744, -0.015396486036479473, -0.05388514697551727, 0.008699382655322552, 0.1667003482580185, 0.06598489731550217, -0.025732427835464478, -0.10044939070940018, 0.03744806721806526, -0.020194491371512413, 0.016892921179533005, -0.017557939514517784, -0.022296087816357613, -0.02943488582968712, 0.023851433768868446, -0.026007279753684998, -0.05373096093535423, -0.0844559296965599, -0.010741733014583588, 0.12171155214309692, 0.05295595899224281, 0.017960917204618454, 0.034679923206567764, 0.09406854212284088, 0.0062951259315013885, -0.06269519031047821, 0.017401251941919327, -0.030678778886795044, -0.0961097925901413, -0.012378192506730556, -0.015835311263799667, -0.01089493278414011, 0.03718559071421623, 0.041728802025318146, 0.005559710320085287, 0.012276350520551205, 0.06578797847032547, 0.011707902885973454, 0.04396079480648041, 0.03489336743950844, -0.08162631839513779, -0.03432977944612503, -0.013549541123211384, 0.10132482647895813, -0.019075574353337288, 0.005018454045057297, -0.03136037290096283, -0.010020346380770206, 0.013778525404632092, 0.008704966865479946, -0.057718440890312195, 0.06666427105665207, -0.05161048844456673, -0.014271453954279423, 0.03755846247076988, -0.06660279631614685, -0.03070865385234356, 0.008583517745137215, -0.05184217169880867, 0.015810079872608185, 0.017973382025957108, 0.04477861523628235, 0.033276721835136414, -0.006221833173185587, -0.014007864519953728, -0.034641753882169724, -0.08582327514886856, -0.005924992263317108, -0.004608066752552986, -0.0739748403429985, 0.03658990561962128, -0.04852549731731415, -0.15184569358825684, -0.07353159040212631, 0.057507794350385666, -0.048412200063467026, -0.04625388979911804, -0.08741524070501328, -0.04218465834856033, -0.007863176986575127, 0.0031301004346460104, 0.11835752427577972, 0.013743968680500984, 0.04572955146431923, -0.03573191538453102, 0.03181872144341469, -0.01797431893646717, 0.02095186896622181, -0.01688200794160366, 0.02871655486524105, -0.1054287850856781, 0.08472303301095963, -0.0925753191113472, -0.017214158549904823, -0.06956566125154495, -0.024820219725370407, -0.07384834438562393, 0.04473922774195671, 0.06383109092712402, 0.08985793590545654, -0.16084443032741547, -0.007868858054280281, 0.027643859386444092, -0.07873077690601349, -0.08321141451597214, 0.07376080751419067, -0.03899937495589256, 0.1596280187368393, 0.02944004163146019, 0.12655651569366455, 0.06017052382230759, -0.02274857833981514, -0.04622797667980194, 0.005585577804595232, 0.010848576202988625, 0.04258223995566368, 0.09093064814805984, 0.04077504202723503, -0.03147145360708237, 0.04495552182197571, -0.10172069817781448, 0.024572519585490227, -0.057357002049684525, -0.04784729704260826, -0.00278676301240921, -0.10262065380811691, -0.0013084004167467356, 0.04021007567644119, 0.09138709306716919, 0.007682007271796465, -0.042865198105573654, 0.04589047655463219, 0.13441286981105804, -0.04778913035988808, -0.0381036214530468, -0.07968524098396301, -0.004792370367795229, 0.05100712180137634, -0.04351132735610008, -0.08125216513872147, -0.033897802233695984, 0.00901253242045641, -0.002805260708555579, 0.05808158591389656, 0.1264091581106186, 0.0322425439953804, 0.042453184723854065, -0.04009641334414482, 0.000501336413435638, -0.09169251471757889, 0.04429120942950249, -0.021199172362685204, -0.12468276172876358, -0.015421947464346886, -0.026611603796482086, 0.1742609143257141, -0.14696338772773743, 0.007618280127644539, -0.05695153772830963, 0.11040537059307098, 0.0069509693421423435, -0.040470514446496964, 0.023418346419930458, 0.03161367028951645, 0.005889668129384518, -0.016166146844625473, 0.014698881655931473, 0.018338335677981377, -0.0402909554541111, 0.028618447482585907, 0.01837783120572567, -0.05640638992190361, 0.052996862679719925, 0.0394718274474144, -0.07026826590299606, -0.0135486526414752, -0.012066132389008999, -0.03468335047364235, -0.012427347712218761, 0.013319743797183037, 0.21919886767864227, 0.014558892697095871, 0.052333761006593704, -0.03201640769839287, 0.02264675684273243, -0.020599346607923508, -0.03562920168042183, 0.01841394603252411, 0.077288419008255, 0.07620985060930252, -0.1235613152384758, 0.027970150113105774, -0.016565857455134392, -0.06787829846143723, 0.15036378800868988, -0.040720775723457336, -0.0707549899816513, -0.0719616636633873, -0.03236839175224304, -0.02505505643785, 0.11428915709257126, -0.07592165470123291, -0.007420399226248264, 0.03199479356408119, -0.007399199530482292, 0.06619896739721298, -0.09842829406261444, -0.03101690113544464, -0.03231905400753021, -0.009172654710710049, -0.01370933186262846, 0.04301150515675545, -0.021358570083975792, 0.05589372664690018, -0.044406820088624954, -0.014670348726212978, -0.014685126021504402, -0.05774607136845589, -0.07295948266983032, 0.0885227620601654, -0.028595246374607086, -0.055384375154972076, -0.07506418973207474, 0.12988249957561493, 0.004546005744487047, -0.03221612423658371, -0.050072964280843735, -0.04513709992170334, -0.036955274641513824, -0.04677924886345863, 0.014001361094415188, 0.03999567776918411, -0.06049562245607376, 0.03339317440986633, 0.08359253406524658, 0.009005960077047348, -0.06411731988191605, 0.012062717229127884, -0.029767269268631935, -0.0836808905005455, 0.026852158829569817, -0.04564516618847847, 0.004125919658690691, 0.04266157001256943, 0.03711448982357979, 0.0033376070205122232, 0.014881778508424759, 0.09633058309555054, -0.08498101681470871, 0.021162930876016617, 0.07256682962179184, 0.006521455477923155, -0.012524576857686043, 0.06008259207010269, 0.037607789039611816, -0.04719331115484238, 0.04846484214067459, 0.03528814762830734, -0.014721036888659, -0.18727877736091614, -0.039197783917188644, -0.021822120994329453, -0.05698731169104576, 0.005766209680587053, -0.006734326481819153, -0.0399545393884182, 0.07371432334184647, 0.034331679344177246, 0.04684583842754364, -0.0028728933539241552, -0.02429538033902645, -0.008564041927456856, 0.0005042920238338411, 0.025694284588098526, -0.06503589451313019, 0.014625225216150284, 0.04018634930253029, 0.005034713074564934, 0.1747727394104004, -0.05503186210989952, 0.027068350464105606, 0.08916113525629044, 0.13468995690345764, 0.003731577889993787, 0.024283774197101593, -0.007415252272039652, -0.0006442135199904442, -0.006416447926312685, -0.007318392861634493, -0.0634053573012352, 0.08305162191390991, 0.028277616947889328, -0.04778413474559784, -0.048022106289863586, 0.12041357159614563, 0.03932713717222214, 0.13801820576190948, 0.04367790371179581, -0.13346818089485168, -0.03297116234898567, 0.028813602402806282, -0.02625534124672413, -0.028092652559280396, 0.012679009698331356, 0.13650432229042053, -0.11114814877510071, -0.007205307949334383, -0.019976336508989334, 0.021545980125665665, -0.09659478813409805, -0.017139924690127373, 0.025212083011865616, 0.05045777186751366, 0.018479105085134506, 0.07731932401657104, -0.1815943717956543, 0.21220888197422028, -0.03449567034840584, 0.07933621108531952, -0.052756354212760925, -0.01041461806744337, 0.0616907998919487, -0.014900598675012589, 0.09242085367441177, 0.022239627316594124, -0.11655736714601517, -0.0379461944103241, -0.0793553963303566, 0.05998670309782028, 0.028821220621466637, -0.07273327559232712, 0.0353003591299057, 0.008985348045825958, 0.0327489897608757, 0.013387452811002731, -0.0674707442522049, -0.12129726260900497, -0.0561097227036953, 0.014363453723490238, -0.05646926909685135, -0.033464375883340836, -0.06583748012781143, -0.058994729071855545, -0.1129227951169014, 0.07289492338895798, -0.0021389012690633535, -0.009156038984656334, -0.04068600386381149, 0.023568768054246902, 0.10729158669710159, -0.04997818544507027, -0.00002888790004362818, 0.040271565318107605, 0.02008977346122265, 0.017615217715501785, 0.0006899425061419606, 0.014193207025527954, -0.040695276111364365, -0.10061526298522949, -0.03143244981765747, 0.035939279943704605, 0.09443050622940063, 0.04089780151844025, 0.021626871079206467, -0.00770990177989006, 0.03820589557290077, -0.08910996466875076, 0.034134700894355774, 0.08756593614816666, 0.02499208226799965, 0.06664068251848221, -0.08221345394849777, 0.004599016159772873, -0.07266633957624435, -0.07117851078510284, 0.053208041936159134, 0.15181851387023926, -0.04971993342041969, 0.02769486792385578, 0.03775477781891823, -0.041768137365579605, -0.16148921847343445, -0.00023631314979866147, 0.12077481299638748, 0.08050347864627838, 0.01820250228047371, -0.1997343897819519, 0.05234101787209511, 0.06946571171283722, -0.01610437035560608, -0.09285979717969894, -0.12787997722625732, -0.10830795764923096, 0.10033244639635086, 0.06097991392016411, -0.011495275422930717, -0.04591398313641548, -0.02863769419491291, 0.027986139059066772, -0.09541728347539902, 0.09505198895931244, -0.06042676791548729, 0.06596403568983078, -0.009097455069422722, 0.024173332378268242, 0.04271404817700386, -0.029639845713973045, 0.13321086764335632, 0.02618761733174324, 0.08212790638208389, -0.035599250346422195, -0.07864939421415329, 0.024195894598960876, -0.019199537113308907, 0.11398773640394211, 0.004836163949221373, 0.05588556081056595, -0.1354539394378662, -0.021754750981926918, -0.06711535155773163, 0.005596574861556292, -0.02160235121846199, -0.03923250362277031, -0.04900917783379555, 0.11886730045080185, 0.004687118344008923, 0.01995382457971573, -0.024497447535395622, -0.008472134359180927, -0.012464825995266438, 0.05982336774468422, 0.12598183751106262, 0.09692731499671936, 0.061344798654317856, -0.012875368818640709, 0.008032700978219509, 0.03114272654056549, -0.11828409880399704, -0.00824336614459753, 0.08774963021278381, 0.010620586574077606, 0.09926485270261765, -0.018525734543800354, -0.08619437366724014, 0.03453493490815163, 0.07851290702819824, -0.05665799230337143, -0.1477738320827484, -0.023517780005931854, -0.04450849071145058, -0.01365324854850769, -0.023248421028256416, 0.07339154183864594, -0.055102426558732986, -0.0034858176950365305, -0.03005029261112213, 0.030256066471338272, -0.08782042562961578, 0.06632992625236511, 0.02658076025545597, 0.038490962237119675, -0.019724830985069275, 0.09950535744428635, 0.02560216374695301, 0.03192633390426636, 0.034459952265024185, -0.013270583003759384, -0.05797821283340454, -0.02789292484521866, 0.002742054872214794, 0.12138481438159943, 0.06504668295383453, -0.049599774181842804, -0.07378485053777695, -0.0713234692811966, -0.04439090937376022, -0.02647160179913044, 0.04446994885802269, 0.07552986592054367, -0.0070403884164988995, -0.007078113500028849, -0.08803740888834, 0.03296174481511116, 0.03212651237845421, -0.007563184015452862, -0.06863757222890854, 0.09168139845132828, 0.019709806889295578, 0.02404661476612091, -0.03203693777322769, 0.016232304275035858, -0.056834135204553604, 0.005186495836824179, -0.05775364860892296, -0.01750865951180458, -0.07733623683452606, -0.014366000890731812, 0.028943169862031937, -0.0656789094209671, -0.03723840042948723, 0.0039783683605492115, -0.05554885417222977, 0.025103695690631866, 0.01166929118335247, 0.09158921986818314, 0.0010347457136958838, 0.0012450049398466945, 0.059905748814344406, -0.07406876981258392, 0.06919465214014053, 0.05443152040243149, 0.03529077768325806, 0.07462112605571747, -0.08659853041172028, 0.0863688588142395, -0.032095376402139664, 0.041013360023498535, -0.0039302995428442955, -0.14035217463970184, -0.005439667031168938, -0.01184281799942255, 0.06125090271234512, 0.005033650901168585, 0.022223563864827156, -0.026804743334650993, -0.0016166010173037648, 0.020098324865102768, -0.031570348888635635, -0.08320528268814087, 0.061472322791814804, 0.08221689611673355, 0.06088291108608246, 0.10676239430904388, -0.02755074016749859, 0.02223176881670952, -0.12231508642435074, 0.011090470477938652, 0.0045931474305689335, 0.011529331095516682, 0.011127607896924019, -0.05134378373622894, 0.05560935288667679, -0.035334039479494095, 0.17567816376686096, -0.021427297964692116, -0.16902212798595428, -0.010724415071308613, -0.06542053073644638, 0.006218958646059036, 0.04948912188410759, 0.11484318971633911, 0.022890819236636162, 0.04910823330283165, -0.0622502937912941, -0.048701707273721695, -0.07282193005084991, 0.01412787102162838, 0.08923523873090744, 0.15515722334384918, 0.0002458772505633533, 0.02246588096022606, 0.1303200125694275, -0.06342167407274246, 0.031860578805208206, 0.16204024851322174, -0.11390437930822372, -0.006719009485095739, -0.0759824737906456, 0.026886766776442528, 0.06057174876332283, -0.18198180198669434, 0.048865485936403275, -0.04996836930513382, -0.10628753155469894, -0.04476378858089447, -0.08408770710229874, -0.06504546105861664, -0.05734996497631073, 0.06554541736841202, -0.07613590359687805, -0.029949599876999855, 0.1103353425860405, 0.021286409348249435, -0.029158588498830795, 0.10058510303497314, -0.0316353403031826, 0.025705527514219284, 0.10606767237186432, -0.024308225139975548, -0.022614622488617897, -0.11062752455472946, -0.03976147621870041, -0.016791880130767822, 0.024064430966973305, 0.024739986285567284, -0.022630970925092697, -0.030819714069366455, -0.026490233838558197, 0.03916478529572487, -0.02644716016948223, -0.0062731592915952206, -0.0666024386882782, 0.04237779602408409, 0.03992068022489548, 0.08497945219278336, 0.0010154645424336195, -0.007029775995761156, 0.16001123189926147, 0.007563902996480465, -0.06604436784982681, -0.19004729390144348, 0.09337113052606583, -0.04673071950674057, -0.018989473581314087, 0.061819370836019516, -0.02821122482419014, 0.05509725958108902, 0.11506126821041107, 0.15239568054676056, -0.0732697919011116, -0.016061944887042046, 0.011189357377588749, -0.012137365527451038, -0.07246185094118118, 0.11249252408742905, 0.016352064907550812, 0.006884729955345392, -0.030195631086826324, -0.01794537901878357, -0.056169070303440094, -0.004430577624589205, 0.0651843398809433, 0.06382565945386887, -0.007277114782482386, -0.021511739119887352, -0.05938146263360977, 0.07352816313505173, -0.0730016678571701, -0.19117188453674316, 0.017947683110833168, -0.07498964667320251, -0.15336711704730988, -0.01018995139747858, -0.014856514520943165, 0.03215256333351135, 0.06887773424386978, -0.03558878228068352, 0.02228456176817417, 0.07358234375715256, 0.005651560146361589, 0.023713022470474243, 0.02456970512866974, 0.08490683138370514, -0.012338845990598202, 0.15181943774223328, -0.002809894271194935, 0.10482752323150635, 0.05040932446718216, -0.016888588666915894, -0.06771473586559296, 0.08399005234241486, 0.024638118222355843, 0.00439628167077899, 0.011396297253668308, 0.12175115197896957, -0.01533963717520237, 0.08415401726961136, 0.06036903336644173, -0.005693602375686169, 0.07172288000583649, -0.013760318979620934, -0.08016760647296906, -0.08796058595180511, 0.06639621406793594, -0.07316044718027115, 0.2070084512233734, 0.1847846508026123, -0.04815427213907242, 0.007326692808419466, -0.022460676729679108, 0.07961566001176834, -0.0075471545569598675, 0.07324624806642532, -0.018092848360538483, -0.14848315715789795, 0.023832188919186592, -0.005058161448687315, 0.026553167030215263, -0.1389632225036621, -0.031192298978567123, -0.016840655356645584, -0.0775366947054863, 0.014731462113559246, 0.06532370299100876, 0.09879875183105469, 0.0518280528485775, -0.02935970202088356, -0.07307764887809753, -0.03544386103749275, 0.06396625936031342, -0.07764986902475357, -0.086179718375206 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
sunyijia97/llama2-7b-qlora-cstuqa-v1
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T06:04:58+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
bertopic
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "bigscience-bloom-rail-1.0", "library_name": "bertopic", "tags": ["biology"], "datasets": ["HuggingFaceM4/WebSight"], "metrics": ["bertscore"], "pipeline_tag": "text2text-generation"}
text2text-generation
liaox126/liaox1
[ "bertopic", "biology", "text2text-generation", "dataset:HuggingFaceM4/WebSight", "arxiv:1910.09700", "license:bigscience-bloom-rail-1.0", "region:us" ]
2024-02-14T06:06:24+00:00
[ "1910.09700" ]
[]
TAGS #bertopic #biology #text2text-generation #dataset-HuggingFaceM4/WebSight #arxiv-1910.09700 #license-bigscience-bloom-rail-1.0 #region-us
# Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using this raw template. ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#bertopic #biology #text2text-generation #dataset-HuggingFaceM4/WebSight #arxiv-1910.09700 #license-bigscience-bloom-rail-1.0 #region-us \n", "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 54, 29, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#bertopic #biology #text2text-generation #dataset-HuggingFaceM4/WebSight #arxiv-1910.09700 #license-bigscience-bloom-rail-1.0 #region-us \n# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.07646804302930832, 0.1698874831199646, -0.003521714825183153, 0.017863323912024498, 0.10104011744260788, 0.008084297180175781, 0.06377322226762772, 0.11494768410921097, -0.004580581095069647, 0.12441686540842056, 0.032635629177093506, 0.07774461060762405, 0.10938259959220886, 0.20768141746520996, 0.008481713943183422, -0.2011600136756897, 0.047979000955820084, -0.11583269387483597, 0.02322675660252571, 0.11994407325983047, 0.14053946733474731, -0.10109678655862808, 0.07034305483102798, -0.040633853524923325, -0.022917410358786583, -0.03128513693809509, -0.06022967770695686, -0.03485443443059921, 0.058767564594745636, 0.044032417237758636, 0.04697149991989136, 0.013675493188202381, 0.07963863015174866, -0.28716835379600525, 0.02293453924357891, 0.0663423091173172, 0.001596063724718988, 0.07334010303020477, 0.08168256282806396, -0.07138519734144211, 0.10830983519554138, -0.06259959191083908, 0.14477525651454926, 0.08134572952985764, -0.08805087208747864, -0.16754965484142303, -0.08532456308603287, 0.11665765941143036, 0.16552852094173431, 0.05732659995555878, -0.036279499530792236, 0.1271049827337265, -0.07161911576986313, 0.020802270621061325, 0.07636108994483948, -0.0581323616206646, -0.055734917521476746, 0.064751997590065, 0.09098925441503525, 0.10622519999742508, -0.14252425730228424, -0.01085926964879036, 0.037178777158260345, 0.016463549807667732, 0.09702329337596893, 0.017055930569767952, 0.12660984694957733, 0.02547660656273365, -0.138143390417099, -0.04118900001049042, 0.128769189119339, 0.039480164647102356, -0.060788344591856, -0.2426140010356903, -0.006736059673130512, -0.047090694308280945, -0.03254697099328041, -0.041836243122816086, 0.048073407262563705, -0.0203575249761343, 0.09665699303150177, -0.013192446902394295, -0.0641462430357933, -0.04544740542769432, 0.0988941565155983, 0.06615336984395981, 0.025397123768925667, -0.022762242704629898, 0.00196737889200449, 0.11858920007944107, 0.105766162276268, -0.11413019150495529, -0.06119196489453316, -0.05783281475305557, -0.06859657913446426, -0.0516655296087265, 0.035468604415655136, 0.08971232175827026, 0.06811141222715378, 0.20406022667884827, -0.023058993741869926, 0.03905624896287918, 0.03377797082066536, 0.013432948850095272, 0.07282517105340958, 0.05450998619198799, -0.07299069315195084, -0.1543283611536026, -0.006790224928408861, 0.11723532527685165, 0.0061295307241380215, -0.017195235937833786, -0.03385714069008827, 0.04818052425980568, 0.04130900651216507, 0.12106312066316605, 0.08069472014904022, -0.0031138721387833357, -0.077052041888237, -0.059163838624954224, 0.17565898597240448, -0.15312223136425018, 0.025409122928977013, 0.023719264194369316, -0.04672466963529587, -0.024592427536845207, 0.01543357502669096, 0.006183675955981016, -0.026031969115138054, 0.06857861578464508, -0.07763086259365082, -0.0398433543741703, -0.10447559505701065, -0.04057709500193596, 0.02891862951219082, -0.001041374634951353, -0.02070741355419159, -0.022275034338235855, -0.11110354959964752, -0.08561310172080994, 0.06680700927972794, -0.07806423306465149, -0.07601741701364517, -0.031055938452482224, -0.07459671795368195, 0.018838616088032722, 0.004288983065634966, 0.12582701444625854, -0.028667593374848366, 0.044081006199121475, -0.05808469280600548, 0.07189400494098663, 0.12506267428398132, 0.024946292862296104, -0.06629201024770737, 0.06537207961082458, -0.20334719121456146, 0.10325746983289719, -0.08450837433338165, 0.02735629864037037, -0.1699763685464859, -0.007743360474705696, 0.0183601975440979, 0.02373749390244484, -0.004423663951456547, 0.15218989551067352, -0.1702164262533188, -0.03179483860731125, 0.19873039424419403, -0.11055175215005875, -0.09484733641147614, 0.05771521106362343, -0.05743323639035225, 0.1486973762512207, 0.0533122755587101, -0.005039407406002283, 0.05680058151483536, -0.14385181665420532, -0.02783430740237236, -0.05575430765748024, -0.004566289018839598, 0.14498496055603027, 0.06344454735517502, -0.054228316992521286, 0.028909126296639442, 0.01918419450521469, -0.040914103388786316, -0.04129345715045929, -0.03550725802779198, -0.0909900814294815, 0.0019057404715567827, -0.0769583210349083, 0.012291097082197666, -0.03937463089823723, -0.0906962975859642, -0.03428065776824951, -0.14011667668819427, -0.010415353812277317, 0.10746794939041138, -0.000015821500710444525, -0.02441827394068241, -0.08371466398239136, 0.0009798255050554872, 0.007524374406784773, -0.010041953064501286, -0.1506340056657791, -0.04544096067547798, 0.03039892390370369, -0.15626411139965057, 0.032968077808618546, -0.05903944373130798, 0.03468836843967438, 0.037811100482940674, -0.047160472720861435, -0.0306963250041008, 0.010497670620679855, 0.01160086877644062, -0.029864197596907616, -0.2709464132785797, -0.0067079439759254456, -0.05248645320534706, 0.17663270235061646, -0.24250681698322296, 0.0453815832734108, 0.061814021319150925, 0.11393433064222336, 0.0074659367091953754, -0.05334014073014259, 0.04965537041425705, -0.06750112026929855, -0.03204894810914993, -0.06808684766292572, -0.01008562184870243, -0.03270316123962402, -0.04961186647415161, 0.0350659154355526, -0.15119574964046478, -0.03550529107451439, 0.10412902384996414, 0.08891361206769943, -0.1639041155576706, -0.08971163630485535, -0.0349821038544178, -0.05734593793749809, -0.07902155071496964, -0.05924927815794945, 0.09664114564657211, 0.042997002601623535, 0.04049749672412872, -0.07390646636486053, -0.0601852722465992, 0.0017500020330771804, -0.020657740533351898, -0.01600358448922634, 0.09148340672254562, 0.0677824541926384, -0.12850023806095123, 0.10347698628902435, 0.05232859030365944, 0.07138863205909729, 0.11003317683935165, 0.009878084994852543, -0.09810557216405869, -0.022226054221391678, 0.038909610360860825, 0.000677832227665931, 0.1601555496454239, -0.06700242310762405, 0.04277108982205391, 0.04335588961839676, -0.02308938279747963, 0.0235675647854805, -0.09072430431842804, 0.025905998423695564, 0.020356355234980583, -0.01844624988734722, 0.01331921573728323, -0.0587872676551342, 0.015221458859741688, 0.11439400166273117, 0.03259865194559097, 0.04493308439850807, 0.008555212058126926, -0.04447335749864578, -0.13977402448654175, 0.18766357004642487, -0.09329183399677277, -0.2236950397491455, -0.13606758415699005, -0.006206733174622059, 0.028421731665730476, -0.01698131114244461, 0.01256242673844099, -0.053503237664699554, -0.10175864398479462, -0.0973493903875351, 0.04044533893465996, 0.06455492973327637, -0.08690916001796722, -0.07893231511116028, 0.06045815348625183, 0.044754330068826675, -0.12940840423107147, 0.02853200025856495, 0.04188605025410652, -0.05774174630641937, -0.00047175950021483004, 0.05757293105125427, 0.07509543001651764, 0.16673335433006287, 0.007534246891736984, -0.02842104248702526, 0.021863125264644623, 0.238002747297287, -0.1428976207971573, 0.11017438769340515, 0.1411251723766327, -0.045072536915540695, 0.0795966237783432, 0.20583690702915192, 0.029992925003170967, -0.09888959676027298, 0.04246889799833298, 0.030677277594804764, -0.0253851730376482, -0.2516789138317108, -0.07162825018167496, -0.003003946505486965, -0.08336026966571808, 0.09951245784759521, 0.0879657119512558, 0.09839454293251038, 0.0468829944729805, -0.11774928867816925, -0.06480930745601654, 0.04455677419900894, 0.11676882207393646, -0.047915998846292496, -0.003398601897060871, 0.09324657171964645, -0.018101831898093224, 0.034080907702445984, 0.09048105776309967, 0.04982246086001396, 0.18902838230133057, 0.046350687742233276, 0.1523839384317398, 0.09513121843338013, 0.057395994663238525, 0.010337132029235363, 0.022762799635529518, 0.009617487899959087, 0.026359856128692627, -0.014470063149929047, -0.0813249871134758, 0.004679793491959572, 0.12579593062400818, 0.011851927265524864, 0.05074488744139671, 0.009026684798300266, -0.056839846074581146, 0.06417238712310791, 0.17277130484580994, 0.011984722688794136, -0.20657120645046234, -0.06348719447851181, 0.0814533680677414, -0.07576458156108856, -0.12380456179380417, -0.021659476682543755, 0.047109585255384445, -0.17908164858818054, 0.023882519453763962, -0.019493190571665764, 0.10374590009450912, -0.10072475671768188, -0.027949506416916847, 0.030693037435412407, 0.05835173651576042, -0.033821314573287964, 0.07356953620910645, -0.16542425751686096, 0.13277596235275269, 0.008689402602612972, 0.06856033951044083, -0.09095025062561035, 0.08382352441549301, 0.017276937142014503, 0.017461027950048447, 0.1602952927350998, 0.011169719509780407, -0.06737466156482697, -0.0849459320306778, -0.09477506577968597, -0.011836303398013115, 0.09397674351930618, -0.1326734721660614, 0.10258063673973083, -0.008820607326924801, -0.029490984976291656, -0.010385685600340366, -0.12576451897621155, -0.14072483777999878, -0.17789645493030548, 0.03839680925011635, -0.12927906215190887, 0.04601345583796501, -0.10070675611495972, -0.0456976480782032, -0.008207284845411777, 0.18860217928886414, -0.2379172444343567, -0.09021922200918198, -0.15139897167682648, -0.06419949978590012, 0.12773914635181427, -0.047764088958501816, 0.0732390284538269, 0.009553918614983559, 0.1938120573759079, -0.000753933098167181, -0.009089412167668343, 0.09259337186813354, -0.0967693030834198, -0.20006512105464935, -0.09730280935764313, 0.14328140020370483, 0.1388113647699356, 0.051619380712509155, 0.006600364577025175, 0.021045153960585594, -0.029870083555579185, -0.1185796856880188, 0.03098207153379917, 0.15479737520217896, 0.11413758993148804, 0.03677085414528847, -0.0582529678940773, -0.13311466574668884, -0.1000705361366272, -0.04329591989517212, 0.01082941610366106, 0.199767604470253, -0.061474915593862534, 0.1701280027627945, 0.15710829198360443, -0.07147819548845291, -0.207856684923172, 0.04602024704217911, 0.03839630261063576, 0.009350632317364216, 0.044688329100608826, -0.21891896426677704, 0.10308504849672318, 0.013170281425118446, -0.057839471846818924, 0.15273845195770264, -0.17130322754383087, -0.1461910903453827, 0.06880050152540207, 0.0706111490726471, -0.19403058290481567, -0.13782039284706116, -0.09761074185371399, -0.04251019284129143, -0.1005554348230362, 0.08498399704694748, -0.016353843733668327, 0.012001263909041882, 0.018486831337213516, 0.030658314004540443, 0.014128047972917557, -0.04897091165184975, 0.19663821160793304, 0.0012561359908431768, 0.047179657965898514, -0.05610476806759834, -0.07091130316257477, 0.042106885462999344, -0.06711973994970322, 0.0979035347700119, -0.011687804013490677, 0.010667367838323116, -0.12941709160804749, -0.05633964389562607, -0.059662096202373505, 0.03329405561089516, -0.08775340765714645, -0.09190871566534042, -0.060131754726171494, 0.10094840079545975, 0.0942613035440445, -0.03472594916820526, -0.06831648200750351, -0.10194768011569977, 0.054468829184770584, 0.20449072122573853, 0.17958317697048187, 0.07065561413764954, -0.08149439841508865, 0.0054286448284983635, -0.02007177658379078, 0.05219447240233421, -0.2161158174276352, 0.041696108877658844, 0.030282601714134216, 0.038194701075553894, 0.11729009449481964, -0.025915563106536865, -0.16437557339668274, -0.048689089715480804, 0.05384576693177223, -0.07061454653739929, -0.15071150660514832, -0.002948577282950282, 0.08068740367889404, -0.18092970550060272, -0.04802300035953522, 0.03673246502876282, -0.01778111234307289, -0.044115450233221054, -0.01052491832524538, 0.09420440346002579, 0.01097122859209776, 0.10677101463079453, 0.07645309716463089, 0.10524269938468933, -0.10693603754043579, 0.05231216549873352, 0.07389146834611893, -0.07892537117004395, 0.03619469329714775, 0.06997547298669815, -0.06064140051603317, -0.026954960078001022, 0.047679003328084946, 0.0843200832605362, 0.03804735839366913, -0.05776992067694664, 0.002857999876141548, -0.1061338484287262, 0.05491005256772041, 0.12287454307079315, 0.03355998918414116, 0.00004905425157630816, 0.04410324618220329, 0.021030060946941376, -0.1027129516005516, 0.11838448792695999, 0.03396091237664223, 0.036795441061258316, -0.03657829761505127, -0.02152673713862896, 0.022992325946688652, -0.02791917510330677, -0.018315404653549194, -0.03079892136156559, -0.07692763209342957, -0.02334689535200596, -0.15767428278923035, 0.025360072031617165, -0.06359786540269852, 0.010921002365648746, 0.008587063290178776, -0.029670508578419685, 0.0030952568631619215, 0.01855674758553505, -0.07201091945171356, -0.0539294108748436, -0.014814533293247223, 0.10543924570083618, -0.15884022414684296, 0.022394437342882156, 0.09015028923749924, -0.12735699117183685, 0.08429528772830963, 0.005888653919100761, 0.0065369270741939545, 0.008437486365437508, -0.13410906493663788, 0.05283260717988014, -0.009748001582920551, 0.003000875934958458, 0.025466838851571083, -0.236325204372406, -0.00019406441424507648, -0.051284629851579666, -0.05778143182396889, 0.00032188044860959053, -0.026402896270155907, -0.11716946214437485, 0.08811395615339279, -0.0038215802051126957, -0.07261832803487778, -0.020863745361566544, 0.04686744138598442, 0.1161310076713562, -0.048328571021556854, 0.13953997194766998, -0.01108600664883852, 0.054595090448856354, -0.19064363837242126, -0.01631997898221016, -0.020321538671851158, 0.026435209438204765, -0.040087584406137466, -0.008275621570646763, 0.05250360816717148, -0.004713125992566347, 0.21657215058803558, -0.02606651745736599, 0.01554754376411438, 0.06213698536157608, 0.010769570246338844, 0.0014165493194013834, 0.0966138169169426, 0.0516381561756134, 0.00006410064088413492, 0.020593635737895966, 0.027214396744966507, -0.033988505601882935, -0.008820662274956703, -0.1336190551519394, 0.0840129405260086, 0.17109733819961548, 0.075348861515522, -0.006319053005427122, 0.03839564323425293, -0.11199869960546494, -0.09065495431423187, 0.09411533921957016, -0.01290112640708685, -0.04011260345578194, -0.05095113441348076, 0.1417078673839569, 0.16917838156223297, -0.20449769496917725, 0.07024969905614853, -0.055669717490673065, -0.06055056303739548, -0.10879313945770264, -0.1670827716588974, -0.05801050737500191, -0.0317237451672554, -0.023135976865887642, -0.08022614568471909, 0.05451349914073944, 0.08882229775190353, 0.011442558839917183, 0.00853684265166521, 0.08156614005565643, -0.016885198652744293, -0.016083743423223495, 0.04003795608878136, 0.0700419470667839, 0.01936233974993229, -0.06347328424453735, 0.009905132465064526, 0.015641916543245316, 0.027095723897218704, 0.06065068021416664, 0.035136930644512177, -0.015444329008460045, 0.0005116690299473703, -0.036132946610450745, -0.10505317151546478, 0.03992321714758873, -0.02972126565873623, -0.04340878501534462, 0.165260449051857, 0.025227140635252, -0.018821757286787033, -0.026165172457695007, 0.24512143433094025, -0.060068558901548386, -0.0643879845738411, -0.13638390600681305, 0.12026798725128174, -0.038235098123550415, 0.052400875836610794, 0.03717141970992088, -0.10765650123357773, 0.04566613584756851, 0.1473555713891983, 0.13228660821914673, -0.05214308202266693, 0.004830349236726761, 0.011439882218837738, 0.0023266137577593327, -0.020440619438886642, 0.0511363185942173, 0.0553881898522377, 0.12818500399589539, -0.061678022146224976, 0.10973486304283142, -0.0014781010104343295, -0.09171796590089798, -0.043683264404535294, 0.1267474889755249, 0.0009746594005264342, 0.0183438528329134, -0.08648017048835754, 0.129102423787117, -0.05721163749694824, -0.2399148941040039, 0.06323599815368652, -0.06424912810325623, -0.15679869055747986, -0.03441822901368141, 0.00027844440774060786, -0.011050237342715263, 0.02383720688521862, 0.06656647473573685, -0.0536363311111927, 0.17162273824214935, 0.03885047510266304, -0.06574199348688126, -0.07781868427991867, 0.07760538905858994, -0.09379404783248901, 0.29959002137184143, 0.010408292524516582, 0.05150262266397476, 0.09927227348089218, -0.050328247249126434, -0.15093737840652466, 0.01778806746006012, 0.07746556401252747, -0.043168194591999054, 0.06508409976959229, 0.22032204270362854, -0.005828346591442823, 0.10443370789289474, 0.07610398530960083, -0.05934350937604904, 0.03324201703071594, -0.0957028716802597, -0.08593104779720306, -0.09835963696241379, 0.0928209125995636, -0.06383636593818665, 0.1545812338590622, 0.12579648196697235, -0.06389900296926498, 0.0070688859559595585, -0.022342408075928688, 0.0592486672103405, 0.012420888990163803, 0.12037526816129684, 0.03432746231555939, -0.19783657789230347, 0.025411784648895264, 0.006052992306649685, 0.10480119287967682, -0.25893592834472656, -0.07829395681619644, 0.0452711284160614, 0.007217966485768557, -0.07079461216926575, 0.12277450412511826, 0.04661970213055611, 0.03937095031142235, -0.04579154774546623, -0.06265401840209961, -0.0035709829535335302, 0.15692655742168427, -0.10143934935331345, -0.0069170077331364155 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
text-generation
JONGYUN/DPO_Test
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T06:20:17+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #unsloth #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #unsloth #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 60, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #unsloth #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.04789118096232414, 0.1683187633752823, -0.00541221909224987, 0.01879091188311577, 0.10072033107280731, 0.01340342964977026, 0.06461416929960251, 0.11428537964820862, -0.019711676985025406, 0.11460431665182114, 0.03078106790781021, 0.10175042599439621, 0.11311734467744827, 0.14916852116584778, -0.0014091833727434278, -0.22363343834877014, 0.051526427268981934, -0.12254976481199265, -0.03284091502428055, 0.11643265187740326, 0.14586478471755981, -0.09962198138237, 0.07255866378545761, -0.030514653772115707, -0.011443676427006721, -0.030085748061537743, -0.05978726968169212, -0.04497949406504631, 0.04426564648747444, 0.06518962234258652, 0.06687057018280029, 0.00677227508276701, 0.0911426842212677, -0.2692728340625763, 0.01820054091513157, 0.07155917584896088, -0.0029193039517849684, 0.0690377727150917, 0.06436322629451752, -0.07178501039743423, 0.10260725766420364, -0.054233621805906296, 0.14500051736831665, 0.0828588530421257, -0.09063718467950821, -0.19087405502796173, -0.08932086080312729, 0.09893840551376343, 0.17514640092849731, 0.049098625779151917, -0.023627452552318573, 0.09699193388223648, -0.08814824372529984, 0.014506923034787178, 0.051489297300577164, -0.07464385777711868, -0.05360306799411774, 0.057577989995479584, 0.07919992506504059, 0.06387197226285934, -0.1243114098906517, -0.028983721509575844, 0.00446778628975153, 0.011343819089233875, 0.07661867886781693, 0.01757180318236351, 0.1457444131374359, 0.033478062599897385, -0.12598195672035217, -0.04777204617857933, 0.09867986291646957, 0.034298043698072433, -0.044726502150297165, -0.24626460671424866, -0.03176812082529068, -0.02989869751036167, -0.029176650568842888, -0.036837704479694366, 0.044378336519002914, -0.00849118921905756, 0.08472441136837006, -0.006230548955500126, -0.07269919663667679, -0.038268592208623886, 0.06327707320451736, 0.06998699903488159, 0.030796976760029793, -0.014219490811228752, 0.012772533111274242, 0.1171862781047821, 0.10941822081804276, -0.12143178284168243, -0.055595166981220245, -0.06367189437150955, -0.08661258965730667, -0.04127923399209976, 0.03440368175506592, 0.03479253873229027, 0.05405908450484276, 0.25561848282814026, 0.014825325459241867, 0.05850325897336006, 0.03529921919107437, 0.007756371051073074, 0.059116508811712265, 0.11101211607456207, -0.06060541421175003, -0.10372873395681381, -0.027174964547157288, 0.08957825601100922, 0.00829720962792635, -0.03342188522219658, -0.04911759868264198, 0.060004133731126785, 0.020867951214313507, 0.11987602710723877, 0.09217288345098495, 0.009704320691525936, -0.07280892878770828, -0.06133812665939331, 0.1906575709581375, -0.16657079756259918, 0.044401418417692184, 0.035898271948099136, -0.03921353816986084, 0.0003151273413095623, 0.014410702511668205, 0.01672659069299698, -0.026583237573504448, 0.09218161553144455, -0.05433955416083336, -0.041100580245256424, -0.1116410419344902, -0.0331745371222496, 0.03418976441025734, 0.008624698035418987, -0.03450074791908264, -0.03412896394729614, -0.08592844754457474, -0.0770472064614296, 0.09393008053302765, -0.07374492287635803, -0.047754302620887756, -0.019072704017162323, -0.07459969073534012, 0.022824807092547417, 0.019143445417284966, 0.07550971955060959, -0.023490693420171738, 0.04481201246380806, -0.05285913497209549, 0.05810338258743286, 0.11242727935314178, 0.037141598761081696, -0.059663787484169006, 0.060564301908016205, -0.23814593255519867, 0.0949859768152237, -0.07568800449371338, 0.0582125149667263, -0.15144069492816925, -0.0251165684312582, 0.04786799103021622, 0.008821030147373676, -0.008979946374893188, 0.13634005188941956, -0.21581268310546875, -0.025797992944717407, 0.17045509815216064, -0.0996968150138855, -0.07111232727766037, 0.05578963831067085, -0.047316256910562515, 0.1095307394862175, 0.037762559950351715, -0.024980798363685608, 0.0633556991815567, -0.1255372017621994, 0.0010006892262026668, -0.049273084849119186, -0.016410674899816513, 0.15417350828647614, 0.07174734026193619, -0.07209626585245132, 0.07349222898483276, 0.026486758142709732, -0.024321025237441063, -0.04627767205238342, -0.016108663752675056, -0.10594987124204636, 0.013699306175112724, -0.06436768174171448, 0.01531839556992054, -0.01929260604083538, -0.09004195779561996, -0.027423832565546036, -0.175559401512146, -0.027366219088435173, 0.08767165243625641, -0.009224525652825832, -0.017371488735079765, -0.1156156063079834, 0.01178903877735138, 0.04191869869828224, 0.006585862021893263, -0.13461244106292725, -0.05041608586907387, 0.028079412877559662, -0.16448922455310822, 0.032138410955667496, -0.05521194264292717, 0.04871291667222977, 0.026537125930190086, -0.02989649958908558, -0.027182675898075104, 0.02215566858649254, 0.005259696859866381, -0.011580572463572025, -0.24326060712337494, -0.028313281014561653, -0.025080792605876923, 0.16414545476436615, -0.20940372347831726, 0.03589802235364914, 0.07657440751791, 0.15423868596553802, 0.010584691539406776, -0.04314140975475311, 0.006621539127081633, -0.06835117191076279, -0.026565350592136383, -0.060780663043260574, -0.004090339411050081, -0.03314027562737465, -0.04495403543114662, 0.042465634644031525, -0.1638621836900711, -0.03132210671901703, 0.09781795740127563, 0.06366541236639023, -0.13969480991363525, -0.0159864854067564, -0.036394450813531876, -0.050180286169052124, -0.051063988357782364, -0.057892851531505585, 0.10585806518793106, 0.05929179862141609, 0.04440176486968994, -0.058225568383932114, -0.07556033879518509, -0.0022524059750139713, -0.013404830358922482, -0.017734648659825325, 0.09786053001880646, 0.07551714032888412, -0.13242538273334503, 0.09214333444833755, 0.09713622182607651, 0.07813552767038345, 0.09235654771327972, -0.024032339453697205, -0.08369546383619308, -0.045924779027700424, 0.03138222172856331, 0.020352590829133987, 0.12983550131320953, -0.023184435442090034, 0.04420756548643112, 0.0413680262863636, -0.01998462900519371, 0.014966200105845928, -0.08622325956821442, 0.03257110342383385, 0.027286961674690247, -0.01637188531458378, 0.04703988507390022, -0.03837646543979645, 0.023854978382587433, 0.08673285692930222, 0.045513249933719635, 0.036983512341976166, 0.016904493793845177, -0.05128418654203415, -0.1083173155784607, 0.16467778384685516, -0.12601257860660553, -0.2245756834745407, -0.1398864984512329, 0.006384743377566338, 0.03408242017030716, -0.01643386110663414, 0.0034482174087315798, -0.058712899684906006, -0.12210222333669662, -0.08723386377096176, 0.01416790671646595, 0.050892751663923264, -0.09020760655403137, -0.06429015845060349, 0.05808247625827789, 0.04101894795894623, -0.1439826488494873, 0.017800966277718544, 0.04877396300435066, -0.09802895039319992, -0.006660366430878639, 0.08329086005687714, 0.0711788535118103, 0.1750258207321167, 0.017072506248950958, -0.02283419668674469, 0.03455154225230217, 0.2067669779062271, -0.13469558954238892, 0.10975605249404907, 0.13424767553806305, -0.08907464146614075, 0.08276576548814774, 0.19859515130519867, 0.0403764471411705, -0.10163375735282898, 0.03151558339595795, 0.023615077137947083, -0.028053205460309982, -0.2456362545490265, -0.07079549133777618, -0.0033595275599509478, -0.058824315667152405, 0.07731887698173523, 0.09309414774179459, 0.07931682467460632, 0.01333637721836567, -0.0927087739109993, -0.080842025578022, 0.05559271574020386, 0.10394946485757828, 0.023394986987113953, -0.009198134765028954, 0.08967103064060211, -0.03476983308792114, 0.020964641124010086, 0.08625534176826477, 0.003161354223266244, 0.17877377569675446, 0.05013711005449295, 0.18418236076831818, 0.07914692163467407, 0.07264109700918198, 0.008058790117502213, 0.01372611429542303, 0.01967189833521843, 0.0323808528482914, -0.002190186409279704, -0.08454552292823792, -0.022792866453528404, 0.11608035117387772, 0.06662528961896896, 0.011699731461703777, 0.014078310690820217, -0.04017573222517967, 0.07989531755447388, 0.18418675661087036, -0.005106291733682156, -0.17854593694210052, -0.05752232298254967, 0.07533597201108932, -0.09783332794904709, -0.09891580045223236, -0.013011685572564602, 0.0287010595202446, -0.1702326089143753, 0.02531307190656662, -0.023268356919288635, 0.10999710857868195, -0.14189240336418152, -0.020124047994613647, 0.07504171133041382, 0.07290658354759216, 0.003986971918493509, 0.05885804817080498, -0.16448645293712616, 0.10439024865627289, 0.008759792894124985, 0.0692720040678978, -0.09434109181165695, 0.09998173266649246, -0.0019721840508282185, -0.01977759227156639, 0.14012782275676727, 0.004031289368867874, -0.07121746987104416, -0.07815711945295334, -0.08821351081132889, -0.009259828366339207, 0.12763476371765137, -0.14282681047916412, 0.0875123143196106, -0.03657416254281998, -0.04205656796693802, -0.0024112912360578775, -0.1019909530878067, -0.11889275908470154, -0.18639755249023438, 0.06049089506268501, -0.13685455918312073, 0.03285795822739601, -0.10768137872219086, -0.03308326378464699, -0.031587906181812286, 0.19256673753261566, -0.232667475938797, -0.07374890148639679, -0.14784358441829681, -0.10392125695943832, 0.14521078765392303, -0.05191551893949509, 0.08419417589902878, -0.006316049490123987, 0.16649028658866882, 0.020493341609835625, -0.02633490227162838, 0.09658416360616684, -0.09158207476139069, -0.1946462243795395, -0.0782400444149971, 0.15317627787590027, 0.13309992849826813, 0.031202614307403564, -0.004046476446092129, 0.03685858100652695, -0.015481737442314625, -0.11970564723014832, 0.017357714474201202, 0.18018820881843567, 0.06247862055897713, 0.025234032422304153, -0.027793973684310913, -0.11016736924648285, -0.06942901015281677, -0.028653811663389206, 0.02834610641002655, 0.1801994889974594, -0.07040821015834808, 0.18157944083213806, 0.14290928840637207, -0.059522684663534164, -0.20489159226417542, 0.008930754847824574, 0.029905691742897034, 0.0005763866356573999, 0.027826417237520218, -0.20448027551174164, 0.08738741278648376, 0.00531495688483119, -0.0514228418469429, 0.13474251329898834, -0.16994349658489227, -0.14448736608028412, 0.07775672525167465, 0.03788750246167183, -0.1944960355758667, -0.12982046604156494, -0.09244799613952637, -0.04627910256385803, -0.18292580544948578, 0.09518474340438843, 0.03217310085892677, 0.01164393499493599, 0.02860468439757824, 0.02921522781252861, 0.01971198059618473, -0.041938502341508865, 0.1845320612192154, -0.023143883794546127, 0.0276144128292799, -0.0858403742313385, -0.06786376237869263, 0.03739592805504799, -0.054598648101091385, 0.07412686198949814, -0.022948117926716805, 0.009231405332684517, -0.10318459570407867, -0.04119027033448219, -0.037048403173685074, 0.01696236990392208, -0.09630803018808365, -0.08440209925174713, -0.044245149940252304, 0.09759373962879181, 0.09787020087242126, -0.03321690112352371, -0.027169907465577126, -0.07325440645217896, 0.04381073638796806, 0.1976403445005417, 0.17576462030410767, 0.043026506900787354, -0.07858644425868988, -0.006502880714833736, -0.011272239498794079, 0.04356469586491585, -0.20396947860717773, 0.06234249472618103, 0.05486023798584938, 0.02091464027762413, 0.11295971274375916, -0.0193394236266613, -0.15336205065250397, -0.07189733535051346, 0.06358565390110016, -0.06017898768186569, -0.1951456516981125, 0.007459590211510658, 0.05575311928987503, -0.16626675426959991, -0.04525278881192207, 0.04526975005865097, -0.00571020133793354, -0.03751214221119881, 0.02126140519976616, 0.09111945331096649, 0.002606604713946581, 0.0741228237748146, 0.05482231825590134, 0.08280755579471588, -0.10525748878717422, 0.08329416066408157, 0.08844628185033798, -0.083144411444664, 0.023287978023290634, 0.10441485792398453, -0.05878031253814697, -0.034698814153671265, 0.018961850553750992, 0.08238302171230316, 0.016237009316682816, -0.04073549434542656, 0.012110281735658646, -0.10142917186021805, 0.06195222586393356, 0.08664597570896149, 0.032875631004571915, 0.01694716326892376, 0.03489167243242264, 0.04673054814338684, -0.07233079522848129, 0.12147916108369827, 0.03403148800134659, 0.017971834167838097, -0.03988815099000931, -0.04272383451461792, 0.019505364820361137, -0.031020089983940125, -0.005054865498095751, -0.029515936970710754, -0.07743357121944427, -0.015798665583133698, -0.16426974534988403, -0.011998246423900127, -0.05699409916996956, 0.011145209893584251, 0.030716268345713615, -0.034006111323833466, 0.007463720627129078, 0.00889946985989809, -0.07670490443706512, -0.06869523972272873, -0.019176118075847626, 0.09549786150455475, -0.16359469294548035, 0.022033311426639557, 0.08258528262376785, -0.12181740999221802, 0.09195014834403992, 0.016982560977339745, -0.005671943072229624, 0.02511945180594921, -0.14733070135116577, 0.03393600508570671, -0.03546256572008133, 0.010263505391776562, 0.04263076186180115, -0.2145238220691681, -0.0008252235129475594, -0.035157110542058945, -0.06538578867912292, -0.008638150990009308, -0.03833942115306854, -0.11669451743364334, 0.10609963536262512, 0.0076733301393687725, -0.08698207885026932, -0.032249629497528076, 0.029352854937314987, 0.08386801183223724, -0.021825451403856277, 0.15240180492401123, -0.009010128676891327, 0.07491496205329895, -0.16232961416244507, -0.018703754991292953, -0.005689196288585663, 0.023060834035277367, -0.015911336988210678, -0.01078529842197895, 0.04372752457857132, -0.02221909537911415, 0.17898041009902954, -0.030427629128098488, 0.022727947682142258, 0.06726398319005966, 0.019161364063620567, -0.03231200575828552, 0.10249458998441696, 0.04331200197339058, 0.020514560863375664, 0.017861422151327133, 0.0021368323359638453, -0.04613662511110306, -0.03147892281413078, -0.19414590299129486, 0.07343307137489319, 0.15730515122413635, 0.09545110166072845, -0.015250449068844318, 0.07790884375572205, -0.10296841710805893, -0.11360636353492737, 0.12641878426074982, -0.04785792902112007, -0.0010796436108648777, -0.07084519416093826, 0.13010312616825104, 0.14101819694042206, -0.18608391284942627, 0.0724322646856308, -0.07006285339593887, -0.04709877073764801, -0.11082183569669724, -0.1950964629650116, -0.05531562492251396, -0.04990503937005997, -0.014851885847747326, -0.046420175582170486, 0.07564330846071243, 0.05707047879695892, 0.005331066437065601, -0.0019488709513098001, 0.06668964773416519, -0.03150777518749237, -0.0018023065058514476, 0.03380168229341507, 0.06476955115795135, 0.009841040708124638, -0.029553094878792763, 0.015067948028445244, -0.01249321922659874, 0.04677779600024223, 0.0655270665884018, 0.04868403822183609, -0.030203919857740402, 0.016050757840275764, -0.03800220042467117, -0.10345552116632462, 0.043604880571365356, -0.02347564697265625, -0.07930199801921844, 0.1511390209197998, 0.024283893406391144, 0.008315660059452057, -0.019771629944443703, 0.2404061257839203, -0.07487554103136063, -0.09618517011404037, -0.14729908108711243, 0.10659495741128922, -0.03744223341345787, 0.057264544069767, 0.04597196355462074, -0.10448946058750153, 0.018432270735502243, 0.13099947571754456, 0.1603340208530426, -0.03825128823518753, 0.01987677812576294, 0.031793370842933655, 0.005295648705214262, -0.03786144405603409, 0.049194931983947754, 0.06853441148996353, 0.16126081347465515, -0.04621204733848572, 0.09061754494905472, 0.001835046336054802, -0.09566833078861237, -0.039625562727451324, 0.10998789221048355, -0.015649598091840744, 0.020445140078663826, -0.05999373644590378, 0.11713270097970963, -0.0654161348938942, -0.23567308485507965, 0.06433914601802826, -0.06712670624256134, -0.13859403133392334, -0.02504107542335987, 0.0813768282532692, -0.011784598231315613, 0.027270011603832245, 0.07272215932607651, -0.07093655318021774, 0.20292256772518158, 0.03665498271584511, -0.05495515093207359, -0.053794924169778824, 0.07857620716094971, -0.09768600761890411, 0.27578192949295044, 0.015954680740833282, 0.04445009306073189, 0.10361731052398682, -0.010153691284358501, -0.1386031210422516, 0.018744569271802902, 0.09544170647859573, -0.1032760739326477, 0.043376654386520386, 0.1993054449558258, -0.0020528901368379593, 0.12355831265449524, 0.0768430158495903, -0.0741167739033699, 0.047004468739032745, -0.0806032195687294, -0.06772681325674057, -0.09354910254478455, 0.09590625017881393, -0.07677605748176575, 0.14263640344142914, 0.14096897840499878, -0.05030497536063194, 0.011940069496631622, -0.0310549046844244, 0.045656967908144, 0.0008491682237945497, 0.10423434525728226, 0.005032489541918039, -0.1816686987876892, 0.025246862322092056, 0.006697181612253189, 0.10854477435350418, -0.16115282475948334, -0.09539254009723663, 0.04301449656486511, 0.002651671878993511, -0.06668077409267426, 0.12982714176177979, 0.053863558918237686, 0.04311680048704147, -0.04079924151301384, -0.037856731563806534, -0.007089983206242323, 0.1356545388698578, -0.10714831948280334, 0.0007704230374656618 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.1", "model-index": [{"name": "outputs", "results": []}]}
null
eduardorv/outputs
[ "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
2024-02-14T06:21:36+00:00
[]
[]
TAGS #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us
# outputs This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
[ "# outputs\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us \n", "# outputs\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ 45, 35, 6, 12, 8, 3, 139, 4, 33 ]
[ "passage: TAGS\n#safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us \n# outputs\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2\n- training_steps: 10\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ -0.12797944247722626, 0.13523295521736145, -0.002936415374279022, 0.07881537824869156, 0.12958189845085144, 0.04490581527352333, 0.08641518652439117, 0.13783632218837738, -0.0014637227868661284, 0.0988030880689621, 0.09332222491502762, 0.021884117275476456, 0.06093817576766014, 0.14173480868339539, -0.02599646896123886, -0.24788178503513336, 0.02275613509118557, -0.07627687603235245, -0.0587717704474926, 0.1025538221001625, 0.1116497591137886, -0.0819551944732666, 0.06477700918912888, 0.0023620391730219126, -0.10703767836093903, -0.021247217431664467, -0.034626077860593796, -0.05176929011940956, 0.10023372620344162, -0.014394217170774937, 0.07737042754888535, 0.013801892288029194, 0.1373191922903061, -0.20825868844985962, 0.0006389901391230524, 0.07026035338640213, 0.05900631472468376, 0.11054523289203644, 0.07813974469900131, -0.00935044139623642, 0.031709615141153336, -0.145489901304245, 0.09659819304943085, 0.029832754284143448, -0.07327745109796524, -0.13967877626419067, -0.09975752234458923, 0.06642647832632065, 0.10623476654291153, 0.06891288608312607, 0.015379095450043678, 0.09628461301326752, -0.0890735611319542, 0.050143223255872726, 0.1910438984632492, -0.25509944558143616, -0.04949577525258064, 0.032984472811222076, 0.05313567817211151, 0.08307546377182007, -0.10575632750988007, -0.03015022538602352, 0.031889304518699646, 0.012885664589703083, 0.08377353101968765, 0.021594878286123276, -0.022156327962875366, 0.009261279366910458, -0.12328771501779556, -0.04158651456236839, 0.1402415633201599, 0.047824591398239136, -0.05907674878835678, -0.13257208466529846, -0.047008298337459564, -0.11932606995105743, -0.010616376996040344, 0.003541463753208518, 0.011318998411297798, -0.040410857647657394, -0.025527987629175186, -0.033891092985868454, -0.061790648847818375, -0.07685219496488571, 0.035011954605579376, 0.11851580440998077, 0.042192243039608, 0.02212996408343315, 0.01027704868465662, 0.1279762238264084, 0.0067290677689015865, -0.12267143279314041, -0.006900295615196228, -0.03184042125940323, -0.12809500098228455, -0.03124239295721054, -0.029236827045679092, 0.012982197105884552, 0.00173559517133981, 0.14828133583068848, -0.0205889530479908, 0.06944090873003006, 0.05805421993136406, 0.0004217094392515719, -0.0039310031570494175, 0.13906997442245483, -0.07055310159921646, -0.046839527785778046, -0.002835304709151387, 0.13818120956420898, 0.01940421387553215, -0.0192237701267004, -0.06931710988283157, -0.04929248243570328, 0.07528378814458847, 0.09459957480430603, -0.034865912050008774, 0.010200760327279568, -0.06598751246929169, -0.030492601916193962, 0.08903820812702179, -0.13411623239517212, 0.027396364137530327, 0.014219947159290314, -0.09755071997642517, -0.04620290920138359, 0.007998203858733177, 0.0017319407779723406, -0.025310181081295013, 0.07532677054405212, -0.07893677055835724, -0.02754027396440506, -0.05997256562113762, -0.04360681772232056, -0.0010207840241491795, -0.08032803237438202, -0.013035214506089687, -0.04893320053815842, -0.19850382208824158, -0.028474172577261925, 0.05022086948156357, -0.09532586485147476, -0.06294258683919907, -0.025694437325000763, -0.053053393959999084, 0.035322405397892, -0.014036430045962334, 0.15535712242126465, -0.05561439320445061, 0.07015328109264374, -0.03665759041905403, 0.0323893204331398, 0.06244879215955734, 0.04233944043517113, -0.06774605810642242, 0.06546508520841599, -0.1107294112443924, 0.09652675688266754, -0.09106852859258652, 0.015301098115742207, -0.14810985326766968, -0.07963951677083969, 0.0511322095990181, -0.04180727154016495, 0.07954501360654831, 0.15053875744342804, -0.1724398136138916, 0.010217352770268917, 0.1059381514787674, -0.05572183430194855, -0.06832485646009445, 0.09763246029615402, -0.04044829308986664, 0.0075160907581448555, 0.02510441467165947, 0.15550494194030762, 0.11965832114219666, -0.14298422634601593, 0.012875918298959732, 0.027170678600668907, 0.06617303937673569, 0.0236014686524868, 0.0879601389169693, -0.008801627904176712, -0.009905785322189331, 0.020122898742556572, -0.07477515935897827, 0.012516672722995281, -0.07308682054281235, -0.08107704669237137, -0.05853024870157242, -0.0859532579779625, 0.05330754816532135, -0.00710623012855649, 0.005023117642849684, -0.052875835448503494, -0.12561288475990295, 0.00483716931194067, 0.16039656102657318, -0.05201299861073494, -0.007091763895004988, -0.07089748233556747, 0.04994478076696396, -0.02271987870335579, -0.033223576843738556, -0.18512378633022308, -0.11838007718324661, 0.055846087634563446, -0.07965710759162903, -0.0017059601377695799, -0.016648586839437485, 0.056869979947805405, 0.08172480016946793, -0.03408427909016609, -0.047472741454839706, -0.0473027378320694, -0.011463628150522709, -0.0833355113863945, -0.17356686294078827, -0.07135405391454697, -0.04771748557686806, 0.20783323049545288, -0.22091332077980042, -0.006773308850824833, -0.04822244867682457, 0.11851266026496887, 0.02768171951174736, -0.05570797249674797, 0.030032111331820488, -0.003939240705221891, 0.005048494786024094, -0.11340092867612839, 0.02709110826253891, 0.003425943898037076, -0.11967244744300842, -0.003518391400575638, -0.12482252717018127, -0.02893182821571827, 0.029698500409722328, 0.17080999910831451, -0.09439526498317719, -0.09384144842624664, -0.07040633261203766, -0.05218586325645447, -0.06227598339319229, 0.005978419911116362, 0.16646267473697662, 0.04784217104315758, 0.10333620011806488, -0.06394059211015701, -0.0662580132484436, 0.0068845623172819614, 0.009125822223722935, -0.01728752814233303, 0.09330915659666061, 0.019336175173521042, -0.11573115736246109, 0.053615752607584, 0.10698909312486649, -0.03407350927591324, 0.09670766443014145, -0.054551564157009125, -0.10269023478031158, -0.02935488149523735, 0.03947055712342262, -0.0034163023810833693, 0.131209135055542, -0.023154743015766144, 0.037717245519161224, 0.05643370375037193, 0.020938796922564507, 0.014470978640019894, -0.15355494618415833, -0.016877776011824608, 0.013289881870150566, -0.046055398881435394, -0.05160677060484886, -0.0065096039324998856, 0.030581092461943626, 0.07578130811452866, 0.028099503368139267, -0.03517988324165344, 0.017292484641075134, -0.02543151006102562, -0.06496308743953705, 0.17112332582473755, -0.12018870562314987, -0.11390436440706253, -0.12524712085723877, 0.049108341336250305, -0.030299920588731766, -0.03525472432374954, -0.014532473869621754, -0.05953451246023178, -0.06394419819116592, -0.10406874865293503, -0.039271313697099686, -0.02169627882540226, -0.017051827162504196, 0.018953246995806694, 0.01178477518260479, 0.07922191917896271, -0.11527619510889053, 0.02311006374657154, -0.005894815549254417, -0.05992980673909187, 0.01530426274985075, 0.053451355546712875, 0.06662657856941223, 0.12195456773042679, 0.013475880958139896, 0.009412305429577827, -0.023060912266373634, 0.22508469223976135, -0.07512116432189941, 0.008677001111209393, 0.11158202588558197, -0.0026691057719290257, 0.06990429759025574, 0.15595640242099762, 0.015679826959967613, -0.0831538736820221, 0.03184669837355614, 0.03370587155222893, -0.00782293826341629, -0.26808643341064453, -0.046562790870666504, -0.020403405651450157, -0.057482194155454636, 0.11341924965381622, 0.04991811886429787, -0.050142668187618256, 0.055088289082050323, -0.0278550386428833, -0.017021557316184044, 0.0009437777916900814, 0.07259982824325562, 0.01517523918300867, 0.043831028044223785, 0.07800067216157913, -0.004856686573475599, 0.009122109040617943, 0.06729995459318161, 0.05194448307156563, 0.29268550872802734, -0.06444492936134338, 0.16731679439544678, -0.006123540922999382, 0.16910220682621002, -0.014585155993700027, 0.05945456773042679, 0.014229100197553635, 0.009584917686879635, -0.009251559153199196, -0.055169589817523956, -0.04357460141181946, 0.02975069172680378, 0.01338461134582758, 0.04262085631489754, -0.08781284838914871, 0.059882260859012604, -0.001510959817096591, 0.2930866777896881, 0.05467855557799339, -0.2961229383945465, -0.08385909348726273, 0.029219942167401314, -0.026485398411750793, -0.09124722331762314, 0.015360144898295403, 0.14578069746494293, -0.13451938331127167, 0.03889015316963196, -0.084740050137043, 0.07213027775287628, -0.04866790398955345, -0.018745463341474533, 0.05653155595064163, 0.15206201374530792, -0.008517793379724026, 0.09745432436466217, -0.13684101402759552, 0.216156005859375, 0.013053208589553833, 0.07246856391429901, -0.06687238067388535, 0.0344608798623085, 0.0029091057367622852, 0.05550510808825493, 0.12908242642879486, 0.006764072459191084, -0.06964686512947083, -0.1549052745103836, -0.14372505247592926, 0.023150425404310226, 0.1175513043999672, -0.054900601506233215, 0.07139544934034348, -0.06958875060081482, -0.010920322500169277, 0.027333125472068787, -0.09295414388179779, -0.1407599300146103, -0.14642812311649323, 0.03190404549241066, -0.01554537657648325, -0.0070746042765676975, -0.08969175070524216, -0.08694128692150116, 0.02238512597978115, 0.12818458676338196, 0.0021783700212836266, -0.05909596011042595, -0.15425878763198853, 0.022342126816511154, 0.19983045756816864, -0.05972180888056755, 0.025369783863425255, -0.0047696903347969055, 0.1472063809633255, 0.03957850858569145, -0.054115600883960724, 0.061225876212120056, -0.07606268674135208, -0.18690289556980133, -0.06967923045158386, 0.13920046389102936, 0.056480664759874344, 0.04951382428407669, -0.00701057817786932, 0.021651120856404305, -0.016013629734516144, -0.0817868784070015, 0.026074601337313652, 0.08394378423690796, 0.052944116294384, 0.0720658227801323, -0.06926081329584122, 0.04079055041074753, -0.036169540137052536, -0.022673454135656357, 0.12143418192863464, 0.24792535603046417, -0.09232398867607117, 0.11603793501853943, 0.08660119026899338, -0.03490232676267624, -0.15726667642593384, 0.01107711996883154, 0.13184227049350739, 0.04289958253502846, 0.059429917484521866, -0.15933692455291748, 0.06353974342346191, 0.11874978989362717, -0.033668648451566696, 0.059738580137491226, -0.3337607979774475, -0.11681610345840454, 0.06752881407737732, 0.08543628454208374, -0.004084902815520763, -0.10824064910411835, -0.04712703451514244, -0.031095342710614204, -0.08496280759572983, 0.08785755932331085, -0.03449522703886032, 0.11181490868330002, -0.01793607696890831, 0.10502979904413223, 0.04395431652665138, -0.048847995698451996, 0.17380788922309875, 0.021598123013973236, 0.059946995228528976, -0.03959857299923897, 0.021671485155820847, 0.04072507843375206, -0.09135047346353531, 0.05335567146539688, -0.06663486361503601, 0.08815936744213104, -0.1389307677745819, -0.004242562688887119, -0.060881320387125015, 0.04520711302757263, -0.04414813965559006, -0.06270349770784378, -0.02979240007698536, 0.0764097049832344, 0.06887566298246384, -0.03561150282621384, 0.062256332486867905, 0.036820005625486374, 0.04464095085859299, 0.11158070713281631, 0.0681268647313118, 0.02019522525370121, -0.10491710901260376, -0.003624214790761471, -0.00813714973628521, 0.04704743251204491, -0.12896783649921417, 0.025340812280774117, 0.10389026999473572, 0.03810056671500206, 0.12284736335277557, 0.013591928407549858, -0.07380282878875732, -0.001633572275750339, 0.03387131914496422, -0.09856919944286346, -0.15902002155780792, 0.002464700024574995, 0.036981262266635895, -0.15994781255722046, -0.012834656052291393, 0.10573098063468933, -0.037453118711709976, -0.02481168322265148, -0.012502245604991913, 0.04534958302974701, -0.0015133031411096454, 0.18594250082969666, 0.03710903972387314, 0.08225835114717484, -0.07932192832231522, 0.14103683829307556, 0.08707809448242188, -0.06753852963447571, 0.03205185756087303, 0.057453155517578125, -0.10387778282165527, -0.01699020154774189, 0.043925538659095764, 0.07270004600286484, -0.006791451945900917, -0.02289331518113613, -0.040902066975831985, -0.09160570055246353, 0.03921988606452942, 0.00496333371847868, 0.023411817848682404, -0.006469216663390398, -0.026191476732492447, -0.004980580881237984, -0.12847939133644104, 0.11157997697591782, 0.0787685215473175, 0.07009084522724152, -0.1375660002231598, 0.042976219207048416, -0.014748167246580124, 0.04319538176059723, -0.008427073247730732, 0.012451332993805408, -0.07418012619018555, -0.020257331430912018, -0.15712665021419525, 0.025497088208794594, -0.02666265144944191, 0.017817631363868713, -0.012216704897582531, -0.04024701192975044, -0.015401345677673817, 0.030881186947226524, -0.068527452647686, -0.06585743278265, -0.013973094522953033, 0.06357964128255844, -0.12074735015630722, -0.020307576283812523, 0.03760339319705963, -0.11138979345560074, 0.1092572957277298, 0.0651591494679451, 0.026332193985581398, 0.014672324992716312, -0.09814635664224625, -0.013686148449778557, 0.00637586647644639, 0.01981358416378498, 0.06270944327116013, -0.1399492770433426, -0.021800238639116287, -0.05387057736515999, -0.01024029403924942, -0.008791590109467506, 0.03762320056557655, -0.13033004105091095, -0.03159794211387634, -0.03014311008155346, -0.037657059729099274, -0.08113979548215866, 0.03773291036486626, 0.07578402757644653, 0.03661684691905975, 0.14709389209747314, -0.05272043123841286, 0.053598713129758835, -0.17522673308849335, -0.04272833466529846, -0.004929011221975088, -0.0051047224551439285, -0.0795508474111557, -0.012939049862325191, 0.07897857576608658, -0.05368775129318237, 0.0945013016462326, -0.050930991768836975, 0.08234915137290955, 0.014110835269093513, -0.013499296270310879, 0.004781782161444426, 0.018705619499087334, 0.14896482229232788, 0.06420806050300598, -0.005962294060736895, 0.09445197880268097, -0.04513236880302429, 0.03917618468403816, 0.05711229145526886, 0.1470784991979599, 0.13544143736362457, 0.02460561878979206, 0.04910043999552727, 0.05503712221980095, -0.1360470950603485, -0.12359227240085602, 0.13245399296283722, -0.02425774373114109, 0.09516933560371399, -0.04317998141050339, 0.18799720704555511, 0.09154477715492249, -0.1934068351984024, 0.04186432436108589, -0.05604042112827301, -0.12114952504634857, -0.10193126648664474, -0.08181308954954147, -0.06684595346450806, -0.10841630399227142, 0.021013986319303513, -0.10151427984237671, 0.04685218259692192, 0.09212830662727356, 0.010535365901887417, 0.026342937722802162, 0.10679088532924652, -0.013199802488088608, 0.006201062351465225, 0.057128217071294785, 0.048932693898677826, 0.012756784446537495, -0.010552074760198593, -0.0737759917974472, 0.05188719555735588, -0.008711793459951878, 0.07714800536632538, -0.039649203419685364, 0.0180420633405447, 0.05147527903318405, -0.0006884865579195321, -0.07621592283248901, 0.017460336908698082, 0.009738167747855186, 0.01774098537862301, 0.04369410127401352, 0.0630054622888565, 0.01849110797047615, -0.049041498452425, 0.31069719791412354, -0.07408414036035538, -0.05473340302705765, -0.1358410269021988, 0.1806793063879013, -0.004892751108855009, -0.014234038069844246, 0.0772196426987648, -0.11237979680299759, -0.034365084022283554, 0.10745123773813248, 0.1501055806875229, -0.09252236783504486, -0.03400065377354622, -0.021273326128721237, -0.020360343158245087, -0.08048941940069199, 0.13648195564746857, 0.08859840035438538, 0.010665967129170895, -0.06895846873521805, 0.04053521156311035, -0.00187390367500484, -0.04202572628855705, -0.08801474422216415, 0.09358717501163483, -0.023412879556417465, 0.005149880889803171, -0.04334034025669098, 0.07236817479133606, -0.009810710325837135, -0.18744432926177979, 0.007221813779324293, -0.12181077897548676, -0.20488397777080536, -0.04470062628388405, 0.06328067183494568, -0.0032966977450996637, 0.06465449184179306, -0.013633780181407928, -0.009396557696163654, 0.14993175864219666, -0.025229573249816895, -0.03174032270908356, -0.09716038405895233, 0.07948298752307892, -0.019728505983948708, 0.23888029158115387, 0.023185810074210167, 0.05397253856062889, 0.0938446894288063, 0.01232480350881815, -0.18797357380390167, 0.018364468589425087, 0.1042141243815422, -0.06505021452903748, 0.04817558452486992, 0.18650992214679718, -0.04932141304016113, 0.08589418232440948, 0.03965599462389946, -0.08945418894290924, -0.0239203330129385, -0.046634748578071594, 0.0020742323249578476, -0.077660471200943, -0.004253779072314501, -0.037495553493499756, 0.17072661221027374, 0.19401079416275024, -0.05642986297607422, -0.0033796471543610096, -0.06641003489494324, 0.0273858904838562, 0.04883791133761406, 0.09287704527378082, -0.004442006349563599, -0.17339850962162018, 0.01490993332117796, 0.06678126752376556, 0.048593711107969284, -0.20639072358608246, -0.08440730720758438, 0.016922129318118095, -0.05755768343806267, -0.04035891592502594, 0.1346612125635147, 0.03508123382925987, 0.026156937703490257, -0.022787081077694893, -0.08359044045209885, -0.044419072568416595, 0.12977804243564606, -0.1526489555835724, -0.044775038957595825 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1349 - Accuracy: 0.9476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2131 | 1.0 | 51 | 0.1843 | 0.9320 | | 0.1521 | 2.0 | 102 | 0.1215 | 0.9552 | | 0.1318 | 3.0 | 153 | 0.1349 | 0.9476 | ### Framework versions - Transformers 4.37.2 - Pytorch 1.13.1 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/swin-tiny-patch4-window7-224", "model-index": [{"name": "swin-tiny-patch4-window7-224-finetuned-eurosat", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "validation", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9476209516193522, "name": "Accuracy"}]}]}]}
image-classification
friedrice231/MemeDetector_SG
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T06:24:26+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
swin-tiny-patch4-window7-224-finetuned-eurosat ============================================== This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.1349 * Accuracy: 0.9476 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 256 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 1.13.1 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 1.13.1\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 1.13.1\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 88, 144, 4, 30 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 1.13.1\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.11475205421447754, 0.16910320520401, -0.0022928984835743904, 0.09586809575557709, 0.1075061485171318, 0.026977166533470154, 0.10719839483499527, 0.14570088684558868, -0.05980991944670677, 0.11054477095603943, 0.14060772955417633, 0.09241881221532822, 0.06822527945041656, 0.15709957480430603, -0.005651537328958511, -0.29949599504470825, 0.01594890095293522, -0.010918761603534222, -0.13963720202445984, 0.10774203389883041, 0.0683571845293045, -0.12581907212734222, 0.09164592623710632, 0.0017377696931362152, -0.1352834403514862, -0.02251737378537655, -0.04058303311467171, -0.04724215343594551, 0.0991731509566307, 0.03314036503434181, 0.07195740938186646, 0.029233310371637344, 0.10804479569196701, -0.23172324895858765, 0.007465756498277187, 0.07106798887252808, 0.016562040895223618, 0.09491752833127975, 0.1175420880317688, 0.019639190286397934, 0.14308570325374603, -0.1114783063530922, 0.0632195770740509, 0.03938457742333412, -0.08254361152648926, -0.25512048602104187, -0.059600915759801865, 0.08210953325033188, 0.12101070582866669, 0.05301393195986748, -0.011558261699974537, 0.08510393649339676, -0.056302350014448166, 0.08738481253385544, 0.21869665384292603, -0.24144570529460907, -0.07393813878297806, 0.04335940629243851, 0.03140832111239433, 0.038614626973867416, -0.13569922745227814, -0.005285998806357384, 0.03308819606900215, 0.004962078761309385, 0.11210530996322632, 0.0217899139970541, 0.06456213444471359, 0.011194729246199131, -0.1398499310016632, -0.04558586701750755, 0.10477805882692337, 0.1066310778260231, -0.017530951648950577, -0.12527798116207123, -0.05500136688351631, -0.1814826875925064, -0.04591311886906624, 0.009181631729006767, 0.040351759642362595, -0.05274815112352371, -0.08423734456300735, 0.025804633274674416, -0.07363856583833694, -0.07387742400169373, 0.04560152813792229, 0.12016019970178604, 0.05839812383055687, -0.0019735214300453663, 0.025298239663243294, 0.11533285677433014, 0.09364847838878632, -0.16444168984889984, 0.00005345952740754001, 0.007577819749712944, -0.07301990687847137, 0.0010655319783836603, -0.010391616262495518, 0.03273608535528183, 0.0444384329020977, 0.14316822588443756, -0.032951027154922485, 0.08725610375404358, 0.08599234372377396, 0.018892714753746986, -0.07726718485355377, 0.1450919359922409, -0.0767037570476532, -0.09090475738048553, -0.03155325725674629, 0.11751548200845718, 0.033638618886470795, -0.009589949622750282, -0.08578087389469147, 0.02864808775484562, 0.112751305103302, 0.023903684690594673, -0.00047561703831888735, 0.044212326407432556, -0.059002626687288284, -0.037230271846055984, 0.07900786399841309, -0.0837668627500534, 0.04526425525546074, 0.032420769333839417, -0.0688391700387001, -0.015452828258275986, 0.019647158682346344, -0.010360466316342354, 0.007712444290518761, 0.10176243633031845, -0.0966605618596077, -0.030932586640119553, -0.0813266709446907, -0.07212460041046143, 0.031153108924627304, -0.08215261250734329, 0.01926574483513832, -0.07724257558584213, -0.12781931459903717, -0.03457079455256462, 0.07176747918128967, -0.06440366059541702, -0.06972339004278183, -0.04532274231314659, -0.09494196623563766, 0.059749070554971695, 0.005608848296105862, 0.1384861171245575, -0.05339989811182022, 0.09436097741127014, 0.008346214890480042, 0.07748901844024658, 0.07169356197118759, 0.0383882112801075, -0.06798849999904633, 0.0637679398059845, -0.16700032353401184, 0.052774928510189056, -0.09051863849163055, 0.06792213767766953, -0.12170843034982681, -0.10338449478149414, -0.007080461829900742, -0.011009743437170982, 0.058890994638204575, 0.14278921484947205, -0.15293937921524048, -0.06954927742481232, 0.1341027021408081, -0.08813276886940002, -0.11868150532245636, 0.1090659648180008, -0.01656068116426468, -0.05635945871472359, 0.012175093404948711, 0.17997053265571594, 0.07915007323026657, -0.08143572509288788, -0.031545743346214294, 0.006065242923796177, 0.09569287300109863, 0.002466854639351368, 0.10459235310554504, -0.0029578092508018017, 0.009837890043854713, 0.01859709434211254, -0.071060910820961, 0.07096050679683685, -0.08894126117229462, -0.07975944876670837, -0.03800177946686745, -0.0815683901309967, 0.025445638224482536, 0.06802436709403992, 0.025394169613718987, -0.08305131644010544, -0.13512107729911804, 0.010747005231678486, 0.11848840117454529, -0.09737228602170944, -0.007275419309735298, -0.05323164165019989, 0.06465760618448257, -0.04937450587749481, -0.008614134043455124, -0.1252242475748062, -0.07108170539140701, 0.039019543677568436, -0.08167926222085953, -0.016868317499756813, -0.006537568289786577, 0.0779353603720665, 0.08907809853553772, -0.06062544509768486, -0.09156722575426102, -0.04965494945645332, 0.012394258752465248, -0.07765090465545654, -0.2568914592266083, -0.07872030138969421, -0.03004913218319416, 0.1401544064283371, -0.25471606850624084, 0.01471910160034895, 0.0134020010009408, 0.14574889838695526, 0.04665940999984741, -0.05844540148973465, 0.004395537544041872, 0.010611509904265404, -0.04282267391681671, -0.10053075104951859, 0.035696934908628464, 0.0009450648794882, -0.10748505592346191, -0.030322199687361717, -0.1183881163597107, 0.1329471617937088, 0.10276976972818375, 0.008907642215490341, -0.08958403021097183, -0.043869536370038986, -0.07502284646034241, -0.06046769767999649, -0.019957510754466057, 0.013265365734696388, 0.08445386588573456, 0.009703113697469234, 0.1053687110543251, -0.08161245286464691, -0.055970098823308945, 0.04101395234465599, -0.005504826083779335, -0.032865483313798904, 0.14371207356452942, 0.09065612405538559, -0.08500076085329056, 0.13510684669017792, 0.13565972447395325, -0.05049508437514305, 0.1412023901939392, -0.06138100475072861, -0.09524409472942352, -0.03590761497616768, 0.02103579230606556, 0.018034271895885468, 0.15180279314517975, -0.09962725639343262, 0.012069454416632652, 0.026466188952326775, 0.013033851981163025, 0.012219100259244442, -0.17081235349178314, -0.017275774851441383, 0.04218590259552002, -0.05121975392103195, 0.02841125801205635, -0.024132320657372475, -0.028084639459848404, 0.08912358433008194, 0.0022179658990353346, -0.05202757939696312, 0.0005382865201681852, -0.007714574690908194, -0.07831774652004242, 0.21067655086517334, -0.07936347275972366, -0.15481315553188324, -0.12555329501628876, 0.028685905039310455, -0.04477595537900925, -0.0012131769908592105, 0.021230774000287056, -0.10428042709827423, -0.051620084792375565, -0.08997383713722229, 0.0038360587786883116, -0.021077997982501984, 0.04975081980228424, 0.01110137440264225, 0.013149860315024853, 0.08396318554878235, -0.08298294991254807, 0.018447672948241234, -0.009034233167767525, -0.012341570109128952, 0.03414140269160271, 0.042081594467163086, 0.11756961047649384, 0.12125582993030548, 0.021717507392168045, 0.01756010390818119, -0.008846440352499485, 0.19566784799098969, -0.09174086898565292, 0.033887989819049835, 0.10832681506872177, 0.00046009570360183716, 0.0521659255027771, 0.13057668507099152, 0.04604511335492134, -0.07509545981884003, 0.017596691846847534, 0.035050008445978165, -0.01595917157828808, -0.18759934604167938, -0.028506506234407425, -0.027326980605721474, 0.01059259194880724, 0.13219855725765228, 0.048378679901361465, -0.03323628753423691, 0.0649360790848732, -0.016183866187930107, 0.005578711628913879, -0.018239254131913185, 0.07170169055461884, 0.034843429923057556, 0.04400542378425598, 0.10974925756454468, -0.03357674553990364, -0.0270367544144392, 0.04216472804546356, 0.0020040140952914953, 0.21739614009857178, -0.02445434033870697, 0.14576952159404755, 0.023804431781172752, 0.166872039437294, -0.00009354081703349948, 0.06096239387989044, 0.012805667705833912, -0.03316349908709526, -0.0013046938693150878, -0.05401145666837692, -0.022413799539208412, 0.054121773689985275, 0.015972523018717766, 0.05747433006763458, -0.10545147955417633, 0.06236307695508003, 0.04734024778008461, 0.26176393032073975, 0.07222416251897812, -0.33106178045272827, -0.09266193956136703, 0.02213558927178383, -0.038925521075725555, -0.043237801641225815, 0.02196439541876316, 0.1520189493894577, -0.08594326674938202, 0.07442901283502579, -0.0896807312965393, 0.06494775414466858, -0.0721660628914833, 0.0021274317987263203, 0.09133421629667282, 0.10790333151817322, 0.005255479831248522, 0.07926115393638611, -0.2013578712940216, 0.25687241554260254, -0.004870626609772444, 0.04720994457602501, -0.06245885044336319, 0.03421645238995552, 0.030619602650403976, 0.015315630473196507, 0.11156056076288223, -0.004768714774399996, -0.11272737383842468, -0.1863870769739151, -0.1174551323056221, 0.02157985046505928, 0.11535217612981796, -0.08162380009889603, 0.10972684621810913, -0.033068425953388214, -0.03619605302810669, 0.050856202840805054, -0.05716558173298836, -0.08408505469560623, -0.12372002750635147, 0.0041609229519963264, -0.03444961830973625, 0.0030125172343105078, -0.09515393525362015, -0.10485149919986725, -0.08978158235549927, 0.1481962651014328, -0.10363651067018509, -0.04033839702606201, -0.15693622827529907, 0.10298991203308105, 0.1468883752822876, -0.08406902104616165, 0.05700254440307617, -0.00826189573854208, 0.12158625572919846, 0.043909016996622086, -0.050580043345689774, 0.11582056432962418, -0.10000640898942947, -0.23151567578315735, -0.05937846377491951, 0.11003123223781586, 0.03760465979576111, 0.05878758803009987, -0.02745877578854561, 0.026364661753177643, -0.021921750158071518, -0.0980585440993309, 0.06654256582260132, 0.0326390378177166, 0.041964463889598846, 0.016045991331338882, -0.037639763206243515, 0.03626662865281105, -0.02833271212875843, -0.03725762292742729, 0.10039034485816956, 0.28453660011291504, -0.11469949781894684, 0.02440805174410343, 0.036375585943460464, -0.04780864343047142, -0.17987720668315887, 0.010462512262165546, 0.09953228384256363, 0.01889379322528839, 0.04142758995294571, -0.18090152740478516, 0.10964659601449966, 0.08835617452859879, -0.027926599606871605, 0.09820419549942017, -0.2861348092556, -0.12012112885713577, 0.09483043849468231, 0.13513842225074768, -0.03138486295938492, -0.17171373963356018, -0.05252283811569214, 0.000725667632650584, -0.05389478802680969, 0.08487477898597717, -0.0025921878404915333, 0.10364098101854324, -0.034479979425668716, -0.01141007337719202, 0.021991362795233727, -0.07267995923757553, 0.15861867368221283, -0.015884414315223694, 0.09050911664962769, -0.03139355033636093, 0.023881033062934875, -0.00000837801144371042, -0.07713786512613297, 0.035304728895425797, -0.12290164828300476, 0.0576670840382576, -0.10772747546434402, -0.016272490844130516, -0.07794716954231262, 0.0324271097779274, -0.05135015398263931, -0.0479322224855423, -0.036474909633398056, 0.05307864397764206, 0.07136965543031693, -0.0035176940727978945, 0.14258107542991638, 0.01632530800998211, 0.0962907001376152, 0.131943017244339, 0.0524040125310421, 0.0007677204557694495, -0.09987839311361313, -0.039198558777570724, -0.008692344650626183, 0.04442578926682472, -0.1463344246149063, 0.011647882871329784, 0.12965261936187744, 0.03415684774518013, 0.11757288128137589, 0.05219428986310959, -0.05426740646362305, -0.017343921586871147, 0.08044911921024323, -0.1178068295121193, -0.13829296827316284, -0.029141446575522423, 0.003459763713181019, -0.1615617722272873, 0.018897270783782005, 0.07495777308940887, -0.0634901225566864, 0.007821683771908283, 0.0023712324909865856, 0.052268944680690765, 0.006762963719666004, 0.19774232804775238, 0.0786137804389, 0.07942097634077072, -0.08722249418497086, 0.11225727200508118, 0.028587335720658302, -0.1391487419605255, 0.026395445689558983, 0.07166729867458344, -0.07931620627641678, -0.015398703515529633, 0.08017099648714066, 0.1020374521613121, -0.01768387481570244, -0.04472022131085396, -0.12666527926921844, -0.11386802047491074, 0.06923723220825195, 0.04980635270476341, 0.06936400383710861, 0.017921574413776398, -0.011038941331207752, 0.02939433790743351, -0.1021285355091095, 0.1445683240890503, 0.0782795399427414, 0.09758755564689636, -0.19430498778820038, 0.07416507601737976, 0.008010417222976685, 0.0075807454995810986, -0.01679561473429203, 0.04779200628399849, -0.12558546662330627, -0.03170885518193245, -0.061237234622240067, 0.00434341374784708, -0.06941307336091995, 0.007090751081705093, 0.0008298334432765841, -0.0541379414498806, -0.03837515413761139, 0.009204729460179806, -0.09219874441623688, -0.06088470295071602, 0.004626580514013767, 0.06697124242782593, -0.09924482554197311, -0.022931110113859177, 0.038031283766031265, -0.1166820153594017, 0.09390997886657715, 0.013762700371444225, 0.04366329312324524, 0.011965393088757992, -0.0846799910068512, 0.03318699076771736, 0.043412890285253525, -0.002620525425300002, 0.023892100900411606, -0.1365468055009842, -0.007781113963574171, -0.04804892838001251, -0.004307083785533905, -0.01981474459171295, 0.053939227014780045, -0.1380474865436554, 0.0015146869700402021, -0.0630410760641098, -0.05689248815178871, -0.062201984226703644, 0.04878189414739609, 0.07020556926727295, -0.01531517505645752, 0.17559461295604706, -0.07704256474971771, 0.037999317049980164, -0.24056869745254517, 0.0015875173266977072, -0.008788591250777245, -0.07231388241052628, -0.0877457857131958, -0.009999766945838928, 0.07534794509410858, -0.05323692783713341, 0.10130643099546432, -0.0318002887070179, 0.020204884931445122, 0.026436153799295425, -0.04485170543193817, 0.05448680743575096, 0.04662298038601875, 0.20625360310077667, 0.01606503129005432, -0.01375698670744896, 0.07182751595973969, 0.020003432407975197, 0.08241354674100876, 0.07097555696964264, 0.14814315736293793, 0.15970174968242645, -0.055339109152555466, 0.10233693569898605, 0.045252300798892975, -0.1200108602643013, -0.16849632561206818, 0.15145234763622284, -0.0600188747048378, 0.13649481534957886, -0.023728806525468826, 0.16952143609523773, 0.11668390780687332, -0.20495003461837769, 0.0053252666257321835, -0.018956836313009262, -0.08071468025445938, -0.0939536839723587, -0.10076504945755005, -0.09181071072816849, -0.17487595975399017, 0.014093931764364243, -0.1065111830830574, 0.010062864981591702, 0.07073069363832474, 0.02647807076573372, 0.01890627108514309, 0.15604433417320251, 0.06044920161366463, 0.027455046772956848, 0.061292171478271484, 0.047192756086587906, -0.04615906625986099, -0.023181727156043053, -0.08682480454444885, 0.010091106407344341, -0.021604835987091064, 0.03527962788939476, -0.06694915890693665, -0.06921570003032684, 0.08295101672410965, 0.03839843347668648, -0.10199971497058868, 0.020311852917075157, -0.018183493986725807, 0.03823651373386383, 0.06089663878083229, 0.011469917371869087, 0.0037473351694643497, -0.0442630834877491, 0.2089456021785736, -0.09536515921354294, -0.004051200579851866, -0.10738027095794678, 0.18127569556236267, -0.018027368932962418, -0.008269916288554668, 0.03116893395781517, -0.08740850538015366, -0.0064824470318853855, 0.15709607303142548, 0.16065643727779388, -0.04448636621236801, -0.02324673905968666, 0.019098695367574692, -0.01565495878458023, -0.04023409262299538, 0.09095709770917892, 0.09392695128917694, 0.04832697659730911, -0.06949882954359055, -0.04658650979399681, -0.03992799296975136, -0.05920366942882538, -0.042323291301727295, 0.05795403942465782, 0.041206441819667816, -0.005818454083055258, -0.04273495450615883, 0.07618024945259094, -0.04275807738304138, -0.11893665790557861, 0.0842314213514328, -0.17628473043441772, -0.17227314412593842, -0.031062638387084007, 0.09144672751426697, 0.014330500736832619, 0.047510240226984024, -0.0037945269141346216, -0.013857698999345303, 0.08474735170602798, -0.0030705074314028025, -0.08338834345340729, -0.0819251760840416, 0.050100717693567276, -0.05224652960896492, 0.23540790379047394, -0.03137299790978432, 0.007523813284933567, 0.12970814108848572, 0.03177298605442047, -0.1407346874475479, 0.014686311595141888, 0.07545572519302368, -0.09883804619312286, 0.04845857247710228, 0.15337897837162018, -0.02159600891172886, 0.12361884117126465, 0.0424373634159565, -0.09769473224878311, -0.011925093829631805, -0.07571398466825485, -0.05434137210249901, -0.053447920829057693, 0.004412807524204254, -0.03920801356434822, 0.1566440314054489, 0.20068560540676117, -0.059399478137493134, -0.03609888628125191, -0.04734135419130325, 0.040235985070466995, 0.050929661840200424, 0.08584549278020859, 0.0031301449052989483, -0.23560397326946259, 0.027690568938851357, -0.020714204758405685, 0.01662585325539112, -0.19283965229988098, -0.09426342695951462, 0.01657901145517826, -0.047745268791913986, -0.09661675244569778, 0.10521368682384491, 0.07499200105667114, 0.04709404334425926, -0.05911910906434059, -0.03784685954451561, -0.056851282715797424, 0.15594454109668732, -0.1669691652059555, -0.07580423355102539 ]
null
null
ml-agents
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: QMMMS/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy"]}
reinforcement-learning
QMMMS/ppo-Huggy
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
2024-02-14T06:24:49+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us
# ppo Agent playing Huggy This is a trained model of a ppo agent playing Huggy using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: QMMMS/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: QMMMS/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us \n", "# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: QMMMS/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 44, 199 ]
[ "passage: TAGS\n#ml-agents #tensorboard #onnx #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us \n# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: QMMMS/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ -0.005630028899759054, 0.0046928864903748035, -0.0037274614442139864, 0.03369327262043953, 0.14593543112277985, -0.008381386287510395, 0.12551981210708618, 0.1288331151008606, 0.1201309934258461, 0.07677429169416428, 0.06775428354740143, 0.05684717372059822, 0.04427677392959595, 0.1757533848285675, 0.05976605415344238, -0.2120390385389328, -0.014093796722590923, -0.08073528856039047, -0.005487264599651098, 0.09426405280828476, 0.048676103353500366, -0.03797135129570961, 0.07685158401727676, 0.02321992628276348, -0.04121750593185425, -0.027090130373835564, -0.07262454926967621, -0.02168862335383892, 0.05076892673969269, 0.0105528449639678, -0.05247519910335541, -0.011724566109478474, 0.06872441619634628, -0.20795130729675293, 0.03884858265519142, 0.05239361524581909, -0.019853347912430763, 0.006098059471696615, 0.10900555551052094, 0.05650855228304863, 0.07976739853620529, -0.06536909192800522, 0.050584349781274796, 0.07213414460420609, -0.05755900964140892, 0.008404609747231007, -0.13410602509975433, 0.025557301938533783, 0.2202843725681305, 0.10421887785196304, 0.00044041138608008623, 0.11256692558526993, -0.09748925268650055, 0.04033957049250603, 0.17514844238758087, -0.26020997762680054, -0.05908481776714325, 0.08661169558763504, 0.09022760391235352, -0.01355020236223936, -0.03366547077894211, 0.044532280415296555, -0.03192337974905968, 0.053480882197618484, 0.07876452803611755, -0.03692063316702843, 0.2710816264152527, -0.008275618776679039, -0.08323988318443298, -0.0700192078948021, 0.03847998008131981, 0.0838884711265564, -0.05462338402867317, -0.2187904417514801, 0.024363506585359573, 0.1315849870443344, -0.019893797114491463, 0.018925342708826065, 0.053677089512348175, -0.014115533791482449, -0.07458335161209106, -0.1060752123594284, -0.049477532505989075, -0.0634462907910347, 0.06181204319000244, 0.15026788413524628, -0.005073241423815489, -0.03745453432202339, 0.06928731501102448, 0.07085826247930527, 0.026772862300276756, -0.026671843603253365, -0.029805060476064682, -0.04747980087995529, -0.1169874370098114, 0.009065890684723854, -0.010739577002823353, 0.05572190880775452, 0.06883089244365692, 0.08605916053056717, 0.014439499005675316, 0.015149902552366257, 0.057298414409160614, 0.05153245851397514, -0.015399593859910965, 0.14756301045417786, 0.01162421889603138, 0.03456800803542137, 0.06284616887569427, 0.06344085931777954, 0.03718090429902077, -0.055200763046741486, -0.09694552421569824, 0.07343802601099014, -0.10153362900018692, 0.11122165620326996, 0.07423539459705353, 0.043764933943748474, -0.051475584506988525, -0.038486044853925705, 0.032846469432115555, -0.13050292432308197, 0.0587773434817791, 0.057540103793144226, -0.043799467384815216, -0.12405300885438919, -0.002999813063070178, 0.016265062615275383, -0.06884268671274185, -0.0003526858636178076, -0.014163198880851269, 0.035246625542640686, -0.00016445916844531894, -0.04403897374868393, 0.08999321609735489, -0.0383240170776844, -0.019990837201476097, -0.17699892818927765, -0.09091794490814209, -0.05719972774386406, 0.0340438038110733, -0.03959689289331436, -0.13256977498531342, -0.02676442451775074, 0.01981268636882305, -0.10236507654190063, 0.0007384459604509175, -0.0038239520508795977, -0.06582225859165192, 0.00018989267118740827, -0.036054834723472595, 0.07126905769109726, 0.15212534368038177, 0.045198652893304825, 0.0061191231943666935, 0.08742506802082062, -0.17347411811351776, 0.1296285092830658, -0.1068735346198082, 0.17723317444324493, -0.04501909017562866, 0.006991487927734852, 0.047375116497278214, 0.005083620082587004, 0.01364181563258171, 0.1796119213104248, -0.05569016933441162, -0.1108301430940628, 0.12993550300598145, -0.01723168045282364, -0.13610805571079254, 0.04639259725809097, 0.03073730319738388, 0.07181032747030258, 0.022452734410762787, 0.22639626264572144, 0.12141521275043488, -0.26773756742477417, 0.04532156139612198, 0.04016866162419319, -0.14753083884716034, 0.0005572093650698662, 0.15580475330352783, -0.04413871839642525, -0.014471140690147877, 0.004881890490651131, -0.14107702672481537, 0.0823628306388855, -0.01774914376437664, -0.033809367567300797, 0.03270537033677101, -0.04750647023320198, -0.03401191905140877, -0.021411363035440445, 0.008275981992483139, -0.03017180599272251, -0.08237971365451813, -0.08182700723409653, 0.0727631077170372, -0.012016299180686474, 0.06793556362390518, -0.0734494999051094, 0.12075547128915787, 0.022863689810037613, 0.06001812964677811, -0.11527848243713379, -0.1058524027466774, 0.01699133962392807, 0.0002059556427411735, 0.10429531335830688, -0.10485734790563583, 0.05360586196184158, 0.0784817636013031, -0.003070155857130885, -0.07558947801589966, -0.10207333415746689, -0.006733143236488104, -0.08527981489896774, -0.09574279934167862, -0.06485644727945328, -0.07457445561885834, 0.1361924409866333, -0.061473503708839417, 0.06934650242328644, -0.0891808345913887, 0.017152288928627968, -0.017781365662813187, -0.016131598502397537, 0.06626950204372406, 0.000050339622248429805, 0.04409376159310341, -0.05747789144515991, 0.11285238713026047, 0.045235976576805115, -0.1029873713850975, 0.08784209191799164, -0.07657904177904129, -0.05629420652985573, 0.08567684888839722, 0.06071672961115837, 0.0005647119251079857, -0.08527221530675888, -0.1057758629322052, 0.01745334267616272, -0.08646529167890549, -0.005037866532802582, 0.1497482806444168, 0.10604884475469589, 0.12157947570085526, -0.08495310693979263, -0.08414920419454575, -0.01593794673681259, -0.09683525562286377, -0.061918411403894424, 0.16842202842235565, 0.04278935492038727, 0.06269501894712448, 0.022354934364557266, 0.07889308780431747, 0.0862724781036377, 0.07383471727371216, 0.01963033340871334, -0.10300815850496292, -0.024863582104444504, 0.05339883267879486, 0.05789819732308388, 0.009103515185415745, 0.03583596646785736, 0.00681369099766016, 0.02662735991179943, -0.031560108065605164, 0.010793641209602356, -0.13070350885391235, -0.0844586044549942, 0.002142702229321003, -0.03550487756729126, 0.011125431396067142, 0.0021089266519993544, -0.03449083864688873, 0.06659693270921707, 0.10069651901721954, 0.051030054688453674, 0.005520512815564871, -0.0542907752096653, -0.1246219202876091, 0.08055143803358078, -0.09267611056566238, -0.3068980276584625, -0.1175200343132019, -0.13006091117858887, -0.09304443746805191, 0.010489040985703468, 0.06865906715393066, -0.18237008154392242, -0.00804046355187893, -0.11493772268295288, -0.04169168323278427, 0.0711904987692833, -0.051067862659692764, 0.17806459963321686, 0.11468272656202316, 0.03545047715306282, -0.07003263384103775, -0.019296612590551376, 0.003150898963212967, -0.04585535079240799, 0.041735537350177765, 0.024777384474873543, 0.06605333089828491, 0.13598337769508362, 0.06338796019554138, 0.060760851949453354, -0.02764357067644596, 0.14031265676021576, -0.05449638143181801, -0.008892316371202469, 0.13210046291351318, 0.0007970685255713761, 0.07312896847724915, 0.05164853483438492, 0.034618064761161804, -0.03384247422218323, 0.058917321264743805, 0.012925432063639164, -0.07990600913763046, -0.1959272027015686, -0.11271917819976807, -0.015950748696923256, 0.20606113970279694, 0.05360507220029831, 0.09752456098794937, -0.061169710010290146, -0.036336470395326614, 0.005333308596163988, -0.07360680401325226, 0.139460489153862, 0.10896474123001099, -0.04214034602046013, -0.06860043108463287, -0.0031218924559652805, -0.04011689871549606, 0.039961740374565125, 0.09952425211668015, 0.03703348711133003, 0.07376621663570404, 0.019732296466827393, -0.02220296673476696, 0.05076780915260315, -0.04451211169362068, -0.05236167088150978, 0.06095322221517563, 0.024873338639736176, -0.008235479705035686, -0.031165990978479385, -0.08863499760627747, -0.01805064082145691, 0.09213946014642715, 0.13668860495090485, -0.063658207654953, -0.1250848025083542, 0.09226827323436737, 0.09831726551055908, 0.1128268837928772, 0.00304932682774961, -0.08993420749902725, -0.05321463942527771, 0.012535035610198975, -0.1245919018983841, 0.05584863945841789, -0.0018879539566114545, 0.033101387321949005, -0.1889433115720749, 0.06087692081928253, 0.016195913776755333, 0.13852804899215698, 0.0765615701675415, 0.014637744054198265, 0.048383165150880814, 0.07981870323419571, -0.010663637891411781, 0.062084972858428955, -0.18940676748752594, 0.08707946538925171, -0.0028042206540703773, 0.07886099815368652, -0.04816585034132004, -0.0007163952104747295, 0.09432218223810196, 0.0020371517166495323, 0.16510294377803802, 0.03700089454650879, 0.04377287998795509, -0.099875308573246, -0.16880500316619873, -0.02974771149456501, -0.014514689333736897, -0.07283061742782593, 0.07506074756383896, 0.006106282118707895, -0.04480644315481186, -0.0993075966835022, 0.1711634397506714, -0.0016301990253850818, -0.05850735306739807, -0.010740791447460651, -0.06784040480852127, 0.0020527581218630075, -0.06260845810174942, -0.022833047434687614, -0.07834181934595108, 0.17692293226718903, 0.11503727734088898, -0.023840051144361496, -0.089020274579525, -0.05949980393052101, -0.05698395520448685, -0.034947194159030914, -0.02816520258784294, -0.01786898449063301, 0.14763273298740387, -0.08142483234405518, -0.04595189914107323, -0.0205119326710701, -0.10699815303087234, -0.1252298653125763, 0.0022530104033648968, 0.2414274364709854, -0.01984262652695179, 0.10737354308366776, -0.013864509761333466, -0.005046056117862463, -0.013767370022833347, -0.10022737085819244, 0.16146917641162872, 0.16763299703598022, 0.026280542835593224, 0.04315878823399544, -0.1359802782535553, 0.06673187017440796, -0.12036362290382385, -0.023998349905014038, 0.21586643159389496, 0.3223850131034851, -0.042623765766620636, 0.19716526567935944, 0.06720412522554398, -0.04401715099811554, -0.21790212392807007, -0.07820022851228714, 0.04583124816417694, -0.003494103206321597, 0.14094218611717224, -0.12440435588359833, 0.018154984340071678, 0.045724932104349136, -0.003553631715476513, -0.027174415066838264, -0.1542164534330368, -0.09710106998682022, -0.030023755505681038, 0.06577249616384506, -0.008612087927758694, -0.09233475476503372, -0.05219503492116928, -0.030388787388801575, -0.08348389714956284, 0.06027969345450401, -0.172352135181427, 0.08877497911453247, 0.011087859980762005, 0.034544967114925385, 0.03128846734762192, -0.028154077008366585, 0.14816033840179443, -0.06584005057811737, -0.04539726302027702, -0.06778904795646667, -0.014828642830252647, -0.02231486514210701, -0.1209711953997612, 0.052340298891067505, -0.04405481368303299, -0.035869598388671875, -0.19295741617679596, -0.03767538443207741, -0.05302447825670242, 0.04145600274205208, -0.008823161944746971, -0.01940886117517948, 0.001028375350870192, 0.07377924770116806, 0.09606572240591049, 0.02646002173423767, 0.02927238866686821, -0.055773597210645676, 0.0014035735512152314, 0.13158728182315826, 0.09964065253734589, -0.01239472534507513, -0.09282976388931274, -0.04239301756024361, -0.04375283792614937, -0.02441301941871643, -0.08390655368566513, 0.007601983845233917, 0.03650711849331856, 0.00754554895684123, 0.063274085521698, 0.05485886335372925, -0.07491951435804367, 0.012158078141510487, 0.06963033974170685, -0.09180917590856552, -0.13614045083522797, -0.06510244309902191, -0.055238887667655945, -0.04626154154539108, -0.06375302374362946, 0.03239894285798073, -0.011808606795966625, -0.006154395639896393, 0.04118955880403519, 0.04002642259001732, -0.07520107179880142, 0.05500033497810364, -0.001992254750803113, 0.03347129002213478, -0.07143846899271011, 0.15382647514343262, 0.003908013924956322, -0.06594669818878174, 0.013750618323683739, 0.20612038671970367, -0.07457625865936279, -0.08000610768795013, -0.041236698627471924, 0.05243615806102753, 0.1548069566488266, -0.027826890349388123, -0.04435823857784271, -0.0844159722328186, 0.09419403225183487, -0.06076706945896149, -0.005094612017273903, -0.09861518442630768, 0.023994147777557373, 0.08543334901332855, -0.11402706056833267, 0.10200103372335434, 0.00000744726230550441, -0.07909759879112244, -0.12216930091381073, 0.08376894146203995, 0.040634799748659134, 0.22102031111717224, -0.027644718065857887, -0.048439353704452515, -0.136679008603096, 0.0008167282794602215, -0.05078043416142464, -0.015406731516122818, -0.17080120742321014, -0.009103731252253056, -0.03969542682170868, 0.05457523465156555, -0.024441951885819435, 0.043432675302028656, -0.054660990834236145, -0.0686195120215416, -0.06748323887586594, 0.07936808466911316, -0.01840226911008358, -0.036308832466602325, 0.01418496947735548, -0.06655319035053253, 0.10886328667402267, 0.06456737220287323, -0.04165545105934143, -0.055645912885665894, -0.023197848349809647, -0.04050274193286896, 0.01645718701183796, -0.0333382710814476, 0.041399065405130386, -0.1767231971025467, 0.019403532147407532, -0.05139731988310814, -0.12231919169425964, 0.02327423170208931, 0.12731218338012695, -0.06910096853971481, 0.07404964417219162, 0.015674402937293053, -0.09748347848653793, -0.08987743407487869, 0.0018607850652188063, 0.006779470946639776, 0.07128183543682098, 0.06432259827852249, -0.08055473864078522, 0.1778683364391327, -0.14322741329669952, -0.015231689438223839, 0.012998909689486027, 0.017627909779548645, -0.012745020911097527, -0.0784430056810379, 0.04158628731966019, -0.005550805479288101, 0.15170207619667053, 0.07714543491601944, -0.023096196353435516, 0.04246341437101364, 0.036365628242492676, 0.11789495497941971, -0.0022880746982991695, 0.027455341070890427, -0.022277437150478363, 0.017541944980621338, 0.0723985880613327, 0.006362482905387878, 0.05618679150938988, -0.12787096202373505, 0.10277751833200455, 0.07464507967233658, 0.1609892100095749, 0.05088884383440018, 0.09050823748111725, -0.08113976567983627, -0.15732529759407043, -0.037196651101112366, 0.009430968202650547, 0.03578786179423332, -0.08583622425794601, 0.1885421872138977, 0.09639552980661392, -0.21225568652153015, 0.07061074674129486, 0.005135508254170418, 0.019623292610049248, -0.09382080286741257, -0.10048382729291916, -0.0028320772107690573, -0.21363458037376404, 0.06629684567451477, -0.06234361231327057, -0.011747851967811584, -0.05672143027186394, -0.02561810053884983, -0.010930875316262245, 0.06937010586261749, -0.16149374842643738, -0.046136096119880676, 0.0820782333612442, -0.04343089833855629, 0.009504172019660473, -0.006261076778173447, 0.007546379696577787, -0.017450036481022835, -0.08157823234796524, 0.04829144850373268, 0.07084838300943375, -0.008033808320760727, 0.04468555748462677, -0.06675834953784943, -0.061371929943561554, 0.028813382610678673, -0.0032999771647155285, 0.0163839440792799, 0.14240944385528564, 0.04336719214916229, -0.11440172791481018, -0.001363576389849186, 0.2086486965417862, -0.05414407700300217, -0.007338494062423706, -0.10701462626457214, 0.13545209169387817, -0.028276383876800537, -0.050869349390268326, -0.04238792136311531, -0.09533171355724335, -0.09630384296178818, 0.2440575212240219, 0.1261111944913864, -0.08815692365169525, 0.022531207650899887, -0.026676461100578308, 0.024012144654989243, 0.0019336306722834706, 0.12812018394470215, 0.08854655176401138, 0.13936026394367218, -0.07283946126699448, -0.0350201241672039, -0.018905235454440117, -0.06816969066858292, -0.1609814465045929, 0.00925129558891058, 0.03367637097835541, -0.03429928794503212, -0.023892667144536972, 0.06809038668870926, -0.12987196445465088, -0.07450438290834427, 0.04674183577299118, -0.08630755543708801, -0.07698588818311691, -0.019162600859999657, -0.009384303353726864, 0.028650563210248947, 0.12200763821601868, 0.0596647672355175, 0.053221769630908966, 0.10606662929058075, -0.04145091399550438, -0.043514184653759, 0.04127107933163643, 0.10264057666063309, -0.039137981832027435, 0.18829947710037231, -0.039364658296108246, 0.03148863837122917, 0.05447773635387421, 0.014004538767039776, -0.14402829110622406, 0.09347445517778397, 0.03850451111793518, -0.19344674050807953, 0.005715444218367338, 0.07111560553312302, -0.061109304428100586, -0.04552767798304558, 0.06637077033519745, -0.04046864062547684, 0.014919053763151169, 0.09551486372947693, -0.011498055420815945, -0.045806579291820526, 0.09971319884061813, -0.14626345038414001, 0.09809742867946625, 0.13824163377285004, -0.06299673020839691, 0.0013720870483666658, -0.045159533619880676, 0.03885733336210251, 0.03197558969259262, 0.0726342424750328, -0.014106565155088902, -0.15907475352287292, 0.022741790860891342, -0.01795724406838417, 0.017222363501787186, -0.3009350895881653, -0.1391124427318573, -0.03531875088810921, -0.03826070949435234, -0.034961771219968796, 0.12868891656398773, 0.10775770246982574, -0.016214774921536446, -0.011431632563471794, -0.17305046319961548, 0.037896282970905304, 0.1665743887424469, -0.09644752740859985, -0.013989456929266453 ]
null
null
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Fhermin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Fhermin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Fhermin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.02), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.001), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 8), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "352.00 +/- 194.87", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
Fhermin/SpaceInvadersNoFrameskip-v4
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T06:28:34+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 43, 90, 73, 9, 5, 7 ]
[ "passage: TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
[ 0.043572068214416504, 0.2414778620004654, -0.0026879787910729647, 0.012635791674256325, 0.05784223601222038, 0.0030472534708678722, 0.08585051447153091, 0.10650663822889328, 0.024212315678596497, -0.001382096204906702, 0.003954293206334114, 0.17533031105995178, 0.03632635250687599, 0.13125447928905487, -0.018073517829179764, -0.2066594809293747, -0.013479253277182579, -0.06247470900416374, -0.07153085619211197, 0.036099132150411606, 0.07206681370735168, -0.030116932466626167, 0.036061208695173264, -0.051406677812337875, -0.057161085307598114, 0.036824777722358704, -0.03157254680991173, 0.007067287806421518, 0.15158706903457642, -0.1222257912158966, 0.12329676002264023, 0.020955175161361694, 0.1896144151687622, -0.12332789599895477, 0.0339222252368927, 0.08982209116220474, -0.036988191306591034, 0.013221588917076588, 0.00975361280143261, -0.052562564611434937, 0.1590864509344101, -0.09371145814657211, 0.07146181166172028, 0.010926910676062107, -0.07592244446277618, -0.1774153709411621, -0.09356249868869781, 0.07947742193937302, 0.0617753230035305, 0.005319166928529739, 0.03726791962981224, 0.11306490749120712, -0.020991774275898933, 0.06488905102014542, 0.11562903225421906, -0.17549200356006622, 0.013578375801444054, 0.17859570682048798, 0.003242473118007183, 0.15767055749893188, -0.05546637624502182, 0.019877681508660316, 0.02752300351858139, 0.04758313298225403, 0.06873945891857147, -0.08186400681734085, -0.1364826112985611, -0.056155186146497726, -0.15456219017505646, -0.03352400287985802, 0.05195203423500061, -0.011860138736665249, -0.05783402919769287, -0.010724928230047226, -0.04010869935154915, 0.0008851495804265141, -0.028637725859880447, 0.01805497519671917, 0.07031578570604324, -0.01226285845041275, 0.02092539705336094, -0.08391954004764557, -0.0390290804207325, -0.038563769310712814, -0.018022390082478523, 0.12054917961359024, 0.08285853266716003, 0.0266572255641222, -0.04135355353355408, 0.10274127870798111, -0.07091585546731949, -0.05454207584261894, 0.04555258899927139, -0.03786851093173027, -0.10615779459476471, 0.02120024710893631, -0.05905991420149803, 0.026879185810685158, 0.09943640232086182, 0.18048083782196045, -0.09862488508224487, 0.012620617635548115, -0.03430783003568649, 0.08121664822101593, -0.03196052461862564, 0.03197542577981949, -0.0840383991599083, -0.016251085326075554, 0.17835216224193573, 0.0030782297253608704, 0.022272996604442596, 0.002074616262689233, -0.049819961190223694, -0.02881433069705963, -0.017756454646587372, 0.06631895154714584, 0.07032092660665512, 0.010587303899228573, -0.0037596761249005795, -0.027667716145515442, -0.036921944469213486, -0.05629328638315201, -0.04952820762991905, 0.018803736194968224, -0.04712437093257904, -0.047942135483026505, 0.06027210131287575, -0.005624116864055395, 0.11337806284427643, -0.025607796385884285, 0.026316547766327858, -0.019410157576203346, -0.07494441419839859, -0.13221681118011475, -0.0304415225982666, 0.0691632330417633, 0.04371757060289383, -0.22497159242630005, -0.16994807124137878, -0.008539012633264065, 0.017946386709809303, -0.018741264939308167, -0.11334165185689926, 0.02453240379691124, -0.007166135590523481, -0.049758363515138626, -0.01601579785346985, 0.10474669933319092, -0.020438622683286667, 0.018010856583714485, -0.05593825876712799, 0.16603368520736694, -0.14290283620357513, 0.031004127115011215, -0.08706212788820267, 0.023509707301855087, -0.21286657452583313, 0.041208744049072266, -0.177636057138443, 0.04863585904240608, -0.08500861376523972, 0.02327173389494419, 0.021320728585124016, 0.01968831568956375, 0.08580207824707031, 0.10143322497606277, -0.23631145060062408, 0.05405791476368904, 0.07900930196046829, -0.022739801555871964, -0.04218491166830063, 0.06798892468214035, -0.06558530032634735, 0.1382148116827011, 0.046505436301231384, 0.24831900000572205, 0.10361487418413162, -0.2036508023738861, 0.061786454170942307, 0.0578593946993351, -0.08880111575126648, -0.004730981774628162, -0.020022382959723473, 0.11598580330610275, -0.01114928349852562, 0.03338807821273804, -0.12186288088560104, 0.1456439197063446, 0.02738998830318451, -0.0165485180914402, -0.04454165697097778, -0.1614885926246643, 0.10309953987598419, -0.015504824928939342, 0.09532155096530914, -0.042415786534547806, 0.0001161050095106475, -0.011168917641043663, 0.18012429773807526, -0.043841805309057236, 0.0007168867159634829, 0.07871408760547638, 0.10895700752735138, 0.028009075671434402, -0.020230965688824654, -0.20380273461341858, -0.0423048660159111, 0.02367858961224556, 0.044489551335573196, 0.2190362960100174, 0.19936694204807281, 0.07770156860351562, -0.022313760593533516, -0.025487221777439117, -0.003248062450438738, -0.05106664076447487, 0.03467361256480217, -0.027858436107635498, -0.024532482028007507, 0.06065356358885765, -0.09305168688297272, 0.02817818708717823, -0.13112716376781464, 0.06307920068502426, -0.17345242202281952, 0.06863926351070404, 0.021998396143317223, -0.005436043255031109, 0.024577690288424492, -0.011292695067822933, -0.034188106656074524, -0.06233125180006027, 0.07110602408647537, 0.06098933145403862, 0.014702376909554005, 0.0021991983521729708, -0.0683600977063179, -0.13828523457050323, 0.08231553435325623, -0.04042381793260574, -0.14305958151817322, 0.06392676383256912, 0.011172642931342125, 0.04875864461064339, -0.05975872278213501, 0.016254881396889687, 0.22900153696537018, 0.05321883037686348, 0.09785865992307663, -0.04092191904783249, -0.022525805979967117, -0.06617844104766846, -0.06677833944559097, 0.09694591909646988, 0.10812206566333771, 0.060318704694509506, -0.0030071530491113663, 0.07626225054264069, 0.10942911356687546, -0.1035122498869896, -0.0651884600520134, 0.03220061957836151, -0.05973697826266289, 0.019652515649795532, 0.049140311777591705, 0.02971293032169342, 0.08619047701358795, 0.1833551675081253, 0.008245792239904404, 0.0386311337351799, -0.025997694581747055, 0.026109617203474045, -0.15547916293144226, -0.03145433962345123, 0.04308181628584862, 0.00886955764144659, -0.07408110797405243, 0.04994636029005051, 0.051439400762319565, 0.13607151806354523, -0.08217083662748337, -0.13170577585697174, -0.059745315462350845, -0.03804200142621994, -0.04239124804735184, 0.14975430071353912, -0.08507520705461502, -0.19221234321594238, -0.017164425924420357, -0.15751953423023224, -0.02518727444112301, -0.005179801490157843, 0.002318724524229765, -0.08325926214456558, 0.017780914902687073, 0.010001576505601406, -0.03129372000694275, -0.0684933215379715, -0.06596160680055618, -0.05786636844277382, 0.09124112874269485, 0.06932931393384933, -0.12240120023488998, -0.00961651187390089, -0.03742414712905884, -0.020465577021241188, 0.04516167193651199, 0.08452648669481277, -0.007267598994076252, 0.07773483544588089, -0.13209199905395508, -0.06962883472442627, 0.02834828943014145, 0.2766247093677521, 0.02882981114089489, 0.004668009467422962, 0.17051753401756287, -0.03629542142152786, 0.04912714660167694, 0.16181479394435883, 0.030781643465161324, -0.14196757972240448, 0.07090470939874649, -0.011341600678861141, -0.09542687982320786, -0.1706860214471817, -0.10215658694505692, -0.037867411971092224, -0.05015881359577179, 0.05638284236192703, 0.004951419774442911, -0.04476970434188843, 0.05910305306315422, 0.08782228082418442, -0.017004497349262238, -0.06151578947901726, 0.11129767447710037, 0.032263003289699554, -0.030136963352560997, 0.08078382909297943, -0.042354047298431396, -0.04206389561295509, 0.0032403599470853806, 0.22643887996673584, 0.0937788337469101, -0.01775507442653179, -0.042567066848278046, 0.019317636266350746, 0.05095715448260307, 0.03613382205367088, 0.11312435567378998, -0.06975842267274857, -0.06826137751340866, -0.035185977816581726, 0.027829548344016075, -0.02945687249302864, 0.08205190300941467, 0.0630207508802414, 0.005563626065850258, -0.04653681069612503, -0.07972332090139389, -0.04849022626876831, 0.08408913016319275, -0.027642227709293365, -0.10093270242214203, 0.09321888536214828, 0.048575710505247116, 0.0016974330646917224, 0.03055831417441368, 0.027994604781270027, 0.01462269201874733, -0.07982148975133896, -0.06775744259357452, 0.011468625627458096, 0.07076629996299744, -0.06822766363620758, -0.027886953204870224, -0.19817815721035004, 0.14578363299369812, 0.010630400851368904, 0.04118429124355316, -0.13048617541790009, 0.1209396943449974, -0.023116756230592728, -0.026430301368236542, 0.013811616227030754, 0.0014643745962530375, 0.08203291147947311, -0.04806509613990784, 0.15762180089950562, 0.009528410620987415, -0.28092408180236816, -0.1418946087360382, -0.08416824042797089, -0.051183976233005524, -0.022873088717460632, 0.014752174727618694, 0.0642135739326477, 0.01516205258667469, 0.003868846921250224, -0.013076163828372955, 0.03185269236564636, -0.09826882928609848, -0.06493937969207764, -0.04839126765727997, -0.02250157669186592, -0.06525848805904388, -0.05647949501872063, -0.0006809153710491955, -0.17226077616214752, 0.12522587180137634, 0.11787347495555878, -0.06451737880706787, -0.041814323514699936, -0.06554657220840454, 0.046191465109586716, -0.07571537792682648, 0.0469326451420784, 0.003414976177737117, 0.019198855385184288, -0.06806991249322891, -0.17922484874725342, 0.016097763553261757, -0.10899919271469116, 0.03772687539458275, -0.05070559307932854, 0.020257100462913513, 0.08594245463609695, 0.17520126700401306, 0.05856714025139809, 0.01460097823292017, -0.07239776104688644, -0.07543374598026276, -0.0017121878918260336, -0.06344114243984222, 0.05762333422899246, -0.009151889942586422, -0.20333483815193176, 0.02763226442039013, -0.11414948850870132, 0.06860900670289993, 0.3310066759586334, 0.3324824273586273, -0.10698744654655457, 0.1177443116903305, 0.04819539934396744, -0.042202454060316086, -0.21051374077796936, -0.002244179602712393, 0.012272895313799381, 0.024992236867547035, 0.13725964725017548, -0.12924811244010925, 0.05453680083155632, 0.0794181227684021, -0.024458877742290497, 0.01456840243190527, -0.09078162908554077, -0.10816970467567444, 0.20847418904304504, 0.14226987957954407, 0.04421741142868996, -0.09421348571777344, 0.08391669392585754, 0.004295284394174814, 0.08375877887010574, 0.2107764035463333, -0.052112679928541183, 0.10695768147706985, 0.005195184610784054, 0.19852910935878754, 0.0328996516764164, -0.023768596351146698, 0.10834760218858719, -0.009801650419831276, 0.07911337912082672, 0.03985166177153587, -0.007676942739635706, 0.010487722232937813, -0.04522453248500824, 0.014148596674203873, -0.028376007452607155, 0.010284217074513435, -0.2274095118045807, 0.0582297146320343, -0.06368855386972427, 0.04604509472846985, 0.008256820961833, -0.0999874547123909, -0.03583388403058052, 0.06431841105222702, 0.08014573156833649, 0.01975327916443348, 0.0436067171394825, -0.03867863491177559, 0.11051398515701294, 0.20660489797592163, -0.009811338968575, 0.17751595377922058, -0.0615963339805603, 0.01464168168604374, -0.023011628538370132, -0.04223164543509483, -0.1462583988904953, -0.035259708762168884, 0.03498423472046852, 0.057734888046979904, 0.015203364193439484, 0.049647457897663116, -0.05656236410140991, 0.08498423546552658, 0.021687336266040802, -0.041541360318660736, 0.033579520881175995, 0.08835696429014206, 0.12415177375078201, 0.010754258371889591, -0.030121933668851852, 0.06147436052560806, -0.08128108084201813, -0.09446098655462265, -0.004497923422604799, -0.029991207644343376, -0.1083834245800972, 0.11353230476379395, 0.16914646327495575, 0.039594944566488266, -0.057076629251241684, 0.10688766092061996, -0.02768099494278431, 0.10047874599695206, 0.009198128245770931, 0.06507332623004913, -0.014091075398027897, -0.03691792115569115, 0.10611724853515625, -0.05442855879664421, -0.01637818105518818, 0.07645545154809952, -0.06522727757692337, -0.023877469822764397, -0.0801999643445015, 0.06034626066684723, 0.09222240000963211, -0.16854619979858398, -0.0639432892203331, -0.032122284173965454, -0.08628080040216446, 0.013965039514005184, 0.012447911314666271, 0.0710059329867363, -0.08589600026607513, 0.06316167116165161, -0.024337708950042725, 0.015639442950487137, -0.03689891844987869, 0.019222697243094444, -0.19525384902954102, -0.002140450058504939, -0.11280795186758041, -0.00348020251840353, -0.002931603929027915, 0.04463808611035347, -0.04961875081062317, -0.029358822852373123, -0.0030675032176077366, 0.044366419315338135, -0.16609135270118713, 0.002798673929646611, -0.011639905162155628, 0.03210212290287018, -0.0002893915225286037, -0.0983390137553215, 0.014195028692483902, -0.04294256120920181, -0.04198618605732918, 0.04925514757633209, 0.009436776861548424, 0.06470516324043274, -0.2795179784297943, -0.14905457198619843, 0.030816160142421722, 0.0683867484331131, 0.05483196675777435, -0.1830425262451172, 0.03568267077207565, -0.08042316138744354, -0.02253127470612526, -0.037770628929138184, 0.018491698428988457, -0.0539514496922493, 0.0018174031283706427, -0.04225044324994087, -0.023033907637000084, -0.028055014088749886, -0.07556360960006714, 0.0826747715473175, 0.12462522834539413, 0.07555580884218216, -0.03807181864976883, 0.09595896303653717, -0.10009756684303284, -0.04657831788063049, -0.04052736237645149, -0.036951083689928055, 0.017965637147426605, -0.0870552659034729, 0.048530060797929764, 0.05188591405749321, 0.18719671666622162, -0.08520494401454926, -0.058800119906663895, -0.014255574904382229, 0.0746525228023529, 0.07849094271659851, 0.005095830652862787, 0.17779210209846497, -0.045693784952163696, 0.05693846940994263, 0.021304311230778694, 0.046699028462171555, 0.10497613251209259, -0.023569339886307716, 0.14490213990211487, 0.21171095967292786, -0.037196725606918335, -0.11048602312803268, 0.043668005615472794, 0.01745123788714409, -0.002401199424639344, 0.05968761444091797, 0.11983796209096909, -0.050589341670274734, -0.10903856158256531, 0.23442286252975464, 0.054169271141290665, -0.11218088120222092, 0.09546315670013428, 0.039532262831926346, -0.015890996903181076, -0.1301896870136261, 0.010444961488246918, -0.0013640925753861666, -0.11233190447092056, 0.03386834263801575, -0.06087532266974449, -0.025547027587890625, 0.11809267848730087, 0.008789865300059319, 0.03317064419388771, -0.04139537364244461, -0.03756232187151909, -0.04352104663848877, -0.04273213446140289, -0.012549578212201595, -0.02991986647248268, -0.030186517164111137, -0.07621737569570541, -0.007770835887640715, -0.012012424878776073, 0.030795488506555557, -0.015285328030586243, -0.02503054589033127, -0.021192016080021858, -0.06697061657905579, -0.0026312144473195076, -0.008178025484085083, 0.015549594536423683, 0.010121971368789673, 0.2358063906431198, 0.07042546570301056, -0.10260069370269775, -0.01036880537867546, 0.22197756171226501, -0.03853277862071991, -0.06528383493423462, -0.07849395275115967, 0.25128230452537537, -0.10482002794742584, 0.051095426082611084, -0.005819917656481266, -0.06550488620996475, -0.07153836637735367, 0.2309868484735489, 0.13502730429172516, -0.1677926480770111, 0.06329060345888138, -0.0368385910987854, -0.009490780532360077, -0.14286863803863525, 0.16013580560684204, 0.1865294873714447, 0.09480160474777222, -0.12259847670793533, 0.0023130534682422876, -0.03518044203519821, -0.018328361213207245, -0.1660851687192917, -0.004593863617628813, -0.029364850372076035, -0.0427238829433918, -0.050771355628967285, 0.029773715883493423, -0.15205919742584229, -0.0927426889538765, -0.1916799396276474, -0.11482496559619904, -0.12386849522590637, -0.04549141973257065, -0.11142764985561371, -0.0019938007462769747, 0.02257080189883709, -0.0641874223947525, 0.021061956882476807, -0.0212461706250906, -0.05887424945831299, 0.015386379323899746, -0.08395619690418243, 0.0674985870718956, 0.06488548219203949, 0.15327942371368408, -0.0790991559624672, 0.025424562394618988, 0.07090727984905243, -0.057595450431108475, -0.10164349526166916, 0.06067253649234772, 0.015708057209849358, -0.1972588747739792, 0.007548294495791197, 0.17712996900081635, -0.10420889407396317, 0.09745754301548004, 0.048501528799533844, -0.012951982207596302, 0.0867827981710434, -0.024721821770071983, -0.016682926565408707, -0.04852180927991867, -0.011212974786758423, -0.10143939405679703, 0.09892100840806961, 0.0876845121383667, -0.0517118014395237, 0.07436849176883698, -0.09508965909481049, -0.04068392515182495, 0.13103286921977997, -0.010057874955236912, -0.08450483530759811, -0.11667824536561966, -0.04081142693758011, 0.09684515744447708, -0.018041390925645828, -0.20185889303684235, -0.11639472097158432, -0.11752668023109436, -0.00014377340266946703, -0.03563340753316879, 0.061800602823495865, 0.02430674433708191, -0.02556120604276657, -0.008150683715939522, -0.17615078389644623, -0.06614746153354645, 0.13479791581630707, -0.10176112502813339, -0.07456064969301224 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml adapter: qlora base_model: mistralai/Mistral-7B-v0.1 bf16: false dataset_prepared_path: null datasets: - path: joseagmz/MedQnA_version3 type: context_qa.load_v2 debug: null deepspeed: null early_stopping_patience: null evals_per_epoch: null flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: false is_llama_derived_model: true learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine max_steps: 20 micro_batch_size: 1 mlflow_experiment_name: colab-example model_type: MistralForCausalLM num_epochs: 4 optimizer: paged_adamw_32bit output_dir: ./med_Mistral pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: null sequence_len: 1096 special_tokens: null strict: false tf32: false tokenizer_type: LlamaTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # med_Mistral This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9831 | 0.0 | 20 | 1.3152 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "med_Mistral", "results": []}]}
null
joseagmz/med_Mistral
[ "peft", "safetensors", "mistral", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "4-bit", "region:us" ]
2024-02-14T06:28:38+00:00
[]
[]
TAGS #peft #safetensors #mistral #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #4-bit #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> See axolotl config axolotl version: '0.4.0' med\_Mistral ============ This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.3152 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 10 * training\_steps: 20 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * PEFT 0.8.2 * Transformers 4.38.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.17.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* training\\_steps: 20\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#peft #safetensors #mistral #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #4-bit #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* training\\_steps: 20\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.0" ]
[ 51, 130, 4, 44 ]
[ "passage: TAGS\n#peft #safetensors #mistral #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #4-bit #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* training\\_steps: 20\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.0" ]
[ -0.14339207112789154, 0.09749188274145126, -0.002712343353778124, 0.09908951073884964, 0.10643689334392548, -0.0010761988814920187, 0.13607297837734222, 0.12393800169229507, -0.08471038937568665, 0.09984428435564041, 0.13751348853111267, 0.09683908522129059, 0.05226800590753555, 0.22218021750450134, -0.045383114367723465, -0.23300085961818695, 0.048839014023542404, -0.016485370695590973, -0.024022718891501427, 0.12294382601976395, 0.08429724723100662, -0.13502882421016693, 0.07050681114196777, -0.01655612513422966, -0.14913725852966309, -0.04647308215498924, -0.013067499734461308, -0.03625136613845825, 0.11674799770116806, -0.007075088564306498, 0.11433775722980499, 0.04389636218547821, 0.09690268337726593, -0.2009267807006836, 0.01671936921775341, 0.057510726153850555, 0.01864583231508732, 0.09524302929639816, 0.06280418485403061, -0.014339195564389229, 0.06334998458623886, -0.10760712623596191, 0.07928735017776489, 0.01816590130329132, -0.1434229463338852, -0.2544080317020416, -0.1449865847826004, 0.05784511938691139, 0.10007050633430481, 0.0719594731926918, -0.0037851198576390743, 0.17147433757781982, -0.04357225075364113, 0.0895649790763855, 0.2952117621898651, -0.28179094195365906, -0.07851884514093399, 0.024558749049901962, 0.050996337085962296, 0.11551543325185776, -0.10244370996952057, -0.04074399545788765, 0.05013702064752579, 0.04271519184112549, 0.1231919676065445, -0.0012134979479014874, -0.03127208352088928, -0.014149118214845657, -0.15262243151664734, -0.06058155372738838, 0.10554227232933044, 0.031618453562259674, -0.05380701273679733, -0.04262582212686539, -0.06264109164476395, -0.20607730746269226, -0.0626840814948082, -0.0042574480175971985, 0.04130929335951805, -0.03937140479683876, -0.040904849767684937, 0.008897071704268456, -0.08596434444189072, -0.07844483852386475, -0.008093129843473434, 0.12804804742336273, 0.052709195762872696, 0.011486612260341644, -0.02235727570950985, 0.10877539217472076, -0.025593791157007217, -0.16692084074020386, -0.021190941333770752, 0.002470490289852023, -0.02230134978890419, -0.0492548793554306, -0.02783416211605072, -0.010080216452479362, 0.04130737856030464, 0.17594926059246063, -0.17558445036411285, 0.07731813937425613, 0.007802024018019438, 0.03430904075503349, -0.09372961521148682, 0.12107067555189133, -0.06340810656547546, 0.014140516519546509, 0.018585368990898132, 0.09703651815652847, 0.04460740461945534, -0.023698437958955765, -0.07026975601911545, 0.04558297246694565, 0.10188015550374985, 0.04681602492928505, -0.034708261489868164, 0.012244454585015774, -0.056935399770736694, 0.005279265809804201, 0.10235392302274704, -0.09948226809501648, 0.03251510486006737, 0.0251797866076231, -0.06140213832259178, -0.07183795422315598, 0.009455381892621517, 0.025006795302033424, 0.0022572213783860207, 0.08369172364473343, -0.08659864962100983, 0.027368757873773575, -0.07529841363430023, -0.12946850061416626, 0.039197150617837906, -0.09228880703449249, -0.006356931757181883, -0.08604250103235245, -0.14220015704631805, -0.048672303557395935, 0.04187813028693199, -0.05083368718624115, -0.028819767758250237, -0.05383742228150368, -0.09493079781532288, 0.02685963362455368, -0.016074584797024727, 0.10621000826358795, -0.08629123121500015, 0.10211361944675446, -0.026066510006785393, 0.06544192880392075, -0.03797177970409393, 0.026760132983326912, -0.08135078847408295, 0.05509379878640175, -0.22385890781879425, 0.041542209684848785, -0.08540307730436325, 0.0849178209900856, -0.12556247413158417, -0.09755414724349976, 0.034033019095659256, -0.05012740194797516, 0.12576864659786224, 0.13434645533561707, -0.20326706767082214, -0.027042776346206665, 0.2003406286239624, -0.10731173306703568, -0.12049929797649384, 0.11737945675849915, -0.045060768723487854, 0.0072940681129693985, 0.048523809760808945, 0.22151370346546173, 0.06782721728086472, -0.1365097463130951, 0.012183722108602524, -0.06002948805689812, 0.0890546441078186, -0.01864613965153694, 0.07961229234933853, -0.011485245078802109, 0.04032894968986511, 0.005553641356527805, -0.05718892067670822, 0.0401025265455246, -0.11296927183866501, -0.08406618237495422, -0.0416388213634491, -0.08439343422651291, 0.02030722238123417, 0.041762277483940125, 0.03361112251877785, -0.12060301750898361, -0.07781723141670227, 0.03346233069896698, 0.10609374195337296, -0.06045925244688988, 0.045381560921669006, -0.06275498121976852, 0.12176000326871872, -0.021056896075606346, -0.02727375738322735, -0.18029309809207916, -0.04513135179877281, 0.035483960062265396, -0.010595892556011677, -0.01531616784632206, -0.07264605909585953, 0.07840082794427872, 0.1057184487581253, -0.041456833481788635, -0.037849657237529755, -0.03725532069802284, 0.013309670612215996, -0.1162707507610321, -0.25710049271583557, -0.03475350886583328, -0.05809365212917328, 0.13944676518440247, -0.17799463868141174, 0.03833934664726257, 0.04346911981701851, 0.11121391505002975, 0.03199712187051773, -0.04617875814437866, 0.0034280195832252502, 0.08342194557189941, -0.013440658338367939, -0.08488871157169342, 0.048985209316015244, 0.018658332526683807, -0.07448864728212357, 0.007874655537307262, -0.15003915131092072, 0.11299615353345871, 0.11477571725845337, 0.0811493769288063, -0.09343580901622772, -0.06511811167001724, -0.06392987072467804, -0.0312288086861372, -0.03291326016187668, 0.06041223928332329, 0.12450458109378815, 0.027589362114667892, 0.11458109319210052, -0.09947163611650467, -0.04522152990102768, 0.047509826719760895, -0.021115433424711227, 0.023145565763115883, 0.13290388882160187, 0.024636533111333847, -0.10138428956270218, 0.13573208451271057, 0.13718321919441223, -0.04929390177130699, 0.10231465846300125, -0.07677826285362244, -0.07166989147663116, -0.030808359384536743, 0.04129670560359955, 0.01967410184442997, 0.15203234553337097, -0.036056339740753174, 0.023556536063551903, 0.022980334237217903, 0.031733863055706024, -0.0088678989559412, -0.21155805885791779, -0.03208715096116066, 0.015485190786421299, -0.061101946979761124, -0.06691066920757294, -0.021226095035672188, 0.006446445360779762, 0.10099588334560394, 0.004342465661466122, -0.07605672627687454, -0.007077895570546389, 0.013122030533850193, -0.0823613852262497, 0.2128092497587204, -0.13672055304050446, -0.08063049614429474, -0.07066965103149414, -0.03074384108185768, -0.009222593158483505, -0.012769862078130245, 0.08082344383001328, -0.08527852594852448, -0.019435802474617958, -0.10879338532686234, -0.07167820632457733, 0.04563207924365997, 0.013471432030200958, 0.005631611682474613, -0.02195361815392971, 0.057434163987636566, -0.10274171829223633, -0.009935787878930569, -0.03832687437534332, 0.00833191815763712, 0.07086314260959625, 0.023490803316235542, 0.1090736836194992, 0.14844590425491333, -0.0003412218939047307, 0.018732454627752304, -0.04215259850025177, 0.24882598221302032, -0.0744718685746193, -0.00871301256120205, 0.09733297675848007, 0.0010120637016370893, 0.08572878688573837, 0.15729601681232452, 0.05208095908164978, -0.1000223383307457, 0.0002630585222505033, -0.003589312080293894, -0.04337781295180321, -0.23048141598701477, -0.03723489120602608, -0.036275848746299744, -0.02622712403535843, 0.09129194170236588, 0.035574913024902344, -0.008528969250619411, 0.04158797860145569, -0.005806955974549055, -0.031777720898389816, 0.015270451083779335, 0.08314177393913269, 0.02056942693889141, 0.0389368012547493, 0.11130309104919434, -0.037802860140800476, 0.011665231548249722, 0.04831387475132942, 0.009273293428122997, 0.2508815824985504, -0.014385441318154335, 0.12787701189517975, 0.0691453218460083, 0.1919679194688797, 0.006591742392629385, 0.07012670487165451, 0.008882093243300915, -0.022998306900262833, -0.0072906906716525555, -0.0690748542547226, -0.027732182294130325, 0.034135375171899796, -0.06883562356233597, 0.035248249769210815, -0.10489542037248611, 0.028858833014965057, 0.053703323006629944, 0.3326539099216461, 0.04970258101820946, -0.3521340489387512, -0.10971421748399734, 0.003932766616344452, -0.0003258800134062767, -0.03847203403711319, 0.0003365691227372736, 0.14810070395469666, -0.055842164903879166, 0.06194410100579262, -0.058066949248313904, 0.091618113219738, 0.009296846576035023, 0.008942688815295696, 0.038338951766490936, 0.09028621017932892, -0.024581415578722954, 0.016967378556728363, -0.25277507305145264, 0.31301751732826233, 0.01542512234300375, 0.0832032710313797, -0.02720293402671814, -0.011415502987802029, 0.025997066870331764, 0.0950465053319931, 0.08530077338218689, 0.0033176832366734743, -0.13468973338603973, -0.19789129495620728, -0.13353769481182098, 0.02397199720144272, 0.0854218378663063, 0.0009091131505556405, 0.09722838550806046, 0.005436442326754332, 0.003249003319069743, 0.03495870158076286, -0.07154694944620132, -0.09920767694711685, -0.061372578144073486, 0.0008662007749080658, 0.003294786438345909, 0.0003621447831392288, -0.09951420873403549, -0.105925053358078, -0.07044150680303574, 0.09251716732978821, -0.04482891038060188, -0.05296093970537186, -0.1322900354862213, 0.042364031076431274, 0.11662859469652176, -0.08250729739665985, 0.04649965837597847, 0.001625562901608646, 0.08788672834634781, -0.017555436119437218, -0.018373742699623108, 0.1046740785241127, -0.0628800094127655, -0.20973160862922668, -0.056411806493997574, 0.11003835499286652, 0.07323043793439865, 0.06970534473657608, -0.004353848751634359, 0.05141532048583031, -0.006897009909152985, -0.09332100301980972, 0.023178938776254654, 0.039912283420562744, 0.08457940071821213, -0.024104148149490356, -0.021868126466870308, 0.015245320275425911, -0.07474129647016525, -0.03916674479842186, 0.13071468472480774, 0.3288634121417999, -0.10628638416528702, 0.08244869858026505, 0.07772926986217499, -0.047699443995952606, -0.17189690470695496, 0.020832041278481483, 0.08224235475063324, -0.0005652729887515306, 0.016270365566015244, -0.15498660504817963, 0.025172075256705284, 0.1195521429181099, -0.03088422678411007, 0.09541380405426025, -0.3332229554653168, -0.12748035788536072, 0.08195775747299194, 0.13852719962596893, 0.062308527529239655, -0.1626589298248291, -0.042333632707595825, 0.006429576314985752, -0.13251993060112, 0.06648585200309753, -0.14348843693733215, 0.09514766186475754, -0.020860841497778893, 0.051546476781368256, 0.006033864337950945, -0.06794888526201248, 0.16127605736255646, -0.0015391985652968287, 0.11371780931949615, -0.04364651441574097, 0.01714801974594593, 0.06716550886631012, -0.08658212423324585, 0.030792728066444397, -0.06789208203554153, 0.05071193724870682, -0.06342596560716629, 0.010084245353937149, -0.0778932049870491, 0.012453318573534489, -0.04261612892150879, -0.03429858386516571, -0.04890371859073639, 0.04725273326039314, 0.053796764463186264, -0.019374873489141464, 0.1506648063659668, 0.0002075115335173905, 0.17673693597316742, 0.12598282098770142, 0.04945559799671173, -0.09964026510715485, -0.017183983698487282, 0.021175887435674667, -0.04022517427802086, 0.05170849338173866, -0.18165767192840576, 0.014403234235942364, 0.14104697108268738, 0.027623500674962997, 0.10002946853637695, 0.05020679160952568, -0.07072722166776657, 0.02759925276041031, 0.05640498176217079, -0.14913736283779144, -0.11927706748247147, 0.04740225151181221, 0.07063417881727219, -0.108186274766922, 0.0334748774766922, 0.11620905250310898, -0.06786318123340607, -0.028281833976507187, -0.01611214503645897, 0.04297768324613571, -0.02600017935037613, 0.22799226641654968, 0.04764856770634651, 0.07643072307109833, -0.11305771768093109, 0.06475735455751419, 0.06152161583304405, -0.0935487225651741, 0.03729111701250076, 0.10762716829776764, -0.11768434941768646, -0.033393118530511856, 0.0909624993801117, 0.12500710785388947, -0.018338650465011597, -0.04848825931549072, -0.1286189705133438, -0.12377389520406723, 0.08393760025501251, 0.20360885560512543, 0.06081046536564827, 0.02250969596207142, 0.017433006316423416, -0.011273469775915146, -0.09523110836744308, 0.09277979284524918, 0.04380268603563309, 0.07919593900442123, -0.1111324355006218, 0.127350851893425, -0.008641389198601246, 0.018755361437797546, -0.009629356674849987, 0.02901133894920349, -0.12003695219755173, 0.018864421173930168, -0.146218940615654, 0.021753329783678055, -0.055891700088977814, 0.003238694043830037, -0.020335890352725983, -0.05786241218447685, -0.03980984538793564, 0.03671364113688469, -0.1111922338604927, -0.02661805972456932, -0.013921000994741917, 0.0384242981672287, -0.13888564705848694, -0.0365326926112175, 0.023194337263703346, -0.0831560268998146, 0.08097705245018005, 0.04336289316415787, 0.0052108545787632465, 0.024500638246536255, -0.1253598928451538, 0.008333773352205753, 0.05570276454091072, -0.017241185531020164, 0.05904567986726761, -0.14881254732608795, -0.030775586143136024, -0.024701153859496117, 0.006295078434050083, 0.033953677862882614, 0.12098609656095505, -0.11146362125873566, 0.003419033717364073, -0.006705157458782196, -0.06030168756842613, -0.045557837933301926, 0.03915085643529892, 0.1101514995098114, 0.015991654247045517, 0.13626371324062347, -0.0856124684214592, 0.03939993679523468, -0.1954220086336136, -0.025851234793663025, -0.011904703453183174, -0.1062704548239708, -0.11929924041032791, -0.015776358544826508, 0.0872400775551796, -0.052757807075977325, 0.07195312529802322, -0.030473781749606133, 0.03041093610227108, 0.036670442670583725, -0.051784321665763855, -0.020205825567245483, 0.04389568418264389, 0.1559763103723526, 0.01973893493413925, -0.0351666621863842, 0.06719067692756653, 0.030578987672924995, 0.06795289367437363, 0.08465715497732162, 0.21302072703838348, 0.15617018938064575, 0.08813080936670303, 0.07933686673641205, 0.025890309363603592, -0.08165113627910614, -0.1279991865158081, 0.07638856768608093, -0.04002824425697327, 0.08910734206438065, -0.02324989251792431, 0.17625051736831665, 0.1405881941318512, -0.19159410893917084, 0.03177862986922264, -0.04861186817288399, -0.08949445933103561, -0.11106184870004654, -0.019940059632062912, -0.08382978290319443, -0.15112194418907166, -0.015356352552771568, -0.11327498406171799, 0.03305915370583534, 0.08683440834283829, 0.018042996525764465, 0.04148497059941292, 0.1296422779560089, 0.07193846255540848, 0.03752196580171585, 0.03583723306655884, 0.02370874397456646, -0.021293705329298973, -0.04124082252383232, -0.1114480122923851, 0.06198001652956009, -0.052900560200214386, 0.04285229369997978, -0.024459561333060265, -0.009875879622995853, 0.06979218870401382, -0.011591571383178234, -0.10411228984594345, 0.02779383957386017, 0.032702527940273285, 0.06049191206693649, 0.0751703679561615, 0.03678351268172264, 0.008001508191227913, -0.0016191614558920264, 0.20246168971061707, -0.05418158322572708, -0.0819435566663742, -0.1287248283624649, 0.290010005235672, 0.027420829981565475, -0.024004142731428146, 0.03611932322382927, -0.07517022639513016, 0.005090121645480394, 0.12931670248508453, 0.16528946161270142, -0.04117787629365921, -0.0028651533648371696, -0.022405855357646942, -0.015680797398090363, -0.059995125979185104, 0.1033189669251442, 0.13414302468299866, 0.004995562601834536, -0.10408465564250946, -0.023014770820736885, -0.06360166519880295, -0.03309284523129463, -0.07287688553333282, 0.014592496678233147, 0.005492216907441616, 0.0030743791721761227, -0.04895631596446037, 0.08690103143453598, -0.040540482848882675, -0.07747998088598251, 0.07371862232685089, -0.19323621690273285, -0.16924411058425903, -0.008325979113578796, 0.05644868314266205, 0.007209781091660261, 0.042930807918310165, -0.016001341864466667, -0.008601497858762741, 0.11420179903507233, -0.033740051090717316, -0.03332999721169472, -0.12336751818656921, 0.09429101645946503, -0.11864388734102249, 0.2195662409067154, -0.037359192967414856, 0.046546366065740585, 0.13128723204135895, 0.047140851616859436, -0.13021285831928253, 0.058897607028484344, 0.06893961876630783, -0.06936488300561905, -0.01052011363208294, 0.0992516502737999, -0.048665378242731094, 0.07373078167438507, 0.05181758478283882, -0.10455788671970367, 0.0009040613076649606, -0.0711866095662117, -0.02906773053109646, -0.029460720717906952, -0.015011068433523178, -0.034941185265779495, 0.12692028284072876, 0.15433834493160248, -0.051745351403951645, 0.02106126770377159, -0.052474748343229294, 0.024362850934267044, 0.050986506044864655, 0.02679135464131832, -0.04249592870473862, -0.26624947786331177, 0.048041582107543945, 0.06284419447183609, 0.0053169094026088715, -0.22477076947689056, -0.09160041064023972, 0.002866927767172456, -0.04524052515625954, -0.0751309022307396, 0.10405217111110687, 0.052329014986753464, 0.04640034958720207, -0.055033113807439804, -0.1042608916759491, -0.06370382755994797, 0.16620425879955292, -0.12198233604431152, -0.06766664981842041 ]
null
null
transformers
## ITT-AF/ITT-Yi-Ko-6B-v4.0 This model is a fine-tuned version of [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B) on an custom dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hypuerparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 4 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 8 * total_train_batch_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
{"license": "cc-by-nc-4.0"}
text-generation
ITT-AF/ITT-Yi-Ko-6B-v4.0
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T06:28:56+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## ITT-AF/ITT-Yi-Ko-6B-v4.0 This model is a fine-tuned version of beomi/Yi-Ko-6B on an custom dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hypuerparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 4 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 8 * total_train_batch_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
[ "## ITT-AF/ITT-Yi-Ko-6B-v4.0\nThis model is a fine-tuned version of beomi/Yi-Ko-6B on an custom dataset.", "### Model description\nMore information needed", "### Intended uses & limitations\nMore information needed", "### Training and evaluation data\nMore information needed", "### Training procedure", "### Training hypuerparameters\nThe following hyperparameters were used during training:\n* learning_rate: 2e-05\n* train_batch_size: 4\n* eval_batch_size: 8\n* seed: 42\n* gradient_accumulation_steps: 8\n* total_train_batch_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr_scheduler_type: linear\n* num_epochs: 1.0\n* mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.0.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## ITT-AF/ITT-Yi-Ko-6B-v4.0\nThis model is a fine-tuned version of beomi/Yi-Ko-6B on an custom dataset.", "### Model description\nMore information needed", "### Intended uses & limitations\nMore information needed", "### Training and evaluation data\nMore information needed", "### Training procedure", "### Training hypuerparameters\nThe following hyperparameters were used during training:\n* learning_rate: 2e-05\n* train_batch_size: 4\n* eval_batch_size: 8\n* seed: 42\n* gradient_accumulation_steps: 8\n* total_train_batch_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr_scheduler_type: linear\n* num_epochs: 1.0\n* mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.0.0\n* Tokenizers 0.15.0" ]
[ 58, 42, 7, 13, 9, 4, 128, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## ITT-AF/ITT-Yi-Ko-6B-v4.0\nThis model is a fine-tuned version of beomi/Yi-Ko-6B on an custom dataset.### Model description\nMore information needed### Intended uses & limitations\nMore information needed### Training and evaluation data\nMore information needed### Training procedure### Training hypuerparameters\nThe following hyperparameters were used during training:\n* learning_rate: 2e-05\n* train_batch_size: 4\n* eval_batch_size: 8\n* seed: 42\n* gradient_accumulation_steps: 8\n* total_train_batch_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr_scheduler_type: linear\n* num_epochs: 1.0\n* mixed_precision_training: Native AMP### Training results### Framework versions\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.0.0\n* Tokenizers 0.15.0" ]
[ -0.07544299215078354, 0.07897035032510757, -0.00429574167355895, 0.06397977471351624, 0.10153909772634506, 0.05401359498500824, 0.13629752397537231, 0.15246693789958954, -0.06683628261089325, 0.04196491092443466, 0.0259310994297266, 0.037320174276828766, 0.06486963480710983, 0.12115051597356796, -0.04942427575588226, -0.23017197847366333, 0.006338777951896191, -0.010161354206502438, -0.10977485775947571, 0.10848238319158554, 0.09451715648174286, -0.09307324141263962, 0.048446428030729294, 0.007410422898828983, -0.10472974926233292, 0.029381917789578438, -0.008291848003864288, -0.0466613695025444, 0.09307438880205154, 0.00015544123016297817, 0.11977031081914902, 0.029463186860084534, 0.14034061133861542, -0.22066810727119446, 0.005342130549252033, 0.10496769100427628, 0.003566635772585869, 0.0573585070669651, 0.06068199872970581, 0.0061393906362354755, 0.13712775707244873, -0.13664959371089935, 0.06649511307477951, 0.009118674322962761, -0.08711085468530655, -0.22266803681850433, -0.1294226348400116, 0.061515819281339645, 0.12140770256519318, 0.04750238358974457, 0.00679023889824748, 0.10262056440114975, -0.12716495990753174, 0.0475660115480423, 0.23029989004135132, -0.22325767576694489, -0.03887522593140602, 0.04798579216003418, -0.035906922072172165, 0.06143321096897125, -0.0739295482635498, -0.016726968809962273, 0.042546652257442474, 0.0032218266278505325, 0.12092198431491852, -0.0008473193738609552, -0.02959359623491764, -0.01728767715394497, -0.1416594237089157, -0.049817539751529694, 0.09456351399421692, 0.02167072892189026, -0.029830485582351685, -0.09180258959531784, -0.08741410821676254, -0.10898959636688232, -0.044909995049238205, -0.014582550153136253, 0.05542077496647835, -0.06134222820401192, 0.010068748146295547, -0.011000977829098701, -0.07987724989652634, -0.08406876027584076, 0.011509721167385578, 0.163060262799263, 0.08013028651475906, 0.005038479808717966, -0.002158506540581584, 0.12043707817792892, 0.010239813476800919, -0.13287197053432465, -0.04408637806773186, 0.01750919781625271, -0.08179688453674316, -0.04246363043785095, -0.02171682007610798, -0.04918371140956879, 0.0025608623400330544, 0.14300857484340668, -0.10279501229524612, 0.042459819465875626, 0.03991081938147545, -0.019870679825544357, -0.0359688438475132, 0.13828244805335999, -0.06328243762254715, -0.02211112342774868, -0.0020539513789117336, 0.11593696475028992, 0.054839376360177994, -0.01764764077961445, -0.06612399220466614, -0.05160008743405342, 0.11046145111322403, 0.0538146086037159, -0.061023201793432236, 0.04919253662228584, -0.04627460986375809, -0.03353973105549812, 0.03427880257368088, -0.14862369000911713, 0.05472852289676666, 0.0248678270727396, -0.05289396643638611, -0.0560646578669548, 0.02815781906247139, 0.0060281152836978436, -0.029820406809449196, 0.14388537406921387, -0.04926173388957977, 0.029466848820447922, -0.09709230065345764, -0.07030396908521652, 0.010240089148283005, -0.029201682657003403, -0.026576656848192215, -0.06971657276153564, -0.20693720877170563, -0.028817273676395416, 0.05264410749077797, -0.07607769221067429, 0.02357408031821251, -0.010235404595732689, -0.0699944868683815, 0.019031906500458717, -0.024408681318163872, 0.09332577139139175, -0.06414547562599182, 0.07157319039106369, 0.013630629517138004, 0.07090434432029724, 0.04964681714773178, 0.031215684488415718, -0.0543212816119194, 0.037456411868333817, -0.16325542330741882, 0.06806135922670364, -0.07387646287679672, -0.01419143471866846, -0.0730787143111229, -0.10333763062953949, 0.0010496728355064988, -0.012886980548501015, 0.08284766227006912, 0.13073556125164032, -0.17303778231143951, -0.05040392652153969, 0.20774412155151367, -0.11642315238714218, -0.07585388422012329, 0.11468248814344406, -0.052995700389146805, 0.016416948288679123, 0.03697648644447327, 0.1380133181810379, 0.11310869455337524, -0.1324491947889328, -0.0274368729442358, -0.00871815625578165, 0.06334581971168518, 0.043107569217681885, 0.05053609609603882, 0.009478829801082611, 0.04505161568522453, -0.005729835946112871, -0.11788522452116013, -0.014675131067633629, -0.07131468504667282, -0.09060521423816681, -0.04456264153122902, -0.054464198648929596, 0.06715906411409378, 0.035718221217393875, 0.034684162586927414, -0.05283509939908981, -0.10695146769285202, 0.0890478864312172, 0.1300368458032608, -0.07219527661800385, 0.03669561818242073, -0.07467033714056015, 0.06386368721723557, -0.011595357209444046, -0.01345029566437006, -0.16679514944553375, -0.04342464357614517, 0.029574746266007423, -0.0781039446592331, -0.011582174338400364, 0.011978937312960625, 0.0676557794213295, 0.05929386243224144, -0.0634412094950676, -0.04759324714541435, -0.09030169248580933, 0.0036330970469862223, -0.05576246976852417, -0.20048019289970398, -0.07277890294790268, 0.0021134521812200546, 0.19154305756092072, -0.2163657397031784, 0.013094537891447544, 0.018411066383123398, 0.1411914825439453, 0.021564044058322906, -0.018501177430152893, -0.018542129546403885, 0.047224562615156174, -0.00998440757393837, -0.08350396901369095, 0.047434043139219284, -0.0030060026329010725, -0.0624149888753891, -0.011811844073235989, -0.13310779631137848, 0.0347745344042778, 0.09449497610330582, 0.05242833495140076, -0.07766036689281464, -0.011436252854764462, -0.04632975533604622, -0.04455854371190071, -0.05768825113773346, -0.018075231462717056, 0.16090801358222961, -0.00023399986093863845, 0.1461223065853119, -0.09905774146318436, -0.09458749741315842, -0.0021916734986007214, -0.033662572503089905, 0.019256915897130966, 0.07625815272331238, 0.04161844775080681, -0.06578657031059265, 0.07734180241823196, 0.1355007141828537, -0.07061818987131119, 0.18901047110557556, -0.06169416755437851, -0.08476527035236359, -0.03638892248272896, 0.005770730786025524, 0.003275323426350951, 0.13821278512477875, -0.07883899658918381, 0.0035519301891326904, 0.002691441448405385, 0.036610156297683716, 0.014433731324970722, -0.21911488473415375, 0.00991491973400116, 0.036406829953193665, -0.07470101863145828, -0.0018579690949991345, -0.02539762482047081, 0.034266285598278046, 0.10487499088048935, -0.006329301744699478, -0.016696980223059654, -0.0016900760820135474, -0.04590866342186928, -0.08488894999027252, 0.20180733501911163, -0.0948994979262352, -0.1349852979183197, -0.07581581175327301, 0.003378064837306738, -0.013309881091117859, -0.03813660889863968, 0.0029534781351685524, -0.0876891165971756, -0.057411205023527145, -0.10650333762168884, 0.027154088020324707, 0.030110517516732216, 0.003903414821252227, 0.07321460545063019, 0.013839018531143665, 0.08503557741641998, -0.13516223430633545, -0.004031601827591658, -0.052247099578380585, -0.0879596546292305, 0.05572979897260666, 0.06312450766563416, 0.07076741755008698, 0.1432625651359558, -0.037885881960392, 0.0322139710187912, -0.01033067423850298, 0.13528569042682648, -0.07488765567541122, 0.0019854221027344465, 0.12336544692516327, -0.008926965296268463, 0.06137131527066231, 0.14405587315559387, 0.044458966702222824, -0.06885232031345367, 0.0026374219451099634, 0.059015318751335144, -0.01945115067064762, -0.24481584131717682, -0.05781835690140724, -0.033568866550922394, -0.04942905902862549, 0.07979337871074677, 0.01956842467188835, 0.014952892437577248, 0.0016379135195165873, -0.02519582398235798, 0.01743355579674244, -0.009515994228422642, 0.06362767517566681, 0.10381479561328888, 0.050911467522382736, 0.0696270540356636, -0.03704407811164856, -0.023250354453921318, 0.06617329269647598, -0.005982803646475077, 0.24527905881404877, -0.06413371115922928, 0.1093086376786232, 0.05578773096203804, 0.11948487907648087, -0.008727505803108215, 0.023613817989826202, -0.020671598613262177, -0.018420610576868057, 0.015214089304208755, -0.06122507527470589, -0.029844801872968674, 0.0400666818022728, -0.07304976135492325, 0.016036473214626312, -0.07336703687906265, 0.037587881088256836, 0.044721681624650955, 0.24925146996974945, 0.06744040548801422, -0.25940656661987305, -0.01828446425497532, 0.01885434240102768, -0.03069300949573517, -0.02689778059720993, -0.01492294017225504, 0.11119472980499268, -0.08955049514770508, 0.08841811120510101, -0.08832156658172607, 0.047532569617033005, -0.05513428524136543, -0.018596934154629707, 0.0896989107131958, 0.14288903772830963, 0.0043725017458200455, 0.04915136471390724, -0.20395338535308838, 0.22783495485782623, 0.0013337673153728247, 0.10239657014608383, -0.05337962508201599, 0.034306567162275314, 0.03442440181970596, 0.05194339528679848, 0.0671556368470192, 0.02049451880156994, -0.07918037474155426, -0.18230804800987244, -0.054914798587560654, 0.009932463988661766, 0.11830004304647446, -0.001726860529743135, 0.12879422307014465, -0.06391817331314087, -0.01856001280248165, 0.0346708670258522, -0.037198178470134735, -0.13160355389118195, -0.1046377569437027, 0.053972017019987106, -0.014895656146109104, 0.0010547616984695196, -0.09793651103973389, -0.09630991518497467, -0.06036955118179321, 0.13337522745132446, -0.04544629156589508, -0.0671100839972496, -0.12003526836633682, 0.062307003885507584, 0.11498665064573288, -0.06718538701534271, 0.047796137630939484, 0.039276767522096634, 0.11704598367214203, 0.020471272990107536, -0.07831207662820816, 0.04701514542102814, -0.08086947351694107, -0.20571301877498627, -0.049523670226335526, 0.13460776209831238, 0.0465366430580616, 0.05398502200841904, 0.031186657026410103, 0.005964125506579876, 0.042947787791490555, -0.0874670222401619, 0.018193751573562622, 0.08430422842502594, 0.11833607405424118, 0.06180053949356079, -0.06517503410577774, -0.0018114461563527584, -0.036996036767959595, -0.029221173375844955, 0.0931842252612114, 0.2450023591518402, -0.09417123347520828, 0.07237052172422409, 0.03386710584163666, -0.09138445556163788, -0.2065606266260147, 0.004612389486283064, 0.12060847878456116, 0.015019034035503864, 0.003620956791564822, -0.17223675549030304, 0.05825658142566681, 0.09426075220108032, -0.028377367183566093, 0.05342483893036842, -0.3401334881782532, -0.15068261325359344, 0.05895977467298508, 0.10924157500267029, 0.0643136203289032, -0.1317947506904602, -0.023903490975499153, -0.0018420697888359427, -0.10068894922733307, 0.12028751522302628, -0.08107468485832214, 0.08856132626533508, -0.023554805666208267, 0.05868532881140709, 0.0172268133610487, -0.032495010644197464, 0.13330887258052826, 0.016161002218723297, 0.08773904293775558, -0.046581778675317764, 0.03962019085884094, 0.059618789702653885, -0.08471975475549698, 0.04401005059480667, -0.024798449128866196, 0.039637427777051926, -0.08603914082050323, -0.004062441643327475, -0.07612520456314087, 0.026405014097690582, -0.05646240711212158, -0.05435849726200104, -0.026089759543538094, 0.061187341809272766, 0.06936132162809372, -0.03992348536849022, 0.06942160427570343, 0.019836442545056343, 0.09858040511608124, 0.05803856998682022, 0.09910932183265686, -0.05204387381672859, -0.039949413388967514, -0.000964928709436208, 0.012840965762734413, 0.06107310950756073, -0.14733128249645233, 0.05897710099816322, 0.08581149578094482, 0.07596760988235474, 0.13369780778884888, 0.032805606722831726, -0.07579883933067322, -0.0076478892005980015, 0.06691912561655045, -0.12296168506145477, -0.10505516827106476, 0.020769672468304634, -0.01943054236471653, -0.12652307748794556, 0.03298525884747505, 0.09636028856039047, -0.06916633248329163, -0.016344420611858368, 0.00586941372603178, 0.03228733316063881, 0.0016116963233798742, 0.1823045313358307, 0.028511904180049896, 0.06965994089841843, -0.09761761873960495, 0.10673730075359344, 0.02745623141527176, -0.04856448248028755, 0.03561130166053772, 0.0618741437792778, -0.08238525688648224, -0.013525749556720257, 0.027802683413028717, 0.11607705056667328, 0.0027754497714340687, -0.06944417208433151, -0.10502979159355164, -0.12004502862691879, 0.04880499467253685, 0.131540447473526, 0.07850608974695206, 0.01471779216080904, -0.00941208004951477, 0.01639949344098568, -0.12334229052066803, 0.11501829326152802, 0.055353157222270966, 0.083145372569561, -0.14341503381729126, 0.08775615692138672, 0.018654903396964073, 0.025549035519361496, -0.02343623898923397, 0.025022393092513084, -0.0662202313542366, -0.015471157617866993, -0.1237795278429985, 0.018611572682857513, -0.027004746720194817, 0.010057768784463406, -0.008421376347541809, -0.0396188348531723, -0.03853048011660576, 0.05283283442258835, -0.07558120787143707, -0.05046963319182396, -0.024854103103280067, 0.030836904421448708, -0.11114528030157089, -0.033897366374731064, 0.025111157447099686, -0.12063971161842346, 0.09189813584089279, 0.03079957515001297, 0.03251707926392555, 0.06039704009890556, -0.12376739829778671, -0.035217590630054474, 0.04204925149679184, 0.026887567713856697, 0.060300055891275406, -0.17148242890834808, -0.010351442731916904, -0.01726548932492733, 0.02818230167031288, 0.007430661004036665, 0.02430831454694271, -0.11258352547883987, 0.05584769695997238, -0.08704394102096558, -0.03833537921309471, -0.04557647556066513, 0.06391320377588272, 0.07719186693429947, 0.01765199936926365, 0.1724516749382019, -0.0961340069770813, 0.04294838011264801, -0.23013544082641602, -0.04054217413067818, 0.011549318209290504, -0.036931928247213364, -0.11309231072664261, -0.03936292231082916, 0.07587224245071411, -0.038006026297807693, 0.1396007388830185, 0.027567220851778984, 0.06095444783568382, 0.03869403526186943, -0.053379688411951065, -0.008290844038128853, 0.017355499789118767, 0.17869992554187775, 0.028640545904636383, -0.02409450151026249, 0.0637606829404831, -0.01635763980448246, 0.05488670989871025, -0.019391587004065514, 0.20028746128082275, 0.1612577736377716, 0.010524723678827286, 0.045209839940071106, 0.037523165345191956, -0.13478298485279083, -0.16274972259998322, 0.07261434942483902, -0.09849093109369278, 0.10275057703256607, -0.04403059929609299, 0.14585290849208832, 0.12679438292980194, -0.20517055690288544, 0.05474495142698288, -0.030046802014112473, -0.0974624827504158, -0.12794625759124756, -0.03810310736298561, -0.08271446824073792, -0.17081955075263977, 0.011581113561987877, -0.11959154903888702, 0.06393875926733017, 0.13119915127754211, 0.010342476889491081, 0.024289680644869804, 0.15466998517513275, 0.043652571737766266, -0.015284591354429722, 0.06712368130683899, 0.030690377578139305, 0.009295356459915638, -0.020376021042466164, -0.07783191651105881, 0.03280112147331238, -0.018430419266223907, 0.06366103887557983, -0.01880374178290367, -0.01116184238344431, 0.03276469185948372, 0.012125600129365921, -0.09322557598352432, 0.0354822538793087, -0.007629800122231245, 0.07798445224761963, 0.05131884291768074, 0.055817317217588425, 0.019426656886935234, -0.030339092016220093, 0.22346320748329163, -0.05889241024851799, -0.07983270287513733, -0.11930859833955765, 0.20005673170089722, 0.02905961312353611, -0.008732661604881287, 0.0760108157992363, -0.11404798924922943, -0.004338695202022791, 0.1232270821928978, 0.11715271323919296, -0.039092790335416794, 0.0005042245611548424, -0.029004966840147972, -0.008180059492588043, -0.04837993159890175, 0.15372951328754425, 0.08984769135713577, 0.06979729980230331, -0.04145031049847603, -0.026004943996667862, -0.022497359663248062, -0.03915288671851158, -0.07530970126390457, 0.08007976412773132, 0.016585098579525948, 0.008568313904106617, -0.030006570741534233, 0.04246272146701813, 0.05406755208969116, -0.22311799228191376, 0.06274182349443436, -0.1823403239250183, -0.17372797429561615, -0.00927533395588398, 0.1251543164253235, -0.014669791795313358, 0.06229568272829056, -0.016000282019376755, -0.02705247327685356, 0.13299722969532013, -0.0035661349538713694, -0.02573220804333687, -0.07850155979394913, 0.07421159744262695, -0.09733957797288895, 0.24195228517055511, -0.00839642807841301, 0.08122052997350693, 0.09627282619476318, 0.0008203122415579855, -0.12538547813892365, 0.042707692831754684, 0.06677693128585815, -0.08137998729944229, 0.011612669564783573, 0.1561216562986374, -0.03906881809234619, 0.04727756604552269, 0.05612042918801308, -0.11901203542947769, -0.002809579251334071, -0.012476475909352303, -0.09203780442476273, -0.06990605592727661, 0.007071932312101126, -0.03502672538161278, 0.13546203076839447, 0.2204105406999588, -0.04043329507112503, 0.03476295992732048, -0.07013828307390213, 0.014325552619993687, 0.02313423529267311, 0.12250746041536331, -0.021260887384414673, -0.18413881957530975, 0.044284623116254807, 0.05097020044922829, 0.033374398946762085, -0.18167471885681152, -0.06693898886442184, 0.06734239310026169, -0.06230577453970909, -0.08572462946176529, 0.11474352329969406, 0.07370702177286148, 0.05843232199549675, -0.009194052778184414, -0.09847473353147507, -0.04889291524887085, 0.1390991508960724, -0.157875195145607, -0.03838516026735306 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
sunyijia97/llama2-7b-qlora-cstuqa-test
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T06:32:53+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.1189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5489 | 1.0 | 2249 | 6.4747 | | 6.1952 | 2.0 | 4498 | 6.2065 | | 6.0187 | 3.0 | 6747 | 6.1189 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "gpt2-wikitext2", "results": []}]}
text-generation
rahulshah9713/gpt2-wikitext2
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T06:37:40+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-gpt2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
gpt2-wikitext2 ============== This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 6.1189 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.1.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-gpt2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ 72, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-gpt2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ -0.09083937853574753, 0.06879255920648575, -0.0025609855074435472, 0.10097027570009232, 0.13751910626888275, 0.017650779336690903, 0.1667337715625763, 0.12320408970117569, -0.07430935651063919, 0.05460508167743683, 0.14613544940948486, 0.12657025456428528, 0.02977880835533142, 0.13728195428848267, -0.06850293278694153, -0.2335020899772644, 0.006265455391258001, 0.02921687811613083, -0.05158089101314545, 0.12477873265743256, 0.09358783066272736, -0.12179872393608093, 0.0983077883720398, -0.01116050872951746, -0.1858854591846466, 0.0016814741538837552, 0.02650408260524273, -0.0529855415225029, 0.1383506804704666, 0.04180443659424782, 0.11328277736902237, 0.0370468869805336, 0.07701072841882706, -0.18719951808452606, 0.014121362008154392, 0.061444927006959915, -0.005445340648293495, 0.08766098320484161, 0.049064137041568756, 0.00017210192163474858, 0.11280296742916107, -0.08094434440135956, 0.051515571773052216, 0.018044400960206985, -0.14296962320804596, -0.19719845056533813, -0.08275341242551804, 0.029117293655872345, 0.09490024298429489, 0.08310188353061676, -0.022066907957196236, 0.12803784012794495, -0.03885457292199135, 0.09668052941560745, 0.23070135712623596, -0.3282322883605957, -0.0641176775097847, 0.06349556148052216, 0.05285342410206795, 0.09506186097860336, -0.09874032437801361, 0.010840406641364098, 0.06112268567085266, 0.025171536952257156, 0.1267228126525879, -0.02563280425965786, -0.013241585344076157, 0.011055308394134045, -0.14453427493572235, -0.03270410746335983, 0.15223491191864014, 0.04017878696322441, -0.043463848531246185, -0.06984881311655045, -0.07146744430065155, -0.1453734189271927, -0.0347578339278698, -0.019885044544935226, 0.03930237144231796, -0.016863899305462837, -0.08627123385667801, -0.04707622900605202, -0.11129359155893326, -0.08420068025588989, -0.05115189775824547, 0.13752013444900513, 0.03163429722189903, 0.004914228804409504, -0.023455679416656494, 0.11578921973705292, -0.05240609496831894, -0.13519242405891418, 0.003928978927433491, 0.025105029344558716, 0.01389135792851448, -0.04798207804560661, -0.04828881472349167, -0.10757170617580414, 0.02190236747264862, 0.13785035908222198, -0.06099811941385269, 0.05335196480154991, 0.006292256992310286, 0.04962164908647537, -0.10009825229644775, 0.16967551410198212, -0.03762213513255119, -0.025387950241565704, 0.019857456907629967, 0.07303882390260696, 0.052113838493824005, -0.023044615983963013, -0.13383138179779053, 0.020046230405569077, 0.10727594792842865, 0.02110459841787815, -0.055004872381687164, 0.08064291626214981, -0.0465564951300621, -0.0046975999139249325, 0.024769475683569908, -0.08248674869537354, 0.02394663356244564, -0.005906686186790466, -0.054874833673238754, -0.061510730534791946, 0.022058231756091118, 0.021879399195313454, 0.0006836214452050626, 0.10383278131484985, -0.08564373850822449, 0.009212982840836048, -0.0818069651722908, -0.1280004233121872, 0.012965465895831585, -0.07888318598270416, 0.012251270934939384, -0.10421165078878403, -0.19156157970428467, -0.012373763136565685, 0.0491977222263813, -0.03659795597195625, -0.0285864919424057, -0.0650634616613388, -0.07657750695943832, 0.018847793340682983, -0.021035630255937576, 0.08885851502418518, -0.06313452869653702, 0.10271625220775604, 0.04457266256213188, 0.07137902081012726, -0.05669989064335823, 0.030449988320469856, -0.09211962670087814, 0.035447824746370316, -0.17753790318965912, 0.03822070360183716, -0.042551957070827484, 0.057810522615909576, -0.08009656518697739, -0.0785011425614357, -0.010839253664016724, 0.006749709136784077, 0.07800937443971634, 0.10626310110092163, -0.1602151244878769, -0.07456599175930023, 0.19537107646465302, -0.08850035816431046, -0.14927303791046143, 0.14293444156646729, -0.05550796538591385, 0.0503670834004879, 0.07619263976812363, 0.20664915442466736, 0.04230508953332901, -0.10095670074224472, 0.009427282959222794, -0.0050024003721773624, 0.04734727367758751, -0.030401574447751045, 0.07505311816930771, -0.005166792776435614, 0.01690072938799858, 0.012574611231684685, -0.04388585686683655, 0.047702040523290634, -0.08721508830785751, -0.07723137736320496, -0.03720739111304283, -0.09217598289251328, 0.04807204380631447, 0.04387601837515831, 0.0707198902964592, -0.12623952329158783, -0.09906569868326187, 0.04177354648709297, 0.059727992862463, -0.08143296092748642, 0.025318020954728127, -0.07127835601568222, 0.0947849452495575, -0.07633891701698303, -0.011238324455916882, -0.1354343593120575, -0.059887539595365524, 0.012881001457571983, 0.01992742344737053, 0.021999061107635498, 0.008822789415717125, 0.08095168322324753, 0.08683662116527557, -0.06668546050786972, -0.021402714774012566, -0.0021139723248779774, 0.00033316886401735246, -0.13071690499782562, -0.1910870373249054, -0.008732992224395275, -0.03060626983642578, 0.14107804000377655, -0.24201495945453644, 0.05577963590621948, 0.01631961576640606, 0.07778139412403107, 0.032791201025247574, -0.026510925963521004, -0.03549336642026901, 0.05142465978860855, -0.05093803629279137, -0.0685037150979042, 0.06227080896496773, 0.010635173879563808, -0.10955584049224854, -0.019551904872059822, -0.18470560014247894, 0.19171127676963806, 0.13664820790290833, -0.08597251772880554, -0.08559273183345795, -0.008125385269522667, -0.04147133603692055, -0.021831072866916656, -0.044222474098205566, -0.011619983240962029, 0.14691999554634094, -0.008891696110367775, 0.15797914564609528, -0.09046079963445663, -0.04514914005994797, 0.028544219210743904, -0.053747087717056274, 0.01536583248525858, 0.11090798676013947, 0.07960367202758789, -0.10749947279691696, 0.1498570442199707, 0.16026458144187927, -0.06505600363016129, 0.15594692528247833, -0.026783637702465057, -0.05451546609401703, -0.029735246673226357, 0.025542622432112694, 0.0176051277667284, 0.1043694019317627, -0.1321098357439041, -0.008959665894508362, 0.007374927401542664, 0.02105381153523922, 0.021649612113833427, -0.22740577161312103, -0.03876158222556114, 0.0451892614364624, -0.06254526227712631, 0.0016907741082832217, -0.010621598921716213, -0.016608646139502525, 0.10502101480960846, 0.008935622870922089, -0.06292741745710373, 0.04244103655219078, -0.0021118696313351393, -0.08818281441926956, 0.21013464033603668, -0.06612131744623184, -0.15395022928714752, -0.13414634764194489, -0.0717155709862709, -0.05427350848913193, 0.038412678986787796, 0.0678633376955986, -0.08113174885511398, -0.03552139922976494, -0.11295027285814285, 0.024523276835680008, 0.008807135745882988, 0.023284869268536568, 0.00893993116915226, -0.015056840144097805, 0.058187954127788544, -0.10497987270355225, -0.01662142015993595, -0.047129251062870026, -0.06793761253356934, 0.045079655945301056, 0.017931129783391953, 0.1107122078537941, 0.1527756005525589, -0.02408578433096409, 0.011922305449843407, -0.0423869714140892, 0.23629184067249298, -0.07922586798667908, -0.016080722212791443, 0.12716594338417053, -0.016217771917581558, 0.05504453927278519, 0.12320823222398758, 0.05692499876022339, -0.10708757489919662, 0.01940285786986351, 0.026382092386484146, -0.051046162843704224, -0.2087620347738266, -0.022052733227610588, -0.04224734008312225, 0.02006048522889614, 0.08833606541156769, 0.036780036985874176, 0.039018888026475906, 0.07458184659481049, 0.01488051563501358, 0.08131635189056396, 0.0036802783142775297, 0.08160530775785446, 0.1058136597275734, 0.03717486932873726, 0.13584917783737183, -0.04700888320803642, -0.06267800182104111, 0.04243678227066994, -0.004528396762907505, 0.20542079210281372, 0.01774526573717594, 0.15149934589862823, 0.051648471504449844, 0.13878625631332397, 0.006870320066809654, 0.05975568667054176, -0.017559504136443138, -0.048521947115659714, -0.016135673969984055, -0.0508088655769825, -0.02276405319571495, 0.037516504526138306, -0.08587069809436798, 0.03644218295812607, -0.10493449866771698, 0.0030761449597775936, 0.056658096611499786, 0.20525211095809937, 0.061559680849313736, -0.33855605125427246, -0.09038904309272766, 0.03176174685359001, -0.017735514789819717, -0.028310803696513176, 0.025593088939785957, 0.13925740122795105, -0.062728650867939, 0.04680721089243889, -0.08259833604097366, 0.08297538012266159, -0.04504864662885666, 0.05273452401161194, 0.0410124845802784, 0.08379700034856796, -0.026488900184631348, 0.07255640625953674, -0.28890112042427063, 0.27612626552581787, 0.018173860386013985, 0.07493677735328674, -0.055050794035196304, 0.000779115071054548, 0.01915608160197735, 0.0740547850728035, 0.08350871503353119, -0.01992599293589592, -0.062457818537950516, -0.19279596209526062, -0.05530158430337906, 0.030734773725271225, 0.11718659102916718, -0.04313266649842262, 0.11142163723707199, -0.029555652290582657, 0.007312482688575983, 0.07967345416545868, -0.009657317772507668, -0.06817349791526794, -0.09838105738162994, 0.001859524054452777, 0.03069644421339035, -0.020746521651744843, -0.07809341698884964, -0.09022846072912216, -0.13734430074691772, 0.17911791801452637, -0.04748421162366867, -0.04342840611934662, -0.10413027554750443, 0.07070775330066681, 0.044939495623111725, -0.0814744234085083, 0.03571486473083496, 0.011050689034163952, 0.08527511358261108, 0.015557554550468922, -0.05633262172341347, 0.1334439367055893, -0.06182047724723816, -0.18314281105995178, -0.06550620496273041, 0.12293370813131332, 0.015518087893724442, 0.045191798359155655, 0.0026616393588483334, 0.018632033839821815, -0.027437850832939148, -0.08948533982038498, 0.0461764857172966, -0.01606205850839615, 0.046661391854286194, 0.009045522660017014, -0.026408672332763672, 0.022594919428229332, -0.05426012724637985, -0.04006881266832352, 0.17255723476409912, 0.29877668619155884, -0.07808631658554077, 0.019160324707627296, 0.043853554874658585, -0.07132883369922638, -0.20060637593269348, 0.03935173153877258, 0.017313657328486443, 0.004558008164167404, 0.04399317502975464, -0.1473272293806076, 0.07340772449970245, 0.10278985649347305, -0.02731938846409321, 0.12956126034259796, -0.31560537219047546, -0.14303052425384521, 0.10332714766263962, 0.15413910150527954, 0.1374945044517517, -0.17141872644424438, -0.04748449847102165, -0.03504111245274544, -0.10965171456336975, 0.10719044506549835, -0.1286904513835907, 0.12509815394878387, -0.011219690553843975, 0.06990998983383179, 0.011257350444793701, -0.06287287175655365, 0.13104136288166046, -0.015553430654108524, 0.10606510192155838, -0.07505420595407486, -0.009791547432541847, 0.06752099096775055, -0.05440172553062439, 0.0255377646535635, -0.12387979030609131, 0.029056141152977943, -0.05790506303310394, -0.039038218557834625, -0.05069052800536156, 0.03616178035736084, -0.032359037548303604, -0.07024432718753815, -0.05049589276313782, 0.011180533096194267, 0.031708937138319016, -0.008413485251367092, 0.15965449810028076, -0.005573489237576723, 0.17034994065761566, 0.12872880697250366, 0.08038926124572754, -0.0763910636305809, -0.013392038643360138, -0.0012309077428653836, -0.029700247570872307, 0.052594684064388275, -0.16385620832443237, 0.03067459911108017, 0.12211298942565918, 0.01299197692424059, 0.14912132918834686, 0.08166301250457764, -0.04787847399711609, 0.03607345372438431, 0.0666477307677269, -0.1753799170255661, -0.13102465867996216, -0.017155352979898453, -0.04959823936223984, -0.0998513326048851, 0.0723876953125, 0.13151821494102478, -0.06708519160747528, 0.00891941599547863, -0.011947240680456161, 0.01647171750664711, -0.037782855331897736, 0.18597356975078583, 0.05254172533750534, 0.047102123498916626, -0.08418375998735428, 0.06460759043693542, 0.03864128515124321, -0.06230396777391434, 0.02665211632847786, 0.0587405301630497, -0.07990796118974686, -0.041667863726615906, 0.03169025108218193, 0.19108600914478302, -0.046609122306108475, -0.041187141090631485, -0.15067438781261444, -0.12019992619752884, 0.051406558603048325, 0.16835393011569977, 0.08319644629955292, 0.016598332673311234, -0.030846109613776207, 0.021825280040502548, -0.1223774254322052, 0.10734304040670395, 0.03981579840183258, 0.0880049392580986, -0.14305108785629272, 0.147592231631279, -0.004301359411329031, 0.01368456706404686, -0.03083043359220028, 0.038450539112091064, -0.12030424177646637, -0.0013703888980671763, -0.1285034716129303, -0.01751185767352581, -0.027971230447292328, -0.006745298393070698, -0.005582509562373161, -0.0504966638982296, -0.06130511313676834, 0.0067242104560136795, -0.10373866558074951, -0.021294990554451942, 0.026377830654382706, 0.03613055497407913, -0.12309764325618744, -0.036072514951229095, 0.015366608276963234, -0.06656718254089355, 0.08139734715223312, 0.021371331065893173, 0.019879713654518127, 0.05443485453724861, -0.19221489131450653, 0.0398838184773922, 0.06002232804894447, 0.0028584711253643036, 0.036956943571567535, -0.06803897023200989, -0.014009875245392323, -0.006514671258628368, 0.0505802221596241, 0.03170309215784073, 0.07187462598085403, -0.12306761741638184, 0.018468694761395454, -0.02814057655632496, -0.06010299175977707, -0.054360345005989075, 0.042964715510606766, 0.05500846728682518, 0.010021021589636803, 0.18439523875713348, -0.10316120833158493, 0.022898703813552856, -0.21366071701049805, 0.006032664328813553, 0.013930671848356724, -0.12304387241601944, -0.10199035704135895, -0.0554945282638073, 0.06229586526751518, -0.057085197418928146, 0.15393921732902527, 0.02116086706519127, 0.019482320174574852, 0.034993208944797516, -0.018812209367752075, 0.06290090084075928, 0.013373328372836113, 0.22696733474731445, 0.03285244479775429, -0.04865449294447899, 0.010697959922254086, 0.04450828954577446, 0.11917391419410706, 0.05822553485631943, 0.187649667263031, 0.13389338552951813, -0.05120936036109924, 0.10213122516870499, 0.03965876251459122, -0.04863924905657768, -0.1504911333322525, 0.048020102083683014, -0.045119889080524445, 0.10007636249065399, -0.02209559828042984, 0.19294306635856628, 0.12077091634273529, -0.1540873944759369, 0.008302191272377968, -0.04758236184716225, -0.08302319794893265, -0.12201978266239166, -0.08568556606769562, -0.09859617054462433, -0.1510256975889206, 0.007502351421862841, -0.11645141988992691, 0.030481217429041862, 0.10619784891605377, 0.016481274738907814, -0.017739612609148026, 0.18016201257705688, 0.020470935851335526, 0.02435501478612423, 0.052314288914203644, -0.0016847337828949094, -0.025080962106585503, -0.07720296829938889, -0.08408365398645401, 0.0088091054931283, -0.019161663949489594, 0.035990871489048004, -0.03922034800052643, -0.024005785584449768, 0.036113664507865906, -0.015797872096300125, -0.10700224339962006, -0.0002434178168186918, 0.044772375375032425, 0.05856538936495781, 0.03504398837685585, 0.00685960752889514, -0.0006990644033066928, -0.005217083729803562, 0.22550226747989655, -0.07330074161291122, -0.06130015850067139, -0.08016406744718552, 0.22698351740837097, 0.021395482122898102, 0.014634544029831886, 0.0034945691004395485, -0.09127109497785568, 0.03562913462519646, 0.23294058442115784, 0.20593766868114471, -0.08352344483137131, 0.0011662048054859042, -0.015086543746292591, -0.005434559192508459, -0.01665688119828701, 0.1024760901927948, 0.09788625687360764, 0.04746599867939949, -0.0781695693731308, -0.03796330466866493, -0.02818402089178562, -0.002353696385398507, -0.04159863665699959, 0.06582567095756531, 0.04367976263165474, 0.020118076354265213, -0.0460582971572876, 0.06710721552371979, -0.04539572820067406, -0.09940842539072037, 0.025964682921767235, -0.2031126320362091, -0.13898971676826477, -0.0028030057437717915, 0.10721360146999359, -0.01823245733976364, 0.06395728886127472, -0.03307371586561203, 0.0016885217046365142, 0.044164594262838364, -0.018836937844753265, -0.08634664863348007, -0.05310612916946411, 0.060816362500190735, -0.11378787457942963, 0.22568421065807343, -0.041429147124290466, 0.04597730189561844, 0.1308813840150833, 0.028004206717014313, -0.07262913137674332, 0.09290807694196701, 0.04143163189291954, -0.06372534483671188, 0.03150159865617752, 0.0958264023065567, -0.03523101285099983, 0.09176867455244064, 0.06217784062027931, -0.1378556191921234, 0.016420992091298103, -0.04834679141640663, -0.07512161135673523, -0.05342810973525047, -0.048378393054008484, -0.06143253296613693, 0.13536737859249115, 0.18388116359710693, -0.03442857041954994, 0.01441171858459711, -0.04897855594754219, 0.01942768134176731, 0.0698389783501625, 0.055357158184051514, -0.028829524293541908, -0.2486453801393509, 0.011963087134063244, 0.09582283347845078, -0.013882508501410484, -0.3199068009853363, -0.07934354245662689, -0.015573213808238506, -0.03376461938023567, -0.09747298061847687, 0.08614373952150345, 0.1329052895307541, 0.0523286908864975, -0.061066996306180954, -0.08453446626663208, -0.06984195858240128, 0.16628962755203247, -0.12591195106506348, -0.0971534326672554 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
mesolitica/DPO-malaysian-tinyllama-1.1b-16k-instructions-v3
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T06:44:29+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 60, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.04654794931411743, 0.16618601977825165, -0.005445904564112425, 0.01853804849088192, 0.0981811136007309, 0.011998992413282394, 0.06433123350143433, 0.11398410052061081, -0.0230073444545269, 0.11406639218330383, 0.03047988750040531, 0.10172267258167267, 0.11317981779575348, 0.14841650426387787, -0.002152352826669812, -0.22403094172477722, 0.050844956189394, -0.12105348706245422, -0.033293843269348145, 0.11749980598688126, 0.1483822613954544, -0.09928343445062637, 0.07274559140205383, -0.029687678441405296, -0.012143402360379696, -0.030057786032557487, -0.05890674889087677, -0.046214159578084946, 0.04651786759495735, 0.06640566885471344, 0.06770290434360504, 0.0071083661168813705, 0.09012923389673233, -0.2696533799171448, 0.018959321081638336, 0.07145345956087112, -0.002759667346253991, 0.06957992166280746, 0.06404146552085876, -0.07107418030500412, 0.10337356477975845, -0.05106033384799957, 0.14650006592273712, 0.08365883678197861, -0.09081148356199265, -0.1895141303539276, -0.08866965025663376, 0.09882009029388428, 0.17572562396526337, 0.04925641790032387, -0.02320658043026924, 0.09761467576026917, -0.08769196271896362, 0.015438909642398357, 0.04981724172830582, -0.07620415836572647, -0.05378096550703049, 0.05986575037240982, 0.07907199114561081, 0.06627275794744492, -0.12434766441583633, -0.02885502204298973, 0.005009706597775221, 0.010980482213199139, 0.0769270583987236, 0.01728810742497444, 0.146672785282135, 0.0338633768260479, -0.12615777552127838, -0.04880760237574577, 0.09869225323200226, 0.03395522013306618, -0.04422314465045929, -0.24749068915843964, -0.03152675926685333, -0.030810698866844177, -0.029386121779680252, -0.03716538846492767, 0.04340358078479767, -0.007673026993870735, 0.08638741075992584, -0.0060646249912679195, -0.07403432577848434, -0.03937075287103653, 0.06169692054390907, 0.0672287791967392, 0.02999979443848133, -0.013745363801717758, 0.010938193649053574, 0.11620724946260452, 0.1095694974064827, -0.12054188549518585, -0.05555335059762001, -0.06393084675073624, -0.08656639605760574, -0.040790557861328125, 0.034162238240242004, 0.03456587344408035, 0.05349370837211609, 0.25305667519569397, 0.015654386952519417, 0.059652652591466904, 0.034477248787879944, 0.007892133668065071, 0.05848940089344978, 0.11044429242610931, -0.06018859148025513, -0.10444226115942001, -0.02648012898862362, 0.08843598514795303, 0.008199662901461124, -0.03287925571203232, -0.05088530853390694, 0.06019928678870201, 0.01946467161178589, 0.11926145106554031, 0.09061790257692337, 0.010536285117268562, -0.07121123373508453, -0.061038948595523834, 0.1891259253025055, -0.16544590890407562, 0.04322727024555206, 0.035097137093544006, -0.03903156518936157, 0.00019933005387429148, 0.013914269395172596, 0.016625655815005302, -0.025983380153775215, 0.09017423540353775, -0.054113563150167465, -0.04145489260554314, -0.11186197400093079, -0.03383193537592888, 0.033762916922569275, 0.008953776210546494, -0.035059962421655655, -0.033713940531015396, -0.08351044356822968, -0.07577689737081528, 0.09320491552352905, -0.07346344739198685, -0.04878907650709152, -0.01804324984550476, -0.07530532777309418, 0.022395428270101547, 0.019394835457205772, 0.07707412540912628, -0.02362251654267311, 0.04399976506829262, -0.05189276114106178, 0.05863580107688904, 0.11207318305969238, 0.03570080175995827, -0.05736649036407471, 0.06062258034944534, -0.23834340274333954, 0.09552820026874542, -0.07409077137708664, 0.05591456592082977, -0.153293639421463, -0.024439791217446327, 0.04788333550095558, 0.008784620091319084, -0.009650949388742447, 0.13416339457035065, -0.21702027320861816, -0.02536402828991413, 0.1717337965965271, -0.10057014971971512, -0.07069246470928192, 0.05619903281331062, -0.04835370555520058, 0.10988964140415192, 0.03825836628675461, -0.025690359994769096, 0.06171267107129097, -0.1267417073249817, 0.003717758459970355, -0.05005312338471413, -0.017048977315425873, 0.1548657864332199, 0.07182947546243668, -0.07217690348625183, 0.07399354875087738, 0.025708531960844994, -0.0246540866792202, -0.04625825211405754, -0.015164627693593502, -0.10536660254001617, 0.014689887873828411, -0.06369215250015259, 0.014470234513282776, -0.020807426422834396, -0.09071163833141327, -0.027962757274508476, -0.17504668235778809, -0.03014434315264225, 0.08651752024888992, -0.008693269453942776, -0.01803150773048401, -0.1178668737411499, 0.009341353550553322, 0.04177580401301384, 0.0061247628182172775, -0.13462838530540466, -0.04812471568584442, 0.02780051715672016, -0.1600649207830429, 0.034652888774871826, -0.05392369255423546, 0.04932025074958801, 0.025790516287088394, -0.028889117762446404, -0.026493212208151817, 0.021633783355355263, 0.005992184858769178, -0.011999987065792084, -0.24343903362751007, -0.028118690475821495, -0.024888472631573677, 0.1682123839855194, -0.20917098224163055, 0.03546025976538658, 0.07867541164159775, 0.15366052091121674, 0.011240328662097454, -0.04177491366863251, 0.005974748637527227, -0.06935794651508331, -0.02736494317650795, -0.05875484645366669, -0.0047869328409433365, -0.03310677409172058, -0.04545191675424576, 0.04568447172641754, -0.16510973870754242, -0.032636504620313644, 0.09776268899440765, 0.06289951503276825, -0.13922683894634247, -0.020621931180357933, -0.03630133345723152, -0.049253206700086594, -0.04911839962005615, -0.0605199858546257, 0.10893940925598145, 0.05891856551170349, 0.04574795812368393, -0.05928509309887886, -0.07568105310201645, -0.001827909960411489, -0.013898161239922047, -0.017864689230918884, 0.09759635478258133, 0.0751434788107872, -0.13251115381717682, 0.09224759042263031, 0.09603385627269745, 0.07919023185968399, 0.09113933145999908, -0.02355697751045227, -0.08261934667825699, -0.045987509191036224, 0.031442027539014816, 0.020124373957514763, 0.13039541244506836, -0.024294709786772728, 0.04352088272571564, 0.042134687304496765, -0.019369594752788544, 0.014752166345715523, -0.08687400817871094, 0.033972494304180145, 0.028472330421209335, -0.016721390187740326, 0.050190530717372894, -0.03876714035868645, 0.02440318465232849, 0.08830609917640686, 0.045322712510824203, 0.03507532551884651, 0.015493292361497879, -0.05206458270549774, -0.1083620935678482, 0.16405931115150452, -0.12714070081710815, -0.22483378648757935, -0.13936103880405426, 0.0037376401014626026, 0.035628627985715866, -0.015835661441087723, 0.002417160663753748, -0.059374887496232986, -0.12220635265111923, -0.08858037739992142, 0.015140829607844353, 0.04942670464515686, -0.09028962254524231, -0.06437795609235764, 0.058117836713790894, 0.03889724239706993, -0.14560972154140472, 0.017612040042877197, 0.04854894429445267, -0.09789852797985077, -0.006774199660867453, 0.08094939589500427, 0.0698540136218071, 0.1770169734954834, 0.017703235149383545, -0.021850809454917908, 0.032354529947042465, 0.20614571869373322, -0.13538233935832977, 0.11083246022462845, 0.13607586920261383, -0.09041404724121094, 0.08072979003190994, 0.19951270520687103, 0.03932560607790947, -0.10153959691524506, 0.031980328261852264, 0.02283124253153801, -0.0284719280898571, -0.24526868760585785, -0.07212468236684799, -0.004402178805321455, -0.058010730892419815, 0.07660572230815887, 0.09286724030971527, 0.08215958625078201, 0.012304253876209259, -0.09310996532440186, -0.08154371380805969, 0.05942574888467789, 0.10367169976234436, 0.024584239348769188, -0.010839897207915783, 0.08998730033636093, -0.034100502729415894, 0.019626356661319733, 0.0853661298751831, 0.005239574704319239, 0.17840281128883362, 0.05159219726920128, 0.18830420076847076, 0.07925192266702652, 0.07219027727842331, 0.009912233799695969, 0.013080619275569916, 0.018877580761909485, 0.03300119563937187, -0.002769160782918334, -0.08440786600112915, -0.02248465269804001, 0.11566436290740967, 0.06668911874294281, 0.010815348476171494, 0.015172341838479042, -0.04104290530085564, 0.07965951412916183, 0.1831512451171875, -0.007656289264559746, -0.1783534437417984, -0.057547420263290405, 0.07553383708000183, -0.09879875183105469, -0.09854305535554886, -0.013454320840537548, 0.03072015568614006, -0.17046253383159637, 0.023390959948301315, -0.02239842526614666, 0.1106182336807251, -0.14194999635219574, -0.020490378141403198, 0.07218493521213531, 0.07199500501155853, 0.004729843698441982, 0.05758659541606903, -0.16417601704597473, 0.10671813786029816, 0.008950476534664631, 0.06779605895280838, -0.09610627591609955, 0.1008887067437172, -0.004196076653897762, -0.02063460275530815, 0.1393408179283142, 0.002700034761801362, -0.06884108483791351, -0.0763031542301178, -0.08754398673772812, -0.009632662869989872, 0.12754282355308533, -0.1419651061296463, 0.08767123520374298, -0.037212442606687546, -0.0424150750041008, -0.0017086371080949903, -0.10206665843725204, -0.11638247221708298, -0.18888559937477112, 0.06001543253660202, -0.13492922484874725, 0.03152317553758621, -0.10799519717693329, -0.032371897250413895, -0.030304040759801865, 0.19337286055088043, -0.23447458446025848, -0.07199826091527939, -0.1475764364004135, -0.10233612358570099, 0.1443224400281906, -0.0501345656812191, 0.08485390990972519, -0.007241467013955116, 0.16846685111522675, 0.019060896709561348, -0.02531743235886097, 0.0971490666270256, -0.09173708409070969, -0.19302815198898315, -0.07869284600019455, 0.15662524104118347, 0.13260218501091003, 0.031680017709732056, -0.002461588243022561, 0.036563750356435776, -0.015421539545059204, -0.11935004591941833, 0.015969349071383476, 0.1787186712026596, 0.06237189099192619, 0.02331034652888775, -0.027346095070242882, -0.11273157596588135, -0.06900003552436829, -0.028530338779091835, 0.03054865077137947, 0.17762407660484314, -0.07057618349790573, 0.18207968771457672, 0.14163152873516083, -0.05922834202647209, -0.20400173962116241, 0.010538800619542599, 0.03055560030043125, 0.0009220078936778009, 0.02591954916715622, -0.20123432576656342, 0.08688826113939285, 0.004683020059019327, -0.05110127478837967, 0.13194532692432404, -0.17217805981636047, -0.14451217651367188, 0.0765485092997551, 0.038384392857551575, -0.19559739530086517, -0.12913893163204193, -0.09174312651157379, -0.045869920402765274, -0.18591414391994476, 0.09569250047206879, 0.0305706188082695, 0.010893458500504494, 0.03030681423842907, 0.029179483652114868, 0.019487828016281128, -0.0418255440890789, 0.18391458690166473, -0.024792250245809555, 0.026594700291752815, -0.08539514988660812, -0.06927408277988434, 0.03743394836783409, -0.052842434495687485, 0.07349982857704163, -0.023486759513616562, 0.007861839607357979, -0.10348054021596909, -0.042148489505052567, -0.03735732287168503, 0.015448716469109058, -0.09657872468233109, -0.08514349907636642, -0.045032672584056854, 0.09675803780555725, 0.09690850973129272, -0.033646680414676666, -0.028050623834133148, -0.07533035427331924, 0.04412057250738144, 0.19926515221595764, 0.1785389482975006, 0.042153384536504745, -0.08034496754407883, -0.004150947090238333, -0.010121207684278488, 0.04310847446322441, -0.20463712513446808, 0.06283636391162872, 0.05450061708688736, 0.01973269321024418, 0.11436162889003754, -0.019565396010875702, -0.15359151363372803, -0.07263088971376419, 0.06303015351295471, -0.060181066393852234, -0.19620554149150848, 0.00867035984992981, 0.060603946447372437, -0.16371412575244904, -0.04535605385899544, 0.04643881320953369, -0.005620351992547512, -0.038163937628269196, 0.021896906197071075, 0.09194854646921158, 0.0026654244866222143, 0.07427921891212463, 0.05387866869568825, 0.0827430784702301, -0.10537070035934448, 0.08090532571077347, 0.08839722722768784, -0.08452684432268143, 0.023530138656497, 0.10478579998016357, -0.059433579444885254, -0.03440561518073082, 0.020135708153247833, 0.08153781294822693, 0.01775863952934742, -0.040019966661930084, 0.013229827396571636, -0.10452935844659805, 0.05954122915863991, 0.08839859813451767, 0.032507482916116714, 0.016702456399798393, 0.03425082191824913, 0.04607953503727913, -0.07238735258579254, 0.12142276018857956, 0.031868141144514084, 0.017129309475421906, -0.036505792289972305, -0.040896978229284286, 0.019542274996638298, -0.03214648738503456, -0.005015232600271702, -0.03023446537554264, -0.07695909589529037, -0.014793801121413708, -0.1626158058643341, -0.011131818406283855, -0.05648450180888176, 0.010329355485737324, 0.03204665705561638, -0.032609567046165466, 0.008124498650431633, 0.009250079281628132, -0.07695289701223373, -0.0663459524512291, -0.020460480824112892, 0.09540658444166183, -0.16213038563728333, 0.022481130436062813, 0.08244425803422928, -0.12187694013118744, 0.09281346201896667, 0.016204802319407463, -0.006236857734620571, 0.025038830935955048, -0.1475188434123993, 0.034843120723962784, -0.03386561945080757, 0.010836300440132618, 0.04373383894562721, -0.21569781005382538, -0.00004886732858722098, -0.033673107624053955, -0.06639216095209122, -0.009451326914131641, -0.03672455996274948, -0.11508306115865707, 0.1058407872915268, 0.007236586883664131, -0.08753558248281479, -0.03186136856675148, 0.029325377196073532, 0.0838974118232727, -0.021959776058793068, 0.15145497024059296, -0.008370938710868359, 0.07429654151201248, -0.16209737956523895, -0.018623165786266327, -0.006028574425727129, 0.022658247500658035, -0.01664556935429573, -0.01111356820911169, 0.044031109660863876, -0.022746501490473747, 0.17925859987735748, -0.030318550765514374, 0.02272745408117771, 0.06815794110298157, 0.019072026014328003, -0.030184008181095123, 0.10406795144081116, 0.04094860330224037, 0.02014910988509655, 0.018591465428471565, 0.003289656015112996, -0.04647882282733917, -0.03173251822590828, -0.19407226145267487, 0.07288651913404465, 0.15608493983745575, 0.09729263186454773, -0.016707008704543114, 0.07954329252243042, -0.10199416428804398, -0.1109243705868721, 0.12477338314056396, -0.04797708988189697, -0.002418199321255088, -0.07150927931070328, 0.13247236609458923, 0.1437523066997528, -0.1859612911939621, 0.07269313186407089, -0.0699717253446579, -0.04708027467131615, -0.10980689525604248, -0.19441905617713928, -0.05561789125204086, -0.049456022679805756, -0.016053348779678345, -0.04698808491230011, 0.07504211366176605, 0.054538097232580185, 0.006766852922737598, -0.0023397188633680344, 0.06506035476922989, -0.031050674617290497, -0.0037882844917476177, 0.032597362995147705, 0.06591679900884628, 0.012734474614262581, -0.030802709981799126, 0.016619903966784477, -0.013545602560043335, 0.045626189559698105, 0.06578011065721512, 0.04976864159107208, -0.02938537672162056, 0.014603170566260815, -0.038539156317710876, -0.10249634087085724, 0.043612558394670486, -0.024421939626336098, -0.0789753645658493, 0.15477414429187775, 0.023680059239268303, 0.007779473438858986, -0.020137663930654526, 0.23901568353176117, -0.0738423764705658, -0.0964353010058403, -0.14737580716609955, 0.10557299107313156, -0.038081806153059006, 0.05800395458936691, 0.04625935107469559, -0.10226529091596603, 0.018044332042336464, 0.1338089406490326, 0.16182038187980652, -0.039008259773254395, 0.020095856860280037, 0.031135575845837593, 0.00566398398950696, -0.03622615709900856, 0.04847532883286476, 0.06906453520059586, 0.16569648683071136, -0.04632584750652313, 0.09100406616926193, 0.0019041687482967973, -0.09579581767320633, -0.038361791521310806, 0.11069868505001068, -0.016052277758717537, 0.019335128366947174, -0.05818064883351326, 0.11742528527975082, -0.06386786699295044, -0.23783175647258759, 0.06453443318605423, -0.0684293657541275, -0.13765870034694672, -0.02378307841718197, 0.08207765966653824, -0.012955902144312859, 0.027587108314037323, 0.0730307325720787, -0.07240920513868332, 0.201939657330513, 0.03798431158065796, -0.05499868467450142, -0.055047210305929184, 0.0805421993136406, -0.10008571296930313, 0.2739645540714264, 0.01557221356779337, 0.04601577669382095, 0.10384146869182587, -0.009341772645711899, -0.13838784396648407, 0.019836371764540672, 0.09581108391284943, -0.10502193123102188, 0.04196618124842644, 0.19815568625926971, -0.0014755994779989123, 0.12389086186885834, 0.07657600939273834, -0.07551808655261993, 0.0478031262755394, -0.08054235577583313, -0.06760486960411072, -0.09260394424200058, 0.09703279286623001, -0.07772123068571091, 0.14251399040222168, 0.13876807689666748, -0.05074559152126312, 0.012724342755973339, -0.031311117112636566, 0.044293127954006195, -0.00010600237874314189, 0.10321761667728424, 0.004272161517292261, -0.1832672357559204, 0.024692710489034653, 0.005650998093187809, 0.10749758034944534, -0.16033467650413513, -0.09566054493188858, 0.042343202978372574, 0.003505636239424348, -0.0672195628285408, 0.1290110945701599, 0.05665452033281326, 0.04342988133430481, -0.03997718170285225, -0.03521440550684929, -0.0060732318088412285, 0.13561366498470306, -0.10713256150484085, 0.0009933578548952937 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # merged_peft_huner_retrained This model is a fine-tuned version of [Balu94pratap/balu94distilbert](https://huggingface.co/Balu94pratap/balu94distilbert) on the transformer_dataset_ner_kaggle dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.17.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "datasets": ["transformer_dataset_ner_kaggle"], "base_model": "Balu94pratap/balu94distilbert", "model-index": [{"name": "merged_peft_huner_retrained", "results": []}]}
null
Balu94pratap/merged_peft_huner_retrained
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "dataset:transformer_dataset_ner_kaggle", "base_model:Balu94pratap/balu94distilbert", "license:apache-2.0", "region:us" ]
2024-02-14T06:46:17+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #dataset-transformer_dataset_ner_kaggle #base_model-Balu94pratap/balu94distilbert #license-apache-2.0 #region-us
# merged_peft_huner_retrained This model is a fine-tuned version of Balu94pratap/balu94distilbert on the transformer_dataset_ner_kaggle dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.17.0 - Tokenizers 0.15.1
[ "# merged_peft_huner_retrained\n\nThis model is a fine-tuned version of Balu94pratap/balu94distilbert on the transformer_dataset_ner_kaggle dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.001\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 50", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.0\n- Pytorch 2.1.2\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #dataset-transformer_dataset_ner_kaggle #base_model-Balu94pratap/balu94distilbert #license-apache-2.0 #region-us \n", "# merged_peft_huner_retrained\n\nThis model is a fine-tuned version of Balu94pratap/balu94distilbert on the transformer_dataset_ner_kaggle dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.001\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 50", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.0\n- Pytorch 2.1.2\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ 63, 49, 6, 12, 8, 3, 89, 4, 36 ]
[ "passage: TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #dataset-transformer_dataset_ner_kaggle #base_model-Balu94pratap/balu94distilbert #license-apache-2.0 #region-us \n# merged_peft_huner_retrained\n\nThis model is a fine-tuned version of Balu94pratap/balu94distilbert on the transformer_dataset_ner_kaggle dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.001\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 50### Training results### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.0\n- Pytorch 2.1.2\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ -0.0940537229180336, 0.15735715627670288, -0.0019004337955266237, 0.10064715892076492, 0.11769083142280579, 0.006536389235407114, 0.09716472029685974, 0.14067243039608002, -0.08457260578870773, 0.08290445804595947, 0.07567059248685837, 0.06741010397672653, 0.054259348660707474, 0.1601012796163559, -0.017926016822457314, -0.19512547552585602, 0.014837258495390415, -0.017441531643271446, -0.013865760527551174, 0.09995345771312714, 0.09199216216802597, -0.08639950305223465, 0.08163873851299286, -0.007154775783419609, -0.14540693163871765, 0.03994304686784744, -0.030144277960062027, -0.046758078038692474, 0.07540597766637802, -0.0010744902538135648, 0.09478461742401123, -0.021138187497854233, 0.13304558396339417, -0.2345825433731079, 0.00022825825726613402, 0.08973593264818192, 0.03549392148852348, 0.07329119741916656, 0.04264582321047783, -0.0245079156011343, 0.11463123559951782, -0.16403160989284515, 0.10974022001028061, 0.024075930938124657, -0.07887449115514755, -0.15079562366008759, -0.1125699132680893, 0.13408975303173065, 0.10575932264328003, 0.09416438639163971, 0.013234393671154976, 0.15018336474895477, -0.04552954062819481, 0.0790872871875763, 0.1691332757472992, -0.24210360646247864, -0.06289808452129364, 0.07209140807390213, 0.045661330223083496, 0.08482855558395386, -0.14214670658111572, -0.02052180841565132, 0.06541220098733902, 0.015549550764262676, 0.09074024856090546, -0.019356118515133858, -0.12215437740087509, -0.0061399186961352825, -0.1229306310415268, -0.014146402478218079, 0.1428241729736328, 0.05049614608287811, -0.045518454164266586, -0.10565042495727539, -0.050218574702739716, -0.09164644777774811, -0.010957743972539902, -0.030776454135775566, 0.030358415096998215, -0.06022566929459572, -0.0040079765021800995, -0.06668733805418015, -0.06981248408555984, -0.08168449997901917, 0.010159634985029697, 0.09837723523378372, 0.04698618873953819, 0.01630500704050064, -0.009611655957996845, 0.10203948616981506, 0.010546969249844551, -0.111440010368824, -0.024498801678419113, -0.0065232389606535435, -0.08448562026023865, -0.05681507661938667, -0.012598119676113129, -0.01698063686490059, -0.0054458267986774445, 0.1795199066400528, -0.05965914577245712, 0.05995690077543259, 0.009813609533011913, -0.0056161461398005486, -0.01418736856430769, 0.11723559349775314, -0.06018746644258499, -0.04782704636454582, 0.019307060167193413, 0.12860874831676483, 0.03988702967762947, -0.0033763153478503227, -0.07410546392202377, -0.032047104090452194, 0.0723060891032219, 0.07052301615476608, -0.015747996047139168, 0.035419609397649765, -0.024959353730082512, -0.018663087859749794, 0.03204698488116264, -0.14038139581680298, 0.05513877049088478, -0.008583727292716503, -0.09006914496421814, -0.04749288409948349, 0.06233320012688637, -0.015542462468147278, -0.018799150362610817, 0.06638408452272415, -0.08765152096748352, -0.008434401825070381, -0.07516724616289139, -0.08335399627685547, 0.034535203129053116, -0.08352363854646683, -0.010423528961837292, -0.07731053978204727, -0.24737371504306793, -0.059224873781204224, 0.034009672701358795, -0.0551428459584713, -0.02245914191007614, -0.054718080908060074, -0.07813436537981033, -0.00547395134344697, -0.006309952586889267, 0.08807103335857391, -0.05353488400578499, 0.07681971788406372, -0.010854791849851608, 0.03351893275976181, 0.018062131479382515, 0.02955896593630314, -0.09842361509799957, 0.02903427742421627, -0.11892081797122955, 0.06371588259935379, -0.11990876495838165, 0.05506817251443863, -0.10983484238386154, -0.07413695752620697, -0.028377098962664604, -0.023871218785643578, 0.05467069521546364, 0.13024835288524628, -0.17073290050029755, -0.013493791222572327, 0.11878975480794907, -0.08761906623840332, -0.08918356895446777, 0.09019988775253296, -0.05378017574548721, 0.060919009149074554, 0.07878750562667847, 0.20688004791736603, 0.14915773272514343, -0.1558556854724884, -0.051610104739665985, 0.0007728743366897106, 0.0477774478495121, -0.00353156472556293, 0.03799090534448624, -0.005862693767994642, 0.035264402627944946, 0.0073340535163879395, -0.0714777410030365, 0.02481927163898945, -0.059674281626939774, -0.08914478868246078, -0.049130722880363464, -0.1147705614566803, 0.04999862238764763, 0.039759986102581024, 0.024513646960258484, -0.07234025001525879, -0.1144547089934349, 0.11235816031694412, 0.156221404671669, -0.04675877466797829, 0.008417514152824879, -0.06410769373178482, 0.05862981081008911, -0.04735333472490311, -0.022786390036344528, -0.15861375629901886, -0.13221149146556854, 0.03139417991042137, -0.11379805952310562, 0.02671579085290432, -0.02742728218436241, 0.07180389761924744, 0.07179863750934601, -0.045197129249572754, -0.03789598122239113, -0.08488626778125763, 0.016799097880721092, -0.09620752185583115, -0.19070707261562347, -0.05250374600291252, -0.03386646881699562, 0.1668602079153061, -0.2486540973186493, 0.03578730672597885, -0.03064207173883915, 0.13727585971355438, 0.02743951976299286, -0.07237014174461365, 0.031923167407512665, 0.03858005255460739, -0.01604606956243515, -0.10061395168304443, 0.02315213903784752, -0.011657635681331158, -0.05385386571288109, -0.07317045331001282, -0.12984545528888702, 0.022455981001257896, 0.08013100177049637, 0.10945340245962143, -0.10781174153089523, 0.016831936314702034, -0.06097470223903656, -0.04617607593536377, -0.07399975508451462, -0.006019155494868755, 0.13143734633922577, 0.01601017452776432, 0.11311739683151245, -0.05539289861917496, -0.08305736631155014, -0.003778344951570034, -0.007430585566908121, -0.012085738591849804, 0.07518475502729416, 0.036021746695041656, -0.0736028254032135, 0.12176288664340973, 0.07269904017448425, -0.04501502960920334, 0.1391356736421585, -0.0437450185418129, -0.09471780806779861, -0.02625512145459652, 0.03841065242886543, -0.010251523926854134, 0.1487724483013153, -0.04753660038113594, -0.0005421072710305452, 0.01948048174381256, -0.0049198344349861145, 0.021329766139388084, -0.15945173799991608, -0.013227025978267193, 0.015464398078620434, -0.044737331569194794, -0.010786463506519794, -0.02034333348274231, 0.020682083442807198, 0.07226485013961792, 0.005805638153105974, -0.008259563706815243, 0.009902355261147022, -0.0035049100406467915, -0.07542883604764938, 0.16198351979255676, -0.11225233227014542, -0.14092130959033966, -0.14717790484428406, 0.05562137812376022, -0.07041814178228378, -0.034161340445280075, 0.004468823783099651, -0.0788019597530365, -0.04884200915694237, -0.1073044165968895, -0.015763046219944954, 0.0016059302724897861, -0.033567141741514206, 0.04016869142651558, 0.012202278710901737, 0.0837835744023323, -0.13475948572158813, 0.01581408455967903, -0.01625155098736286, -0.08477324992418289, -0.03667329251766205, 0.057359520345926285, 0.13157512247562408, 0.10731058567762375, -0.02357194758951664, 0.014956101775169373, -0.028453050181269646, 0.19125190377235413, -0.06476989388465881, 0.01755588687956333, 0.1076827198266983, 0.009458950720727444, 0.04799596592783928, 0.11595066636800766, 0.016393262892961502, -0.08954198658466339, 0.022329231724143028, 0.0905752182006836, -0.011380424723029137, -0.22937719523906708, -0.04944588243961334, -0.01730748452246189, -0.03332846611738205, 0.10191820561885834, 0.0554155632853508, 0.03684183210134506, 0.04497620835900307, -0.011981108225882053, 0.030829623341560364, -0.005366437137126923, 0.08707036077976227, 0.08686138689517975, 0.018112367019057274, 0.07801010459661484, -0.045684076845645905, -0.014728516340255737, 0.05813709646463394, 0.029110832139849663, 0.22536885738372803, -0.04239806532859802, 0.09396593272686005, 0.030545203015208244, 0.17622284591197968, -0.04978710040450096, 0.030766624957323074, 0.006669775582849979, 0.005064405966550112, 0.022424863651394844, -0.06462886184453964, -0.03821425512433052, 0.04761909320950508, -0.04264063388109207, 0.07717160135507584, -0.07432132214307785, 0.0038363314233720303, 0.03711269050836563, 0.22768492996692657, 0.04852565377950668, -0.30952298641204834, -0.09004651755094528, 0.01832449622452259, -0.019845781847834587, -0.06606007367372513, 0.0028669049497693777, 0.1351216435432434, -0.11502674967050552, 0.0769641250371933, -0.04497292637825012, 0.0734744668006897, -0.03300587087869644, -0.014959371648728848, 0.01727263256907463, 0.10442141443490982, -0.01133985910564661, 0.0856533944606781, -0.1566666215658188, 0.1891506016254425, 0.02604549378156662, 0.13203443586826324, -0.040789518505334854, 0.03304671496152878, 0.028973359614610672, 0.07840383797883987, 0.13190187513828278, -0.001800238387659192, -0.005309286527335644, -0.18387676775455475, -0.1043439507484436, 0.015890564769506454, 0.07221590727567673, -0.029716800898313522, 0.08815838396549225, -0.0422646589577198, -0.00148502376396209, 0.0351860448718071, -0.08661897480487823, -0.1576245129108429, -0.12335288524627686, -0.005977721884846687, 0.018372057005763054, -0.04841418191790581, -0.08451820909976959, -0.09331347048282623, -0.009250590577721596, 0.1510820835828781, 0.008436922915279865, -0.05626947060227394, -0.13024970889091492, 0.0679025650024414, 0.13047878444194794, -0.0659453272819519, 0.00991798099130392, 0.017661908641457558, 0.11353812366724014, 0.02105640433728695, -0.07765684276819229, 0.027523301541805267, -0.06812664121389389, -0.12737247347831726, -0.04725012555718422, 0.1222735345363617, 0.05733352154493332, 0.03464438393712044, -0.0022383618634194136, 0.025606613606214523, 0.01958782598376274, -0.08538524806499481, 0.0033699744381010532, 0.114000104367733, 0.047080148011446, 0.0751124769449234, -0.10510196536779404, -0.02025776542723179, -0.057612571865320206, -0.005663774441927671, 0.09073843061923981, 0.20418919622898102, -0.09083520621061325, 0.09714916348457336, 0.10802491754293442, -0.09944050759077072, -0.19335204362869263, 0.06343699246644974, 0.07616947591304779, 0.008566497825086117, 0.06359647959470749, -0.15597547590732574, 0.10270898789167404, 0.1253087818622589, -0.02099069207906723, 0.07435532659292221, -0.3438815772533417, -0.12102846801280975, 0.09258393198251724, 0.1180083230137825, -0.018393682315945625, -0.1507311761379242, -0.047742731869220734, -0.023496992886066437, -0.12634387612342834, 0.0871884897351265, -0.09308882057666779, 0.08641175925731659, -0.01207282766699791, 0.09673924744129181, 0.03232625126838684, -0.03702723979949951, 0.14056004583835602, 0.036783259361982346, 0.089618980884552, -0.0720825269818306, 0.020824432373046875, 0.10289210081100464, -0.09017161279916763, 0.10878916829824448, -0.0454845204949379, 0.07478702068328857, -0.14252489805221558, -0.017256001010537148, -0.07557693123817444, 0.08526091277599335, -0.04904245585203171, -0.060256361961364746, -0.062124308198690414, 0.06779046356678009, 0.06358171254396439, -0.026279062032699585, 0.054761871695518494, 0.04664601758122444, 0.13464055955410004, 0.08866237848997116, 0.05042319744825363, 0.016934311017394066, -0.10985978692770004, 0.006303236819803715, -0.03378317877650261, 0.06051929295063019, -0.12934862077236176, 0.00645971717312932, 0.12770262360572815, 0.05865341052412987, 0.1244557574391365, 0.009816164150834084, -0.07313036173582077, -0.01963193528354168, 0.0393487848341465, -0.1155201643705368, -0.14012190699577332, 0.014104234986007214, -0.07765474915504456, -0.1352088898420334, 0.00324762100353837, 0.10323148220777512, -0.08550538867712021, -0.006981561426073313, -0.017430152744054794, 0.0372626930475235, -0.023205243051052094, 0.1856226623058319, 0.06459221243858337, 0.0503946952521801, -0.06750908493995667, 0.12101267278194427, 0.07581285387277603, -0.04862532764673233, 0.06856300681829453, 0.05954669043421745, -0.0774938315153122, -0.024348288774490356, 0.049079518765211105, 0.1803523600101471, -0.02938566356897354, -0.04188135266304016, -0.07247777283191681, -0.0615261010825634, 0.027610257267951965, 0.13678991794586182, 0.04047088325023651, -0.002673730021342635, -0.018190020695328712, 0.0288693830370903, -0.16368865966796875, 0.11187906563282013, 0.05387517809867859, 0.07663341611623764, -0.171954944729805, 0.10538367182016373, 0.01573723740875721, 0.029090622439980507, -0.010504371486604214, 0.04070758447051048, -0.08741836249828339, -0.02031625621020794, -0.13003799319267273, -0.01791001297533512, -0.04501360282301903, 0.014256130903959274, -0.010767652653157711, -0.04991986230015755, -0.04327400401234627, 0.053637392818927765, -0.06306648254394531, -0.06745399534702301, 0.023800283670425415, 0.06919445842504501, -0.1722554862499237, -0.030022967606782913, 0.023951420560479164, -0.08568378537893295, 0.044897548854351044, 0.055624909698963165, 0.0385187566280365, 0.03746882081031799, -0.11252959072589874, -0.009144122712314129, 0.03659466281533241, 0.030870642513036728, 0.06032921001315117, -0.11108508706092834, -0.006490291096270084, -0.02405017986893654, 0.0333111397922039, 0.025070535019040108, 0.08274975419044495, -0.12219492346048355, -0.035747598856687546, -0.06186610087752342, -0.0424322672188282, -0.048386313021183014, 0.049932003021240234, 0.10943116992712021, 0.029230250045657158, 0.17359064519405365, -0.08845605701208115, 0.041130103170871735, -0.20651297271251678, -0.040839940309524536, -0.019737277179956436, -0.027262965217232704, -0.04840143397450447, -0.011801362968981266, 0.06615904718637466, -0.049519363790750504, 0.10699323564767838, -0.0015339454403147101, 0.048079293221235275, 0.039713259786367416, -0.058866243809461594, -0.022457987070083618, 0.0012913353275507689, 0.16160571575164795, 0.04427250102162361, -0.026211725547909737, 0.08973271399736404, -0.021448027342557907, 0.06901873648166656, 0.0008405614062212408, 0.13988284766674042, 0.1480376124382019, -0.03860963135957718, 0.06554088741540909, 0.09400004148483276, -0.11841314285993576, -0.10761461406946182, 0.07702754437923431, -0.049121636897325516, 0.09259867668151855, -0.052287507802248, 0.18257878720760345, 0.11797749996185303, -0.1656535267829895, 0.04877471178770065, -0.03261871635913849, -0.1163300946354866, -0.10266389697790146, -0.048833172768354416, -0.06996100395917892, -0.09506894648075104, 0.024655992165207863, -0.1018008217215538, 0.026015080511569977, 0.06284497678279877, 0.003060565097257495, 0.006439694203436375, 0.2093944549560547, -0.0384821780025959, 0.018815625458955765, 0.04050353169441223, 0.018137475475668907, -0.03786337748169899, -0.0724414736032486, -0.05205100402235985, 0.059886764734983444, 0.0036256490275263786, 0.06334338337182999, -0.04218757152557373, 0.01123776100575924, 0.05648354813456535, -0.009559715166687965, -0.06151188910007477, 0.020375128835439682, 0.0172315314412117, 0.047989849001169205, 0.05703428387641907, 0.08605372905731201, -0.011669818311929703, -0.04392354190349579, 0.26209110021591187, -0.06813587993383408, -0.07242358475923538, -0.12379404157400131, 0.17593006789684296, 0.03830137476325035, -0.016525188460946083, 0.04789232090115547, -0.12830112874507904, 0.0023988906759768724, 0.15427528321743011, 0.14417220652103424, -0.0249685849994421, -0.019077317789196968, -0.04107130691409111, -0.010577036999166012, -0.06070400029420853, 0.09994577616453171, 0.09910693019628525, 0.039688222110271454, -0.0375620536506176, 0.00648534158244729, -0.00031489544198848307, -0.03098575584590435, -0.09626855701208115, 0.06128595396876335, -0.00034444965422153473, 0.00807600561529398, -0.04216959699988365, 0.08449704200029373, 0.01427978090941906, -0.21202300488948822, 0.08174239844083786, -0.1703578382730484, -0.17070698738098145, -0.029679954051971436, 0.1021919772028923, -0.02659596875309944, 0.046752866357564926, -0.01181509904563427, 0.00520767318084836, 0.13656412065029144, -0.022616490721702576, -0.07154066115617752, -0.14300435781478882, 0.06128770858049393, -0.06590509414672852, 0.2736547887325287, -0.00888480618596077, 0.03554776683449745, 0.10400783270597458, -0.014218131080269814, -0.1611204594373703, 0.059328965842723846, 0.06018255650997162, -0.04217228665947914, 0.01594989001750946, 0.15233451128005981, -0.048166025429964066, 0.11808474361896515, 0.03321996331214905, -0.09973812103271484, -0.022469934076070786, -0.029710765928030014, -0.019840843975543976, -0.08909826725721359, 0.00640421686694026, -0.05860978737473488, 0.15554369986057281, 0.1810370534658432, -0.03785427287220955, 0.02001398243010044, -0.08062044531106949, 0.03001498058438301, 0.07837429642677307, 0.08327701687812805, 0.0020967908203601837, -0.1871764063835144, 0.02054543048143387, -0.027805272489786148, 0.03674706071615219, -0.2523760199546814, -0.08701752126216888, 0.025928225368261337, -0.05077420175075531, -0.050526395440101624, 0.1184336468577385, 0.06543750315904617, 0.04879509657621384, -0.026240075007081032, -0.131337970495224, -0.03829497471451759, 0.146421417593956, -0.15031583607196808, -0.052491892129182816 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-en-nonnative This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4024 - Wer: 40.7599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2992 | 0.2 | 1000 | 0.4468 | 29.3898 | | 0.2918 | 0.39 | 2000 | 0.4240 | 27.1733 | | 0.3078 | 0.59 | 3000 | 0.4173 | 28.4974 | | 0.2711 | 0.79 | 4000 | 0.4027 | 24.5538 | | 0.2813 | 0.98 | 5000 | 0.4029 | 28.6413 | | 0.1416 | 1.18 | 6000 | 0.4078 | 25.9931 | | 0.1399 | 1.38 | 7000 | 0.4078 | 28.8140 | | 0.1478 | 1.57 | 8000 | 0.4070 | 31.3759 | | 0.1479 | 1.77 | 9000 | 0.4033 | 33.5636 | | 0.1266 | 1.97 | 10000 | 0.4024 | 40.7599 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice_11_0"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "whisper-small-en-nonnative", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "common_voice_11_0", "type": "common_voice_11_0", "config": "en", "split": "test", "args": "en"}, "metrics": [{"type": "wer", "value": 40.75993091537133, "name": "Wer"}]}]}]}
automatic-speech-recognition
vishakha-lall/whisper-small-en-nonnative
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-14T06:51:10+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #dataset-common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us
whisper-small-en-nonnative ========================== This model is a fine-tuned version of openai/whisper-small on the common\_voice\_11\_0 dataset. It achieves the following results on the evaluation set: * Loss: 0.4024 * Wer: 40.7599 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 10000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.2.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 10000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #dataset-common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 10000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 86, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #dataset-common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 10000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.14439913630485535, 0.10165362060070038, -0.0016104612732306123, 0.04398028552532196, 0.1081342101097107, -0.0175090953707695, 0.13968534767627716, 0.1294347494840622, -0.06396258622407913, 0.08331379294395447, 0.10200409591197968, 0.0746086910367012, 0.049112629145383835, 0.1340322643518448, -0.034607935696840286, -0.3101319670677185, 0.04065414145588875, 0.02628296986222267, -0.10735589265823364, 0.1105237528681755, 0.1100323423743248, -0.10223886370658875, 0.03486758843064308, 0.056535668671131134, -0.13211175799369812, 0.0010473740985617042, 0.005529140122234821, -0.08668606728315353, 0.10664843767881393, 0.04060521721839905, 0.07889436185359955, 0.039897166192531586, 0.0735214352607727, -0.21456366777420044, 0.014114693738520145, 0.04619009047746658, 0.051819924265146255, 0.08399356156587601, 0.06399302929639816, -0.00561795849353075, 0.07635492831468582, -0.034959279000759125, 0.08229237794876099, 0.07084964960813522, -0.0988854169845581, -0.32133352756500244, -0.0785658061504364, 0.06228547543287277, 0.11365388333797455, 0.08120259642601013, -0.026454836130142212, 0.1073463037610054, -0.01894889585673809, 0.09295518696308136, 0.22699734568595886, -0.26525819301605225, -0.08122526109218597, -0.058412134647369385, 0.08143017441034317, 0.045405518263578415, -0.10556875169277191, -0.011484051123261452, 0.05702036991715431, 0.02162856236100197, 0.09390093386173248, 0.013863246887922287, 0.0010989183792844415, -0.02564075030386448, -0.1434611827135086, -0.05510473623871803, 0.17526768147945404, 0.08374793827533722, -0.07377640157938004, -0.10924350470304489, -0.028598573058843613, -0.17546923458576202, -0.04876837134361267, -0.011059295386075974, 0.027559135109186172, -0.047007303684949875, -0.12265235185623169, -0.02645561844110489, -0.09030119329690933, -0.12034735828638077, 0.027399739250540733, 0.22006188333034515, 0.03980933874845505, -0.020226815715432167, -0.00808678474277258, 0.0892660841345787, 0.01805328018963337, -0.15331195294857025, -0.045924410223960876, 0.03613295406103134, -0.058834388852119446, -0.022471532225608826, -0.05353495851159096, -0.05589055269956589, 0.011164509691298008, 0.17395660281181335, -0.03308289498090744, 0.07639656215906143, 0.006961220409721136, 0.027387205511331558, -0.10517140477895737, 0.20867934823036194, -0.03585922718048096, 0.005892982706427574, -0.011241563595831394, 0.11640547215938568, 0.018519548699259758, -0.017949432134628296, -0.059684909880161285, 0.029308149591088295, 0.10774876177310944, 0.042611174285411835, -0.02430104650557041, 0.03418750688433647, -0.056632958352565765, -0.024457983672618866, 0.005991524551063776, -0.10732905566692352, 0.001272730529308319, 0.014770545065402985, -0.06685034185647964, -0.02097492106258869, 0.0278957299888134, 0.03057410940527916, 0.005663265939801931, 0.04588926210999489, -0.08427856117486954, -0.020765705034136772, -0.07327732443809509, -0.09613385051488876, 0.020121928304433823, -0.02794608846306801, 0.0051032123155891895, -0.09039631485939026, -0.12548594176769257, -0.035725321620702744, 0.039227526634931564, -0.01759566180408001, -0.0854746550321579, -0.06314598768949509, -0.08775018155574799, 0.04421217367053032, -0.02271849289536476, 0.09387599676847458, -0.04425084963440895, 0.09769081324338913, 0.08069662004709244, 0.051229339092969894, 0.017476646229624748, 0.046673208475112915, -0.05895411595702171, 0.057780731469392776, -0.1557294875383377, 0.08379429578781128, -0.110402911901474, 0.08593502640724182, -0.12360324710607529, -0.10742306709289551, -0.005569865927100182, 0.008412695489823818, 0.09201598912477493, 0.10786504298448563, -0.1417478322982788, -0.10461828112602234, 0.18904034793376923, -0.11176501959562302, -0.15405644476413727, 0.13134139776229858, -0.003827503649517894, 0.04383975267410278, 0.05889829993247986, 0.1953750103712082, 0.11225028336048126, -0.10383649170398712, -0.011609655804932117, -0.044459663331508636, 0.10999996960163116, -0.005965815391391516, 0.10578323900699615, -0.045101575553417206, -0.00970144011080265, 0.017335068434476852, -0.057601310312747955, 0.0460510179400444, -0.09115081280469894, -0.08937204629182816, -0.03656024485826492, -0.10361313819885254, 0.023102935403585434, 0.048167429864406586, 0.053415361791849136, -0.10867565125226974, -0.12466303259134293, 0.07503027468919754, 0.12269913405179977, -0.10473046451807022, 0.026693539693951607, -0.11787181347608566, 0.0496525801718235, -0.04371033236384392, -0.020371215417981148, -0.15588048100471497, -0.028500324115157127, 0.03551851585507393, -0.08780369907617569, 0.024932969361543655, -0.06818360090255737, 0.08648466318845749, 0.05011811479926109, -0.03981407359242439, -0.08085569739341736, -0.07520467787981033, -0.003952822182327509, -0.07409396022558212, -0.19323919713497162, -0.0850837454199791, -0.03394351527094841, 0.17636355757713318, -0.2097075879573822, 0.04118877649307251, 0.03050343319773674, 0.11521816998720169, 0.047980546951293945, -0.05143143981695175, 0.0053719161078333855, 0.05552173778414726, -0.014466898515820503, -0.06494033336639404, 0.021307386457920074, 0.032779864966869354, -0.1459878534078598, 0.027823060750961304, -0.16041019558906555, 0.13162223994731903, 0.09460432827472687, 0.013995656743645668, -0.06223105639219284, -0.018554868176579475, -0.07668966054916382, -0.047954343259334564, -0.012076959945261478, -0.03561745584011078, 0.15075470507144928, 0.01677563413977623, 0.12898556888103485, -0.09761947393417358, -0.060222551226615906, 0.030457571148872375, -0.02875141240656376, -0.021608879789710045, 0.10797896981239319, -0.006276302505284548, -0.05701374635100365, 0.0917406678199768, 0.062404658645391464, -0.09933853894472122, 0.17365938425064087, -0.08384362608194351, -0.09566500782966614, -0.02331702411174774, 0.03531905263662338, 0.05662810429930687, 0.11564963310956955, -0.1451902985572815, -0.011778229847550392, 0.021567683666944504, 0.0029022216331213713, 0.028193088248372078, -0.2017073631286621, 0.0011581677244976163, 0.044576410204172134, -0.07109217345714569, -0.047705039381980896, 0.004820191767066717, -0.020906375721096992, 0.0690222755074501, 0.0038278212305158377, -0.02931276150047779, 0.00985225010663271, -0.017705639824271202, -0.08794107288122177, 0.20039281249046326, -0.07998957484960556, -0.1479099839925766, -0.17978236079216003, -0.005256948992609978, -0.026254940778017044, 0.0053415740840137005, 0.053541455417871475, -0.09957118332386017, -0.034879766404628754, -0.07829256355762482, 0.03236176073551178, -0.028134534135460854, 0.04203864559531212, 0.05547020956873894, 0.01037630345672369, 0.12911710143089294, -0.12193592637777328, 0.016779853031039238, -0.021082904189825058, -0.049905698746442795, -0.008130772970616817, 0.014001402072608471, 0.09943315386772156, 0.15732911229133606, 0.031684305518865585, 0.028996717184782028, -0.03399515897035599, 0.197100430727005, -0.10429368168115616, -0.0478028804063797, 0.14679944515228271, -0.009092404507100582, 0.04323747009038925, 0.11329041421413422, 0.0503140427172184, -0.09234653413295746, 0.030856523662805557, 0.03210591524839401, -0.025739114731550217, -0.23418284952640533, -0.013715985231101513, -0.04729168862104416, 0.0070255170576274395, 0.09670522063970566, 0.03598440811038017, 0.054465070366859436, 0.05283151566982269, -0.023990916088223457, -0.006678263656795025, 0.0093271778896451, 0.09365922212600708, 0.10528798401355743, 0.03993947058916092, 0.12716737389564514, -0.031357478350400925, -0.03797523304820061, 0.011874555610120296, -0.0028341508004814386, 0.22002045810222626, 0.023009425029158592, 0.21421527862548828, 0.057432182133197784, 0.13240352272987366, 0.03038683719933033, 0.07704316824674606, 0.015427343547344208, -0.03083856590092182, 0.03514542803168297, -0.060123275965452194, -0.035590607672929764, 0.04507984593510628, 0.03344259038567543, 0.07908166944980621, -0.12542764842510223, 0.005848066881299019, 0.013966688886284828, 0.34969455003738403, 0.06022798269987106, -0.3315889537334442, -0.1437036246061325, 0.007286715321242809, -0.1004226803779602, -0.04756121709942818, 0.023871537297964096, 0.11128169298171997, -0.08812882006168365, 0.061676617711782455, -0.07805513590574265, 0.097713902592659, -0.0436997227370739, 0.006174532696604729, 0.05453433468937874, 0.09173956513404846, -0.010697218589484692, 0.04808037728071213, -0.2292526215314865, 0.2959899604320526, -0.01152366865426302, 0.1069260910153389, -0.014864102937281132, 0.03602512925863266, 0.034287359565496445, -0.017204655334353447, 0.07129903882741928, -0.02356204390525818, -0.10003425925970078, -0.19246657192707062, -0.08659330010414124, 0.02938557229936123, 0.1208534687757492, -0.056221261620521545, 0.12951286137104034, -0.03221733868122101, -0.01199994795024395, 0.06353668123483658, -0.07414770126342773, -0.11708308756351471, -0.08529112488031387, 0.023169541731476784, 0.04911593347787857, 0.09507805109024048, -0.13005666434764862, -0.11010050773620605, -0.04162106290459633, 0.1250409632921219, -0.09834017604589462, -0.03617347404360771, -0.13159100711345673, 0.05351116135716438, 0.15860562026500702, -0.07555563002824783, 0.06507481634616852, 0.013197752647101879, 0.16647189855575562, 0.02797132357954979, -0.010428788140416145, 0.09662167727947235, -0.08495455235242844, -0.21429456770420074, -0.028919503092765808, 0.1840233951807022, 0.020670821890234947, 0.05608166381716728, -0.007539388258010149, 0.02463546395301819, -0.01099121943116188, -0.07602868974208832, 0.05291716009378433, 0.009639383293688297, -0.05003342777490616, 0.015525240451097488, -0.018152208998799324, 0.013297514989972115, -0.07792619615793228, -0.040568336844444275, 0.13736312091350555, 0.2917933464050293, -0.06806284189224243, 0.005574661772698164, 0.0716492161154747, -0.04288097470998764, -0.13684967160224915, 0.02235550433397293, 0.14374469220638275, 0.035135190933942795, -0.011388747952878475, -0.2014516144990921, 0.0740429013967514, 0.08013565838336945, -0.04467127099633217, 0.07666399329900742, -0.27248862385749817, -0.1517006754875183, 0.12822572886943817, 0.10478125512599945, 0.009448274970054626, -0.14512619376182556, -0.08707188814878464, -0.025053199380636215, -0.10020989179611206, 0.06999298185110092, -0.04736730083823204, 0.12125978618860245, 0.009946972131729126, 0.060149673372507095, 0.0212246123701334, -0.045336272567510605, 0.14431455731391907, -0.019408728927373886, 0.05329202488064766, -0.005842294543981552, 0.047729142010211945, 0.052213989198207855, -0.06419026106595993, 0.04511011019349098, -0.07313252240419388, 0.03641728311777115, -0.09922055900096893, -0.04908313974738121, -0.07870740443468094, 0.037102051079273224, -0.0288686640560627, -0.030968105420470238, 0.00443122535943985, 0.02333921194076538, 0.03239073231816292, 0.007874215953052044, 0.1447928547859192, -0.05047645792365074, 0.1768103986978531, 0.11727803200483322, 0.137751966714859, -0.029560336843132973, -0.07069762051105499, -0.0029128200840204954, -0.032998308539390564, 0.0676443800330162, -0.12086351215839386, 0.03697888180613518, 0.11513900011777878, 0.05950260907411575, 0.13257870078086853, 0.05997602269053459, -0.08460137993097305, 0.034372616559267044, 0.07211236655712128, -0.0802587941288948, -0.16616535186767578, -0.040186550468206406, 0.07192179560661316, -0.1762414127588272, 0.06835388392210007, 0.11671606451272964, -0.06710299104452133, -0.007731277495622635, 0.0031616420019418, -0.007640561554580927, -0.047802478075027466, 0.21656757593154907, 0.057412538677453995, 0.09206400066614151, -0.08721418678760529, 0.07624409347772598, 0.02161591872572899, -0.12139648199081421, 0.030005833134055138, 0.06822287291288376, -0.048822853714227676, -0.00689008878543973, -0.03143078088760376, 0.06248639523983002, -0.018481725826859474, -0.06252696365118027, -0.1547447144985199, -0.13854750990867615, 0.06357694417238235, 0.15970560908317566, 0.04249851778149605, 0.035481009632349014, -0.034309010952711105, 0.06700512021780014, -0.11466461420059204, 0.10998498648405075, 0.0868712067604065, 0.08847148716449738, -0.1644061803817749, 0.14821487665176392, 0.008908182382583618, 0.009426945820450783, -0.003413561498746276, -0.016368890181183815, -0.09318114072084427, 0.018725363537669182, -0.11887574195861816, -0.02178242988884449, -0.04339205473661423, -0.0026474623009562492, 0.011887485161423683, -0.06786969304084778, -0.08266381174325943, 0.04457104951143265, -0.12135636806488037, -0.045627087354660034, 0.012055659666657448, 0.052157577127218246, -0.09844215214252472, -0.0013795200502499938, 0.06173260137438774, -0.12116403132677078, 0.08504845201969147, 0.06275269389152527, 0.01310355868190527, 0.04784306511282921, -0.07430049031972885, 0.015288356691598892, 0.0451885350048542, -0.009524223394691944, 0.013212695717811584, -0.14163172245025635, -0.017025824636220932, -0.008858226239681244, 0.05001791566610336, -0.009920582175254822, 0.03748428076505661, -0.12369474768638611, -0.043998319655656815, 0.003165271831676364, -0.02664223127067089, -0.0696888417005539, 0.026142198592424393, 0.06691589951515198, 0.04113936796784401, 0.16687646508216858, -0.09316844493150711, 0.01805613562464714, -0.22519312798976898, 0.023197505623102188, -0.024456476792693138, -0.09545333683490753, -0.08703921735286713, -0.013843398541212082, 0.07271159440279007, -0.06820990890264511, 0.08395186811685562, -0.09057155251502991, 0.05120192840695381, 0.042858004570007324, -0.07412372529506683, 0.04994428530335426, 0.04499839246273041, 0.2813809812068939, 0.05730954557657242, -0.012943323701620102, 0.08941338956356049, -0.010863271541893482, 0.05278591811656952, 0.08729159832000732, 0.12932701408863068, 0.15398623049259186, -0.011981288902461529, 0.11123954504728317, 0.08806654810905457, -0.0408732034265995, -0.14600737392902374, 0.06717758625745773, -0.025918399915099144, 0.11288291960954666, 0.0032347270753234625, 0.21934723854064941, 0.14716047048568726, -0.15734006464481354, 0.043785460293293, -0.010251283645629883, -0.07856645435094833, -0.1131666749715805, -0.07678811997175217, -0.08731207996606827, -0.18289388716220856, 0.01576012559235096, -0.1267300248146057, 0.03407425805926323, 0.049791306257247925, 0.02206360176205635, 0.025013480335474014, 0.17551946640014648, 0.030578820034861565, 0.005166639108210802, 0.1099126860499382, -0.025804147124290466, -0.03075040504336357, -0.04442424327135086, -0.1105608195066452, 0.07227488607168198, 0.0032428428530693054, 0.043816905468702316, -0.054178349673748016, -0.10342080891132355, 0.05368252098560333, 0.01018139161169529, -0.1215803325176239, 0.01940213143825531, 0.010981750674545765, 0.06391230970621109, 0.014409083873033524, 0.025131741538643837, -0.015830300748348236, -0.011377312242984772, 0.24909615516662598, -0.11102046072483063, -0.06923849135637283, -0.15370100736618042, 0.23049713671207428, 0.0015057570999488235, -0.01802167482674122, 0.01404596958309412, -0.08172758668661118, -0.006881333887577057, 0.16353851556777954, 0.11402317136526108, 0.014969034120440483, -0.014497525058686733, -0.01168904360383749, -0.01989440619945526, -0.07180824130773544, 0.06831765919923782, 0.10202908515930176, 0.0527329258620739, -0.04505128040909767, -0.033247798681259155, -0.02275381051003933, -0.057021286338567734, -0.02122924104332924, 0.08553271740674973, 0.00907512754201889, -0.01481003686785698, -0.0368381068110466, 0.10120891034603119, -0.06571031361818314, -0.09014780819416046, -0.013750006444752216, -0.1512104570865631, -0.17106136679649353, -0.04521067067980766, 0.052563901990652084, 0.03195418789982796, 0.04673359915614128, -0.0003340770199429244, -0.01621314324438572, 0.09780348092317581, -0.003613936249166727, -0.04393879324197769, -0.12241540849208832, 0.09466825425624847, -0.09123048931360245, 0.20996128022670746, -0.04394618049263954, 0.021731359884142876, 0.11788957566022873, 0.039740677922964096, -0.0910610631108284, 0.05829468369483948, 0.06184295937418938, -0.14734746515750885, 0.043710898607969284, 0.2093188613653183, -0.030696850270032883, 0.15459036827087402, 0.016791054978966713, -0.16762101650238037, -0.001472298288717866, -0.0831836462020874, -0.05704626068472862, -0.07804207503795624, -0.02568228915333748, -0.059721704572439194, 0.12123742699623108, 0.20036259293556213, -0.09313050657510757, -0.03200726583600044, -0.04831116273999214, 0.03160466253757477, 0.0812644511461258, 0.07740720361471176, -0.026617582887411118, -0.31240856647491455, 0.005733476020395756, 0.004948625806719065, -0.0196817759424448, -0.276315301656723, -0.09508142620325089, 0.020287323743104935, -0.050760455429553986, -0.025956744328141212, 0.08884625136852264, 0.12206817418336868, 0.04333457723259926, -0.04754788056015968, -0.06135254353284836, -0.04427963122725487, 0.19433660805225372, -0.17213569581508636, -0.07002713531255722 ]
null
null
transformers
# Zero凉宫春日 基于Qwen_14B_base 热启,在39w高质量的NPC样本上进行2k训练 epoch=2,batch_size=128,lr=2e-5
{}
text-generation
silk-road/Haruhi-Zero-14B-0_4
[ "transformers", "pytorch", "qwen", "text-generation", "custom_code", "autotrain_compatible", "region:us" ]
2024-02-14T06:51:15+00:00
[]
[]
TAGS #transformers #pytorch #qwen #text-generation #custom_code #autotrain_compatible #region-us
# Zero凉宫春日 基于Qwen_14B_base 热启,在39w高质量的NPC样本上进行2k训练 epoch=2,batch_size=128,lr=2e-5
[ "# Zero凉宫春日\n\n基于Qwen_14B_base 热启,在39w高质量的NPC样本上进行2k训练\n\n\nepoch=2,batch_size=128,lr=2e-5" ]
[ "TAGS\n#transformers #pytorch #qwen #text-generation #custom_code #autotrain_compatible #region-us \n", "# Zero凉宫春日\n\n基于Qwen_14B_base 热启,在39w高质量的NPC样本上进行2k训练\n\n\nepoch=2,batch_size=128,lr=2e-5" ]
[ 34, 51 ]
[ "passage: TAGS\n#transformers #pytorch #qwen #text-generation #custom_code #autotrain_compatible #region-us \n# Zero凉宫春日\n\n基于Qwen_14B_base 热启,在39w高质量的NPC样本上进行2k训练\n\n\nepoch=2,batch_size=128,lr=2e-5" ]
[ -0.07669781148433685, 0.045945778489112854, -0.006082102190703154, 0.07360505312681198, 0.07457444071769714, -0.013840895146131516, 0.10381623357534409, 0.13312242925167084, 0.005657324567437172, -0.026139089837670326, 0.12938664853572845, 0.09754472225904465, 0.025886353105306625, 0.12627851963043213, -0.012656750157475471, -0.20001113414764404, 0.054701849818229675, 0.09845975786447525, -0.05375376343727112, 0.11345767974853516, 0.01778704859316349, -0.058817267417907715, 0.07729022949934006, -0.04028533399105072, -0.14282330870628357, -0.024228645488619804, -0.0059455446898937225, -0.07528112828731537, 0.11756918579339981, -0.001651410129852593, 0.05413002893328667, 0.06950236111879349, 0.03967190161347389, -0.0842479020357132, 0.029064947739243507, -0.03420638293027878, -0.06232757866382599, 0.05464743450284004, -0.00828702375292778, 0.12048731744289398, 0.05210409313440323, 0.04116496443748474, -0.05726204439997673, 0.03567734733223915, -0.06667172908782959, -0.025552749633789062, 0.040561698377132416, 0.1017964705824852, 0.10591083765029907, 0.07902966439723969, -0.012051188386976719, 0.18737871944904327, -0.15213525295257568, 0.08017434924840927, 0.05885766074061394, -0.39192435145378113, -0.016763530671596527, 0.1048363447189331, 0.08048954606056213, 0.11568209528923035, -0.0691436380147934, -0.015743466094136238, 0.06845108419656754, 0.013598484918475151, -0.05915508791804314, -0.06650001555681229, -0.06613243371248245, 0.03328419104218483, -0.09158474951982498, 0.049220047891139984, 0.1323431134223938, -0.01277631614357233, -0.001686579780653119, 0.0566600076854229, -0.08583609014749527, -0.21058738231658936, -0.004756017588078976, -0.03327600285410881, -0.04088101163506508, 0.047667086124420166, -0.10215876996517181, -0.034018684178590775, -0.057103756815195084, -0.11194325238466263, -0.13570287823677063, 0.1527342051267624, 0.048553697764873505, 0.012949240393936634, -0.1337590217590332, 0.11004093289375305, 0.019816741347312927, -0.08671858161687851, -0.04442056268453598, -0.05889979749917984, -0.0046809641644358635, 0.04216975346207619, -0.02849290519952774, 0.06358586251735687, 0.09365694969892502, 0.1133115291595459, 0.0412428192794323, 0.07312881946563721, 0.04307234287261963, 0.058829598128795624, -0.06884405016899109, 0.0985117182135582, 0.025905711576342583, -0.08411674946546555, 0.08035702258348465, 0.07009493559598923, 0.0037805538158863783, -0.07032939046621323, -0.16479535400867462, -0.11785881966352463, 0.06917962431907654, 0.028818093240261078, 0.011247163638472557, 0.0710996687412262, 0.011318372562527657, -0.023464323952794075, 0.11302497982978821, -0.030817996710538864, -0.03141728788614273, 0.019900711253285408, -0.04252814128994942, 0.03263787925243378, -0.021462982520461082, 0.029855597764253616, -0.043374430388212204, -0.1011011004447937, -0.06366509944200516, -0.04796566069126129, 0.0072438339702785015, -0.021724125370383263, 0.013990059494972229, 0.04169372096657753, 0.02587960846722126, -0.15862758457660675, -0.11863048374652863, 0.04267270863056183, -0.036304496228694916, -0.0025116463657468557, -0.08374323695898056, -0.08782476931810379, -0.09494828432798386, -0.007201672997325659, -0.006331884302198887, 0.026082532480359077, -0.004339960403740406, 0.10434696078300476, 0.1276874989271164, 0.12318845093250275, -0.12224753201007843, 0.011416487395763397, -0.129122793674469, 0.023943575099110603, -0.004334775730967522, 0.05694005638360977, 0.011011296883225441, 0.008611389435827732, 0.022016363218426704, -0.06001218408346176, -0.050133682787418365, -0.010661938227713108, 0.013330560177564621, 0.11884576827287674, -0.15724222362041473, -0.0916505753993988, 0.1949920654296875, -0.08568686246871948, -0.12575586140155792, 0.13121439516544342, 0.012569848448038101, -0.0430266298353672, 0.03200912103056908, 0.15469717979431152, 0.10942143946886063, 0.017506275326013565, -0.013877373188734055, 0.09173684567213058, -0.05421813577413559, -0.14774951338768005, 0.07960496097803116, 0.116590715944767, -0.07437541335821152, 0.05861840769648552, -0.06715162843465805, 0.06979969143867493, -0.07067868113517761, -0.09154221415519714, -0.05598308891057968, -0.09024101495742798, 0.11678391695022583, -0.0036870515905320644, 0.13556478917598724, -0.047232888638973236, -0.03823753446340561, -0.06047413870692253, 0.11304265260696411, -0.015084725804626942, 0.019510462880134583, -0.12553362548351288, 0.10561129450798035, 0.012977664358913898, 0.051939353346824646, -0.07904552668333054, 0.027799496427178383, 0.04091930016875267, 0.005211822222918272, 0.031669411808252335, 0.1137482300400734, 0.061605699360370636, 0.0904516875743866, -0.031197411939501762, -0.06940039247274399, -0.036089979112148285, -0.022162534296512604, -0.07889645546674728, -0.06370202451944351, -0.03441145643591881, -0.04171617701649666, 0.07853709161281586, -0.10723385214805603, 0.03725292533636093, -0.0794183760881424, 0.03986718878149986, -0.028121840208768845, 0.03225427865982056, -0.026237718760967255, 0.08420522511005402, -0.0672844648361206, 0.033589139580726624, 0.07137904316186905, -0.004660917446017265, -0.1526658982038498, 0.08502758294343948, -0.14027932286262512, 0.18569062650203705, 0.1520025134086609, -0.1693827211856842, 0.05196612700819969, 0.00468068802729249, -0.025203943252563477, -0.03880792111158371, 0.05219368636608124, 0.010200981050729752, 0.1495734304189682, -0.00357223697938025, 0.12674404680728912, -0.0483509786427021, -0.005889344960451126, -0.00047955152695067227, -0.05323350057005882, 0.02819722704589367, 0.08264153450727463, 0.0993075743317604, -0.09359379857778549, 0.08278897404670715, 0.14776471257209778, -0.07052385807037354, 0.18137510120868683, 0.009010269306600094, -0.014665848575532436, -0.02582964487373829, 0.011918717995285988, -0.0337425097823143, 0.005172290839254856, -0.13952019810676575, -0.049404796212911606, 0.02755332738161087, -0.017134301364421844, 0.044623132795095444, -0.13767537474632263, -0.09052649140357971, -0.03699076175689697, -0.04770127311348915, -0.10923605412244797, 0.03344612568616867, -0.016361692920327187, 0.08827106654644012, 0.0037753889337182045, -0.048709601163864136, 0.06674402952194214, 0.007615810260176659, -0.0750204473733902, 0.1262691468000412, -0.08656664937734604, -0.14056268334388733, -0.11815287917852402, -0.008575698360800743, -0.06382689625024796, 0.004439786076545715, 0.04090495780110359, -0.1796681433916092, 0.06956193596124649, 0.004215765744447708, 0.004547508899122477, -0.04253067448735237, 0.04048417881131172, 0.05051219090819359, 0.04855462536215782, 0.0075772772543132305, -0.06269422918558121, -0.004800517112016678, -0.05372210219502449, -0.14021901786327362, 0.13436101377010345, -0.1409832388162613, 0.06116785481572151, 0.18845175206661224, -0.01859070174396038, 0.02861829847097397, 0.0025276385713368654, 0.20421183109283447, -0.021087558940052986, 0.023883141577243805, 0.16578130424022675, 0.007803373970091343, 0.030866043642163277, 0.050533659756183624, -0.0027013220824301243, -0.0340992771089077, 0.020613616332411766, -0.03458916395902634, -0.08704283088445663, -0.1447632908821106, -0.021668439731001854, -0.04761677607893944, 0.1126519963145256, -0.002034121658653021, 0.07014666497707367, 0.09524250775575638, 0.068084716796875, 0.03226136416196823, 0.07415111362934113, -0.061103835701942444, 0.02770494669675827, 0.062132615596055984, 0.060646411031484604, 0.10906138271093369, -0.03042946569621563, -0.06266802549362183, 0.03866131603717804, 0.08889027684926987, 0.10054099559783936, 0.02483966201543808, 0.0020746306981891394, -0.015830524265766144, 0.2704828381538391, 0.15418687462806702, 0.036567606031894684, 0.03084259293973446, -0.058116886764764786, -0.0008066981099545956, -0.008701625280082226, -0.06541915237903595, 0.06284099817276001, 0.04870687052607536, -0.037664126604795456, -0.06365388631820679, 0.12072326242923737, 0.022418787702918053, 0.08238068968057632, 0.089594766497612, -0.16176699101924896, -0.05610262230038643, 0.013868256472051144, -0.012826412916183472, 0.002612814772874117, 0.11005377769470215, 0.12338758260011673, -0.11291489005088806, -0.0077730221673846245, -0.013916172087192535, 0.10284421592950821, -0.025661664083600044, 0.09788891673088074, -0.058424897491931915, -0.03516475111246109, 0.03895805403590202, 0.07125221192836761, -0.2604728937149048, 0.17026010155677795, -0.02894735150039196, 0.051609817892313004, -0.030955485999584198, -0.06964558362960815, 0.06426997482776642, 0.039650626480579376, 0.02393067255616188, 0.021956687793135643, -0.019956979900598526, -0.21031755208969116, -0.1151481494307518, 0.08085910230875015, 0.06253737956285477, 0.023300383239984512, 0.055733487010002136, -0.011499985121190548, -0.008084594272077084, -0.0030383383855223656, 0.09660100191831589, -0.0442054457962513, -0.0028254061471670866, 0.013745121657848358, 0.08919580280780792, 0.04365997761487961, -0.036113351583480835, -0.06657049804925919, -0.059947770088911057, 0.09213762730360031, -0.08926744759082794, -0.0545261912047863, -0.020413395017385483, 0.0010554342297837138, 0.0641833022236824, -0.10791803151369095, 0.006947302259504795, -0.033337876200675964, 0.0005767735419794917, -0.019974960014224052, -0.13236168026924133, 0.05922913923859596, -0.06271663308143616, -0.1704275757074356, -0.021400049328804016, 0.08374381810426712, 0.0047806138172745705, 0.10144150257110596, 0.01246392447501421, -0.06500790268182755, -0.059817228466272354, -0.11504721641540527, 0.03864866867661476, -0.1327020674943924, -0.07523461431264877, -0.08876260370016098, -0.04333078861236572, 0.06717833876609802, -0.10351147502660751, -0.015338738448917866, 0.20155666768550873, 0.269531786441803, -0.0640297532081604, -0.0024098942521959543, 0.16744761168956757, 0.02683679386973381, -0.19937510788440704, -0.13853691518306732, -0.010471941903233528, 0.023187479004263878, -0.06381215155124664, -0.16661059856414795, 0.04588135704398155, 0.07132666558027267, 0.011671282351016998, 0.047745998948812485, -0.2423509955406189, -0.07398366183042526, 0.12019262462854385, 0.005241379141807556, 0.312832236289978, -0.09247144311666489, -0.04632832109928131, 0.06329665333032608, -0.12715552747249603, 0.06036774069070816, -0.09673788398504257, 0.10545337200164795, -0.08436667174100876, 0.06952305138111115, 0.017096927389502525, -0.03434506058692932, 0.09642336517572403, 0.034152429550886154, 0.010551976971328259, -0.03925154358148575, -0.1397171914577484, -0.028883259743452072, -0.012760170735418797, -0.016099654138088226, -0.08131887018680573, 0.044531531631946564, -0.11024189740419388, 0.0013633874477818608, -0.09069472551345825, -0.03086506575345993, 0.012158914469182491, -0.06739810854196548, 0.009704827331006527, 0.00237092818133533, -0.03227102756500244, 0.02936585620045662, 0.11363527923822403, 0.010885899886488914, 0.09421613067388535, 0.19785846769809723, 0.016217123717069626, -0.006300772074609995, 0.11691202968358994, -0.04123811051249504, -0.047832977026700974, 0.11335473507642746, -0.09700608253479004, 0.017590811476111412, 0.13209089636802673, 0.009468695148825645, 0.018017280846834183, 0.09790987521409988, 0.005685873329639435, 0.10172972828149796, 0.08819727599620819, -0.1309245526790619, 0.014860850758850574, -0.07501042634248734, -0.09134916961193085, 0.060386694967746735, 0.07354932278394699, 0.08575312048196793, -0.06781719624996185, -0.03818490356206894, -0.006177188828587532, -0.025817563757300377, -0.09460185468196869, 0.12934403121471405, 0.0896783247590065, 0.05918348953127861, -0.12344320863485336, 0.05494798719882965, 0.001094519393518567, 0.031536418944597244, 0.05008113011717796, 0.14418184757232666, -0.12956811487674713, -0.0800144299864769, -0.010074688121676445, 0.0974903404712677, -0.08443295955657959, -0.052344027906656265, -0.10007838904857635, -0.08600401878356934, 0.05165215954184532, 0.09329003840684891, 0.059032369405031204, 0.04195262864232063, -0.04389914497733116, 0.006888125091791153, -0.07248328626155853, 0.014704043976962566, 0.01653280295431614, 0.04506327956914902, -0.11734109371900558, 0.1636306792497635, 0.0165052842348814, 0.19069120287895203, -0.07043144106864929, -0.06358825415372849, -0.11686190217733383, 0.043378185480833054, -0.2061675488948822, -0.06629851460456848, -0.06149968504905701, -0.04289751499891281, -0.02754395268857479, -0.09041348099708557, -0.07772044092416763, 0.00863255001604557, -0.09156495332717896, 0.0012845275923609734, -0.008699990808963776, -0.02550812065601349, -0.02668207883834839, 0.007547055836766958, 0.06957381218671799, -0.042418066412210464, 0.08167172223329544, 0.11786723136901855, -0.04185686632990837, 0.10117190331220627, 0.01629122719168663, -0.004630720242857933, 0.044252313673496246, 0.071026511490345, 0.04303714260458946, 0.12438982725143433, 0.0004335772537160665, 0.016983412206172943, 0.03108440898358822, 0.046988844871520996, 0.16605907678604126, -0.07033120095729828, -0.018120380118489265, -0.1017494648694992, -0.10288698971271515, -0.0763847753405571, -0.006309929303824902, 0.08358120918273926, 0.027632247656583786, 0.08179391175508499, -0.07311566174030304, 0.05877438187599182, -0.12230522930622101, -0.009233931079506874, 0.016199171543121338, -0.08115658909082413, -0.0634411871433258, -0.06525538116693497, 0.034166961908340454, -0.024887382984161377, 0.10513678193092346, -0.1369108259677887, -0.050492532551288605, -0.03223557397723198, -0.0030431339982897043, -0.07262523472309113, -0.02840731292963028, 0.25987839698791504, 0.14765265583992004, -0.027446338906884193, 0.002692464040592313, 0.059307895600795746, 0.02305012010037899, 0.01795697771012783, 0.05322912707924843, -0.014774182811379433, 0.025614378973841667, 0.12366735190153122, 0.04222271963953972, 0.01664949208498001, -0.15425795316696167, -0.04423573240637779, -0.12169703841209412, -0.014147378504276276, -0.01606110855937004, 0.0839848741889, 0.17153874039649963, -0.01167799811810255, -0.028042171150445938, 0.015728706493973732, -0.05814351886510849, -0.11718619614839554, -0.07729338109493256, -0.10188765823841095, -0.14097356796264648, 0.016259988769888878, -0.05843690410256386, -0.02583426609635353, 0.02422705665230751, 0.03399171307682991, -0.05659177899360657, 0.11185303330421448, 0.14543023705482483, -0.03938993066549301, 0.030200963839888573, -0.03410523757338524, -0.007781803607940674, 0.001221638754941523, -0.022453337907791138, 0.030025474727153778, -0.005642241332679987, 0.016783637925982475, 0.033943284302949905, -0.10008882731199265, 0.05113775283098221, -0.06357429921627045, -0.10730113089084625, -0.03015265241265297, -0.002762523014098406, 0.018726160749793053, 0.09315358847379684, 0.011770855635404587, -0.04230819270014763, -0.0024301635567098856, 0.1453847736120224, -0.050693951547145844, -0.0760815218091011, -0.05954098328948021, 0.20487208664417267, 0.010223624296486378, 0.031582869589328766, -0.01764005236327648, -0.007792060263454914, -0.07719428092241287, 0.32446053624153137, 0.18849337100982666, -0.13470250368118286, 0.0005038939998485148, 0.04890701174736023, 0.007118559908121824, -0.007777587976306677, 0.1161375492811203, 0.1149953156709671, 0.15896116197109222, -0.0869450718164444, -0.08619091659784317, -0.10412781685590744, -0.011376474983990192, -0.020471619442105293, 0.06986892968416214, 0.05902443081140518, -0.038578301668167114, -0.11984992027282715, -0.0036472128704190254, -0.17897258698940277, 0.16343237459659576, -0.04113725945353508, -0.10928621143102646, -0.07986029982566833, 0.019808199256658554, 0.06956881284713745, 0.06234234943985939, 0.04441948980093002, -0.04115445539355278, 0.047428593039512634, -0.003643939271569252, -0.026570791378617287, -0.10503433644771576, 0.016378438100218773, 0.09253363311290741, 0.0200544111430645, 0.06674735248088837, -0.00916056428104639, 0.046050459146499634, 0.0733557716012001, 0.05495160445570946, -0.035022489726543427, 0.1730988621711731, -0.007563363760709763, -0.022715916857123375, -0.06745921820402145, 0.05817956104874611, 0.03976351022720337, 0.02919403836131096, 0.0774039775133133, -0.05212341248989105, 0.01700025238096714, 0.03794977068901062, -0.013490715995430946, -0.06705062091350555, 0.021151721477508545, -0.0013647327432408929, 0.12810248136520386, 0.09357797354459763, -0.052298448979854584, 0.002683250932022929, -0.034248605370521545, 0.029080912470817566, 0.007366035599261522, -0.03535209596157074, -0.08343744277954102, -0.15499304234981537, -0.030776703730225563, 0.021269846707582474, -0.00627086590975523, -0.152960404753685, -0.02237199805676937, -0.12697353959083557, -0.004017808474600315, -0.08334335684776306, 0.07171613723039627, 0.08219040930271149, 0.018643448129296303, -0.0003349590115249157, -0.04604436457157135, -0.01478260662406683, 0.062457576394081116, -0.1708899587392807, -0.13287466764450073 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
laishram/test_peft_model
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T06:53:32+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned-minds14-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5304 - Wer Ortho: 0.3745 - Wer: 0.3560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 3.549 | 1.43 | 40 | 0.7274 | 0.4263 | 0.3967 | | 0.3686 | 2.86 | 80 | 0.5389 | 0.3671 | 0.3501 | | 0.2662 | 4.29 | 120 | 0.5264 | 0.3726 | 0.3577 | | 0.1372 | 5.71 | 160 | 0.5304 | 0.3745 | 0.3560 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["PolyAI/minds14"], "metrics": ["wer"], "base_model": "openai/whisper-tiny", "model-index": [{"name": "whisper-tiny-finetuned-minds14-en", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "PolyAI/minds14", "type": "PolyAI/minds14", "config": "en-US", "split": "train", "args": "en-US"}, "metrics": [{"type": "wer", "value": 0.35596221959858326, "name": "Wer"}]}]}]}
automatic-speech-recognition
ChuGyouk/whisper-tiny-minds14-en
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-14T06:53:48+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #dataset-PolyAI/minds14 #base_model-openai/whisper-tiny #license-apache-2.0 #model-index #endpoints_compatible #region-us
whisper-tiny-finetuned-minds14-en ================================= This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: * Loss: 0.5304 * Wer Ortho: 0.3745 * Wer: 0.3560 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 7 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.2.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 7\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #dataset-PolyAI/minds14 #base_model-openai/whisper-tiny #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 7\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ 83, 132, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #dataset-PolyAI/minds14 #base_model-openai/whisper-tiny #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 7\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ -0.14415372908115387, 0.10978901386260986, -0.000876216625329107, 0.05003392696380615, 0.10906609892845154, -0.010452793911099434, 0.15175676345825195, 0.11859241873025894, -0.06272125989198685, 0.07853721082210541, 0.11341066658496857, 0.08227964490652084, 0.05158202350139618, 0.13538336753845215, -0.041617006063461304, -0.2844151556491852, 0.04984688386321068, 0.029047463089227676, -0.09964767098426819, 0.11652675271034241, 0.10210324823856354, -0.11010868102312088, 0.05338982865214348, 0.062275178730487823, -0.14666114747524261, -0.02057686634361744, -0.003362285904586315, -0.08736663311719894, 0.10096163302659988, 0.038124412298202515, 0.09243068844079971, 0.04193979129195213, 0.06650912016630173, -0.196624293923378, 0.016984086483716965, 0.04303392395377159, 0.038161277770996094, 0.08692453801631927, 0.05860048532485962, 0.0071078334003686905, 0.08440227061510086, -0.03740544617176056, 0.08197106420993805, 0.06305698305368423, -0.1037401407957077, -0.2955749034881592, -0.0855010375380516, 0.08452336490154266, 0.09376446902751923, 0.07590769976377487, -0.024152616038918495, 0.1464967578649521, -0.02322644367814064, 0.09020659327507019, 0.21850615739822388, -0.2768004238605499, -0.0889178141951561, -0.05470305308699608, 0.06491483002901077, 0.033973485231399536, -0.10238634794950485, -0.012369629926979542, 0.05346965417265892, 0.022881509736180305, 0.08793091028928757, 0.01666611060500145, 0.012613537721335888, -0.021361101418733597, -0.1411154866218567, -0.06237994506955147, 0.17475898563861847, 0.08862698823213577, -0.07409784942865372, -0.11074402183294296, -0.03887756168842316, -0.17455749213695526, -0.05404449626803398, -0.017762361094355583, 0.029389042407274246, -0.05312030389904976, -0.12592031061649323, -0.013244107365608215, -0.09429864585399628, -0.1064731627702713, 0.016279136762022972, 0.23408223688602448, 0.03867779299616814, -0.010019541718065739, -0.010683714412152767, 0.09639400243759155, 0.03979368880391121, -0.1624060571193695, -0.05583161488175392, 0.03086511231958866, -0.04784206673502922, -0.034791599959135056, -0.04579685628414154, -0.050761133432388306, 0.009625015780329704, 0.1781546026468277, -0.03647918254137039, 0.06542740762233734, 0.012511644512414932, 0.030638281255960464, -0.10800231248140335, 0.21349525451660156, -0.03643584996461868, 0.027301490306854248, -0.0037468853406608105, 0.12018749862909317, 0.029648495838046074, -0.020857011899352074, -0.07099378108978271, 0.04173843190073967, 0.12714700400829315, 0.03094439208507538, -0.023461202159523964, 0.04065108671784401, -0.061807408928871155, -0.027103591710329056, 0.05026193708181381, -0.08309707790613174, 0.0017833496676757932, 0.01929490640759468, -0.07683343440294266, -0.013666920363903046, 0.025126541033387184, 0.0395052544772625, 0.019144324585795403, 0.05812559276819229, -0.10489808768033981, -0.022077281028032303, -0.07168221473693848, -0.08455578982830048, 0.03365783765912056, -0.013993492349982262, 0.011469444260001183, -0.11640521883964539, -0.1381797343492508, -0.02374371513724327, 0.040691476315259933, -0.017279885709285736, -0.07698097825050354, -0.05459566041827202, -0.1039481908082962, 0.03914175182580948, -0.01923949457705021, 0.08195974677801132, -0.04679829999804497, 0.09893164783716202, 0.07916197925806046, 0.0466545931994915, 0.0020425966940820217, 0.03725738823413849, -0.06873719394207001, 0.05731550231575966, -0.15575562417507172, 0.07194482535123825, -0.09294702857732773, 0.09004348516464233, -0.11376341432332993, -0.11315762996673584, 0.010463816113770008, -0.004643348976969719, 0.08627142757177353, 0.11628340184688568, -0.1196993887424469, -0.10455770045518875, 0.17674827575683594, -0.10924914479255676, -0.1756063848733902, 0.1317189335823059, -0.0025245060678571463, 0.03251287713646889, 0.06038297340273857, 0.16848117113113403, 0.09413423389196396, -0.11687947809696198, -0.03368291258811951, -0.048043910413980484, 0.10925162583589554, -0.01369491871446371, 0.11965213716030121, -0.0038904871325939894, -0.010440699756145477, 0.02384948544204235, -0.05413607507944107, 0.052204251289367676, -0.10090094059705734, -0.09806186705827713, -0.03858840465545654, -0.11050310730934143, 0.026986973360180855, 0.05360926687717438, 0.06497461348772049, -0.10742639750242233, -0.12738579511642456, 0.07574907690286636, 0.12506096065044403, -0.08915809541940689, 0.014396922662854195, -0.12637698650360107, 0.0725150853395462, -0.05081586167216301, -0.02160751074552536, -0.15330497920513153, -0.05677452310919762, 0.031584423035383224, -0.07519248872995377, 0.020891951397061348, -0.05322859808802605, 0.08756934106349945, 0.0704481229186058, -0.03765421733260155, -0.07926952838897705, -0.0831695944070816, -0.00009635912283556536, -0.07674463093280792, -0.18894889950752258, -0.08548583090305328, -0.03107753023505211, 0.2185087352991104, -0.20611074566841125, 0.043207116425037384, 0.031555213034152985, 0.13343332707881927, 0.0510537214577198, -0.05560093745589256, -0.006106333341449499, 0.05719155818223953, -0.017575904726982117, -0.060709305107593536, 0.030753985047340393, 0.0320565365254879, -0.13490033149719238, 0.013578195124864578, -0.14545617997646332, 0.16031096875667572, 0.11220487207174301, 0.018834078684449196, -0.0637347623705864, -0.008977172896265984, -0.0810532495379448, -0.0458388552069664, -0.0017389958957210183, -0.02572285383939743, 0.15421277284622192, 0.018079662695527077, 0.13422197103500366, -0.10087093710899353, -0.060656022280454636, 0.03545962646603584, -0.021712327376008034, -0.02819427102804184, 0.10354344546794891, 0.00302160088904202, -0.09334861487150192, 0.11308251321315765, 0.08084078133106232, -0.09053252637386322, 0.15718993544578552, -0.08136604726314545, -0.07966744154691696, -0.027683788910508156, 0.0253127608448267, 0.04914432764053345, 0.11352145671844482, -0.13014096021652222, -0.007732456550002098, 0.02436010167002678, -0.00870844442397356, 0.022974519059062004, -0.20391809940338135, -0.009252658113837242, 0.04122583568096161, -0.053607214242219925, -0.04445800557732582, 0.01582922413945198, -0.018294647336006165, 0.07143239676952362, 0.017872266471385956, -0.04616490751504898, 0.015945160761475563, -0.005390912760049105, -0.08157826215028763, 0.19811584055423737, -0.077057845890522, -0.15396720170974731, -0.17984215915203094, 0.0074758329428732395, -0.048192646354436874, 0.0040986607782542706, 0.05011579021811485, -0.08914972841739655, -0.03244265913963318, -0.07582592964172363, 0.008305397816002369, -0.005629567429423332, 0.04165938124060631, 0.05833842605352402, 0.0025534750893712044, 0.11054399609565735, -0.1180591732263565, 0.010617800056934357, -0.016794921830296516, -0.040118321776390076, 0.0020694907288998365, 0.008136190474033356, 0.10231419652700424, 0.14964883029460907, 0.028061246499419212, 0.025690747424960136, -0.028399256989359856, 0.22723136842250824, -0.10743486136198044, -0.05492430925369263, 0.14401693642139435, -0.007923323661088943, 0.03968396782875061, 0.10489004850387573, 0.05277892202138901, -0.08887412399053574, 0.019063271582126617, 0.017857352271676064, -0.022169696167111397, -0.21783846616744995, -0.01826542057096958, -0.041879698634147644, -0.001417728839442134, 0.0924733579158783, 0.0371164008975029, 0.07043228298425674, 0.058244768530130386, -0.02871258370578289, 0.00008756579336477444, -0.008657077327370644, 0.10045021027326584, 0.09815185517072678, 0.04526367783546448, 0.1256982684135437, -0.03170467168092728, -0.05061817914247513, 0.014399436302483082, -0.00471564382314682, 0.19176535308361053, 0.024635644629597664, 0.2055889517068863, 0.049276165664196014, 0.13415995240211487, 0.025392182171344757, 0.07461398094892502, 0.020167235285043716, -0.03994875028729439, 0.024981817230582237, -0.058769114315509796, -0.055410612374544144, 0.05463798716664314, 0.027735058218240738, 0.08724930882453918, -0.12306853383779526, -0.0010629902826622128, 0.026975205168128014, 0.339608758687973, 0.05481885001063347, -0.35603561997413635, -0.15276210010051727, 0.008658726699650288, -0.0933171957731247, -0.03867099806666374, 0.01722765527665615, 0.11064346134662628, -0.08431323617696762, 0.06062356382608414, -0.07762472331523895, 0.09739556163549423, -0.045644618570804596, 0.005453852005302906, 0.04578051716089249, 0.08442191034555435, 0.0001432050921721384, 0.04772545024752617, -0.21146103739738464, 0.28361210227012634, -0.008182135410606861, 0.10839500278234482, -0.031178148463368416, 0.02198832482099533, 0.037496015429496765, 0.015756327658891678, 0.056228216737508774, -0.02236008271574974, -0.07433083653450012, -0.20149868726730347, -0.08970902115106583, 0.035388749092817307, 0.10395107418298721, -0.05415138229727745, 0.12828843295574188, -0.026779793202877045, -0.015761129558086395, 0.06065879389643669, -0.05364255979657173, -0.10237391293048859, -0.07531256973743439, 0.033062878996133804, 0.05520428717136383, 0.09702670574188232, -0.1334020346403122, -0.12199331820011139, -0.06729686260223389, 0.12487481534481049, -0.08270487189292908, -0.03302546963095665, -0.12478459626436234, 0.046312276273965836, 0.1385122537612915, -0.07396917045116425, 0.04979553073644638, -0.0013985426630824804, 0.16468237340450287, 0.024411315098404884, -0.014710430055856705, 0.0831957757472992, -0.08117186278104782, -0.2280532866716385, -0.027090320363640785, 0.16146402060985565, 0.025889091193675995, 0.05897708237171173, -0.0009565305663272738, 0.03180629014968872, -0.02288709208369255, -0.07748907059431076, 0.044513799250125885, 0.0001112651516450569, -0.020669519901275635, 0.0025316092651337385, 0.011988732032477856, 0.025897609069943428, -0.07570056617259979, -0.031587447971105576, 0.1298617124557495, 0.3003194332122803, -0.06290573626756668, -0.006569017190486193, 0.07287700474262238, -0.023594843223690987, -0.1337958425283432, 0.013652446679770947, 0.13288995623588562, 0.02882222644984722, -0.03454666584730148, -0.1879374235868454, 0.07092588394880295, 0.0812101811170578, -0.049984320998191833, 0.0895964726805687, -0.26736345887184143, -0.14911451935768127, 0.13067834079265594, 0.12089630216360092, 0.030862366780638695, -0.15416625142097473, -0.07291068136692047, -0.022997727617621422, -0.12395253032445908, 0.10023372620344162, -0.07243117690086365, 0.11670529097318649, 0.004574085120111704, 0.06512074917554855, 0.019191432744264603, -0.051766347140073776, 0.16055819392204285, -0.021440858021378517, 0.05683938041329384, -0.009481817483901978, 0.03160107880830765, 0.06001327186822891, -0.0633067712187767, 0.03637397289276123, -0.07087885588407516, 0.038415536284446716, -0.09129009395837784, -0.042681317776441574, -0.08309345692396164, 0.04124126583337784, -0.027431849390268326, -0.028890369459986687, -0.007792202290147543, 0.03273075073957443, 0.02368626743555069, 0.004876349121332169, 0.1634700745344162, -0.03173894062638283, 0.18132805824279785, 0.13254478573799133, 0.12372607737779617, -0.05234523490071297, -0.05101752653717995, -0.009912676177918911, -0.035734742879867554, 0.07165979593992233, -0.11240620166063309, 0.017910994589328766, 0.12137763202190399, 0.05116671323776245, 0.13794772326946259, 0.060008566826581955, -0.08784604072570801, 0.03294461965560913, 0.0772651955485344, -0.10396221280097961, -0.16745507717132568, -0.046641647815704346, 0.07876548916101456, -0.16637568175792694, 0.06584793329238892, 0.11838825792074203, -0.07845219224691391, -0.005544239189475775, 0.0025029038079082966, -0.011685255914926529, -0.04495296999812126, 0.19541260600090027, 0.06291352957487106, 0.09055130183696747, -0.09250710904598236, 0.05832754448056221, 0.022813523188233376, -0.12324226647615433, 0.022123925387859344, 0.05995721369981766, -0.05616483837366104, -0.016379470005631447, -0.02785447984933853, 0.08236753940582275, -0.03043966367840767, -0.07348119467496872, -0.15373654663562775, -0.13299521803855896, 0.0637316033244133, 0.17175976932048798, 0.055318932980298996, 0.04081089794635773, -0.026571275666356087, 0.05969687178730965, -0.1080131083726883, 0.10109706223011017, 0.06234181299805641, 0.08632582426071167, -0.1717381477355957, 0.14343783259391785, 0.005070655141025782, 0.022134291008114815, -0.009591424837708473, -0.015107149258255959, -0.10079757869243622, 0.014573748223483562, -0.13416801393032074, -0.019256947562098503, -0.05422121286392212, 0.002915923949331045, 0.016563035547733307, -0.0736447423696518, -0.08607354015111923, 0.033329881727695465, -0.12157858163118362, -0.038691096007823944, 0.024730097502470016, 0.053331390023231506, -0.11038713902235031, -0.007783491630107164, 0.06239417567849159, -0.121243916451931, 0.08362266421318054, 0.06442185491323471, 0.013205801136791706, 0.05524694547057152, -0.06723354011774063, 0.017334232106804848, 0.04909300059080124, -0.0028990008868277073, 0.025442689657211304, -0.13866586983203888, -0.013798531144857407, -0.010865275748074055, 0.04338748753070831, 0.0037138108164072037, 0.07028687745332718, -0.11586639285087585, -0.051944829523563385, 0.01903003267943859, -0.03294384106993675, -0.07630836218595505, 0.023127667605876923, 0.07563287019729614, 0.02785431034862995, 0.16860751807689667, -0.08035915344953537, 0.012170073576271534, -0.21841010451316833, 0.021783068776130676, -0.019361643120646477, -0.10655645281076431, -0.07098059356212616, -0.020114164799451828, 0.06778673082590103, -0.06509391963481903, 0.08787071704864502, -0.092369943857193, 0.05047730728983879, 0.043567150831222534, -0.05476214364171028, 0.02825755812227726, 0.04408803954720497, 0.2529553771018982, 0.07274308055639267, -0.007025596220046282, 0.08015067875385284, -0.007769416086375713, 0.057062216103076935, 0.0603502057492733, 0.14668484032154083, 0.1417919546365738, -0.02830333821475506, 0.12082824110984802, 0.08396176993846893, -0.034034498035907745, -0.15132278203964233, 0.044667281210422516, -0.04356375336647034, 0.10847687721252441, -0.002299959771335125, 0.21072261035442352, 0.13585412502288818, -0.15020768344402313, 0.022832009941339493, -0.025232117623090744, -0.07109865546226501, -0.09996151179075241, -0.048700641840696335, -0.08617829531431198, -0.17478571832180023, 0.019047284498810768, -0.11681302636861801, 0.014359972439706326, 0.04899550974369049, 0.023915790021419525, 0.010424480773508549, 0.174716979265213, 0.023579251021146774, 0.020011508837342262, 0.09668036550283432, -0.020648067817091942, -0.03956388309597969, -0.06585833430290222, -0.11662023514509201, 0.051941897720098495, 0.007161727175116539, 0.04839003458619118, -0.05206485092639923, -0.09692337363958359, 0.0584426075220108, 0.015514100901782513, -0.13186044991016388, 0.01956106163561344, 0.01938852109014988, 0.06745858490467072, -0.001941249007359147, 0.009392832405865192, 0.0091639943420887, -0.010530568659305573, 0.21784816682338715, -0.09974408149719238, -0.06301651895046234, -0.15827584266662598, 0.23888806998729706, -0.019814535975456238, -0.026211990043520927, 0.03316936269402504, -0.08231473714113235, -0.02016395702958107, 0.16568630933761597, 0.11683662235736847, -0.010709118098020554, -0.014317329972982407, -0.009146424010396004, -0.01734122633934021, -0.07961849123239517, 0.06978192925453186, 0.09575068205595016, 0.05835283175110817, -0.060944583266973495, -0.03164799511432648, -0.026052644476294518, -0.055043917149305344, -0.005520313046872616, 0.07047218829393387, 0.005639307200908661, -0.01177951693534851, -0.05084655061364174, 0.08636629581451416, -0.0827561467885971, -0.0901101678609848, 0.02332150749862194, -0.15967999398708344, -0.1714264303445816, -0.03989417105913162, 0.046293940395116806, 0.016930630430579185, 0.0569995678961277, 0.00025593015016056597, -0.022865941748023033, 0.09169670194387436, -0.008197571150958538, -0.04531409963965416, -0.10290426015853882, 0.10820330679416656, -0.06871301680803299, 0.21100716292858124, -0.05090954899787903, 0.04521239548921585, 0.12810391187667847, 0.03746866062283516, -0.09848499298095703, 0.04557689279317856, 0.06845087558031082, -0.1509198099374771, 0.034264806658029556, 0.19435326755046844, -0.029010677710175514, 0.1376989334821701, 0.024021705612540245, -0.16998174786567688, -0.00928473100066185, -0.08530250191688538, -0.044165387749671936, -0.07061856985092163, -0.020265759900212288, -0.0532560832798481, 0.12548308074474335, 0.19694089889526367, -0.08471543341875076, -0.0357741042971611, -0.043383557349443436, 0.037748582661151886, 0.08117122203111649, 0.04743967577815056, -0.028410019353032112, -0.3109923303127289, 0.0020587542094290257, 0.004464698489755392, -0.019415445625782013, -0.2906283736228943, -0.08655626326799393, 0.016494421288371086, -0.048335034400224686, -0.024901103228330612, 0.07850923389196396, 0.10881707817316055, 0.03581686317920685, -0.052918631583452225, -0.04070265591144562, -0.0612153559923172, 0.1735498011112213, -0.1610315889120102, -0.07639560103416443 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
Deadwalker0/EvolCodeLlama
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T06:55:25+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 56, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06061961501836777, 0.15481999516487122, -0.004844071343541145, 0.02074851468205452, 0.0983177199959755, 0.007407687604427338, 0.07119518518447876, 0.11185134947299957, -0.023851769044995308, 0.1167980208992958, 0.031993988901376724, 0.09781743586063385, 0.11217817664146423, 0.16186554729938507, 0.0015333457849919796, -0.22897611558437347, 0.049678247421979904, -0.125278040766716, -0.0294334813952446, 0.11977242678403854, 0.1422213912010193, -0.10954539477825165, 0.0752737894654274, -0.038042325526475906, -0.005828251596540213, -0.0323176346719265, -0.06205610930919647, -0.05266609415411949, 0.05311284959316254, 0.06794639676809311, 0.07308239489793777, 0.01171939354389906, 0.09106900542974472, -0.2724283039569855, 0.02348201349377632, 0.0805930644273758, -0.0006441773730330169, 0.07586129754781723, 0.04993962123990059, -0.08749990910291672, 0.07524524629116058, -0.060156844556331635, 0.1498761922121048, 0.07955671846866608, -0.09018243104219437, -0.19217631220817566, -0.07921334356069565, 0.09916994720697403, 0.1890910118818283, 0.05953684076666832, -0.026427440345287323, 0.11642678081989288, -0.08593545109033585, 0.013638701289892197, 0.06446459144353867, -0.06054406240582466, -0.055855002254247665, 0.06904532760381699, 0.08335285633802414, 0.08567540347576141, -0.12976622581481934, -0.010767064057290554, 0.015032444149255753, 0.008952446281909943, 0.08948688954114914, 0.017146794125437737, 0.1335189938545227, 0.040557652711868286, -0.13501930236816406, -0.043155476450920105, 0.09761431813240051, 0.03665134683251381, -0.04888195917010307, -0.2485782504081726, -0.023432478308677673, -0.04339504987001419, -0.03198111802339554, -0.03649339824914932, 0.043764639645814896, -0.014506848528981209, 0.07738617807626724, -0.004502781666815281, -0.0837155357003212, -0.04301247000694275, 0.07241875678300858, 0.06128999963402748, 0.02571401372551918, -0.015821760520339012, 0.0059297760017216206, 0.12327717989683151, 0.11431120336055756, -0.126715749502182, -0.052547648549079895, -0.06306339055299759, -0.08449548482894897, -0.044861067086458206, 0.030838407576084137, 0.037995077669620514, 0.045936476439237595, 0.23867325484752655, 0.007765117567032576, 0.053257301449775696, 0.04455438256263733, 0.014407169073820114, 0.06501194834709167, 0.11008983850479126, -0.05894824117422104, -0.09719445556402206, -0.028582042083144188, 0.10156717151403427, 0.007986726239323616, -0.04139331728219986, -0.05712985619902611, 0.07059531658887863, 0.018587570637464523, 0.12360043078660965, 0.08000938594341278, 0.003056557849049568, -0.0755772516131401, -0.062465377151966095, 0.17764076590538025, -0.15825673937797546, 0.04532013460993767, 0.03055616281926632, -0.0341108962893486, -0.009745313785970211, 0.012105142697691917, 0.025474950671195984, -0.021481726318597794, 0.09522198140621185, -0.05601342022418976, -0.034448131918907166, -0.11389608681201935, -0.03694311901926994, 0.030394554138183594, 0.011153047904372215, -0.02865210548043251, -0.03502652049064636, -0.08865131437778473, -0.06405586749315262, 0.09101516753435135, -0.07148737460374832, -0.04784895107150078, -0.016645915806293488, -0.07833752781152725, 0.021804187446832657, 0.01691517047584057, 0.09064167737960815, -0.0222476739436388, 0.03985358029603958, -0.0550384595990181, 0.061440225690603256, 0.11723454296588898, 0.027987057343125343, -0.05787884071469307, 0.061519939452409744, -0.2424532175064087, 0.10252492874860764, -0.07715212553739548, 0.04971238598227501, -0.15203025937080383, -0.02478341944515705, 0.03986154496669769, 0.01284773275256157, -0.008251311257481575, 0.14196595549583435, -0.21994100511074066, -0.030957341194152832, 0.16964265704154968, -0.10025953501462936, -0.08109250664710999, 0.060782887041568756, -0.05354252830147743, 0.11210215091705322, 0.04557164013385773, -0.02375967986881733, 0.05775221437215805, -0.14725260436534882, -0.011030761525034904, -0.041942402720451355, -0.0180682260543108, 0.16207332909107208, 0.0703711211681366, -0.06047816202044487, 0.07456906884908676, 0.01960151270031929, -0.014246034435927868, -0.04887177795171738, -0.02822130173444748, -0.1047162413597107, 0.01184528972953558, -0.06102835759520531, 0.018109694123268127, -0.021768750622868538, -0.09445013850927353, -0.029118487611413002, -0.17402999103069305, -0.0031633328180760145, 0.08821269869804382, -0.011630427092313766, -0.021509924903512, -0.11245372891426086, 0.009332616813480854, 0.030967719852924347, 0.0002618339203763753, -0.13677829504013062, -0.06033218279480934, 0.026970699429512024, -0.16097871959209442, 0.029791243374347687, -0.05741601809859276, 0.04530094936490059, 0.04005871340632439, -0.03433511033654213, -0.03489551320672035, 0.010874404571950436, 0.010431389324367046, -0.01894843392074108, -0.25422003865242004, -0.01882786676287651, -0.0234990194439888, 0.1751047968864441, -0.22956320643424988, 0.042598169296979904, 0.07489731162786484, 0.1460893303155899, 0.007349682506173849, -0.03550100699067116, 0.015185600146651268, -0.07262228429317474, -0.03268764168024063, -0.06316669285297394, -0.01207790058106184, -0.038400664925575256, -0.05820201337337494, 0.04906858503818512, -0.1686294972896576, -0.030321966856718063, 0.10717973858118057, 0.06342670321464539, -0.1473218947649002, -0.02780107781291008, -0.04056945815682411, -0.04624456167221069, -0.06676914542913437, -0.05461418256163597, 0.11812574416399002, 0.056411582976579666, 0.04860803112387657, -0.07140495628118515, -0.07455260306596756, 0.008036690764129162, -0.01956399530172348, -0.014917809516191483, 0.09334591031074524, 0.07554110884666443, -0.12264352291822433, 0.09177418053150177, 0.09668384492397308, 0.08576478064060211, 0.10314212739467621, -0.014663571491837502, -0.08914592862129211, -0.040637146681547165, 0.02245822176337242, 0.016187267377972603, 0.15129362046718597, -0.012961224652826786, 0.055492039769887924, 0.0358695350587368, -0.014034898020327091, 0.011105312965810299, -0.09736533463001251, 0.02655916102230549, 0.030835967510938644, -0.016302183270454407, 0.03745110332965851, -0.0447014644742012, 0.019208140671253204, 0.09039704501628876, 0.040895868092775345, 0.040978945791721344, 0.010155045427381992, -0.04354988783597946, -0.11037563532590866, 0.1787576973438263, -0.12389461696147919, -0.24818050861358643, -0.13812170922756195, 0.010281167924404144, 0.04737642779946327, -0.010411068797111511, 0.006690691225230694, -0.06616118550300598, -0.1175973042845726, -0.09878289699554443, 0.018617089837789536, 0.045352302491664886, -0.07590975612401962, -0.06842505931854248, 0.06414616107940674, 0.03875524550676346, -0.13939815759658813, 0.024007495492696762, 0.04662325978279114, -0.08205481618642807, -0.0029386086389422417, 0.0791812464594841, 0.06965780258178711, 0.17661017179489136, 0.013885351829230785, -0.023669935762882233, 0.026634456589818, 0.20819635689258575, -0.1436755359172821, 0.10975687950849533, 0.13545554876327515, -0.08767466992139816, 0.08120133727788925, 0.1998777538537979, 0.03777998685836792, -0.10680917650461197, 0.03608465939760208, 0.028374753892421722, -0.028325283899903297, -0.2502254545688629, -0.06958996504545212, 0.0019060121849179268, -0.05172049254179001, 0.07064855098724365, 0.08791537582874298, 0.09593888372182846, 0.016860228031873703, -0.09976044297218323, -0.07697858661413193, 0.046900223940610886, 0.10824491083621979, -0.00015424020239152014, -0.015208319760859013, 0.0904119610786438, -0.03033481352031231, 0.01743943803012371, 0.09215071052312851, 0.0030607767403125763, 0.17535938322544098, 0.051709048449993134, 0.17189906537532806, 0.07866133749485016, 0.06444311141967773, 0.02004685252904892, 0.007725914940237999, 0.021817529574036598, 0.017227526754140854, -0.0030957073904573917, -0.08709781616926193, -0.0034981227945536375, 0.1202581599354744, 0.049845851957798004, 0.029173865914344788, 0.012042860500514507, -0.030704669654369354, 0.08337877690792084, 0.1770893782377243, 0.0029054484330117702, -0.1893385946750641, -0.07169844210147858, 0.07795937359333038, -0.08648337423801422, -0.10729733109474182, -0.029470939189195633, 0.041069481521844864, -0.1729043871164322, 0.016882894560694695, -0.019335895776748657, 0.10788324475288391, -0.13190391659736633, -0.01772487722337246, 0.05657728388905525, 0.06932812184095383, -0.009677323512732983, 0.06694949418306351, -0.16090403497219086, 0.11770165711641312, 0.01751571334898472, 0.06636732816696167, -0.09608277678489685, 0.09618937969207764, -0.007830657996237278, 0.0041499207727611065, 0.1410749852657318, 0.010120149701833725, -0.05952107161283493, -0.09608154743909836, -0.10546442121267319, -0.009841260500252247, 0.1306990385055542, -0.14852415025234222, 0.08813067525625229, -0.02661319263279438, -0.044553373008966446, 0.003614129964262247, -0.12497276812791824, -0.13103094696998596, -0.18366187810897827, 0.05707118660211563, -0.12947207689285278, 0.04045100137591362, -0.10902881622314453, -0.045833900570869446, -0.02098964899778366, 0.20040063560009003, -0.23137451708316803, -0.06714103370904922, -0.1551055610179901, -0.08061286807060242, 0.14446212351322174, -0.046455029398202896, 0.08550118654966354, 0.0008278203313238919, 0.19068008661270142, 0.021319707855582237, -0.017237508669495583, 0.1072206199169159, -0.10052918642759323, -0.2010865956544876, -0.09273224323987961, 0.15895552933216095, 0.13766798377037048, 0.03809428587555885, -0.004381525795906782, 0.03171157464385033, -0.02098114788532257, -0.12076930701732635, 0.020226983353495598, 0.17317426204681396, 0.08982043713331223, 0.025265544652938843, -0.02972041629254818, -0.11267432570457458, -0.07061342149972916, -0.03774050623178482, 0.024755435064435005, 0.18072067201137543, -0.07222156971693039, 0.18405316770076752, 0.13775517046451569, -0.05534014105796814, -0.19904261827468872, 0.021996473893523216, 0.04293542355298996, 0.0070380112156271935, 0.0323902890086174, -0.20307663083076477, 0.09384101629257202, 0.0008334947633557022, -0.05131231248378754, 0.1379684954881668, -0.1823476254940033, -0.151598259806633, 0.06042521819472313, 0.043563615530729294, -0.19374065101146698, -0.12374074012041092, -0.08848230540752411, -0.04693066328763962, -0.15487661957740784, 0.10312657803297043, 0.0020827590487897396, 0.008401188999414444, 0.03778626397252083, 0.02252252586185932, 0.012139533646404743, -0.04198719933629036, 0.1914343535900116, -0.025891713798046112, 0.03347287327051163, -0.0790715217590332, -0.060851071029901505, 0.062408581376075745, -0.058187782764434814, 0.0755455270409584, -0.025226406753063202, 0.015947066247463226, -0.10598332434892654, -0.048235729336738586, -0.02852320298552513, 0.019321219995617867, -0.09431382268667221, -0.09348297864198685, -0.04829427972435951, 0.09367614984512329, 0.09042316675186157, -0.03652578964829445, -0.03649144619703293, -0.078715980052948, 0.038977332413196564, 0.17627815902233124, 0.18159319460391998, 0.04659178853034973, -0.07959239184856415, -0.001915142871439457, -0.014336181804537773, 0.04684065282344818, -0.22077152132987976, 0.060553863644599915, 0.04557652771472931, 0.016117896884679794, 0.11537692695856094, -0.0208132341504097, -0.16198977828025818, -0.06710557639598846, 0.061360616236925125, -0.06944561004638672, -0.17825035750865936, 0.0039279889315366745, 0.07344977557659149, -0.16578389704227448, -0.037031736224889755, 0.04200848564505577, -0.01189455483108759, -0.0403641052544117, 0.012352054007351398, 0.08063354343175888, 0.007078902795910835, 0.07699975371360779, 0.055281639099121094, 0.09124495089054108, -0.10227900743484497, 0.07410510629415512, 0.08149529248476028, -0.08644098788499832, 0.030720343813300133, 0.09573426842689514, -0.06469762325286865, -0.0346054881811142, 0.04237886518239975, 0.08354541659355164, 0.024281201884150505, -0.04682289808988571, 0.0023111123591661453, -0.09734189510345459, 0.05927345156669617, 0.11483542621135712, 0.03496333956718445, 0.011234734207391739, 0.03813567012548447, 0.04486291855573654, -0.08093374222517014, 0.11926916986703873, 0.023795632645487785, 0.020354853942990303, -0.04112942889332771, -0.040553025901317596, 0.035851649940013885, -0.026020776480436325, -0.011440055444836617, -0.035174157470464706, -0.0722682997584343, -0.014069457538425922, -0.16000694036483765, -0.0076758842915296555, -0.03660871088504791, 0.005114538595080376, 0.022510098293423653, -0.03652830421924591, 0.00792311318218708, 0.012217256240546703, -0.06868947297334671, -0.05553458258509636, -0.023233558982610703, 0.09422210603952408, -0.16494666039943695, 0.0220257006585598, 0.0823851153254509, -0.12121747434139252, 0.09289738535881042, 0.016782134771347046, 0.00412249518558383, 0.026962365955114365, -0.1545863002538681, 0.04763968288898468, -0.020152103155851364, 0.013473534025251865, 0.04222847521305084, -0.21637047827243805, -0.004404853098094463, -0.04015503451228142, -0.05566934496164322, -0.008993052877485752, -0.0319182425737381, -0.11338426172733307, 0.09645436704158783, 0.011025024577975273, -0.08443772792816162, -0.02965564839541912, 0.03353232145309448, 0.07690354436635971, -0.027447547763586044, 0.1498211771249771, -0.004663881380110979, 0.07559948414564133, -0.17581342160701752, -0.02282017655670643, -0.011197620071470737, 0.022367527708411217, -0.021871577948331833, -0.01622559316456318, 0.04623444378376007, -0.02704801969230175, 0.19120801985263824, -0.024701936170458794, 0.049393873661756516, 0.06364397704601288, 0.009232889860868454, -0.013832193799316883, 0.11151392012834549, 0.05708572641015053, 0.024334950372576714, 0.022262847051024437, 0.003451440716162324, -0.04008655622601509, -0.009981024079024792, -0.18596695363521576, 0.06803664565086365, 0.14585918188095093, 0.09060460329055786, -0.012669353745877743, 0.0707244873046875, -0.10161512345075607, -0.12005364894866943, 0.10127941519021988, -0.06415384262800217, -0.010188822634518147, -0.06542414426803589, 0.14027701318264008, 0.14953285455703735, -0.1886233240365982, 0.06583356112241745, -0.06602055579423904, -0.0566304549574852, -0.11457879096269608, -0.1930263340473175, -0.057075321674346924, -0.050602465867996216, -0.018466074019670486, -0.05384097993373871, 0.06939727067947388, 0.05750798434019089, 0.01126816775649786, 0.00868057832121849, 0.08568526059389114, -0.009656033478677273, 0.00248199631460011, 0.030120067298412323, 0.06713981181383133, 0.016768986359238625, -0.0321255661547184, 0.0179112758487463, -0.00597198773175478, 0.034156378358602524, 0.059282708913087845, 0.03608176112174988, -0.028436895459890366, 0.015559280291199684, -0.034912437200546265, -0.11309733241796494, 0.042801856994628906, -0.029640642926096916, -0.0749855786561966, 0.1347348988056183, 0.026981467381119728, 0.005015076603740454, -0.023140020668506622, 0.2503887414932251, -0.07436972856521606, -0.09334370493888855, -0.14373961091041565, 0.11701542884111404, -0.04212593287229538, 0.0635172426700592, 0.03596310690045357, -0.10810714215040207, 0.017985546961426735, 0.1320217251777649, 0.15442703664302826, -0.04732590913772583, 0.019251897931098938, 0.028577854856848717, 0.00439635943621397, -0.04075566306710243, 0.05177190154790878, 0.07100846618413925, 0.14500564336776733, -0.05157303810119629, 0.08530787378549576, 0.002609728369861841, -0.1021018698811531, -0.041973695158958435, 0.11415864527225494, -0.014296893030405045, 0.017620453611016273, -0.057136841118335724, 0.124222531914711, -0.05874236673116684, -0.23697422444820404, 0.06316976249217987, -0.0765061303973198, -0.1432730257511139, -0.024886758998036385, 0.071670763194561, -0.016632623970508575, 0.02605951391160488, 0.07167234271764755, -0.0754380151629448, 0.18880942463874817, 0.03957989811897278, -0.05233397334814072, -0.05954399332404137, 0.0744764655828476, -0.11850855499505997, 0.27879106998443604, 0.010482731275260448, 0.051307905465364456, 0.1042102724313736, -0.02021743729710579, -0.13270841538906097, 0.023401619866490364, 0.09579801559448242, -0.08917027711868286, 0.04087764397263527, 0.21448291838169098, -0.00629545608535409, 0.11935057491064072, 0.07611140608787537, -0.07468950748443604, 0.047562725841999054, -0.11468592286109924, -0.07639975845813751, -0.08699081838130951, 0.09244474768638611, -0.06785612553358078, 0.14258281886577606, 0.12599852681159973, -0.05530165135860443, 0.011584274470806122, -0.028389399871230125, 0.045467376708984375, 0.005578654818236828, 0.100032277405262, 0.011115525849163532, -0.18496567010879517, 0.024811718612909317, 0.016259413212537766, 0.10884406417608261, -0.18112654983997345, -0.09105053544044495, 0.046958595514297485, 0.0005061255069449544, -0.06443515419960022, 0.12483241409063339, 0.057313691824674606, 0.04654949903488159, -0.0451689288020134, -0.026830285787582397, -0.006042256020009518, 0.14264579117298126, -0.10707559436559677, -0.005129707511514425 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-14-Feb This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 2.6563 - Mean Iou: 0.0057 - Mean Accuracy: 0.0309 - Overall Accuracy: 0.1550 - Accuracy Unlabeled: nan - Accuracy Flat-road: 0.0053 - Accuracy Flat-sidewalk: 0.0030 - Accuracy Flat-crosswalk: 0.0 - Accuracy Flat-cyclinglane: 0.0 - Accuracy Flat-parkingdriveway: 0.0 - Accuracy Flat-railtrack: nan - Accuracy Flat-curb: 0.0 - Accuracy Human-person: 0.0 - Accuracy Human-rider: 0.0 - Accuracy Vehicle-car: 0.0 - Accuracy Vehicle-truck: 0.0 - Accuracy Vehicle-bus: 0.0 - Accuracy Vehicle-tramtrain: 0.0 - Accuracy Vehicle-motorcycle: 0.0 - Accuracy Vehicle-bicycle: 0.0 - Accuracy Vehicle-caravan: 0.0 - Accuracy Vehicle-cartrailer: 0.0 - Accuracy Construction-building: 0.0251 - Accuracy Construction-door: 0.0 - Accuracy Construction-wall: 0.0 - Accuracy Construction-fenceguardrail: 0.0 - Accuracy Construction-bridge: 0.0 - Accuracy Construction-tunnel: nan - Accuracy Construction-stairs: 0.0 - Accuracy Object-pole: 0.0 - Accuracy Object-trafficsign: 0.0 - Accuracy Object-trafficlight: 0.0 - Accuracy Nature-vegetation: 0.9539 - Accuracy Nature-terrain: 0.0 - Accuracy Sky: 0.0005 - Accuracy Void-ground: 0.0 - Accuracy Void-dynamic: 0.0 - Accuracy Void-static: 0.0 - Accuracy Void-unclear: 0.0 - Iou Unlabeled: nan - Iou Flat-road: 0.0051 - Iou Flat-sidewalk: 0.0030 - Iou Flat-crosswalk: 0.0 - Iou Flat-cyclinglane: 0.0 - Iou Flat-parkingdriveway: 0.0 - Iou Flat-railtrack: nan - Iou Flat-curb: 0.0 - Iou Human-person: 0.0 - Iou Human-rider: 0.0 - Iou Vehicle-car: 0.0 - Iou Vehicle-truck: 0.0 - Iou Vehicle-bus: 0.0 - Iou Vehicle-tramtrain: 0.0 - Iou Vehicle-motorcycle: 0.0 - Iou Vehicle-bicycle: 0.0 - Iou Vehicle-caravan: 0.0 - Iou Vehicle-cartrailer: 0.0 - Iou Construction-building: 0.0181 - Iou Construction-door: 0.0 - Iou Construction-wall: 0.0 - Iou Construction-fenceguardrail: 0.0 - Iou Construction-bridge: 0.0 - Iou Construction-tunnel: nan - Iou Construction-stairs: 0.0 - Iou Object-pole: 0.0 - Iou Object-trafficsign: 0.0 - Iou Object-trafficlight: 0.0 - Iou Nature-vegetation: 0.1573 - Iou Nature-terrain: 0.0 - Iou Sky: 0.0005 - Iou Void-ground: 0.0 - Iou Void-dynamic: 0.0 - Iou Void-static: 0.0 - Iou Void-unclear: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| | 3.2475 | 0.05 | 20 | 3.4796 | 0.0099 | 0.0325 | 0.0905 | nan | 0.3377 | 0.0000 | 0.0075 | 0.0407 | 0.0 | nan | 0.0108 | 0.0 | 0.0 | 0.1153 | 0.0055 | 0.0 | 0.0693 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0274 | 0.0579 | 0.1363 | 0.0161 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2139 | 0.0011 | 0.0001 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.1072 | 0.0000 | 0.0047 | 0.0241 | 0.0 | 0.0 | 0.0080 | 0.0 | 0.0 | 0.0279 | 0.0004 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0190 | 0.0032 | 0.0178 | 0.0074 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1053 | 0.0011 | 0.0001 | 0.0000 | 0.0 | 0.0 | 0.0 | | 2.8839 | 0.1 | 40 | 3.3590 | 0.0089 | 0.0326 | 0.1018 | nan | 0.5052 | 0.0001 | 0.0 | 0.0075 | 0.0 | nan | 0.0055 | 0.0 | 0.0 | 0.0648 | 0.0 | 0.0 | 0.0240 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2584 | 0.0011 | 0.1026 | 0.0042 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0693 | 0.0006 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.1169 | 0.0001 | 0.0 | 0.0064 | 0.0 | 0.0 | 0.0047 | 0.0 | 0.0 | 0.0251 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0629 | 0.0007 | 0.0176 | 0.0034 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0538 | 0.0006 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.8362 | 0.15 | 60 | 3.2190 | 0.0094 | 0.0333 | 0.0903 | nan | 0.1585 | 0.0003 | 0.0000 | 0.0002 | 0.0 | nan | 0.0008 | 0.0 | 0.0 | 0.1924 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4068 | 0.0 | 0.1243 | 0.0006 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1764 | 0.0034 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0792 | 0.0003 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.0339 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0693 | 0.0 | 0.0220 | 0.0006 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1009 | 0.0031 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.2765 | 0.2 | 80 | 3.1219 | 0.0077 | 0.0313 | 0.1417 | nan | 0.0216 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0460 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1309 | 0.0 | 0.0024 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7993 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0188 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0219 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0485 | 0.0 | 0.0023 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1546 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.6888 | 0.25 | 100 | 3.0596 | 0.0080 | 0.0311 | 0.1467 | nan | 0.0750 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0117 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0960 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8133 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0505 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0095 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0413 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1541 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4337 | 0.3 | 120 | 2.9683 | 0.0056 | 0.0310 | 0.1560 | nan | 0.0082 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0116 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9694 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0077 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0030 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0095 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1579 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.1706 | 0.35 | 140 | 2.8720 | 0.0073 | 0.0309 | 0.1511 | nan | 0.0683 | 0.0024 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0040 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0443 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8686 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0478 | 0.0023 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0263 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1543 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.2062 | 0.4 | 160 | 2.7611 | 0.0079 | 0.0304 | 0.1599 | nan | 0.0442 | 0.0536 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0249 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8512 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0348 | 0.0463 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0172 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1537 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.5969 | 0.45 | 180 | 2.7805 | 0.0092 | 0.0303 | 0.1640 | nan | 0.0390 | 0.1034 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0615 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7642 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0310 | 0.0812 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0330 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1501 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4528 | 0.5 | 200 | 2.6967 | 0.0061 | 0.0306 | 0.1541 | nan | 0.0062 | 0.0101 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0330 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9295 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0059 | 0.0097 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0215 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1566 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.1283 | 0.55 | 220 | 2.7632 | 0.0060 | 0.0307 | 0.1533 | nan | 0.0082 | 0.0043 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9320 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0077 | 0.0042 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0235 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1568 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.909 | 0.6 | 240 | 2.6583 | 0.0058 | 0.0307 | 0.1552 | nan | 0.0033 | 0.0076 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0245 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9480 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0032 | 0.0073 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0171 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1575 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.422 | 0.65 | 260 | 2.6298 | 0.0062 | 0.0307 | 0.1567 | nan | 0.0022 | 0.0191 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0290 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9331 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0021 | 0.0179 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0199 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1569 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4039 | 0.7 | 280 | 2.6816 | 0.0060 | 0.0309 | 0.1527 | nan | 0.0034 | 0.0015 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0473 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9327 | 0.0 | 0.0030 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0033 | 0.0015 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0273 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1573 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8399 | 0.75 | 300 | 2.6409 | 0.0073 | 0.0304 | 0.1503 | nan | 0.0232 | 0.0201 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0614 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8541 | 0.0 | 0.0125 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0203 | 0.0187 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0312 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1542 | 0.0 | 0.0098 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.0137 | 0.8 | 320 | 2.6181 | 0.0060 | 0.0308 | 0.1531 | nan | 0.0054 | 0.0025 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0445 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9333 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0052 | 0.0025 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0264 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1573 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6687 | 0.85 | 340 | 2.6000 | 0.0081 | 0.0305 | 0.1620 | nan | 0.0235 | 0.0704 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0352 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8423 | 0.0 | 0.0043 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0204 | 0.0589 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0235 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1531 | 0.0 | 0.0040 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.5066 | 0.9 | 360 | 2.5570 | 0.0093 | 0.0307 | 0.1757 | nan | 0.0160 | 0.1448 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0358 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7858 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0143 | 0.1074 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0237 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1525 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7229 | 0.95 | 380 | 2.6139 | 0.0057 | 0.0308 | 0.1549 | nan | 0.0042 | 0.0045 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0246 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9514 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0041 | 0.0044 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0173 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1576 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.1616 | 1.0 | 400 | 2.6563 | 0.0057 | 0.0309 | 0.1550 | nan | 0.0053 | 0.0030 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0251 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9539 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0051 | 0.0030 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0181 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1573 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "other", "tags": ["vision", "image-segmentation", "generated_from_trainer"], "base_model": "nvidia/mit-b0", "model-index": [{"name": "segformer-b0-finetuned-segments-sidewalk-14-Feb", "results": []}]}
image-segmentation
sleepreap/segformer-b0-finetuned-segments-sidewalk-14-Feb
[ "transformers", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
2024-02-14T06:56:09+00:00
[]
[]
TAGS #transformers #safetensors #segformer #vision #image-segmentation #generated_from_trainer #base_model-nvidia/mit-b0 #license-other #endpoints_compatible #region-us
segformer-b0-finetuned-segments-sidewalk-14-Feb =============================================== This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: * Loss: 2.6563 * Mean Iou: 0.0057 * Mean Accuracy: 0.0309 * Overall Accuracy: 0.1550 * Accuracy Unlabeled: nan * Accuracy Flat-road: 0.0053 * Accuracy Flat-sidewalk: 0.0030 * Accuracy Flat-crosswalk: 0.0 * Accuracy Flat-cyclinglane: 0.0 * Accuracy Flat-parkingdriveway: 0.0 * Accuracy Flat-railtrack: nan * Accuracy Flat-curb: 0.0 * Accuracy Human-person: 0.0 * Accuracy Human-rider: 0.0 * Accuracy Vehicle-car: 0.0 * Accuracy Vehicle-truck: 0.0 * Accuracy Vehicle-bus: 0.0 * Accuracy Vehicle-tramtrain: 0.0 * Accuracy Vehicle-motorcycle: 0.0 * Accuracy Vehicle-bicycle: 0.0 * Accuracy Vehicle-caravan: 0.0 * Accuracy Vehicle-cartrailer: 0.0 * Accuracy Construction-building: 0.0251 * Accuracy Construction-door: 0.0 * Accuracy Construction-wall: 0.0 * Accuracy Construction-fenceguardrail: 0.0 * Accuracy Construction-bridge: 0.0 * Accuracy Construction-tunnel: nan * Accuracy Construction-stairs: 0.0 * Accuracy Object-pole: 0.0 * Accuracy Object-trafficsign: 0.0 * Accuracy Object-trafficlight: 0.0 * Accuracy Nature-vegetation: 0.9539 * Accuracy Nature-terrain: 0.0 * Accuracy Sky: 0.0005 * Accuracy Void-ground: 0.0 * Accuracy Void-dynamic: 0.0 * Accuracy Void-static: 0.0 * Accuracy Void-unclear: 0.0 * Iou Unlabeled: nan * Iou Flat-road: 0.0051 * Iou Flat-sidewalk: 0.0030 * Iou Flat-crosswalk: 0.0 * Iou Flat-cyclinglane: 0.0 * Iou Flat-parkingdriveway: 0.0 * Iou Flat-railtrack: nan * Iou Flat-curb: 0.0 * Iou Human-person: 0.0 * Iou Human-rider: 0.0 * Iou Vehicle-car: 0.0 * Iou Vehicle-truck: 0.0 * Iou Vehicle-bus: 0.0 * Iou Vehicle-tramtrain: 0.0 * Iou Vehicle-motorcycle: 0.0 * Iou Vehicle-bicycle: 0.0 * Iou Vehicle-caravan: 0.0 * Iou Vehicle-cartrailer: 0.0 * Iou Construction-building: 0.0181 * Iou Construction-door: 0.0 * Iou Construction-wall: 0.0 * Iou Construction-fenceguardrail: 0.0 * Iou Construction-bridge: 0.0 * Iou Construction-tunnel: nan * Iou Construction-stairs: 0.0 * Iou Object-pole: 0.0 * Iou Object-trafficsign: 0.0 * Iou Object-trafficlight: 0.0 * Iou Nature-vegetation: 0.1573 * Iou Nature-terrain: 0.0 * Iou Sky: 0.0005 * Iou Void-ground: 0.0 * Iou Void-dynamic: 0.0 * Iou Void-static: 0.0 * Iou Void-unclear: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.2.0 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #segformer #vision #image-segmentation #generated_from_trainer #base_model-nvidia/mit-b0 #license-other #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 58, 98, 4, 30 ]
[ "passage: TAGS\n#transformers #safetensors #segformer #vision #image-segmentation #generated_from_trainer #base_model-nvidia/mit-b0 #license-other #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.10986394435167313, 0.05050407722592354, -0.001082236529327929, 0.11144664883613586, 0.15892885625362396, 0.01946270652115345, 0.12044771760702133, 0.09862764924764633, -0.10272359848022461, 0.030968667939305305, 0.11895155906677246, 0.1318250149488449, 0.0026904363185167313, 0.142881378531456, -0.03309362754225731, -0.2679636478424072, 0.013645444065332413, 0.033078208565711975, -0.08765911310911179, 0.10904868692159653, 0.09358596801757812, -0.16055099666118622, 0.09696497768163681, 0.0017426148988306522, -0.2299494594335556, 0.014373168349266052, 0.029405513778328896, -0.03900151699781418, 0.15342076122760773, 0.03266588971018791, 0.11362949758768082, 0.016098132357001305, 0.1234704926609993, -0.20608283579349518, 0.012913384474813938, 0.04669897258281708, 0.0039987582713365555, 0.05389322713017464, 0.04698659107089043, 0.013392615132033825, 0.10384970158338547, -0.0980166494846344, 0.0674697533249855, 0.015513427555561066, -0.13248513638973236, -0.23832760751247406, -0.05993418022990227, 0.030661454424262047, 0.10690540820360184, 0.08914592862129211, 0.00257671345025301, 0.10315211862325668, -0.06443121284246445, 0.09383583068847656, 0.24485565721988678, -0.24793927371501923, -0.07321543246507645, 0.04109925031661987, 0.009666183032095432, 0.08440781384706497, -0.12833423912525177, 0.014848574995994568, 0.07215612381696701, 0.014968096278607845, 0.12139829993247986, -0.022878466174006462, -0.03997020050883293, 0.006400715094059706, -0.14076228439807892, -0.047167759388685226, 0.12240710109472275, 0.07313378900289536, -0.040924977511167526, -0.03640420734882355, -0.06925409287214279, -0.13297076523303986, -0.0689784362912178, 0.00012501142919063568, 0.06119634583592415, -0.048430185765028, -0.09766878932714462, -0.01786789484322071, -0.12269578129053116, -0.10995904356241226, -0.01954616606235504, 0.15208150446414948, 0.04568831995129585, 0.03060254454612732, -0.020148543640971184, 0.11843809485435486, -0.05059225484728813, -0.12937702238559723, 0.00045895794755779207, 0.009204731322824955, -0.012502133846282959, -0.026405513286590576, -0.06285817176103592, -0.039416491985321045, -0.0004132450558245182, 0.12807436287403107, -0.08311287313699722, 0.03958304598927498, 0.04978407919406891, 0.05511188134551048, -0.12390131503343582, 0.15733802318572998, -0.055553603917360306, -0.0007121882517822087, 0.0021983596961945295, 0.060505714267492294, 0.027911966666579247, 0.01122821494936943, -0.10136435180902481, -0.015415247529745102, 0.10204426199197769, -0.01160565484315157, -0.0842929556965828, 0.0724259465932846, -0.042979925870895386, 0.0008337714825756848, 0.0052708289586007595, -0.06866013258695602, 0.023889640346169472, -0.015939317643642426, -0.06497137248516083, -0.07489361613988876, 0.06556747108697891, 0.013268516398966312, 0.04033548757433891, 0.10026846081018448, -0.08341875672340393, 0.03623493015766144, -0.10329496115446091, -0.07615881413221359, -0.005687538534402847, -0.0438818596303463, 0.053815167397260666, -0.11600521951913834, -0.1788579672574997, 0.005071406718343496, 0.06041397526860237, -0.014142155647277832, -0.006056731101125479, -0.04570255056023598, -0.08424171060323715, -0.006322147790342569, -0.015686562284827232, 0.09758511930704117, -0.057348523288965225, 0.12386012077331543, 0.07511288672685623, 0.0786072239279747, -0.07233253121376038, 0.01649525575339794, -0.10500580817461014, 0.036933768540620804, -0.1959279179573059, 0.025650018826127052, -0.04971220716834068, 0.07057857513427734, -0.04938284680247307, -0.10001207143068314, -0.017900222912430763, 0.006074927281588316, 0.07006578892469406, 0.12412417680025101, -0.19126476347446442, -0.06371217966079712, 0.16150641441345215, -0.11866036802530289, -0.15464381873607635, 0.10367453098297119, -0.05481065809726715, 0.039457809180021286, 0.06883400678634644, 0.18908043205738068, 0.06693030148744583, -0.12351549416780472, 0.0202102642506361, -0.017051270231604576, 0.03256544843316078, -0.05364061892032623, 0.06802862882614136, 0.03432793915271759, 0.016875609755516052, 0.02943863533437252, -0.11329150199890137, 0.08062376827001572, -0.11802905052900314, -0.09585315734148026, -0.04677417501807213, -0.1174679771065712, 0.05230649188160896, 0.07715488225221634, 0.07491470873355865, -0.11781483143568039, -0.05783213675022125, 0.09401872754096985, 0.08408135175704956, -0.08131002634763718, 0.024990106001496315, -0.06266093254089355, 0.050267208367586136, -0.07428234815597534, -0.03486504405736923, -0.1413985639810562, -0.05883991718292236, -0.013430193066596985, -0.0030470595229417086, 0.004101662430912256, -0.00573282316327095, 0.08766806870698929, 0.09819478541612625, -0.08252435177564621, -0.058005720376968384, -0.06147933378815651, 0.022954532876610756, -0.09958100318908691, -0.19410686194896698, -0.02519407868385315, -0.01317238062620163, 0.10791125893592834, -0.22900736331939697, 0.033458124846220016, -0.01123790442943573, 0.09931423515081406, 0.029825100675225258, -0.027767695486545563, -0.06880093365907669, 0.05132749676704407, -0.018466243520379066, -0.06405562162399292, 0.05914256349205971, 0.003591081127524376, -0.06793295592069626, -0.04689578711986542, -0.11023373156785965, 0.20410561561584473, 0.1326063871383667, -0.143936887383461, -0.08997207880020142, -0.003985629882663488, -0.055333320051431656, -0.0348917655646801, -0.05665391683578491, 0.008436175994575024, 0.09676840156316757, -0.030847283080220222, 0.13933725655078888, -0.07634847611188889, -0.016401059925556183, 0.039002321660518646, -0.06328301876783371, 0.012501746416091919, 0.08720165491104126, 0.0920599102973938, -0.10280963778495789, 0.13995075225830078, 0.16127024590969086, -0.09197678416967392, 0.13750939071178436, -0.04426351562142372, -0.06818615645170212, -0.009544669650495052, 0.012471550144255161, -0.003331086365506053, 0.18285410106182098, -0.11999202519655228, -0.004365704488009214, -0.003817875636741519, 0.01825961098074913, 0.016845855861902237, -0.2486647516489029, -0.05714793875813484, 0.04634547233581543, -0.04388899728655815, 0.025440296158194542, -0.028725529089570045, -0.024035537615418434, 0.0965748056769371, -0.012994974851608276, -0.07249223440885544, 0.03783278539776802, -0.005994986742734909, -0.07614798843860626, 0.20859938859939575, -0.06308510154485703, -0.11973082274198532, -0.11945848912000656, -0.02515893243253231, -0.04222757741808891, 0.04159378632903099, 0.06948088854551315, -0.07674828171730042, -0.02884078584611416, -0.07687246054410934, 0.00006060364466975443, 0.026670165359973907, 0.0408400259912014, 0.019276058301329613, 0.010464576072990894, 0.09520279616117477, -0.08583629131317139, -0.009688988327980042, -0.04567890241742134, -0.05023388937115669, 0.03695516288280487, 0.0268868301063776, 0.15553155541419983, 0.11389454454183578, -0.03834507241845131, 0.007669111248105764, -0.02029034122824669, 0.2676044702529907, -0.08332569152116776, -0.04097216576337814, 0.15045754611492157, 0.00474856561049819, 0.033042728900909424, 0.1255398541688919, 0.05936437472701073, -0.11361151933670044, 0.01561978179961443, 0.03269864246249199, -0.04853591322898865, -0.13514019548892975, -0.036982763558626175, -0.04085109010338783, -0.034041956067085266, 0.08686160296201706, 0.032352838665246964, 0.003650728380307555, 0.07727805525064468, 0.02447286807000637, 0.050604503601789474, 0.009816129691898823, 0.07570808380842209, 0.10626894980669022, 0.0302794948220253, 0.1032128855586052, -0.04697811231017113, -0.06290803104639053, 0.017184853553771973, 0.011694756336510181, 0.2333233803510666, -0.0046720379032194614, 0.0838136374950409, 0.0716605857014656, 0.1617620587348938, 0.003937639761716127, 0.03947921842336655, 0.0071579813957214355, -0.06971117854118347, -0.006359262857586145, -0.044528648257255554, -0.035713255405426025, 0.041974782943725586, -0.09120374917984009, 0.06292138248682022, -0.13295617699623108, 0.02075764909386635, 0.06469303369522095, 0.2075451761484146, 0.03911451995372772, -0.3546934127807617, -0.07938425242900848, 0.014146093279123306, 0.004666905850172043, -0.030431831255555153, 0.017682887613773346, 0.1545335054397583, -0.06256450712680817, 0.04217104613780975, -0.07927777618169785, 0.06706655770540237, -0.018069596961140633, 0.04563552141189575, 0.05548582971096039, 0.04913086071610451, 0.01107375230640173, 0.0625455304980278, -0.2640428841114044, 0.28978821635246277, -0.006712719798088074, 0.09163854271173477, -0.026894956827163696, -0.03237021341919899, 0.011836460791528225, 0.13583959639072418, 0.12373346835374832, -0.01535417977720499, -0.06052737310528755, -0.22110819816589355, 0.006948943715542555, 0.036257192492485046, 0.11847034841775894, -0.01595253497362137, 0.0970827043056488, -0.030632704496383667, 0.0010248717153444886, 0.0871879830956459, 0.005941319745033979, -0.07915626466274261, -0.08967447280883789, -0.04356023669242859, -0.01963576301932335, 0.005479450803250074, -0.0949791669845581, -0.08850383013486862, -0.11940759420394897, 0.14026792347431183, -0.001259447424672544, -0.01573910005390644, -0.1163104996085167, 0.08766268938779831, 0.05869494378566742, -0.07658334821462631, 0.07928422838449478, 0.036005038768053055, 0.09559818357229233, 0.025839775800704956, -0.05532790720462799, 0.1092727780342102, -0.07447603344917297, -0.16234348714351654, -0.06270468980073929, 0.0869908332824707, 0.02055734023451805, 0.023637274280190468, 0.011629249900579453, 0.005706300958991051, -0.0018281502416357398, -0.08274450898170471, 0.039748240262269974, 0.01758461631834507, 0.053544919937849045, 0.0017019013175740838, -0.03847773000597954, 0.035707179456949234, -0.04069096967577934, -0.023527661338448524, 0.1322811245918274, 0.31669333577156067, -0.09327162057161331, -0.02322065271437168, 0.0478699766099453, -0.06323737651109695, -0.20485015213489532, 0.05988927185535431, 0.04988889768719673, -0.005228539928793907, 0.0788729339838028, -0.11095646023750305, 0.09515237808227539, 0.11597233265638351, -0.031123019754886627, 0.07382471114397049, -0.33287104964256287, -0.12857508659362793, 0.08938974142074585, 0.21783356368541718, 0.1315823644399643, -0.1619117259979248, -0.01167355477809906, -0.039910633116960526, -0.1532495766878128, 0.07910335808992386, -0.04923813417553902, 0.11493796855211258, -0.02182326652109623, 0.04129919037222862, 0.01148276124149561, -0.06232350692152977, 0.14400608837604523, -0.025855503976345062, 0.14156287908554077, -0.06528230756521225, 0.004473141860216856, 0.06623286008834839, -0.057764682918787, 0.011669949628412724, -0.027635030448436737, 0.055112507194280624, -0.024689318612217903, -0.028513185679912567, -0.08507975190877914, 0.03224809840321541, -0.0230313241481781, -0.07089515775442123, -0.050034742802381516, 0.039510902017354965, 0.03827475383877754, -0.007262822240591049, 0.15332980453968048, 0.009253931231796741, 0.09578344970941544, 0.07123749703168869, 0.03977592661976814, -0.0556810088455677, -0.08415919542312622, -0.02680373191833496, -0.018651464954018593, 0.062128838151693344, -0.14208082854747772, 0.04048183187842369, 0.1199776902794838, 0.03850499913096428, 0.13124102354049683, 0.08217423409223557, -0.025050753727555275, 0.03166714683175087, 0.08293493837118149, -0.15486766397953033, -0.14382775127887726, -0.022400619462132454, -0.04682504013180733, -0.07497335225343704, 0.08476348966360092, 0.07618223875761032, -0.10675618797540665, 0.019886059686541557, -0.034763041883707047, 0.004754757974296808, -0.06801742315292358, 0.1966635137796402, 0.08075135946273804, 0.03255954757332802, -0.08006757497787476, 0.08632072061300278, 0.006724679842591286, -0.05925178900361061, -0.017275137826800346, 0.03230239450931549, -0.08098459988832474, -0.03212830051779747, 0.0837399885058403, 0.16436046361923218, -0.09850173443555832, -0.0476495623588562, -0.1505526453256607, -0.10899930447340012, 0.03642868250608444, 0.16009521484375, 0.10941683501005173, 0.009247266687452793, -0.005799191538244486, 0.032339099794626236, -0.12631240487098694, 0.09414006024599075, 0.015653299167752266, 0.10839822888374329, -0.18818217515945435, 0.12430617958307266, -0.004275008570402861, 0.035826973617076874, -0.034108370542526245, 0.04646220803260803, -0.11579523235559464, 0.03295939043164253, -0.1225849911570549, -0.013484157621860504, -0.02599445730447769, 0.005258377641439438, 0.0046765804290771484, -0.05612419545650482, -0.05662469565868378, 0.02882402203977108, -0.11030382663011551, -0.02365998737514019, 0.045392464846372604, 0.03984760865569115, -0.12172260135412216, -0.04088917002081871, 0.025129975751042366, -0.06877002865076065, 0.03475945442914963, 0.017959512770175934, 0.03295156732201576, 0.06955895572900772, -0.20175521075725555, -0.012901621870696545, 0.10274762660264969, -0.012347991578280926, 0.03217938542366028, -0.05004400387406349, -0.019602512940764427, 0.00623414246365428, 0.057026345282793045, -0.0030817396473139524, 0.045455966144800186, -0.13565747439861298, -0.013457223773002625, -0.037453848868608475, -0.06547749787569046, -0.05421294644474983, 0.022313004359602928, 0.07033901661634445, 0.02120816893875599, 0.184367373585701, -0.09295839071273804, 0.00911853276193142, -0.20419032871723175, -0.013790927827358246, -0.002074253046885133, -0.10676741600036621, -0.095622219145298, -0.05443805456161499, 0.054280415177345276, -0.05133306607604027, 0.12051288038492203, 0.005726868286728859, 0.05837148055434227, 0.029431013390421867, -0.05386022850871086, 0.06091223284602165, 0.04633033275604248, 0.29610851407051086, 0.01116128545254469, -0.024053268134593964, 0.0586128830909729, 0.0867924690246582, 0.11820260435342789, 0.09828420728445053, 0.14993195235729218, 0.18219226598739624, -0.10652334243059158, 0.1129656657576561, 0.056395191699266434, -0.029947757720947266, -0.15636931359767914, 0.030717702582478523, -0.05197855830192566, 0.06512203067541122, -0.03796601668000221, 0.1743534356355667, 0.14249546825885773, -0.19186021387577057, 0.026213059201836586, -0.03405829891562462, -0.08889981359243393, -0.07238362729549408, -0.06254708021879196, -0.09978277236223221, -0.17957882583141327, 0.036928121000528336, -0.09848198294639587, 0.012273527681827545, 0.1365213841199875, -0.006951184943318367, -0.025377720594406128, 0.2176133543252945, 0.04539043828845024, 0.0315939299762249, 0.028805114328861237, -0.0002381900994805619, -0.04239186644554138, -0.06610871851444244, -0.07727169245481491, 0.043434131890535355, -0.04922652617096901, 0.0074374862015247345, -0.07285604625940323, -0.07556750625371933, 0.0354204885661602, 0.020004915073513985, -0.08307639509439468, 0.015783552080392838, 0.027193719521164894, 0.06717725843191147, 0.01919940859079361, 0.011718031950294971, 0.0032953594345599413, -0.008330781012773514, 0.2520180642604828, -0.08094912022352219, -0.0915210023522377, -0.09136965125799179, 0.22288395464420319, 0.04735167697072029, 0.033290717750787735, 0.007053060457110405, -0.1062709391117096, 0.037088245153427124, 0.2110780030488968, 0.14517445862293243, -0.1032329574227333, 0.0031583821401000023, -0.021812520921230316, -0.012491646222770214, -0.05350269377231598, 0.11243251711130142, 0.09354820847511292, 0.027400514110922813, -0.08418799191713333, -0.034829091280698776, -0.04185288026928902, -0.008299293927848339, -0.04225704446434975, 0.05427895113825798, 0.040449872612953186, 0.01927359402179718, -0.08323339372873306, 0.06389184296131134, -0.01782039739191532, -0.10506269335746765, 0.11499202251434326, -0.169850155711174, -0.12277194112539291, -0.01035440992563963, 0.12205525487661362, -0.010655253194272518, 0.04048222675919533, -0.06046472117304802, 0.006909580901265144, 0.04239839315414429, -0.004760408308357, -0.0772981271147728, -0.11176132410764694, 0.051091358065605164, -0.07107936590909958, 0.25574836134910583, -0.0389891155064106, 0.04704052209854126, 0.10061853379011154, 0.037018924951553345, -0.08157972991466522, 0.1018340215086937, 0.027579613029956818, -0.09868466109037399, 0.011549876071512699, 0.12373840808868408, -0.04078923538327217, 0.10156046599149704, 0.025735920295119286, -0.15085165202617645, 0.016773398965597153, -0.04615320265293121, -0.05394592881202698, -0.04806019738316536, -0.04798391833901405, -0.06361047178506851, 0.12208840250968933, 0.1582111418247223, -0.029447441920638084, 0.020999997854232788, -0.0652490109205246, 0.05368329957127571, 0.09292784333229065, 0.052973803132772446, -0.02788895182311535, -0.22366108000278473, 0.014147507958114147, 0.08098672330379486, -0.04068544879555702, -0.19377000629901886, -0.11681877821683884, 0.003447897033765912, -0.05825987458229065, -0.053160618990659714, 0.08660607784986496, 0.13778497278690338, 0.046523500233888626, -0.06423648446798325, -0.13867487013339996, -0.06605179607868195, 0.16542908549308777, -0.12333827465772629, -0.1156320795416832 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Devansh This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1897 - Wer: 60.4598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0064 | 38.46 | 500 | 0.9744 | 61.3793 | | 0.0001 | 76.92 | 1000 | 1.1056 | 60.9195 | | 0.0001 | 115.38 | 1500 | 1.1534 | 60.4598 | | 0.0001 | 153.85 | 2000 | 1.1757 | 60.4598 | | 0.0 | 192.31 | 2500 | 1.1897 | 60.4598 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
{"language": ["hi"], "license": "apache-2.0", "tags": ["hf-asr-leaderboard", "generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_11_0"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "Whisper Small Hi - Devansh", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 11.0", "type": "mozilla-foundation/common_voice_11_0", "config": "hi", "split": "None", "args": "config: hi, split: test"}, "metrics": [{"type": "wer", "value": 60.45977011494252, "name": "Wer"}]}]}]}
automatic-speech-recognition
Devanshj7/whisper-model-small
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-14T06:57:40+00:00
[]
[ "hi" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #hi #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us
Whisper Small Hi - Devansh ========================== This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: * Loss: 1.1897 * Wer: 60.4598 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 2500 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.2.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #hi #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 104, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #hi #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2500\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.1191820576786995, 0.13149242103099823, -0.0035064779222011566, 0.04634028300642967, 0.10166438668966293, 0.003247584216296673, 0.1290932297706604, 0.14669442176818848, -0.04468915984034538, 0.08983077108860016, 0.08246762305498123, 0.06602838635444641, 0.0788530707359314, 0.16465876996517181, -0.0315975695848465, -0.28523722290992737, 0.017771203070878983, -0.028337884694337845, -0.11313429474830627, 0.09850481152534485, 0.09482863545417786, -0.10414523631334305, 0.029566209763288498, 0.00554188946262002, -0.07500266283750534, 0.004683913663029671, -0.020282328128814697, -0.05916695296764374, 0.09434112161397934, 0.03540022671222687, 0.049962304532527924, 0.039312779903411865, 0.07961144298315048, -0.26052993535995483, 0.015298415906727314, 0.04465904086828232, 0.046187859028577805, 0.06034938991069794, 0.07623624801635742, -0.016628295183181763, 0.0785636156797409, -0.07860679179430008, 0.06689619272947311, 0.05845320597290993, -0.08890971541404724, -0.27290448546409607, -0.07432802766561508, 0.04269540682435036, 0.1292904168367386, 0.07042443752288818, -0.0330592505633831, 0.06403791904449463, -0.06035405769944191, 0.0911930575966835, 0.1865254044532776, -0.21405528485774994, -0.06548898667097092, -0.03875374794006348, 0.04439171031117439, 0.07544872909784317, -0.10647700726985931, -0.014708207920193672, 0.01635047420859337, 0.018700266256928444, 0.0997399166226387, -0.00392486434429884, 0.007645060308277607, -0.012086639180779457, -0.13103514909744263, -0.03586753457784653, 0.11842596530914307, 0.07364553213119507, -0.02444300428032875, -0.13858775794506073, -0.026394907385110855, -0.12449146062135696, -0.06289023160934448, 0.013436960056424141, 0.02219526842236519, -0.03640182316303253, -0.0641724243760109, -0.006903795059770346, -0.05751362442970276, -0.08310849964618683, 0.060870252549648285, 0.14383858442306519, 0.03311406448483467, -0.038030724972486496, 0.007028122898191214, 0.08199192583560944, 0.06214389204978943, -0.153760626912117, -0.01187629159539938, 0.03468237444758415, -0.09365912526845932, -0.018510492518544197, -0.01219821348786354, -0.020372312515974045, 0.050871431827545166, 0.13343289494514465, -0.012311924248933792, 0.10181063413619995, 0.01323806680738926, 0.015030136331915855, -0.0941641554236412, 0.15063893795013428, -0.04123932495713234, -0.07124808430671692, -0.028782831504940987, 0.1520254909992218, 0.011217568069696426, -0.01624085009098053, -0.06476359069347382, 0.034521475434303284, 0.08091331273317337, 0.05681712180376053, -0.007330254185944796, 0.02454862743616104, -0.06567849218845367, -0.02116265706717968, -0.009390543214976788, -0.13112330436706543, 0.0400325171649456, 0.047134172171354294, -0.04276693984866142, -0.04151696711778641, 0.003716865321621299, 0.028243454173207283, -0.018052387982606888, 0.0682881623506546, -0.04622607305645943, -0.006971744354814291, -0.07388722896575928, -0.08407514542341232, 0.02219574525952339, -0.023553237318992615, -0.003904403420165181, -0.0638352781534195, -0.09980069845914841, -0.057097483426332474, 0.05219898745417595, -0.038679417222738266, -0.06349706649780273, -0.08386112004518509, -0.07408304512500763, 0.04372267797589302, -0.018388397991657257, 0.1345120072364807, -0.048149824142456055, 0.08820860832929611, 0.02052159234881401, 0.056160762906074524, 0.0718182623386383, 0.05649746581912041, -0.034185487776994705, 0.05729641765356064, -0.14904414117336273, 0.10843683034181595, -0.12420465797185898, 0.07122936844825745, -0.13757172226905823, -0.08341331779956818, -0.007301072124391794, 0.007915681228041649, 0.08849439769983292, 0.13429585099220276, -0.17683814465999603, -0.09570339322090149, 0.18015599250793457, -0.07826224714517593, -0.09177281707525253, 0.13905490934848785, -0.022205499932169914, 0.0045838737860322, 0.0421428345143795, 0.2014215588569641, 0.12612619996070862, -0.0779622495174408, 0.012483620084822178, -0.03695540502667427, 0.10775229334831238, 0.04140835627913475, 0.08271245658397675, -0.053978826850652695, 0.010743830353021622, -0.0006619810592383146, -0.03334746137261391, 0.07029116153717041, -0.0661754235625267, -0.0937652662396431, -0.014913981780409813, -0.08858004957437515, 0.013466058298945427, 0.052739161998033524, 0.015404274687170982, -0.08470948040485382, -0.11156900227069855, 0.025160202756524086, 0.11094378679990768, -0.10928323119878769, 0.01538990717381239, -0.08638022094964981, 0.02813819982111454, -0.006026660557836294, -0.0065584806725382805, -0.1326248198747635, 0.009427172131836414, 0.0345701202750206, -0.06911689043045044, 0.02608717605471611, -0.05047953128814697, 0.09095683693885803, 0.0432082936167717, -0.04981410503387451, -0.07099336385726929, -0.021108431741595268, 0.013476964086294174, -0.07173312455415726, -0.2403826266527176, -0.05966285616159439, -0.033320289105176926, 0.20539961755275726, -0.2197301834821701, 0.023856064304709435, 0.049501754343509674, 0.13904313743114471, 0.04137618839740753, -0.04209056869149208, 0.036397818475961685, 0.059476885944604874, 0.005637005437165499, -0.08454862982034683, 0.02945861592888832, 0.004564153030514717, -0.15143123269081116, 0.007923917844891548, -0.16834941506385803, 0.06738892942667007, 0.08835931122303009, 0.039256706833839417, -0.06851471960544586, -0.05207011103630066, -0.05230914056301117, -0.0573696531355381, -0.02009328082203865, -0.0092336880043149, 0.165413960814476, 0.01145878341048956, 0.11517123132944107, -0.07064469158649445, -0.04207896813750267, 0.019502852112054825, -0.0025953527074307203, -0.008156762458384037, 0.15754881501197815, 0.007169531192630529, -0.07818808406591415, 0.09927161782979965, 0.060338910669088364, -0.06498529016971588, 0.17539553344249725, -0.07728562504053116, -0.07888109982013702, -0.022839391604065895, 0.049731675535440445, 0.041661739349365234, 0.10653267055749893, -0.13534845411777496, -0.019736958667635918, 0.01514839194715023, -0.0014186499174684286, 0.020511167123913765, -0.18733736872673035, -0.0011915380600839853, 0.03685717284679413, -0.07622984796762466, 0.00954529270529747, -0.005493932403624058, -0.006723918952047825, 0.07468198239803314, -0.0005226566572673619, -0.06112705171108246, -0.002950069261714816, -0.042799584567546844, -0.09466233104467392, 0.1758769005537033, -0.10056131333112717, -0.1579713076353073, -0.11731967329978943, 0.000946692714933306, 0.0049276468344032764, -0.015655064955353737, 0.0334232822060585, -0.10827922075986862, -0.03282484412193298, -0.08428487181663513, -0.0079138008877635, -0.009803730063140392, 0.01866719126701355, 0.02614685706794262, 0.0070923673920333385, 0.09441905468702316, -0.09339892864227295, 0.013446731492877007, -0.0066850376315414906, -0.016338776797056198, -0.0010344525799155235, 0.026520967483520508, 0.0765412300825119, 0.15391217172145844, 0.03972895070910454, 0.02828323282301426, -0.03271466866135597, 0.19187626242637634, -0.12289997190237045, -0.0010429582325741649, 0.11666539311408997, -0.019519709050655365, 0.04710960015654564, 0.16595830023288727, 0.04456153139472008, -0.073720283806324, 0.019902564585208893, 0.025095056742429733, -0.014336761087179184, -0.2077530175447464, -0.02512158267199993, -0.06582575291395187, -0.020535394549369812, 0.09784805029630661, 0.0411953404545784, 0.0021223353687673807, 0.02429318055510521, -0.033721353858709335, -0.02409563958644867, 0.03977551683783531, 0.05558185651898384, 0.0532664991915226, 0.029966896399855614, 0.09979107230901718, -0.017510900273919106, -0.04701190069317818, 0.017601607367396355, 0.014026924967765808, 0.21638020873069763, 0.01589900627732277, 0.18649545311927795, 0.04034111648797989, 0.12884777784347534, 0.007295793388038874, 0.0249952245503664, 0.008782968856394291, -0.010798239149153233, 0.02725333161652088, -0.06651945412158966, -0.029594773426651955, 0.06043050438165665, 0.0770350843667984, 0.045620396733284, -0.09001355618238449, 0.020823441445827484, 0.029300501570105553, 0.3304479122161865, 0.0615699402987957, -0.2619689404964447, -0.0820658728480339, 0.035707276314496994, -0.09121014922857285, -0.033270131796598434, 0.017875824123620987, 0.14566472172737122, -0.08101187646389008, 0.06817874312400818, -0.07637103646993637, 0.07523754239082336, -0.060582954436540604, 0.0019877832382917404, 0.04913676157593727, 0.10800400376319885, -0.004814530722796917, 0.048999398946762085, -0.25769633054733276, 0.28357094526290894, -0.0000635453179711476, 0.09398537874221802, -0.041461165994405746, 0.03871110454201698, 0.049580104649066925, -0.030195187777280807, 0.08932819962501526, -0.0067571066319942474, -0.1482006013393402, -0.1713787019252777, -0.09408164769411087, 0.020734500139951706, 0.12043096870183945, -0.0481596402823925, 0.10985855758190155, -0.031247742474079132, -0.038729868829250336, 0.04498383402824402, -0.08954942226409912, -0.12383873760700226, -0.112562395632267, 0.03212585672736168, 0.058651670813560486, 0.05423666164278984, -0.112838976085186, -0.08987575769424438, -0.04627668112516403, 0.12282862514257431, -0.12452691048383713, -0.032849740236997604, -0.134026899933815, 0.05015683174133301, 0.14717210829257965, -0.06553894281387329, 0.04177583381533623, 0.028173958882689476, 0.12278924882411957, 0.017650742083787918, -0.013180004432797432, 0.10254734009504318, -0.08072690665721893, -0.2082342505455017, -0.04526005685329437, 0.18223826587200165, 0.041253093630075455, 0.06931113451719284, -0.019163358956575394, 0.026372602209448814, 0.0027816251385957003, -0.06284352391958237, 0.07348258048295975, 0.06010391563177109, -0.02880338579416275, 0.06342227756977081, -0.024995557963848114, -0.03390830010175705, -0.08294346928596497, -0.05864778533577919, 0.13002769649028778, 0.2606391906738281, -0.07312078028917313, 0.0734274685382843, 0.06582678109407425, -0.06168148294091225, -0.15999341011047363, 0.006383105646818876, 0.10972218215465546, 0.04803410544991493, 0.0102679543197155, -0.19631990790367126, 0.029854875057935715, 0.049771085381507874, -0.03257012367248535, 0.05937207490205765, -0.31994885206222534, -0.13764441013336182, 0.1064649298787117, 0.07900235801935196, -0.03947171941399574, -0.15070635080337524, -0.0706266462802887, -0.02441246435046196, -0.043315988034009933, 0.029923662543296814, -0.04658417031168938, 0.12632785737514496, 0.006942057050764561, 0.03867389261722565, 0.029839683324098587, -0.051435232162475586, 0.1413126438856125, -0.025258582085371017, 0.054069772362709045, -0.014073743484914303, 0.018098652362823486, -0.022667450830340385, -0.06691492348909378, 0.015056653879582882, -0.11693587154150009, 0.024056443944573402, -0.10532507300376892, -0.029957061633467674, -0.08416790515184402, 0.022593194618821144, -0.035617485642433167, -0.026217559352517128, 0.000893338059540838, 0.055067550390958786, 0.08521585166454315, 0.017941683530807495, 0.08766406029462814, -0.08270634710788727, 0.14198099076747894, 0.11738276481628418, 0.15230721235275269, -0.00670082401484251, -0.07589742541313171, -0.00467466376721859, -0.0116072753444314, 0.05039528012275696, -0.12026747316122055, 0.05141304060816765, 0.12587028741836548, 0.04327789321541786, 0.15340696275234222, 0.04418018460273743, -0.09050934761762619, 0.006876977626234293, 0.061202093958854675, -0.07990115880966187, -0.19320277869701385, -0.02705632895231247, 0.05502860248088837, -0.15310430526733398, -0.00442658131942153, 0.11683180928230286, -0.050369828939437866, -0.006659247446805239, 0.004902764223515987, 0.039633940905332565, -0.034619465470314026, 0.21427124738693237, 0.03907189518213272, 0.08693526685237885, -0.09253950417041779, 0.06880924105644226, 0.04140493646264076, -0.10617578774690628, 0.05641673505306244, 0.11971760541200638, -0.04801056906580925, -0.020475512370467186, 0.015587993897497654, 0.0951322615146637, 0.0791284441947937, -0.048383090645074844, -0.11830341815948486, -0.14324188232421875, 0.060341693460941315, 0.10928675532341003, 0.020066287368535995, 0.01239698939025402, -0.020501017570495605, 0.03347209095954895, -0.09495359659194946, 0.12242948263883591, 0.07958068698644638, 0.05443422496318817, -0.1311936229467392, 0.13459961116313934, 0.002548494143411517, -0.014871745370328426, -0.0029451746959239244, 0.0010754927061498165, -0.11289253830909729, 0.018046539276838303, -0.1026148647069931, -0.010773454792797565, -0.05665947496891022, 0.0035269034560769796, 0.01206550095230341, -0.05583547055721283, -0.043888166546821594, 0.03229789063334465, -0.10764846950769424, -0.04510100930929184, -0.01774720475077629, 0.07229206711053848, -0.07750033587217331, -0.03152928873896599, 0.0350860059261322, -0.11566564440727234, 0.08264996111392975, 0.031600940972566605, -0.006149289198219776, 0.009173066355288029, -0.1283351182937622, -0.010986000299453735, 0.028112787753343582, -0.0014128542970865965, 0.024257617071270943, -0.17064252495765686, -0.026858802884817123, -0.02732003666460514, 0.021821947768330574, -0.008680818602442741, 0.04212439805269241, -0.10924066603183746, -0.00944728683680296, -0.036616187542676926, -0.04951998218894005, -0.06047333404421806, 0.05720117315649986, 0.07251802831888199, 0.011607589200139046, 0.14691321551799774, -0.10066826641559601, 0.059390559792518616, -0.22315341234207153, 0.004298502113670111, -0.01625903509557247, -0.08022202551364899, -0.0921555608510971, -0.01993141882121563, 0.09791027754545212, -0.06412173062562943, 0.0737660825252533, -0.04996315762400627, 0.0324067659676075, 0.0305491890758276, -0.12145068496465683, 0.049810390919446945, 0.05861258506774902, 0.19303575158119202, 0.04295146465301514, -0.028816135600209236, 0.09165342897176743, -0.02300511673092842, 0.044975992292165756, 0.1295085847377777, 0.12263873219490051, 0.17532193660736084, 0.05641236901283264, 0.0819801539182663, 0.08505822718143463, -0.09934689104557037, -0.12515902519226074, 0.13823184370994568, -0.04565148055553436, 0.12860867381095886, -0.04199450463056564, 0.1970178782939911, 0.11799698323011398, -0.17940819263458252, 0.06503132730722427, -0.04606511816382408, -0.09030894190073013, -0.10589104890823364, -0.09406992793083191, -0.08608054369688034, -0.1613621860742569, 0.005515240598469973, -0.09804951399564743, 0.0412689745426178, 0.044713374227285385, 0.029739536345005035, 0.0368887223303318, 0.12881000339984894, 0.05158790573477745, 0.020335575565695763, 0.11556593328714371, -0.0034424751065671444, -0.004941342864185572, -0.04859301447868347, -0.10606081038713455, 0.07031650096178055, -0.022549601271748543, 0.042462777346372604, -0.0493244007229805, -0.09300684183835983, 0.05541340634226799, 0.00541278813034296, -0.11207153648138046, 0.03410995379090309, -0.01744828186929226, 0.06793519109487534, 0.07371893525123596, 0.04677322134375572, -0.02212967909872532, -0.017434468492865562, 0.21478399634361267, -0.09906453639268875, -0.08072803169488907, -0.13431870937347412, 0.21685545146465302, -0.021914951503276825, -0.008150873705744743, 0.011039955541491508, -0.07495209574699402, 0.005630034953355789, 0.1674908697605133, 0.1425938755273819, -0.028432484716176987, -0.004044892266392708, -0.00701113510876894, -0.013658669777214527, -0.054191965609788895, 0.06902392208576202, 0.10898000746965408, 0.03031858801841736, -0.04318614676594734, -0.01750137098133564, -0.007170200813561678, -0.07968636602163315, -0.04967208206653595, 0.08161550015211105, 0.027537498623132706, 0.007657000329345465, -0.020941106602549553, 0.11217492818832397, -0.04698199778795242, -0.1333695948123932, 0.010291614569723606, -0.1810368001461029, -0.17291215062141418, -0.04070447012782097, 0.07173700630664825, 0.05069765821099281, 0.03228943794965744, -0.0023449354339390993, -0.017092587426304817, 0.08768592774868011, -0.0006056222482584417, -0.0249781534075737, -0.08778703212738037, 0.07460499554872513, -0.1498309224843979, 0.17611756920814514, -0.04021255671977997, 0.018826358020305634, 0.1240219995379448, 0.04124823212623596, -0.08563686907291412, 0.0340464748442173, 0.07628356665372849, -0.13537877798080444, 0.04938282445073128, 0.21414241194725037, -0.041621673852205276, 0.1604662388563156, 0.0382920503616333, -0.10495377331972122, 0.013920285739004612, -0.0849197506904602, -0.06588619947433472, -0.059352245181798935, 0.00009461069566896185, -0.043218567967414856, 0.14066384732723236, 0.2029954493045807, -0.07853993773460388, -0.01246936060488224, -0.041230086237192154, 0.004484460689127445, 0.04336785897612572, 0.10750514268875122, -0.046215951442718506, -0.2663974165916443, 0.007860017009079456, 0.000233192797168158, 0.017346462234854698, -0.21510079503059387, -0.09565241634845734, 0.00492072245106101, -0.04689492657780647, -0.059210535138845444, 0.115648053586483, 0.10004515200853348, 0.044522423297166824, -0.04835733398795128, -0.13351599872112274, -0.01920030079782009, 0.17906279861927032, -0.16488851606845856, -0.04305073618888855 ]
null
null
null
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
{"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-CartPole-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
Cuphadi/Reinforce-CartPole-v1
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
2024-02-14T07:00:19+00:00
[]
[]
TAGS #CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
# Reinforce Agent playing CartPole-v1 This is a trained model of a Reinforce agent playing CartPole-v1 . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
[ "# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ "TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n", "# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 39, 54 ]
[ "passage: TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 0.007526164408773184, -0.12498430907726288, -0.0013541718944907188, 0.09601131081581116, 0.11848696321249008, -0.04186001420021057, 0.11405468732118607, 0.05624859035015106, 0.09539441019296646, 0.04239490255713463, 0.13636724650859833, 0.06906966865062714, -0.004102868959307671, 0.12412862479686737, 0.09840741008520126, -0.26058563590049744, 0.07420794665813446, -0.04403980076313019, -0.009944677352905273, 0.10139261186122894, 0.07836852967739105, -0.08325441926717758, 0.051592715084552765, 0.00009572553972247988, -0.044259943068027496, 0.0321260429918766, 0.013628939166665077, -0.053157225251197815, 0.1606452465057373, -0.07313758134841919, 0.10494591295719147, -0.03843724727630615, 0.14574295282363892, -0.1126825287938118, 0.04758213832974434, 0.05111503228545189, -0.04548581689596176, 0.03848232328891754, -0.12538743019104004, -0.06033875793218613, 0.026815801858901978, -0.015865681692957878, 0.12249194830656052, 0.03647647053003311, -0.1777559220790863, -0.13461355865001678, -0.0165896974503994, 0.12325166910886765, 0.1627800315618515, 0.00512364786118269, 0.014270431362092495, 0.16791965067386627, -0.1761058121919632, 0.025937072932720184, 0.11400806158781052, -0.37275227904319763, -0.00034436015994288027, 0.2240462601184845, 0.06164427846670151, 0.1252165287733078, -0.12646614015102386, 0.010440526530146599, 0.07403992861509323, 0.04368630796670914, 0.049784936010837555, -0.015430688858032227, -0.12260042130947113, 0.08455035835504532, -0.1383819431066513, -0.058066487312316895, 0.1495426446199417, -0.019741326570510864, -0.009476418606936932, -0.016515808179974556, -0.009238536469638348, -0.050979889929294586, -0.03430935740470886, -0.11778499186038971, 0.10755524039268494, 0.04975730925798416, 0.0038771627005189657, -0.04602450504899025, -0.05612579360604286, -0.09815777093172073, -0.03123871050775051, 0.0372777059674263, -0.013706400990486145, 0.01091629359871149, 0.027692900970578194, 0.09935613721609116, -0.13446329534053802, 0.01825822703540325, -0.028096558526158333, -0.028040969744324684, -0.1316804438829422, -0.11984307318925858, -0.026084421202540398, 0.004223645199090242, 0.03029833547770977, 0.20433813333511353, 0.020139509811997414, 0.059011414647102356, -0.0022708347532898188, 0.09776382148265839, 0.029780851677060127, 0.13517548143863678, -0.04466623440384865, 0.19488364458084106, 0.07711011171340942, 0.05364556983113289, 0.03204274922609329, -0.05344729498028755, -0.19369827210903168, 0.04861246794462204, 0.06659778952598572, 0.08274952322244644, -0.1178959533572197, 0.0059632807970047, -0.10316018015146255, 0.0028950648847967386, -0.10474003106355667, -0.0642905905842781, -0.02892979420721531, 0.031841445714235306, -0.10535725951194763, 0.028785312548279762, 0.025052599608898163, 0.04140377417206764, 0.0676041767001152, -0.12253966927528381, -0.07404746115207672, -0.021733485162258148, -0.12817098200321198, -0.09923440217971802, 0.08802318572998047, -0.026199497282505035, -0.005110981408506632, -0.1253623217344284, -0.2661486268043518, -0.05670225992798805, 0.06396034359931946, -0.03231031447649002, -0.08589376509189606, -0.1633463054895401, 0.026403428986668587, -0.07700273394584656, 0.05221332609653473, 0.04776721075177193, -0.03665859252214432, 0.02023705095052719, -0.07958202809095383, 0.12739010155200958, 0.049698662012815475, 0.00541001046076417, -0.09916839748620987, 0.07882837951183319, -0.3034103214740753, -0.02581131085753441, -0.15228183567523956, 0.0772043839097023, -0.07893010973930359, 0.01308529730886221, 0.05044940114021301, 0.043790437281131744, -0.016942394897341728, 0.16269747912883759, -0.17043575644493103, -0.05301272124052048, 0.026445282623171806, -0.09261117875576019, -0.09916394203901291, 0.07275339215993881, -0.06339669227600098, 0.21263530850410461, 0.08751397579908371, 0.17006252706050873, -0.011036526411771774, -0.16256992518901825, 0.1207515075802803, 0.07522942125797272, -0.1639646589756012, 0.004287737421691418, 0.061784300953149796, -0.0016935690073296428, 0.02746843732893467, -0.01872866041958332, -0.07289361208677292, 0.06302516162395477, -0.07825060933828354, 0.022581040859222412, 0.06258945167064667, -0.09531243145465851, 0.23986859619617462, -0.005434412509202957, 0.0862451046705246, -0.025957979261875153, -0.09802921861410141, 0.00908072479069233, 0.07164718210697174, -0.0014321404742076993, 0.01703714393079281, -0.14553219079971313, 0.23044352233409882, -0.07965081930160522, 0.011176814325153828, -0.11607582122087479, -0.1256982982158661, 0.011873425915837288, 0.13336114585399628, 0.059921663254499435, 0.16569606959819794, 0.09518871456384659, -0.032197169959545135, 0.017584815621376038, -0.0023385772947221994, -0.09040450304746628, 0.01580043137073517, -0.0021571461111307144, -0.12167251110076904, -0.07353103160858154, -0.08134473115205765, 0.12585052847862244, -0.20988115668296814, 0.015492538921535015, 0.04099845886230469, 0.008103687316179276, 0.04467369243502617, 0.023746047168970108, -0.013269703835248947, -0.00007021807687124237, 0.03244573250412941, -0.10098352283239365, 0.12937165796756744, 0.013381263241171837, 0.014676140621304512, -0.006365173030644655, -0.05572463944554329, 0.03720450773835182, 0.040439579635858536, -0.11237845569849014, -0.11330515146255493, -0.009658765979111195, -0.0015364213613793254, 0.02637762948870659, -0.022321155294775963, 0.052120618522167206, 0.27587956190109253, 0.05387469753623009, 0.10401033610105515, -0.05769326910376549, 0.015315087512135506, -0.015322818420827389, -0.07135670632123947, 0.06358719617128372, 0.025013601407408714, 0.08050397783517838, -0.03531401976943016, 0.03759452700614929, 0.1675453782081604, -0.015888912603259087, 0.11127935349941254, -0.06545067578554153, -0.03844274953007698, -0.043109722435474396, 0.05627678707242012, 0.015021559782326221, 0.04564907029271126, 0.0000015355876712419558, -0.08444724231958389, -0.03503387048840523, -0.03988509997725487, -0.010637006722390652, -0.12273643165826797, -0.00499896751716733, 0.01265440508723259, -0.021940499544143677, 0.04488934203982353, 0.07375624030828476, -0.04849626496434212, 0.025821007788181305, 0.06070821359753609, -0.10193055868148804, 0.08957115560770035, 0.015067169442772865, -0.06946801394224167, 0.13769419491291046, -0.07484805583953857, -0.045293889939785004, -0.1025395318865776, -0.1568877100944519, 0.09384927153587341, 0.06704871356487274, -0.05427970737218857, -0.1503879576921463, -0.0016851738328114152, -0.008973666466772556, 0.09206123650074005, -0.006399387493729591, -0.12621140480041504, 0.01989075168967247, 0.08295059949159622, -0.05633419007062912, -0.09804849326610565, -0.0075809285044670105, -0.05280788615345955, -0.17707788944244385, -0.03888550028204918, -0.06398582458496094, -0.06734282523393631, 0.23586803674697876, 0.02017230913043022, 0.08274748176336288, -0.044721852988004684, 0.04250151664018631, -0.012231717817485332, 0.0006326579605229199, 0.10689259320497513, -0.09043551236391068, -0.017900818958878517, -0.001320177922025323, -0.024820495396852493, -0.07327181100845337, 0.029733488336205482, -0.04272191599011421, -0.08249637484550476, -0.1415451467037201, -0.04993678629398346, -0.011005163192749023, 0.10754310339689255, 0.07337497919797897, 0.0048001972027122974, -0.11733713001012802, 0.062058478593826294, 0.13692134618759155, 0.031207585707306862, 0.004062763415277004, 0.028157465159893036, 0.14977529644966125, -0.10706274956464767, -0.022463621571660042, -0.038119975477457047, -0.054863203316926956, 0.004114252515137196, 0.016883620992302895, 0.08840765058994293, 0.1410384476184845, 0.11468084901571274, 0.047563645988702774, 0.0464191697537899, 0.06561273336410522, 0.1694946140050888, 0.059157438576221466, -0.10448314249515533, -0.044678982347249985, -0.0040070898830890656, -0.10903503000736237, 0.057307638227939606, 0.16030821204185486, 0.06326017528772354, -0.14463356137275696, 0.021787412464618683, -0.038982175290584564, 0.13649246096611023, 0.020638149231672287, -0.2677258849143982, -0.008139112964272499, 0.023630544543266296, -0.0010347915813326836, -0.012379839085042477, 0.10821118950843811, -0.040134772658348083, -0.233198344707489, -0.12299054861068726, 0.010077533312141895, 0.031144635751843452, -0.1509784311056137, 0.015542911365628242, -0.14036494493484497, 0.08027976751327515, -0.007007129956036806, 0.07418135553598404, -0.025149788707494736, 0.15060245990753174, -0.028731435537338257, 0.01628703810274601, -0.07902143895626068, -0.047717493027448654, 0.09898673743009567, -0.0046631391160190105, 0.1931537538766861, 0.005480166990309954, -0.023713182657957077, -0.12098433077335358, -0.05229806900024414, -0.04967813938856125, 0.010598190128803253, -0.05373382940888405, 0.0765683576464653, -0.02441473677754402, -0.0039579677395522594, -0.010900177992880344, 0.08942947536706924, -0.05291692912578583, 0.03636563941836357, -0.11246588081121445, -0.05034820735454559, 0.14550213515758514, -0.09163831174373627, -0.10174685716629028, -0.16205860674381256, 0.14137998223304749, 0.15070600807666779, 0.058216437697410583, -0.04001476243138313, 0.03867831453680992, -0.019183965399861336, -0.024241572245955467, 0.07880574464797974, 0.009653856977820396, 0.1324782371520996, -0.08983246237039566, 0.014327390119433403, 0.14589735865592957, -0.05275948345661163, 0.016191845759749413, -0.02304735779762268, 0.12202176451683044, 0.04650457948446274, 0.06189403310418129, 0.018547222018241882, 0.06655703485012054, 0.06466961652040482, -0.02262885868549347, 0.08456692099571228, 0.030712679028511047, -0.18644161522388458, 0.058530256152153015, -0.09805119782686234, 0.22581584751605988, 0.05066308751702309, 0.06047345697879791, 0.2993181645870209, 0.21986234188079834, -0.05372472479939461, 0.1669820249080658, 0.044286344200372696, -0.05891284719109535, -0.21245966851711273, -0.03684934973716736, -0.030655447393655777, 0.09436552971601486, 0.15607263147830963, -0.0981721356511116, -0.04201313853263855, -0.00972361396998167, -0.032264553010463715, 0.020120708271861076, -0.24663487076759338, -0.01734781451523304, 0.14379777014255524, 0.10629188269376755, 0.2451348900794983, -0.006132842972874641, 0.023609744384884834, 0.049030207097530365, 0.018605992197990417, -0.02483358606696129, -0.21013511717319489, 0.09079083055257797, 0.006071676965802908, 0.04935038834810257, 0.022885039448738098, -0.006052911281585693, 0.04500092566013336, -0.073696069419384, 0.08904470503330231, -0.08561883866786957, -0.08341272175312042, 0.2185351401567459, -0.03945168852806091, -0.00661163916811347, 0.12917985022068024, -0.011526807211339474, -0.1097102016210556, -0.015364703722298145, 0.027403371408581734, 0.030678823590278625, -0.030246863141655922, -0.03609466925263405, 0.024012766778469086, 0.10202405601739883, -0.04282205551862717, 0.04565315693616867, 0.10240072011947632, -0.020902957767248154, 0.15945613384246826, 0.13205459713935852, 0.10420060157775879, 0.002927543595433235, -0.06464727967977524, 0.014349685050547123, -0.055471502244472504, 0.02962767891585827, -0.17038846015930176, -0.0070191239938139915, 0.055695805698633194, 0.04772466421127319, 0.0945243164896965, 0.11333164572715759, -0.127106174826622, 0.0300484336912632, 0.028996523469686508, -0.06286120414733887, -0.06029998138546944, -0.002275418024510145, -0.016458535566926003, -0.008173024281859398, -0.09947093576192856, 0.07884971052408218, -0.10555081814527512, -0.03306307643651962, 0.05025126785039902, -0.0607193186879158, -0.12852220237255096, -0.010904680006206036, 0.1252979338169098, 0.061709314584732056, -0.05078592896461487, 0.14939077198505402, 0.06109785661101341, -0.08055379986763, 0.037185851484537125, 0.027442200109362602, -0.08008874952793121, -0.10198270529508591, -0.0004569833690766245, 0.31761088967323303, 0.06076094135642052, -0.0329466350376606, -0.11946453154087067, -0.15002015233039856, 0.04840146750211716, 0.1035679280757904, 0.12359631806612015, 0.011757869273424149, -0.05322748050093651, 0.02236519381403923, -0.05275069922208786, 0.03814244270324707, 0.06910209357738495, -0.03928454965353012, -0.13761694729328156, 0.0077122850343585014, 0.026647454127669334, 0.10174071043729782, -0.06771174818277359, -0.09184598177671432, -0.18085066974163055, 0.09208621084690094, -0.03432070091366768, -0.10890032351016998, 0.027215104550123215, -0.017406610772013664, 0.014248576015233994, 0.07639352232217789, -0.047281619161367416, 0.01244808267802, -0.1517520695924759, 0.07082249224185944, 0.05706808716058731, 0.08926787972450256, 0.000014311663107946515, -0.054843269288539886, 0.07618319988250732, -0.05763502046465874, 0.06680037826299667, -0.053477559238672256, 0.005539732985198498, 0.10781200975179672, -0.23264040052890778, -0.021164139732718468, 0.009476077742874622, -0.04681631922721863, 0.08765807747840881, -0.19047698378562927, 0.024190550670027733, -0.08897756040096283, -0.024605726823210716, 0.01802127994596958, -0.1086471825838089, -0.04306677728891373, 0.08475461602210999, 0.037119291722774506, -0.031288959085941315, -0.04612116143107414, -0.019314980134367943, -0.0914498046040535, 0.053634315729141235, 0.07442525774240494, -0.0687926784157753, 0.08314394950866699, -0.05507456883788109, 0.00841207429766655, -0.052043743431568146, 0.06760627031326294, -0.012366239912807941, -0.12672528624534607, -0.02123171091079712, -0.044928714632987976, 0.11662110686302185, -0.023402327671647072, 0.022080281749367714, 0.014599837362766266, 0.0323631577193737, -0.012065601535141468, 0.05028461292386055, 0.1019197478890419, 0.05136820673942566, 0.014879679307341576, 0.02292765863239765, 0.055746350437402725, 0.0757644772529602, -0.1134679913520813, 0.06457309424877167, -0.02098844014108181, -0.08620109409093857, 0.1013324111700058, 0.06909440457820892, 0.037490107119083405, 0.15593400597572327, 0.22674402594566345, 0.10539932548999786, -0.03564648702740669, -0.03126971051096916, 0.12967991828918457, 0.17799612879753113, -0.07682197540998459, 0.015780627727508545, -0.0020607721526175737, -0.017265556380152702, -0.09849067777395248, -0.13722245395183563, -0.060460351407527924, -0.2453264594078064, 0.1078341007232666, -0.03288164362311363, -0.04169659689068794, 0.128489688038826, 0.027952738106250763, 0.03724630922079086, 0.08183616399765015, -0.12909026443958282, -0.013460557907819748, 0.07749562710523605, -0.08914026618003845, -0.033571500331163406, -0.17521262168884277, -0.06771576404571533, -0.08741120994091034, -0.15989220142364502, -0.06844990700483322, 0.029948782175779343, 0.035394806414842606, 0.010386589914560318, -0.039711855351924896, -0.01962728053331375, 0.011063394136726856, -0.0025537724141031504, -0.04985455423593521, -0.01753084547817707, 0.021317757666110992, -0.11333847790956497, -0.024336790665984154, 0.16320326924324036, -0.03297848999500275, -0.18396754562854767, -0.0405106395483017, 0.2157316505908966, 0.025046708062291145, 0.0590171180665493, -0.073721744120121, -0.016323629766702652, 0.021523483097553253, 0.20813441276550293, 0.10171995311975479, -0.10821312665939331, 0.015457749366760254, -0.03655189648270607, 0.0013793212128803134, -0.061893612146377563, 0.10775819420814514, 0.06519263982772827, -0.07549984753131866, -0.17567221820354462, -0.04389495030045509, -0.08628730475902557, 0.03370477631688118, -0.14383791387081146, -0.03786516562104225, 0.1168690100312233, 0.004516853019595146, -0.053927481174468994, 0.07883694022893906, -0.17713546752929688, 0.03441957011818886, -0.04880853369832039, -0.13215437531471252, -0.09491758048534393, -0.10123858600854874, 0.0027463934384286404, 0.08913854509592056, 0.15567956864833832, -0.06151591241359711, -0.07471925020217896, -0.009579092264175415, -0.028091613203287125, -0.052700337022542953, -0.07900123298168182, 0.059512585401535034, 0.0007560851518064737, 0.16147300601005554, -0.07439453154802322, 0.09558981657028198, 0.09099138528108597, -0.021246420219540596, -0.00915549136698246, 0.032866667956113815, -0.003863809397444129, -0.07436864078044891, -0.04970616102218628, 0.02312966249883175, 0.027639856562018394, 0.10846075415611267, -0.030836544930934906, -0.1934703141450882, 0.11230092495679855, 0.09140218049287796, -0.04296138137578964, -0.046487610787153244, 0.05351927503943443, -0.07097935676574707, 0.1252279132604599, 0.03444884717464447, -0.02163051813840866, 0.013762647286057472, -0.06370721012353897, 0.08370721340179443, 0.11594565212726593, -0.048265840858221054, -0.08278503268957138, -0.06164652109146118, 0.012770666740834713, 0.02961382456123829, -0.13650155067443848, -0.21160630881786346, -0.10802312940359116, -0.1383298933506012, 0.004740108735859394, -0.04703504592180252, 0.08498300611972809, 0.12991970777511597, 0.09780163317918777, -0.011416295543313026, -0.004867587238550186, 0.018085451796650887, 0.13192623853683472, -0.11232008039951324, -0.08192373812198639 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "bert-base-cased", "model-index": [{"name": "bert-finetuned-squad", "results": []}]}
question-answering
gskhs/bert-finetuned-squad
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-14T07:00:58+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #question-answering #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #endpoints_compatible #region-us
# bert-finetuned-squad This model is a fine-tuned version of bert-base-cased on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
[ "# bert-finetuned-squad\n\nThis model is a fine-tuned version of bert-base-cased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #question-answering #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-finetuned-squad\n\nThis model is a fine-tuned version of bert-base-cased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ 60, 35, 6, 12, 8, 3, 103, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #bert #question-answering #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #endpoints_compatible #region-us \n# bert-finetuned-squad\n\nThis model is a fine-tuned version of bert-base-cased on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.2" ]
[ -0.06135023012757301, 0.06165194511413574, -0.0023428783752024174, 0.05420037358999252, 0.14701546728610992, 0.020712487399578094, 0.1334485411643982, 0.11079626530408859, -0.09989423304796219, 0.04694615304470062, 0.042687900364398956, 0.027298249304294586, 0.04439937323331833, 0.1018955186009407, -0.04054708406329155, -0.2332172691822052, 0.02435668185353279, 0.015505046583712101, -0.09680831432342529, 0.07863222807645798, 0.10877644270658493, -0.12111492455005646, 0.048541825264692307, 0.009534213691949844, -0.1464489847421646, 0.04472010210156441, -0.016818327829241753, -0.04781787469983101, 0.10530351102352142, 0.043074168264865875, 0.14636720716953278, 0.009781057946383953, 0.11918032914400101, -0.23196734488010406, 0.013585330918431282, 0.08859128504991531, 0.0286472886800766, 0.06396060436964035, 0.058177608996629715, 0.024669697508215904, 0.06817840039730072, -0.1027911826968193, 0.1240634024143219, 0.019279640167951584, -0.0781245082616806, -0.2066642940044403, -0.0899978056550026, 0.021652547642588615, 0.10691521316766739, 0.06827059388160706, -0.0010331727098673582, 0.1310015469789505, -0.12487593293190002, 0.0543658584356308, 0.18289025127887726, -0.27834638953208923, -0.07420297712087631, 0.04414372891187668, 0.06715022772550583, 0.05579004064202309, -0.10530880093574524, -0.02600608579814434, 0.044373318552970886, 0.04527558013796806, 0.09543304145336151, -0.015974869951605797, -0.11869743466377258, 0.012174651026725769, -0.1421240270137787, 0.012109997682273388, 0.09493117034435272, 0.0459841825067997, -0.044208139181137085, -0.09946402162313461, -0.0325651615858078, -0.0179118849337101, -0.0471707321703434, -0.03395742550492287, 0.039939045906066895, -0.032742131501436234, -0.06722380965948105, -0.054647427052259445, -0.08196251094341278, -0.08221973478794098, -0.021708974614739418, 0.12075651437044144, 0.04907511547207832, 0.002528982935473323, -0.05326506868004799, 0.08613922446966171, -0.048048682510852814, -0.09696592390537262, 0.008886587806046009, -0.0014519831165671349, -0.09474850445985794, -0.07814484089612961, -0.06217491254210472, -0.06812480837106705, 0.034797560423612595, 0.14454545080661774, -0.03546221926808357, 0.08202087879180908, -0.042523808777332306, 0.01122372504323721, -0.023860570043325424, 0.11640597879886627, -0.035305511206388474, -0.014608494937419891, -0.0030777957290410995, 0.09053067117929459, 0.004187092650681734, 0.002810773905366659, -0.08403007686138153, -0.0001535829942440614, 0.06283755600452423, 0.04957657307386398, -0.054245106875896454, 0.03255651891231537, -0.05220111459493637, -0.015233995392918587, -0.013566851615905762, -0.11384199559688568, 0.05034932121634483, 0.005552284419536591, -0.05119435489177704, -0.0327967144548893, 0.013810273259878159, 0.025863872841000557, 0.0024539483711123466, 0.10649024695158005, -0.062474269419908524, 0.001613151398487389, -0.10511928796768188, -0.101761594414711, 0.026346901431679726, -0.04604983702301979, -0.00019613420590758324, -0.07404021173715591, -0.1628689169883728, -0.02761746011674404, 0.05239741876721382, -0.0430070124566555, -0.009279726073145866, -0.036026548594236374, -0.036814890801906586, 0.012938196770846844, -0.021478816866874695, 0.17032386362552643, -0.05358283966779709, 0.06574869900941849, -0.01999812200665474, 0.026650836691260338, -0.013815277256071568, 0.04107718542218208, -0.07316859066486359, 0.030424242839217186, -0.16196057200431824, 0.05186886712908745, -0.11151916533708572, 0.012903794646263123, -0.12279316037893295, -0.08254114538431168, 0.013379142619669437, 0.009397204034030437, 0.08596984297037125, 0.09282243251800537, -0.1684703677892685, -0.03456207737326622, 0.1323973387479782, -0.09231150150299072, -0.0673636719584465, 0.1048641949892044, -0.06950949877500534, 0.03968602791428566, 0.06562399119138718, 0.14681605994701385, 0.07243932783603668, -0.14017817378044128, 0.029257742688059807, -0.0020066138822585344, 0.09238528460264206, 0.047042880207300186, 0.04831923916935921, -0.02674291469156742, -0.0354825034737587, 0.0005431332974694669, -0.05721918120980263, 0.02457885630428791, -0.08275891840457916, -0.07084935903549194, -0.033888958394527435, -0.08449059724807739, 0.05738040432333946, 0.022711584344506264, 0.037041693925857544, -0.08521509915590286, -0.09971064329147339, 0.1852997988462448, 0.10980255901813507, -0.06905180960893631, 0.015367153100669384, -0.09194076061248779, 0.02381991036236286, -0.029402298852801323, -0.016343215480446815, -0.19355572760105133, -0.12466956675052643, 0.02951926551759243, -0.04981830343604088, 0.04264559969305992, 0.0477258525788784, 0.07454268634319305, 0.06088673695921898, -0.07255721092224121, -0.009750906378030777, -0.0819115936756134, 0.018281523138284683, -0.10930819064378738, -0.21328255534172058, -0.056452151387929916, -0.04884454980492592, 0.14978361129760742, -0.23707081377506256, 0.017335064709186554, -0.015678349882364273, 0.14661742746829987, 0.04933607205748558, -0.028313949704170227, -0.025728197768330574, 0.0842154249548912, 0.00629811454564333, -0.07077939808368683, 0.045674197375774384, 0.00392460310831666, -0.1081569716334343, -0.05131164565682411, -0.12542910873889923, 0.05343587324023247, 0.08497969061136246, 0.011109319515526295, -0.09482704102993011, -0.06139810010790825, -0.04301892966032028, -0.037612542510032654, -0.09198109060525894, -0.005865592509508133, 0.1975807547569275, 0.008875254541635513, 0.13035708665847778, -0.06398332864046097, -0.043062783777713776, -0.011262265034019947, -0.00334446644410491, 0.0062928940169513226, 0.0812910944223404, 0.06294894218444824, -0.10100051015615463, 0.08926545083522797, 0.1430814266204834, -0.08872939646244049, 0.12772822380065918, -0.06656797975301743, -0.08373283594846725, -0.0036525775212794542, 0.018333010375499725, -0.0010347928619012237, 0.12293444573879242, -0.1134520098567009, 0.01253731269389391, 0.020370567217469215, 0.02445347234606743, 0.0333121083676815, -0.18669365346431732, 0.000012598793546203524, 0.018435606732964516, -0.031315818428993225, -0.0055756340734660625, -0.034057725220918655, 0.04567816108465195, 0.09611809998750687, 0.026723787188529968, -0.026098402217030525, 0.031174181029200554, -0.017449792474508286, -0.079229436814785, 0.19524145126342773, -0.1348799169063568, -0.10356675833463669, -0.09939267486333847, -0.012822435237467289, -0.02957085333764553, -0.02540900930762291, 0.029984235763549805, -0.10457618534564972, -0.06121624633669853, -0.08935175091028214, 0.026043657213449478, -0.01621355302631855, -0.009949197061359882, 0.01672583818435669, 0.008201937191188335, 0.09394033998250961, -0.130302295088768, 0.014764980413019657, -0.02804509550333023, -0.10782980173826218, 0.005900146905332804, 0.05667341500520706, 0.07585608959197998, 0.1262347251176834, -0.021303407847881317, -0.012704534456133842, -0.05537000671029091, 0.2074359953403473, -0.05591174587607384, -0.02176654525101185, 0.11440911144018173, -0.02161336876451969, 0.04082125052809715, 0.14367902278900146, 0.055789824575185776, -0.09632132202386856, 0.04083840176463127, 0.09006652235984802, -0.007312609348446131, -0.2479817271232605, -0.03532993048429489, -0.03723226860165596, -0.0959576815366745, 0.09292291849851608, 0.04605763778090477, -0.03983890265226364, 0.046804413199424744, -0.010547385551035404, 0.048007749021053314, 0.004860898945480585, 0.08084777742624283, 0.13052164018154144, 0.026656607165932655, 0.10450880974531174, -0.03132081776857376, -0.03877444565296173, 0.06180600821971893, 0.016602272167801857, 0.2615363299846649, 0.002929945942014456, 0.06631503254175186, 0.07094258815050125, 0.1269485205411911, -0.006242758594453335, 0.015627173706889153, -0.0008756513707339764, -0.019083084538578987, -0.008610825054347515, -0.06393200159072876, -0.009909161366522312, 0.025236772373318672, -0.027376534417271614, 0.031217025592923164, -0.09700659662485123, -0.04326779395341873, 0.016965916380286217, 0.26020169258117676, 0.03403470665216446, -0.24485436081886292, -0.06456607580184937, 0.03361709415912628, -0.054469335824251175, -0.0644754096865654, 0.011502759531140327, 0.1312418133020401, -0.1165681704878807, 0.05060238763689995, -0.0627211183309555, 0.10113827139139175, -0.00438256561756134, 0.0009934725239872932, 0.03982313349843025, 0.1275709569454193, -0.011979999952018261, 0.07376459240913391, -0.24954795837402344, 0.22347375750541687, 0.02322692796587944, 0.11481062322854996, -0.04634737968444824, 0.035711050033569336, 0.02672209031879902, 0.06298481673002243, 0.05575177073478699, -0.022748460993170738, -0.07457412779331207, -0.1917608678340912, -0.03522263094782829, 0.05926356464624405, 0.1063106581568718, -0.003423092421144247, 0.08262468129396439, -0.03763450309634209, 0.018769532442092896, 0.06423336267471313, -0.05332960933446884, -0.19136673212051392, -0.12351708859205246, -0.01637614518404007, 0.020143793895840645, -0.012058922089636326, -0.11277499794960022, -0.10362368077039719, -0.05116737261414528, 0.16546191275119781, 0.01900854893028736, -0.02982546202838421, -0.12601597607135773, 0.08543503284454346, 0.10373090952634811, -0.034851375967264175, 0.03217773884534836, 0.017341360449790955, 0.12315023690462112, 0.02307918481528759, -0.08347880095243454, 0.08227477967739105, -0.07881825417280197, -0.15687623620033264, -0.08178932964801788, 0.10330416262149811, 0.07384424656629562, 0.05420777201652527, 0.01136128231883049, 0.016193261370062828, 0.023550385609269142, -0.07447309046983719, -0.012254522182047367, 0.10011536628007889, 0.07957582175731659, 0.09187430143356323, -0.109279565513134, -0.014436560682952404, -0.017988504841923714, -0.014615625143051147, 0.1237601786851883, 0.22621959447860718, -0.07465358823537827, 0.07326927036046982, 0.10589933395385742, -0.08157984167337418, -0.1913653314113617, 0.10234897583723068, 0.10950274765491486, 0.014943611808121204, 0.06236198917031288, -0.20911186933517456, 0.1341131627559662, 0.120657779276371, -0.023631185293197632, 0.02360323816537857, -0.29926735162734985, -0.12800218164920807, 0.10754578560590744, 0.13071008026599884, 0.029859209433197975, -0.14007839560508728, -0.02982962504029274, -0.03598400950431824, -0.12532280385494232, 0.12380430102348328, -0.15203715860843658, 0.09230419248342514, 0.014908946119248867, 0.07542440295219421, 0.024563642218708992, -0.03256908059120178, 0.14866268634796143, -0.02281467616558075, 0.10103043913841248, -0.047002196311950684, 0.05264296382665634, 0.052056942135095596, -0.051900919526815414, 0.0028701280243694782, -0.052295882254838943, 0.03878084570169449, -0.12012863159179688, -0.025380009785294533, -0.0632353201508522, 0.05817905813455582, -0.04277819022536278, -0.0643499493598938, -0.05491093546152115, 0.05596108362078667, 0.039444517344236374, -0.03080185130238533, 0.07799968123435974, -0.018253756687045097, 0.15939730405807495, 0.05243117734789848, 0.14287665486335754, -0.028388123959302902, -0.08345089107751846, 0.016472281888127327, -0.03737468644976616, 0.09141634404659271, -0.1199219599366188, 0.04088609293103218, 0.11397691071033478, 0.028582721948623657, 0.1548619270324707, 0.04761373624205589, -0.05928109958767891, 0.020218083634972572, 0.0428689680993557, -0.0879710242152214, -0.155148446559906, 0.019368913024663925, 0.06067712604999542, -0.14536653459072113, 0.018432406708598137, 0.11134941875934601, -0.04158381372690201, -0.018465641885995865, 0.00002657965524122119, 0.01147165335714817, -0.03958272933959961, 0.17624105513095856, 0.030023299157619476, 0.050179436802864075, -0.08303382992744446, 0.10448722541332245, 0.08042572438716888, -0.11402330547571182, 0.050154462456703186, 0.044140517711639404, -0.06289450079202652, -0.022357027977705002, 0.09104762226343155, 0.2171493023633957, 0.0027953949756920338, -0.055478788912296295, -0.07268530130386353, -0.12530860304832458, 0.032777704298496246, 0.14540249109268188, 0.0476827435195446, -0.021554984152317047, -0.021656833589076996, 0.04853562265634537, -0.10537402331829071, 0.07149223238229752, 0.024596937000751495, 0.07591544091701508, -0.10229116678237915, 0.10507016628980637, 0.009911634959280491, 0.008423452265560627, -0.01722775213420391, 0.0216550063341856, -0.12208738923072815, -0.009905204176902771, -0.18783336877822876, 0.002444372046738863, -0.028132569044828415, 0.01693693734705448, 0.011121486313641071, -0.04525469243526459, -0.036377016454935074, 0.03124719299376011, -0.08398512005805969, -0.0320071317255497, 0.022041434422135353, 0.07032425701618195, -0.13567011058330536, -0.015496126376092434, 0.028280695900321007, -0.08831924945116043, 0.05955448001623154, 0.025096621364355087, 0.0289791040122509, 0.053238946944475174, -0.17529624700546265, -0.03778243809938431, 0.02709105610847473, 0.027711618691682816, 0.0595121830701828, -0.08572816103696823, -0.022126374766230583, -0.015762021765112877, 0.05987856537103653, 0.015296174213290215, 0.058116763830184937, -0.1130189299583435, -0.04061922803521156, -0.04679758846759796, -0.07340159267187119, -0.051529571413993835, 0.03215689957141876, 0.10112623125314713, 0.051046065986156464, 0.16816070675849915, -0.10079699009656906, 0.03328384831547737, -0.1802287995815277, -0.02902941219508648, -0.019325271248817444, -0.021773193031549454, -0.08047763258218765, -0.04332686960697174, 0.06977193057537079, -0.05015074461698532, 0.1252371221780777, -0.020882954820990562, 0.09267626702785492, 0.04557773098349571, -0.07421400398015976, 0.02411816269159317, 0.03075660578906536, 0.22312819957733154, 0.06193333864212036, -0.01587790809571743, 0.04455852881073952, -0.006055058445781469, 0.04815882816910744, 0.08828464895486832, 0.1715322732925415, 0.18789294362068176, -0.0161982960999012, 0.05233407020568848, 0.07586698234081268, -0.09000822901725769, -0.09840155392885208, 0.12040428072214127, -0.005268492270261049, 0.10934893041849136, -0.06452206522226334, 0.22770780324935913, 0.0713382363319397, -0.17648722231388092, 0.04861459508538246, -0.0793583020567894, -0.08926808089017868, -0.11096698045730591, -0.01881558634340763, -0.08230900764465332, -0.1429087519645691, 0.009127767756581306, -0.12558075785636902, 0.021132664754986763, 0.09900178015232086, 0.014769654721021652, 0.02829982154071331, 0.14109143614768982, -0.03944475203752518, 0.023161791265010834, 0.04872266948223114, 0.005002402234822512, 0.008787545375525951, -0.07258104532957077, -0.08367594331502914, 0.05490599945187569, 0.0014250812819227576, 0.04505189508199692, -0.0349101647734642, -0.0017871507443487644, 0.027586936950683594, -0.0069279600866138935, -0.06963983178138733, 0.03485191985964775, 0.0143441092222929, 0.04516780376434326, 0.08186756074428558, 0.047306060791015625, 0.0037022847682237625, -0.03655918315052986, 0.2745395302772522, -0.07782059162855148, -0.09644901752471924, -0.14896135032176971, 0.22400738298892975, -0.0034454762935638428, 0.008473898284137249, 0.04436063766479492, -0.10528749972581863, -0.007025690283626318, 0.16079071164131165, 0.12831096351146698, -0.07518777996301651, -0.005703394301235676, -0.005357158835977316, -0.027444401755928993, -0.08317600190639496, 0.1306256204843521, 0.09953879565000534, 0.018779486417770386, -0.05986963212490082, -0.03284010291099548, 0.0022293836809694767, -0.015472500585019588, -0.08602389693260193, 0.04024283587932587, 0.025921611115336418, -0.003870525863021612, -0.03214173763990402, 0.08516113460063934, 0.031148329377174377, -0.20924966037273407, 0.03405453637242317, -0.13098065555095673, -0.16963240504264832, -0.041981689631938934, 0.09332413971424103, -0.014180982485413551, 0.04119202122092247, -0.03483911603689194, 0.012148495763540268, 0.1074405312538147, -0.027578718960285187, -0.0051438333466649055, -0.1411411464214325, 0.12506859004497528, -0.05218109115958214, 0.2208111584186554, 0.006087332498282194, 0.07455078512430191, 0.11567825078964233, 0.03182155266404152, -0.0998968854546547, 0.05057861655950546, 0.06588691473007202, -0.1104399561882019, 0.017768248915672302, 0.13051007688045502, -0.0558636300265789, 0.1225801482796669, 0.04496576637029648, -0.14106564223766327, 0.02631470561027527, -0.0805530846118927, -0.06366178393363953, -0.07345829159021378, 0.010894875042140484, -0.08479613065719604, 0.14176392555236816, 0.19901958107948303, -0.02560356818139553, 0.0029055944178253412, -0.06479965895414352, 0.026732031255960464, 0.04570015147328377, 0.09812511503696442, -0.0444764606654644, -0.20962470769882202, 0.025356296449899673, 0.05273902043700218, 0.01904047653079033, -0.25677305459976196, -0.09536147862672806, 0.046215444803237915, -0.020578783005475998, -0.06163498014211655, 0.10031703859567642, 0.09230034053325653, 0.03478569909930229, -0.04689604043960571, -0.2246696501970291, -0.04208746179938316, 0.141666442155838, -0.11496280878782272, -0.04133078455924988 ]
null
null
setfit
# SetFit with intfloat/multilingual-e5-large This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 12 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6 | <ul><li>'Are there any major whitespace opportunity in terms of Categories x Pack Segments in Cuernavaca?'</li><li>'In Colas MS which packsegment is not dominated by KOF in TT HM Orizaba 2022? At what price point we can launch an offering'</li><li>'I want to launch a new pack type in csd for kof. Tell me what'</li></ul> | | 2 | <ul><li>"Do any seasonal patterns exist in Jumex's share change in Orizaba?"</li><li>'What is the Market share for Resto in colas MS at each size groups in TT HM Orizaba in 2022'</li><li>'Which categories have seen the some of the highest Share losses for KOF in Cuernavaca in FY22-21?'</li></ul> | | 0 | <ul><li>'Which packs have driven the shares for the competition in Colas in FY 21-22?'</li><li>'Apart from Jugos + Néctares, Which are the top contributing categoriesXconsumo to the share loss for Jumex in Orizaba in 2021?'</li><li>'which pack segment is contributing most to share change for Resto in Orizaba NCBs in 2022'</li></ul> | | 10 | <ul><li>'Which pack segment shows opportunities to drive my market share in NCBS Colas SS?'</li><li>'What are my priority pack segments to gain share in NCB Colas SS?'</li><li>'What are my priority pack segments to gain share in AGUA Colas SS?'</li></ul> | | 5 | <ul><li>'Where should I play in terms\xa0of flavor in Sabores SS?'</li><li>'I want to launch flavored water in onion flavor for kof.'</li><li>'What areas should I focus on to grow my market presence?'</li></ul> | | 7 | <ul><li>'Is Fanta a premium brand? How premium are its offerings as compared to other brands in Sabores?'</li><li>"Is there potential for PPL correction in the packaging and pricing strategy of Tropicana's fruit juice offerings within the Juice category?"</li><li>'Is there an opportunity to premiumize any offerings for coca-cola?'</li></ul> | | 9 | <ul><li>'Which industries to prioritize to gain share in AGUA in Cuernavaca?'</li><li>'What measures can be taken to maximize headroom in the AGUA market?'</li><li>'How much headroom do I have in CSDS'</li></ul> | | 11 | <ul><li>'How can I gain share in NCBS?'</li><li>'How should KOF gain share in Colas MS in Cuernavaca? '</li><li>'How can I gain share in CSD Colas MS in Cuernavaca'</li></ul> | | 8 | <ul><li>'Category wise market share'</li><li>'What is the ND, WD of KOF in colas'</li><li>'Tell me the top 10 SKUs in colas'</li></ul> | | 3 | <ul><li>'What is the difference in offerings for KOF vs the key competitors in xx price bracket within CSD Colas in TT HM?'</li><li>'How should KOF gain share in <10 price bracket for NCB in TT HM'</li><li>'Which price points to play in?'</li></ul> | | 1 | <ul><li>'what factors contributed to share change for agua?'</li><li>'Why is Resto losing share in Cuernavaca Colas SS RET Original?'</li><li>'What are the main factors contributing to the share gain of Jumex in Still Drinks MS in Orizaba for FY 2022?'</li></ul> | | 4 | <ul><li>'How has the csd industry evolved in the last two years?'</li><li>'Tell me the categories to focus on, for driving growth in future'</li><li>'What is the change in industry mix for coca-cola in TT HM Orizaba in 2021 to 2022'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.25 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("vgarg/fw_identification_model_e5_large_v5_14_02_24") # Run inference preds = model("Why is KOF losing share in Cuernavaca Colas MS RET Original?") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 13.5351 | 28 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 10 | | 1 | 10 | | 2 | 10 | | 3 | 8 | | 4 | 10 | | 5 | 10 | | 6 | 10 | | 7 | 10 | | 8 | 10 | | 9 | 10 | | 10 | 10 | | 11 | 6 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0035 | 1 | 0.3481 | - | | 0.1754 | 50 | 0.1442 | - | | 0.3509 | 100 | 0.091 | - | | 0.5263 | 150 | 0.0089 | - | | 0.7018 | 200 | 0.0038 | - | | 0.8772 | 250 | 0.0018 | - | | 1.0526 | 300 | 0.001 | - | | 1.2281 | 350 | 0.0012 | - | | 1.4035 | 400 | 0.0007 | - | | 1.5789 | 450 | 0.0007 | - | | 1.7544 | 500 | 0.0004 | - | | 1.9298 | 550 | 0.0005 | - | | 2.1053 | 600 | 0.0006 | - | | 2.2807 | 650 | 0.0005 | - | | 2.4561 | 700 | 0.0006 | - | | 2.6316 | 750 | 0.0004 | - | | 2.8070 | 800 | 0.0004 | - | | 2.9825 | 850 | 0.0004 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.17.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"library_name": "setfit", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "metrics": ["accuracy"], "widget": [{"text": "Why is KOF losing share in Cuernavaca Colas MS RET Original?"}, {"text": "Are there any whitespaces in terms of flavor for KOF within CSD Sabores?"}, {"text": "What is the trend of KOF\"s market share in Colas SS in Cuernavaca from 2019 to YTD 2023?"}, {"text": "Which categories have seen the some of the highest Share losses for KOF in Cuernavaca in 2022?"}, {"text": "Which Category X Pack can we see the major share gain and which parameters are driving the share gain in Cuernavaca?"}], "pipeline_tag": "text-classification", "inference": true, "base_model": "intfloat/multilingual-e5-large", "model-index": [{"name": "SetFit with intfloat/multilingual-e5-large", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.25, "name": "Accuracy"}]}]}]}
text-classification
vgarg/fw_identification_model_e5_large_v5_14_02_24
[ "setfit", "safetensors", "xlm-roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:intfloat/multilingual-e5-large", "model-index", "region:us" ]
2024-02-14T07:02:08+00:00
[ "2209.11055" ]
[]
TAGS #setfit #safetensors #xlm-roberta #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-intfloat/multilingual-e5-large #model-index #region-us
SetFit with intfloat/multilingual-e5-large ========================================== This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-large as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a Sentence Transformer with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. Model Details ------------- ### Model Description * Model Type: SetFit * Sentence Transformer body: intfloat/multilingual-e5-large * Classification head: a LogisticRegression instance * Maximum Sequence Length: 512 tokens * Number of Classes: 12 classes ### Model Sources * Repository: SetFit on GitHub * Paper: Efficient Few-Shot Learning Without Prompts * Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts ### Model Labels Evaluation ---------- ### Metrics Uses ---- ### Direct Use for Inference First install the SetFit library: Then you can load this model and run inference. Training Details ---------------- ### Training Set Metrics ### Training Hyperparameters * batch\_size: (16, 16) * num\_epochs: (3, 3) * max\_steps: -1 * sampling\_strategy: oversampling * num\_iterations: 20 * body\_learning\_rate: (2e-05, 2e-05) * head\_learning\_rate: 2e-05 * loss: CosineSimilarityLoss * distance\_metric: cosine\_distance * margin: 0.25 * end\_to\_end: False * use\_amp: False * warmup\_proportion: 0.1 * seed: 42 * eval\_max\_steps: -1 * load\_best\_model\_at\_end: False ### Training Results ### Framework Versions * Python: 3.10.12 * SetFit: 1.0.3 * Sentence Transformers: 2.3.1 * Transformers: 4.35.2 * PyTorch: 2.1.0+cu121 * Datasets: 2.17.0 * Tokenizers: 0.15.1 ### BibTeX
[ "### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: intfloat/multilingual-e5-large\n* Classification head: a LogisticRegression instance\n* Maximum Sequence Length: 512 tokens\n* Number of Classes: 12 classes", "### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts", "### Model Labels\n\n\n\nEvaluation\n----------", "### Metrics\n\n\n\nUses\n----", "### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------", "### Training Set Metrics", "### Training Hyperparameters\n\n\n* batch\\_size: (16, 16)\n* num\\_epochs: (3, 3)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* num\\_iterations: 20\n* body\\_learning\\_rate: (2e-05, 2e-05)\n* head\\_learning\\_rate: 2e-05\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: False", "### Training Results", "### Framework Versions\n\n\n* Python: 3.10.12\n* SetFit: 1.0.3\n* Sentence Transformers: 2.3.1\n* Transformers: 4.35.2\n* PyTorch: 2.1.0+cu121\n* Datasets: 2.17.0\n* Tokenizers: 0.15.1", "### BibTeX" ]
[ "TAGS\n#setfit #safetensors #xlm-roberta #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-intfloat/multilingual-e5-large #model-index #region-us \n", "### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: intfloat/multilingual-e5-large\n* Classification head: a LogisticRegression instance\n* Maximum Sequence Length: 512 tokens\n* Number of Classes: 12 classes", "### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts", "### Model Labels\n\n\n\nEvaluation\n----------", "### Metrics\n\n\n\nUses\n----", "### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------", "### Training Set Metrics", "### Training Hyperparameters\n\n\n* batch\\_size: (16, 16)\n* num\\_epochs: (3, 3)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* num\\_iterations: 20\n* body\\_learning\\_rate: (2e-05, 2e-05)\n* head\\_learning\\_rate: 2e-05\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: False", "### Training Results", "### Framework Versions\n\n\n* Python: 3.10.12\n* SetFit: 1.0.3\n* Sentence Transformers: 2.3.1\n* Transformers: 4.35.2\n* PyTorch: 2.1.0+cu121\n* Datasets: 2.17.0\n* Tokenizers: 0.15.1", "### BibTeX" ]
[ 70, 61, 52, 8, 8, 31, 7, 177, 4, 58, 6 ]
[ "passage: TAGS\n#setfit #safetensors #xlm-roberta #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-intfloat/multilingual-e5-large #model-index #region-us \n### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: intfloat/multilingual-e5-large\n* Classification head: a LogisticRegression instance\n* Maximum Sequence Length: 512 tokens\n* Number of Classes: 12 classes### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts### Model Labels\n\n\n\nEvaluation\n----------### Metrics\n\n\n\nUses\n----### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------### Training Set Metrics### Training Hyperparameters\n\n\n* batch\\_size: (16, 16)\n* num\\_epochs: (3, 3)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* num\\_iterations: 20\n* body\\_learning\\_rate: (2e-05, 2e-05)\n* head\\_learning\\_rate: 2e-05\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: False### Training Results### Framework Versions\n\n\n* Python: 3.10.12\n* SetFit: 1.0.3\n* Sentence Transformers: 2.3.1\n* Transformers: 4.35.2\n* PyTorch: 2.1.0+cu121\n* Datasets: 2.17.0\n* Tokenizers: 0.15.1### BibTeX" ]
[ -0.08092276751995087, 0.13488221168518066, -0.005385030061006546, 0.06998131424188614, 0.12228512763977051, 0.059432502835989, 0.06500046700239182, 0.1417890191078186, -0.035211581736803055, 0.1473623514175415, 0.05818699672818184, 0.11504901200532913, 0.11941958218812943, 0.1835976541042328, -0.00804551225155592, -0.2919101417064667, 0.016871895641088486, -0.10975111275911331, -0.03875916451215744, 0.08913757652044296, 0.10450556129217148, -0.0756378024816513, 0.05550091341137886, -0.04995589330792427, -0.03591758385300636, -0.01770750805735588, -0.03904445841908455, -0.02312321960926056, 0.01913958601653576, 0.04332682117819786, 0.026859339326620102, -0.013949692249298096, 0.07001688331365585, -0.311448335647583, 0.005691529251635075, 0.07190779596567154, -0.007003374397754669, 0.07321098446846008, 0.09890063852071762, -0.08204378932714462, 0.09229067713022232, -0.10035387426614761, 0.09340537339448929, 0.04413455352187157, -0.14286218583583832, -0.16624972224235535, -0.08034388720989227, 0.10080838948488235, 0.1526905745267868, 0.0752885639667511, -0.06253224611282349, 0.03911828249692917, -0.06207331269979477, 0.07142602652311325, 0.15972913801670074, -0.2331656515598297, -0.0752456784248352, 0.04189200699329376, 0.04494214057922363, 0.030211446806788445, -0.1044231727719307, -0.04752983897924423, 0.00157797965221107, 0.0510559044778347, 0.04967590793967247, 0.019267404451966286, 0.0722680389881134, -0.009143900126218796, -0.11323469877243042, -0.051064081490039825, 0.07742269337177277, 0.04796077311038971, -0.026108456775546074, -0.17251503467559814, 0.00122917874250561, -0.13242262601852417, -0.049270521849393845, 0.025864167138934135, 0.008442973718047142, -0.005982912145555019, -0.012757213786244392, 0.025041768327355385, -0.0256577730178833, -0.04060233756899834, 0.05477815866470337, 0.017148710787296295, 0.05629381537437439, -0.04183191433548927, 0.04921233654022217, 0.09428157657384872, -0.0004961153026670218, -0.17268531024456024, -0.02526293322443962, -0.02046908251941204, -0.09417569637298584, -0.033578939735889435, 0.010586450807750225, 0.046677008271217346, 0.05109609290957451, 0.21977220475673676, -0.08033087104558945, 0.11124169081449509, -0.01330001000314951, 0.02771729975938797, -0.010320891626179218, 0.060810621827840805, -0.09160356968641281, -0.11269248276948929, -0.07316194474697113, 0.09268121421337128, -0.012412789277732372, -0.01460015494376421, -0.015235974453389645, 0.05074302479624748, 0.06177156791090965, 0.06837917119264603, 0.032033320516347885, 0.04209484905004501, -0.10301608592271805, -0.03659438714385033, 0.019461670890450478, -0.14785772562026978, 0.051198069006204605, 0.04952959716320038, -0.0903032124042511, -0.06608200818300247, 0.04950731247663498, -0.0005975457024760544, -0.0599931925535202, 0.0833793506026268, -0.059426017105579376, 0.014495281502604485, -0.08859039098024368, -0.10415897518396378, 0.04710961878299713, -0.025705158710479736, -0.03289908170700073, -0.029687989503145218, -0.12177350372076035, -0.10556157678365707, 0.06765960156917572, -0.12292511016130447, -0.05467487871646881, -0.11261735111474991, -0.11738526076078415, 0.046847883611917496, 0.012350977398455143, 0.10484963655471802, -0.04919048771262169, 0.05710233747959137, -0.022965066134929657, 0.07166251540184021, 0.15121270716190338, 0.045000456273555756, -0.03377820923924446, 0.07863738387823105, -0.1820461004972458, 0.1421816200017929, -0.1055135726928711, 0.05978095903992653, -0.15948393940925598, -0.06319601088762283, -0.021720806136727333, 0.02089960314333439, 0.08774222433567047, 0.13055644929409027, -0.20720238983631134, -0.045198455452919006, 0.23743242025375366, -0.0665992945432663, -0.10545992851257324, 0.07343382388353348, -0.04388332739472389, 0.08088138699531555, 0.032396409660577774, 0.10862415283918381, 0.09336582571268082, -0.08063193410634995, -0.007006441708654165, -0.08844073861837387, 0.046324148774147034, 0.167985737323761, 0.04661683365702629, -0.0430859737098217, 0.0352134071290493, 0.015304775908589363, -0.0020701424218714237, 0.011343876831233501, -0.06657659262418747, -0.08403139561414719, 0.014091605320572853, -0.0682935044169426, 0.01658892072737217, 0.035057537257671356, -0.019941875711083412, -0.06323375552892685, -0.14769430458545685, 0.026395834982395172, 0.06669815629720688, -0.04529030993580818, -0.0010300701251253486, -0.08203056454658508, -0.00020519792451523244, 0.07030568271875381, 0.009926228784024715, -0.1761941909790039, -0.03623885661363602, 0.021294014528393745, -0.02020077593624592, 0.05296595022082329, -0.07069866359233856, 0.06723622977733612, 0.04694117233157158, -0.05614297837018967, -0.049069780856370926, 0.036410413682460785, 0.014146304689347744, -0.06377965211868286, -0.24485161900520325, -0.02766340970993042, -0.02038394659757614, 0.21884529292583466, -0.2487073540687561, 0.04593924060463905, -0.029134904965758324, 0.14338073134422302, 0.010419197380542755, -0.05136125534772873, 0.020262330770492554, 0.009815465658903122, -0.007616747170686722, -0.08651763200759888, 0.020400773733854294, -0.010513721965253353, -0.060698386281728745, -0.0433504544198513, -0.1950751096010208, -0.04393380507826805, 0.09617987275123596, 0.018223680555820465, -0.1897355616092682, -0.08929649740457535, -0.028519775718450546, -0.056376244872808456, -0.06420813500881195, -0.04309437796473503, 0.14647196233272552, 0.026475030928850174, 0.07932653278112411, -0.04242602735757828, -0.061136554926633835, -0.0030848123133182526, -0.016068249940872192, -0.010856928303837776, 0.18623381853103638, -0.006631449330598116, -0.11661519855260849, 0.11105571687221527, 0.02698388695716858, -0.01946292072534561, 0.09782387316226959, -0.03171022608876228, -0.06626470386981964, -0.08335810154676437, 0.07510685920715332, 0.06572999805212021, 0.06168382614850998, -0.07577510178089142, 0.03031962923705578, 0.024241428822278976, 0.002470247447490692, 0.0047524468973279, -0.10198976844549179, 0.0032557102385908365, 0.018242957070469856, -0.041184552013874054, 0.02349308878183365, -0.04507829621434212, 0.021496238186955452, 0.08833734691143036, 0.02425401471555233, 0.04056350886821747, -0.01237969659268856, -0.056117262691259384, -0.11998695880174637, 0.19772472977638245, -0.1342257708311081, -0.1762700378894806, -0.08768322318792343, -0.006370836403220892, 0.013395563699305058, -0.03325359895825386, 0.009592043235898018, -0.06791447103023529, -0.05797818303108215, -0.1122596263885498, 0.03598153591156006, 0.042831603437662125, -0.0482848659157753, -0.05071798339486122, 0.04569632187485695, 0.09410413354635239, -0.08455409854650497, 0.011466403491795063, 0.022164154797792435, -0.05876259505748749, 0.01923208124935627, 0.005092830862849951, 0.0320848785340786, 0.15084612369537354, 0.07317740470170975, 0.031898848712444305, -0.002084338106215, 0.23163335025310516, -0.08987400680780411, 0.04737410321831703, 0.07187274843454361, -0.010763738304376602, 0.0725317895412445, 0.21770130097866058, 0.035484347492456436, -0.08072742074728012, 0.05761304497718811, 0.06124222278594971, -0.02007865533232689, -0.21609458327293396, -0.022838348522782326, -0.04376959800720215, 0.02066069468855858, 0.14351895451545715, 0.03116338886320591, 0.06197357177734375, 0.0423470176756382, -0.05409906804561615, -0.025700414553284645, 0.11150307208299637, 0.08986476808786392, -0.00536708626896143, 0.03146231546998024, 0.0920461043715477, -0.015267382375895977, 0.01779111847281456, 0.023332735523581505, -0.010264805518090725, 0.17300069332122803, -0.01705513522028923, 0.10994749516248703, 0.08250361680984497, 0.13415023684501648, -0.042125388979911804, 0.03840266540646553, -0.02203073352575302, 0.029342181980609894, 0.024944884702563286, -0.06487034261226654, -0.004113042261451483, 0.07807736843824387, 0.026951825246214867, 0.03292376175522804, -0.07227044552564621, 0.002227234421297908, 0.09571779519319534, 0.15770944952964783, 0.09653040021657944, -0.255490243434906, -0.052774928510189056, 0.06013791635632515, -0.06735947728157043, -0.0664786845445633, -0.017418893054127693, 0.06971607357263565, -0.12574341893196106, 0.066621333360672, -0.06002378091216087, 0.0907701700925827, -0.04374983161687851, -0.003983006346970797, 0.06671798229217529, 0.12225471436977386, -0.008693531155586243, 0.05099133402109146, -0.21452754735946655, 0.1563791036605835, 0.004220508970320225, 0.07999277859926224, -0.06826543807983398, 0.05116431042551994, 0.04739363119006157, -0.10239240527153015, 0.1322854906320572, -0.01421529334038496, -0.14246609807014465, -0.16510450839996338, -0.07003527134656906, -0.03567773476243019, 0.11808966100215912, -0.12694846093654633, 0.11873629689216614, -0.0025389704387634993, -0.03171220421791077, 0.00585919851437211, -0.05098713934421539, -0.14025717973709106, -0.1338537633419037, 0.017294591292738914, -0.08237139135599136, 0.059334393590688705, -0.07476219534873962, -0.03287490829825401, -0.05392675846815109, 0.16558662056922913, -0.2261994183063507, -0.06864471733570099, -0.14183439314365387, 0.11583973467350006, 0.16334421932697296, -0.08316841721534729, 0.05018756538629532, 0.024760419502854347, 0.11889082193374634, 0.01817430928349495, -0.019926339387893677, 0.11468949168920517, -0.06472615152597427, -0.2134348303079605, -0.04535245522856712, 0.16730739176273346, 0.10394515842199326, 0.0786639004945755, -0.009074523113667965, 0.041763272136449814, 0.01019215863198042, -0.09400174021720886, 0.03234950080513954, 0.08247634768486023, 0.08105187118053436, 0.07362081110477448, -0.07861772179603577, -0.05495233088731766, -0.10860369354486465, 0.0006077579455450177, 0.0846838504076004, 0.21318134665489197, -0.07879654318094254, 0.08388561010360718, 0.008817803114652634, -0.0825689435005188, -0.19172453880310059, 0.006076136138290167, 0.11118107289075851, 0.017695138230919838, 0.05046144872903824, -0.2019374966621399, 0.08720250427722931, 0.08229272812604904, -0.003650939790531993, 0.0875452384352684, -0.3124682307243347, -0.1420510858297348, 0.06141624227166176, 0.05761121213436127, -0.17528454959392548, -0.15811754763126373, -0.08421362936496735, -0.016335925087332726, -0.09308431297540665, 0.11158362776041031, -0.0767836645245552, 0.0714276134967804, 0.0448751300573349, 0.009204004891216755, 0.03718903660774231, -0.03228521719574928, 0.15775741636753082, 0.026422584429383278, 0.05925065279006958, -0.07956225425004959, -0.043719179928302765, -0.03300520032644272, -0.08294069766998291, 0.0753820613026619, -0.06911318749189377, 0.014547256752848625, -0.11975327134132385, -0.02492586337029934, -0.08259782195091248, -0.009010312147438526, -0.10564083606004715, -0.020514097064733505, -0.021641798317432404, 0.11907588690519333, 0.1016886904835701, 0.004970171023160219, 0.05541969835758209, -0.06214357912540436, 0.14528043568134308, 0.17603185772895813, 0.12180382758378983, 0.1042126938700676, -0.06809836626052856, 0.028278958052396774, 0.004964984487742186, -0.008004005067050457, -0.19558654725551605, 0.052354246377944946, 0.11307482421398163, 0.011485820636153221, 0.18636982142925262, 0.031776439398527145, -0.12453074753284454, -0.032330192625522614, 0.07948558032512665, -0.05451539158821106, -0.09763940423727036, 0.017510414123535156, 0.0736333578824997, -0.17668461799621582, -0.08329792320728302, 0.07272536307573318, -0.028365153819322586, -0.013005911372601986, 0.030312906950712204, 0.1152569055557251, -0.02526799403131008, 0.1809113770723343, 0.03893354535102844, 0.0794084370136261, -0.09615717828273773, 0.10628923773765564, 0.07853839546442032, -0.04160071164369583, 0.048547182232141495, 0.18776342272758484, -0.05607816204428673, -0.04727817326784134, 0.023143701255321503, 0.10313065350055695, 0.055343739688396454, -0.01474197581410408, -0.01863861083984375, -0.1404062956571579, 0.06998158246278763, 0.0957639217376709, 0.006925755180418491, 0.015497330576181412, 0.028367385268211365, 0.01821761019527912, -0.07307238131761551, 0.13789089024066925, 0.1378311961889267, 0.03652428835630417, -0.04090476036071777, 0.1344892829656601, 0.009199120104312897, -0.03798374533653259, 0.013185504823923111, 0.004055480007082224, -0.16782712936401367, 0.006985720247030258, -0.07186871767044067, 0.026524558663368225, -0.1137685552239418, -0.015918197110295296, 0.015172770246863365, -0.01075712963938713, -0.009533664211630821, -0.005422491114586592, -0.07814639061689377, -0.10630304366350174, -0.03975465148687363, 0.09852100908756256, -0.12189651280641556, -0.03954415023326874, 0.048435404896736145, -0.12508738040924072, 0.07591639459133148, 0.034244105219841, 0.022164322435855865, 0.012016849592328072, -0.11496692150831223, 0.025098273530602455, -0.016018275171518326, -0.024013571441173553, 0.03318418562412262, -0.20784585177898407, 0.004640313796699047, -0.10313756763935089, -0.03625442832708359, 0.023050468415021896, -0.010260631330311298, -0.11884146928787231, 0.0640348494052887, -0.04873181879520416, -0.05809559300541878, -0.07496680319309235, 0.056229814887046814, 0.09313339740037918, -0.03333976864814758, 0.12053661048412323, -0.07398790121078491, 0.09335068613290787, -0.22298145294189453, -0.011198174208402634, 0.011130742728710175, -0.03092033974826336, 0.014584987424314022, -0.022453537210822105, 0.11112987250089645, -0.051020897924900055, 0.05177120864391327, -0.022253716364502907, -0.01497021596878767, 0.03948788344860077, -0.05008332058787346, -0.004476124886423349, 0.09747041016817093, 0.05888005718588829, 0.0289668720215559, -0.03736695274710655, -0.015813425183296204, 0.0010433816350996494, 0.01830522157251835, -0.031046906486153603, 0.13884897530078888, 0.1531239002943039, 0.06871549040079117, 0.03592093288898468, 0.059259191155433655, -0.14170309901237488, -0.038660407066345215, 0.21427008509635925, -0.05315826088190079, 0.03922532498836517, -0.053905367851257324, 0.08153276145458221, 0.07571796327829361, -0.24679867923259735, 0.07363561540842056, -0.06772506237030029, -0.11039863526821136, -0.062337230890989304, -0.16212663054466248, -0.06996610760688782, -0.06573216617107391, -0.015565870329737663, -0.12220412492752075, 0.03462263569235802, 0.11261545866727829, 0.01540329772979021, 0.03300146013498306, 0.0982871875166893, -0.02288171648979187, -0.0027233115397393703, 0.08342883735895157, 0.04593581706285477, 0.018156496807932854, -0.027985025197267532, -0.04098406061530113, -0.005701328162103891, 0.031146874651312828, 0.06659477949142456, 0.01676391251385212, -0.009257291443645954, 0.03931054845452309, -0.013292709365487099, -0.11706576496362686, 0.03685722500085831, -0.03103204257786274, -0.018220197409391403, 0.14368559420108795, 0.0676676332950592, -0.015586244873702526, -0.022450389340519905, 0.20073308050632477, -0.07804395258426666, -0.06735652685165405, -0.19235862791538239, 0.17471151053905487, 0.013480564579367638, 0.006990770809352398, 0.001506633241660893, -0.1191277727484703, 0.00978526659309864, 0.1489921659231186, 0.17361010611057281, -0.0493568480014801, 0.000678383803460747, 0.04445524886250496, -0.003534521907567978, 0.005450690630823374, 0.03253939747810364, 0.09936033189296722, 0.1019415408372879, -0.06691966205835342, 0.06732664257287979, 0.01306432206183672, -0.1081828698515892, -0.08404019474983215, 0.07414094358682632, 0.02757592312991619, 0.03868752345442772, -0.02364921197295189, 0.1499776691198349, -0.13424132764339447, -0.158379927277565, 0.07668890058994293, -0.1467815786600113, -0.1688423752784729, -0.059172727167606354, 0.008086081594228745, 0.04397066310048103, 0.06727290898561478, 0.03567226603627205, -0.02513142116367817, 0.10017186403274536, 0.02025206759572029, -0.007527110632508993, -0.0766119435429573, 0.03421785682439804, -0.05171409994363785, 0.21565838158130646, -0.021343635395169258, -0.013136211782693863, 0.1393928825855255, -0.01900208182632923, -0.0930822491645813, 0.016668271273374557, 0.08629578351974487, -0.06898003071546555, 0.05784273147583008, 0.17574423551559448, -0.03628040477633476, 0.10112476348876953, 0.09784111380577087, -0.10622665286064148, 0.01974027417600155, -0.0623435415327549, -0.04646330326795578, -0.07842937111854553, 0.05207139253616333, -0.03267127275466919, 0.13810233771800995, 0.23566710948944092, -0.07436338812112808, -0.0041680471040308475, -0.029925955459475517, -0.0033334530889987946, -0.018736863508820534, 0.11392539739608765, -0.033276185393333435, -0.21807309985160828, 0.051091473549604416, 0.0067223114892840385, 0.08290626108646393, -0.23306392133235931, -0.09272104501724243, 0.05931103229522705, -0.03179682791233063, -0.09277311712503433, 0.1431775689125061, 0.09139861166477203, 0.02658795937895775, -0.04785595461726189, -0.12143567949533463, -0.004857594612985849, 0.20575974881649017, -0.08067529648542404, -0.053708720952272415 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
ctsy/mistral-7b-autotrained-finance-merged
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T07:05:30+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
peft
<img src="https://huggingface.co/Menouar/fennec-7b-alpha/resolve/main/fennec.jpg" alt="Fennec Logo" width="800" height="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # fennec-7b-alpha This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k), [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback), and [gsm8k](https://huggingface.co/datasets/gsm8k) datasets. ## Model description This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta. ## Training and evaluation data The evaluation for training can be found [here](https://huggingface.co/Menouar/fennec-7b-alpha/tensorboard). The evaluation can be found at the Hugging Face Leaderboard [here](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/fennec-7b-alpha/). ## Training procedure Can be found [here](https://colab.research.google.com/github/menouarazib/llm/blob/main/Fennec_7B.ipynb). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 7 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"language": ["en"], "license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer", "pytorch", "Mistral"], "datasets": ["HuggingFaceH4/ultrachat_200k", "openbmb/UltraFeedback", "gsm8k"], "base_model": "mistralai/Mistral-7B-v0.1", "pipeline_tag": "text-generation", "model-index": [{"name": "fennec-7b-alpha", "results": []}]}
text-generation
Menouar/fennec-7b-alpha
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "pytorch", "Mistral", "text-generation", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:openbmb/UltraFeedback", "dataset:gsm8k", "base_model:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
2024-02-14T07:08:40+00:00
[]
[ "en" ]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #pytorch #Mistral #text-generation #conversational #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-openbmb/UltraFeedback #dataset-gsm8k #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us
<img src="URL alt="Fennec Logo" width="800" height="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # fennec-7b-alpha This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on ultrachat_200k, UltraFeedback, and gsm8k datasets. ## Model description This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta. ## Training and evaluation data The evaluation for training can be found here. The evaluation can be found at the Hugging Face Leaderboard here. ## Training procedure Can be found here. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 7 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
[ "# fennec-7b-alpha\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on ultrachat_200k, UltraFeedback, and gsm8k datasets.", "## Model description\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.", "## Training and evaluation data\n\nThe evaluation for training can be found here.\n\nThe evaluation can be found at the Hugging Face Leaderboard here.", "## Training procedure\n\nCan be found here.", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 7\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 14\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 500", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #pytorch #Mistral #text-generation #conversational #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-openbmb/UltraFeedback #dataset-gsm8k #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n", "# fennec-7b-alpha\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on ultrachat_200k, UltraFeedback, and gsm8k datasets.", "## Model description\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.", "## Training and evaluation data\n\nThe evaluation for training can be found here.\n\nThe evaluation can be found at the Hugging Face Leaderboard here.", "## Training procedure\n\nCan be found here.", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 7\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 14\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 500", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ 110, 51, 48, 28, 8, 127, 4, 44 ]
[ "passage: TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #pytorch #Mistral #text-generation #conversational #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-openbmb/UltraFeedback #dataset-gsm8k #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n# fennec-7b-alpha\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on ultrachat_200k, UltraFeedback, and gsm8k datasets.## Model description\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.## Training and evaluation data\n\nThe evaluation for training can be found here.\n\nThe evaluation can be found at the Hugging Face Leaderboard here.## Training procedure\n\nCan be found here.### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 7\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 14\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 500### Training results### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ -0.12310781329870224, 0.16973909735679626, -0.0019139295909553766, 0.09572859853506088, 0.15664421021938324, 0.03803503140807152, 0.11430394649505615, 0.1719816029071808, 0.007510337047278881, 0.12925665080547333, -0.028834419324994087, 0.003113631857559085, 0.10467199981212616, 0.1897682547569275, 0.0694689005613327, -0.22044998407363892, -0.019080594182014465, -0.05167856812477112, -0.016803007572889328, 0.08098264038562775, 0.1102999597787857, -0.09929720312356949, 0.054892439395189285, 0.010977751575410366, -0.11739623546600342, -0.013043679296970367, -0.05552315339446068, -0.03882429003715515, 0.06713655591011047, 0.010492307133972645, 0.06729675829410553, -0.028720401227474213, 0.06929463148117065, -0.22035229206085205, 0.009688557125627995, 0.0913064107298851, 0.01014740765094757, 0.08188149333000183, 0.12702082097530365, -0.06257455050945282, 0.1181897297501564, -0.09327880293130875, 0.06290116161108017, 0.072020024061203, -0.09480388462543488, -0.23832468688488007, -0.1058197170495987, 0.07084210216999054, 0.11656457185745239, 0.09451886266469955, -0.0327720046043396, 0.08930761367082596, -0.05691162496805191, 0.04441540315747261, 0.21641427278518677, -0.20550452172756195, -0.05452234297990799, 0.04487507790327072, -0.008205363526940346, 0.0988459587097168, -0.15465344488620758, -0.04536014050245285, 0.021228428930044174, 0.006305730435997248, 0.051600366830825806, 0.010414598509669304, -0.0024926639162003994, -0.009406226687133312, -0.10176118463277817, 0.014934330247342587, 0.11847469955682755, 0.04932797700166702, -0.03437270596623421, -0.18513208627700806, -0.012049755081534386, -0.10289418697357178, -0.00771896168589592, 0.014234920963644981, 0.0316476970911026, -0.02157478965818882, -0.0050085908733308315, -0.0018411799101158977, -0.06925492733716965, -0.03877069056034088, 0.05651096999645233, 0.05985698103904724, -0.003537118434906006, -0.0008020053501240909, 0.008642730303108692, 0.10940411686897278, -0.03988301008939743, -0.1330929696559906, -0.05451076105237007, -0.02415633015334606, -0.1407533884048462, -0.0660446509718895, -0.0526135116815567, 0.00015355899813584983, 0.008583619259297848, 0.19018293917179108, 0.00009435077663511038, 0.07588629424571991, -0.025844821706414223, 0.01905461587011814, -0.003951278515160084, 0.14463640749454498, -0.04771481826901436, -0.14212115108966827, -0.033240240067243576, 0.10593119263648987, 0.009692870080471039, 0.005532721523195505, -0.025563420727849007, -0.035547927021980286, 0.015195541083812714, 0.043724723160266876, 0.007088354788720608, 0.002292645163834095, -0.10671664029359818, -0.05770626664161682, 0.06174750626087189, -0.129820317029953, 0.056924719363451004, 0.06175348907709122, -0.06524255126714706, -0.04635223001241684, 0.04408954083919525, 0.0006373028154484928, -0.01688849925994873, 0.05595714971423149, -0.08488507568836212, 0.03521261736750603, -0.046655766665935516, -0.06324048340320587, 0.015621606260538101, -0.08122777193784714, -0.024365048855543137, -0.06285068392753601, -0.10189773142337799, -0.08165308833122253, -0.0022551831789314747, -0.0810365155339241, 0.006306654307991266, -0.06643892079591751, -0.049873676151037216, 0.015388290397822857, 0.021849390119314194, 0.09544277936220169, -0.034724459052085876, 0.05996375158429146, -0.019445180892944336, 0.06870418041944504, 0.10159879922866821, 0.043636273592710495, -0.07751382887363434, -0.009269262664020061, -0.15055857598781586, 0.0880652368068695, -0.1258929967880249, 0.08374117314815521, -0.13401778042316437, -0.0430213026702404, -0.032119181007146835, 0.009594305418431759, 0.09382238984107971, 0.12504571676254272, -0.20123280584812164, -0.07903797179460526, 0.18842552602291107, -0.07532881200313568, -0.10827798396348953, 0.0777004137635231, -0.013081179931759834, 0.06595814228057861, 0.03413214907050133, 0.1841169148683548, 0.18195787072181702, -0.06993313878774643, -0.04614635184407234, -0.03155723214149475, 0.05414782837033272, 0.015257403254508972, 0.0657653659582138, -0.06918103992938995, 0.07984253019094467, 0.027843281626701355, -0.08173395693302155, 0.023414773866534233, -0.02597230300307274, -0.06195663660764694, -0.03244480490684509, -0.0686209574341774, 0.01793091557919979, 0.025437867268919945, -0.00041463703382760286, -0.07735773921012878, -0.09723104536533356, 0.04323204234242439, 0.1365412473678589, -0.025493329390883446, 0.015217636711895466, -0.05238179489970207, 0.04632300138473511, 0.01139429397881031, -0.019806569442152977, -0.18544389307498932, -0.03398940712213516, 0.03320416063070297, -0.06679095327854156, -0.024700965732336044, -0.0020852203015238047, 0.07403134554624557, 0.04376392811536789, -0.03793666139245033, -0.04288366436958313, -0.06531189382076263, -0.013556093908846378, -0.08933287113904953, -0.13763733208179474, -0.018221762031316757, -0.05818869173526764, 0.18958783149719238, -0.18563054502010345, 0.016052860766649246, 0.06190986558794975, 0.14855943620204926, 0.06406468898057938, -0.10783910006284714, 0.032796621322631836, 0.004809582605957985, 0.0028927933890372515, -0.10698582231998444, 0.033291470259428024, 0.025018911808729172, -0.06894611567258835, -0.03884020075201988, -0.128797709941864, -0.041444048285484314, 0.09508613497018814, 0.13816601037979126, -0.109954833984375, -0.07677321135997772, -0.07825007289648056, -0.011736186221241951, -0.09731435030698776, -0.019889887422323227, 0.11446426808834076, 0.039208367466926575, 0.1099800169467926, -0.041652876883745193, -0.05804670229554176, -0.015662720426917076, 0.03506939485669136, -0.0020931779872626066, 0.10189810395240784, 0.01233576238155365, -0.029206348583102226, 0.08160475641489029, 0.0829005315899849, 0.023242047056555748, 0.12719807028770447, -0.03689415752887726, -0.12067793309688568, -0.033425867557525635, 0.04137962684035301, 0.03640228882431984, 0.08600902557373047, -0.050492264330387115, 0.016918834298849106, 0.0513962097465992, 0.025594498962163925, -0.0016235595103353262, -0.11610207706689835, -0.0039019002579152584, 0.032923802733421326, -0.007913602516055107, 0.004936268087476492, 0.010069025680422783, 0.006142608821392059, 0.08888313174247742, 0.019586734473705292, 0.04356696829199791, -0.03869112953543663, -0.05389697477221489, -0.09755107760429382, 0.1565934717655182, -0.1455279290676117, -0.13193362951278687, -0.12213125824928284, 0.05130916088819504, -0.002427071798592806, -0.00435645692050457, 0.03032061830163002, -0.09989290684461594, -0.059703487902879715, -0.07869354635477066, -0.009570350870490074, 0.042301371693611145, -0.000873211829457432, 0.09387341886758804, 0.04974408820271492, 0.09393014013767242, -0.11414659023284912, 0.018021896481513977, 0.008221636526286602, -0.09341594576835632, 0.003816405078396201, 0.04390718787908554, 0.034747008234262466, 0.08129408955574036, 0.060728587210178375, 0.02484031952917576, -0.02324225753545761, 0.22299043834209442, -0.10766128450632095, 0.05868300795555115, 0.05284625291824341, 0.03824373334646225, 0.07492615282535553, 0.08907850831747055, 0.020581690594553947, -0.07971791177988052, 0.04620053619146347, 0.042582135647535324, -0.015440892428159714, -0.2125079482793808, -0.037050794810056686, -0.03139952942728996, -0.02056480199098587, 0.0986412987112999, 0.04999962076544762, 0.011513500474393368, 0.0341864638030529, -0.024543242529034615, -0.0022371825762093067, 0.044675394892692566, 0.0750824511051178, -0.0419054850935936, 0.028010593727231026, 0.06890633702278137, -0.062359295785427094, 0.052570704370737076, 0.08199547976255417, -0.010112307034432888, 0.22607338428497314, -0.039991430938243866, 0.15323512256145477, 0.03149653598666191, 0.08070574700832367, -0.03636709228157997, 0.03931448608636856, 0.012652606703341007, -0.021584587171673775, 0.011860580183565617, -0.07215427607297897, -0.01137438602745533, 0.07508543878793716, 0.010225442238152027, 0.06531234830617905, -0.07248817384243011, -0.027061687782406807, 0.08608347177505493, 0.1804693639278412, 0.10107114911079407, -0.21457161009311676, -0.06415098905563354, 0.03380386531352997, -0.0007558175129815936, -0.05197624862194061, -0.008998372592031956, 0.1253732144832611, -0.12975046038627625, 0.05961994081735611, -0.04962300509214401, 0.06893809139728546, -0.04907624050974846, -0.015146173536777496, 0.08734264969825745, 0.07770941406488419, -0.019598182290792465, 0.04485837742686272, -0.16498979926109314, 0.12952928245067596, 0.014595047570765018, 0.07357343286275864, -0.031189950183033943, 0.03394714370369911, 0.053557608276605606, 0.025083133950829506, 0.15374930202960968, 0.015790095552802086, -0.04678177461028099, -0.15268699824810028, -0.07620220631361008, -0.025258509442210197, 0.10438443720340729, -0.12355473637580872, 0.07068284600973129, -0.03523734211921692, -0.025589214637875557, -0.017036186531186104, -0.06038251891732216, -0.08903355896472931, -0.1300099492073059, 0.009130817838013172, -0.020828092470765114, -0.014001385308802128, -0.09935583919286728, -0.07124488800764084, -0.0415697917342186, 0.1370542347431183, -0.1211213693022728, -0.0587313212454319, -0.15913136303424835, 0.057675037533044815, 0.11881376057863235, -0.07163283228874207, 0.018609343096613884, 0.03809425234794617, 0.16009102761745453, 0.024165259674191475, -0.041719190776348114, 0.04821017012000084, -0.07457637786865234, -0.15669390559196472, -0.07564535737037659, 0.15082423388957977, 0.05146590620279312, 0.04159698262810707, -0.030624324455857277, 0.06180717796087265, 0.006064089015126228, -0.07750412076711655, 0.054541006684303284, 0.19541841745376587, -0.015377660281956196, 0.06009287387132645, -0.054655272513628006, -0.033935222774744034, -0.06711902469396591, -0.002218234585598111, 0.09571793675422668, 0.2366975098848343, -0.0968705490231514, 0.12264548242092133, 0.022067785263061523, -0.08471402525901794, -0.17929528653621674, 0.08383096754550934, 0.10796038806438446, 0.0406188890337944, 0.12357620894908905, -0.18132974207401276, 0.09068074077367783, 0.08269677311182022, -0.015319407917559147, 0.10983098298311234, -0.29833635687828064, -0.0956735759973526, 0.006921039428561926, 0.07779036462306976, -0.11821781098842621, -0.12289285659790039, -0.08355171233415604, -0.01662498340010643, -0.09732235968112946, 0.016375264152884483, -0.06110299751162529, 0.10124223679304123, -0.041790809482336044, 0.0070432270877063274, 0.06386053562164307, -0.03712862730026245, 0.12750542163848877, 0.03785509988665581, 0.0462607741355896, -0.06528710573911667, 0.07383836805820465, 0.10071137547492981, -0.07703541964292526, 0.01915697567164898, -0.026681039482355118, 0.045675404369831085, -0.20754346251487732, -0.004356385208666325, -0.07261362671852112, 0.01972835510969162, -0.049920424818992615, -0.030574128031730652, -0.03173240274190903, 0.08774372190237045, 0.08172591030597687, -0.02404945343732834, 0.0031256009824573994, 0.013552960008382797, 0.09246353060007095, 0.08602219820022583, 0.036586225032806396, 0.09888266772031784, -0.15306195616722107, -0.012329453602433205, 0.0023536677472293377, 0.016229763627052307, -0.19775494933128357, 0.028879709541797638, 0.09610458463430405, 0.04524507746100426, 0.10839998722076416, 0.02559799700975418, -0.11463744938373566, -0.00006347810267470777, 0.1013735830783844, -0.05106431990861893, -0.10649436712265015, -0.04237835481762886, -0.01478082686662674, -0.13792802393436432, -0.021275484934449196, 0.07887867093086243, -0.005609538871794939, -0.02701633796095848, -0.0010475257877260447, 0.051231857389211655, -0.02325396053493023, 0.12075656652450562, 0.03369415923953056, 0.0636458545923233, -0.06942625343799591, 0.1340831071138382, 0.04644087702035904, -0.015960033982992172, 0.020931018516421318, 0.09372031688690186, -0.10780280828475952, -0.030690597370266914, 0.03877883404493332, 0.08047954738140106, 0.0415450856089592, 0.01608680747449398, -0.06516607105731964, -0.04045488312840462, 0.023597385734319687, -0.0032846485264599323, 0.045762937515974045, -0.015151300467550755, -0.00700420793145895, -0.005759460851550102, -0.09421108663082123, 0.09830369800329208, 0.011170180514454842, 0.048492394387722015, -0.0839494839310646, 0.08892106264829636, -0.014636742882430553, -0.033150844275951385, 0.020141789689660072, -0.0167470071464777, -0.09615804255008698, -0.022051561623811722, -0.07724902033805847, -0.043309666216373444, -0.05537174269556999, -0.020817695185542107, -0.01827840320765972, -0.0353134386241436, 0.011183144524693489, 0.03272935003042221, -0.0694240927696228, -0.09547828137874603, -0.04088563844561577, 0.10070960968732834, -0.12869776785373688, -0.006414623931050301, 0.04079892486333847, -0.12092244625091553, 0.10468495637178421, 0.020548926666378975, 0.0368991382420063, 0.015320969745516777, -0.07998466491699219, -0.00748283788561821, 0.004573598504066467, -0.011497288011014462, 0.06555575877428055, -0.12535543739795685, 0.007542774546891451, -0.07715199142694473, 0.008527463302016258, 0.017691263929009438, 0.03710628300905228, -0.11777491122484207, 0.00126089237164706, -0.049964725971221924, -0.025241529569029808, -0.08112388104200363, 0.03539041429758072, 0.11314980685710907, 0.05747928097844124, 0.12378809601068497, -0.06459414958953857, 0.08511300384998322, -0.20542781054973602, -0.03958354517817497, -0.008354775607585907, 0.0005675534484907985, -0.023798350244760513, -0.013169918209314346, 0.07771571725606918, -0.02527288906276226, 0.04574207961559296, -0.04970167204737663, 0.07665053755044937, 0.05356127396225929, -0.05240657925605774, -0.03864385932683945, 0.03012286126613617, 0.15564949810504913, 0.03751622512936592, -0.0185023732483387, 0.07858205586671829, 0.002953992458060384, 0.03766746073961258, 0.018915656954050064, 0.09916725754737854, 0.18092414736747742, -0.02376912161707878, 0.04431009665131569, 0.03530455008149147, -0.11791867017745972, -0.13034126162528992, 0.09572276473045349, -0.06670812517404556, 0.0542735680937767, -0.08587552607059479, 0.15586304664611816, 0.06680988520383835, -0.19377551972866058, 0.05286523699760437, -0.058612678200006485, -0.07829674333333969, -0.06220204755663872, -0.07308774441480637, -0.06809654086828232, -0.11910270899534225, 0.020281599834561348, -0.07910776138305664, 0.04895086959004402, 0.06146847829222679, 0.02596290595829487, 0.00644057197496295, 0.1493617445230484, -0.03641550987958908, -0.004696794785559177, 0.1038464903831482, 0.014411255717277527, -0.007173615973442793, -0.013205017894506454, -0.03952803090214729, 0.02786974236369133, 0.02046557329595089, 0.07837677001953125, -0.01070224866271019, -0.047881729900836945, 0.015034252777695656, -0.015174751169979572, -0.08427634090185165, 0.02942001074552536, -0.013567229732871056, -0.05383150652050972, 0.03525162488222122, 0.07710672914981842, 0.011304606683552265, -0.04621075838804245, 0.3071705102920532, -0.07236432284116745, -0.003441444830968976, -0.14269834756851196, 0.09856400638818741, 0.052704330533742905, 0.0010291229700669646, 0.010504711419343948, -0.15511012077331543, -0.013829867355525494, 0.12645485997200012, 0.08950492739677429, -0.02330252155661583, 0.00429746275767684, 0.019758611917495728, -0.011532020755112171, -0.028185052797198296, 0.06321998685598373, 0.08123328536748886, -0.009261231869459152, -0.01216336153447628, 0.07923195511102676, 0.013156277127563953, -0.08613451570272446, -0.029230235144495964, 0.05317253991961479, -0.03974708169698715, 0.024098720401525497, -0.0747697576880455, 0.0992126315832138, 0.03229496255517006, -0.1909240335226059, 0.10264226049184799, -0.14813895523548126, -0.1839122176170349, -0.02374112978577614, 0.05903318151831627, 0.024541813880205154, 0.05208095908164978, 0.04471775144338608, -0.005954670254141092, 0.18258512020111084, -0.032008200883865356, -0.01786022074520588, -0.13584110140800476, 0.018940506502985954, -0.188409224152565, 0.22664077579975128, -0.009244440123438835, -0.01768532395362854, 0.09607058018445969, 0.04203658178448677, -0.17234115302562714, 0.015650443732738495, 0.04953442141413689, -0.07254379987716675, 0.012148094363510609, 0.18149040639400482, -0.04959442839026451, 0.053476229310035706, 0.06189291551709175, -0.12452030181884766, 0.01236511580646038, -0.036667488515377045, 0.006153643596917391, -0.12203000485897064, 0.030167341232299805, -0.04340752586722374, 0.16122108697891235, 0.20920529961585999, -0.061929091811180115, -0.017015496268868446, -0.021527107805013657, 0.0008094829390756786, 0.026449773460626602, 0.11769209802150726, -0.014381456188857555, -0.17810656130313873, 0.01265096664428711, 0.015423400327563286, 0.056487977504730225, -0.20627357065677643, -0.0947769284248352, 0.026242462918162346, -0.07595644891262054, -0.03191952407360077, 0.1473248451948166, 0.03583875671029091, 0.026916377246379852, -0.03209374099969864, -0.11835263669490814, -0.0014734448632225394, 0.16491377353668213, -0.12160434573888779, -0.06605485081672668 ]
null
null
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "258.80 +/- 21.25", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
Fhermin/ppo-LunarLander-v2
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-14T07:10:45+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 39, 41, 17 ]
[ "passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.03942384943366051, 0.04900386184453964, -0.005304091144353151, 0.026427261531352997, 0.107408307492733, -0.026511888951063156, 0.11188238859176636, 0.0814051404595375, 0.10722193866968155, 0.04762078449130058, 0.08338645845651627, 0.06030960753560066, 0.05080918222665787, 0.2571701407432556, 0.04754156619310379, -0.22987541556358337, 0.036159250885248184, -0.04869936779141426, 0.12395193427801132, 0.07178173214197159, -0.0038484656251966953, -0.06485428661108017, 0.020415637642145157, -0.013290755450725555, 0.05367108806967735, 0.04282612353563309, -0.01716216839849949, -0.08207534998655319, 0.07169748842716217, -0.06345846503973007, 0.06986866891384125, 0.07677983492612839, 0.13218913972377777, -0.17832116782665253, 0.029566360637545586, 0.02571309357881546, -0.07189024239778519, 0.01342033501714468, 0.008019951172173023, 0.05120139941573143, 0.17303818464279175, 0.019879888743162155, 0.07844575494527817, -0.0025605305563658476, -0.15412317216396332, -0.018950799480080605, 0.0436202734708786, 0.12546207010746002, 0.08808347582817078, 0.04605821147561073, 0.01970590092241764, 0.17503218352794647, -0.054352790117263794, -0.028833400458097458, 0.21759237349033356, -0.2881564497947693, -0.031460098922252655, 0.321048766374588, 0.06997483223676682, 0.09725230932235718, -0.07540661096572876, -0.03619609400629997, 0.007783263456076384, -0.013137873262166977, -0.028666524216532707, -0.07447073608636856, 0.17313385009765625, 0.05152064561843872, -0.05057951435446739, -0.09541505575180054, 0.16948209702968597, 0.006921638268977404, 0.0018855923553928733, -0.019282981753349304, 0.009060598909854889, 0.07402525842189789, -0.016097044572234154, -0.07255112379789352, 0.057438433170318604, 0.05330665782094002, 0.019649166613817215, -0.1435653269290924, -0.10762494057416916, -0.022740179672837257, -0.008012006990611553, 0.17786912620067596, -0.009255532175302505, 0.042902372777462006, 0.003065188182517886, 0.10384012013673782, -0.12480384111404419, -0.03354184702038765, -0.0454259067773819, -0.07565800100564957, -0.0223417766392231, -0.02058211714029312, -0.03580251708626747, 0.07184842973947525, 0.11971849203109741, 0.027368178591132164, 0.09350208193063736, 0.047715865075588226, -0.03206788748502731, 0.06343851238489151, 0.05555703118443489, 0.14222665131092072, 0.05807621404528618, 0.012854371219873428, 0.13179877400398254, 0.055213116109371185, 0.033023182302713394, -0.0613492950797081, -0.18252409994602203, 0.07489913702011108, -0.07031869143247604, 0.007941240444779396, 0.12051256000995636, -0.04480670019984245, -0.1183447614312172, -0.037500523030757904, -0.017392054200172424, -0.06224250793457031, -0.025395862758159637, 0.0547584593296051, -0.02883218228816986, -0.03973718360066414, 0.0011496668448671699, 0.09384800493717194, 0.00953749567270279, -0.1752052903175354, 0.03303423151373863, -0.025042934343218803, -0.10782608389854431, 0.009975161403417587, 0.0022444494534283876, 0.03394931182265282, 0.04408763721585274, -0.11822668462991714, -0.30899152159690857, -0.07652641832828522, 0.05490870401263237, -0.06516939401626587, -0.18425025045871735, -0.13193942606449127, 0.02454492449760437, -0.09037084132432938, -0.044885024428367615, -0.12759265303611755, -0.028549788519740105, 0.01743689924478531, 0.011519349180161953, 0.10758619755506516, -0.0106219332665205, -0.012188062071800232, -0.1571401208639145, 0.008273907005786896, -0.20951123535633087, 0.0890483483672142, -0.019150104373693466, 0.037884220480918884, -0.032381169497966766, -0.07404014468193054, 0.030707746744155884, 0.052499737590551376, -0.01474119070917368, 0.13510210812091827, -0.15592676401138306, -0.03691192343831062, -0.007996266707777977, -0.13611900806427002, -0.04786273464560509, -0.10358831286430359, -0.04357128217816353, 0.13354332745075226, 0.018664736300706863, 0.15356586873531342, -0.08709818124771118, -0.0722038671374321, 0.20489206910133362, -0.010411538183689117, -0.12820468842983246, -0.076752208173275, 0.10165707021951675, 0.021510310471057892, -0.056606587022542953, -0.02523270808160305, -0.1839766949415207, -0.0152357779443264, -0.04550420492887497, -0.047039128839969635, 0.01796751655638218, -0.010888241231441498, 0.13837894797325134, 0.08494598418474197, 0.05018039792776108, -0.06086122244596481, -0.006730288732796907, 0.10779471695423126, 0.08823856711387634, 0.008680110797286034, 0.023406028747558594, -0.05774238705635071, 0.09552932530641556, -0.04003755748271942, -0.0142367510125041, -0.08283266425132751, -0.036246106028556824, -0.026256313547492027, 0.17507147789001465, 0.09440762549638748, 0.2257927656173706, 0.09567736834287643, 0.039160262793302536, 0.031270865350961685, -0.13181598484516144, -0.1425403207540512, -0.0017254541162401438, 0.09020978957414627, -0.14270411431789398, -0.04119925573468208, -0.08974775671958923, -0.17768175899982452, -0.12202505767345428, 0.0006432619411498308, -0.17960017919540405, 0.06390921026468277, 0.05408334732055664, -0.035177867859601974, 0.03272094577550888, 0.13032332062721252, -0.011533179320394993, -0.03967514634132385, 0.0831870287656784, 0.0379033200442791, -0.041234664618968964, -0.021742934361100197, 0.11885567009449005, 0.15673065185546875, 0.13124459981918335, -0.03511447086930275, 0.004914294462651014, 0.07076404243707657, -0.02309088408946991, 0.06539414077997208, 0.0558244064450264, 0.20973342657089233, 0.188301220536232, 0.038996949791908264, 0.008822928182780743, -0.07048165798187256, 0.0855446457862854, -0.0742373839020729, -0.14302679896354675, -0.05579735338687897, 0.08729292452335358, 0.016605578362941742, 0.023469142615795135, 0.08711627870798111, 0.024545932188630104, 0.09132762253284454, 0.15968108177185059, 0.01990218088030815, -0.09659269452095032, -0.050218869000673294, 0.01175848301500082, 0.027713103219866753, 0.04794301092624664, -0.04514073207974434, -0.00937939714640379, 0.017020760104060173, -0.10303554683923721, 0.031789086759090424, -0.1413339376449585, -0.1358717679977417, 0.044326696544885635, 0.003906996920704842, 0.010907664895057678, 0.02786896750330925, -0.0038291432429105043, 0.019039705395698547, 0.04351753741502762, -0.06975466758012772, 0.047416772693395615, -0.024745507165789604, -0.020031947642564774, 0.03340689837932587, -0.057257164269685745, -0.205775648355484, -0.17696654796600342, 0.00013708483311347663, -0.09910997003316879, 0.10194740444421768, 0.018308809027075768, -0.12373185902833939, 0.047737859189510345, -0.05822649225592613, 0.027574289590120316, -0.01875593699514866, -0.049130141735076904, 0.10507171601057053, 0.1525275856256485, -0.016146350651979446, 0.018018173053860664, -0.04865182936191559, -0.10157987475395203, -0.19632206857204437, 0.0691583976149559, 0.04680244252085686, 0.014610917307436466, 0.10669491440057755, 0.018072687089443207, 0.02367905154824257, -0.007674071006476879, -0.016521066427230835, -0.011659215204417706, -0.08781040459871292, 0.31909599900245667, 0.04510033503174782, -0.025173069909214973, 0.02041010931134224, -0.0043001663871109486, -0.028083480894565582, 0.03263787180185318, -0.0985708013176918, -0.07548979669809341, -0.08774089068174362, -0.04367410019040108, -0.09784720093011856, 0.053299110382795334, 0.05916472524404526, 0.003188040340319276, -0.07727594673633575, 0.04221395403146744, 0.11369874328374863, -0.0923808291554451, -0.07137343287467957, 0.07477962225675583, 0.0972946360707283, -0.07331304252147675, 0.00012658814375754446, 0.00874367356300354, 0.023951783776283264, 0.037102166563272476, 0.06778035312891006, -0.03966575115919113, 0.08589404821395874, -0.19917890429496765, 0.0372927263379097, 0.106058269739151, 0.023754918947815895, 0.0638108178973198, 0.07643651217222214, -0.1058402881026268, -0.008500572293996811, -0.032518330961465836, -0.21341575682163239, 0.1668180525302887, 0.1355515867471695, 0.06788124144077301, -0.025637222453951836, -0.00461410591378808, -0.0649740919470787, 0.05773647129535675, 0.02723747305572033, -0.14758841693401337, 0.004883295856416225, 0.06064270809292793, 0.026899009943008423, 0.01614922471344471, 0.07971042394638062, 0.014697225764393806, -0.1801026314496994, -0.014406266622245312, 0.10730406641960144, 0.002390873385593295, 0.0053148469887673855, -0.03175045922398567, -0.1755964607000351, 0.0751047357916832, 0.004285442177206278, 0.07233936339616776, -0.1676585078239441, 0.14297930896282196, -0.10089799761772156, 0.07726949453353882, -0.004285062663257122, -0.021311495453119278, 0.02507244050502777, -0.0541163794696331, 0.15163759887218475, 0.01058570109307766, -0.021810131147503853, -0.1200498715043068, -0.1717042326927185, -0.019227758049964905, -0.11788936704397202, -0.11679866164922714, 0.050424277782440186, 0.062185097485780716, 0.04923136904835701, -0.061147067695856094, 0.1518532931804657, -0.047422297298908234, 0.060713399201631546, -0.06893875449895859, -0.06755045056343079, 0.03764858841896057, -0.12588608264923096, -0.08176055550575256, 0.05573027580976486, 0.19166934490203857, 0.15833087265491486, -0.02816431224346161, -0.03472423925995827, -0.047419581562280655, -0.006212298292666674, -0.007802055217325687, 0.0275666993111372, 0.023223137483000755, 0.07315318286418915, -0.07681374251842499, -0.11649256944656372, 0.033787861466407776, -0.06713802367448807, -0.055589709430933, -0.015439179725944996, 0.1513158082962036, 0.04671623185276985, 0.07720734924077988, -0.018946662545204163, 0.03887668624520302, -0.001724981120787561, -0.056474871933460236, 0.16197094321250916, 0.03885216265916824, -0.05193585529923439, 0.06837689876556396, 0.053174007683992386, 0.043745119124650955, 0.03011113777756691, -0.026783017441630363, 0.206032395362854, 0.1980147808790207, 0.014206883497536182, 0.2175983190536499, 0.03177616000175476, -0.03772832080721855, -0.1300560086965561, -0.065880686044693, -0.006372632458806038, 0.03559038043022156, 0.08070417493581772, -0.18207235634326935, -0.015011128038167953, -0.05689644813537598, -0.034518610686063766, -0.15059494972229004, -0.28553900122642517, -0.05957856774330139, 0.20075850188732147, 0.14706264436244965, 0.27519428730010986, -0.10432573407888412, 0.035197313874959946, 0.02663275972008705, -0.04912831634283066, -0.006501141935586929, 0.00018665487004909664, 0.10268618166446686, -0.15421873331069946, 0.1176437959074974, 0.08486983180046082, -0.019002694636583328, 0.01058861706405878, -0.1619086116552353, 0.00936629343777895, -0.12191236019134521, 0.05354422330856323, 0.1400289237499237, -0.048128653317689896, -0.054873593151569366, 0.14033560454845428, -0.024562934413552284, -0.22685599327087402, -0.04648222774267197, -0.043600670993328094, -0.010640020482242107, 0.026607351377606392, -0.1013401448726654, 0.04101909324526787, 0.1330099105834961, 0.009380043484270573, 0.1147187277674675, 0.11749245226383209, -0.052566803991794586, 0.10792597383260727, 0.2257719188928604, -0.018785694614052773, 0.04689010605216026, -0.12743118405342102, -0.0012336712097749114, -0.028270328417420387, 0.013657891191542149, -0.09504974633455276, -0.09938385337591171, 0.02366873063147068, 0.02872389927506447, 0.009118586778640747, 0.0921793207526207, -0.029922157526016235, 0.0759170651435852, 0.06817561388015747, -0.13014446198940277, -0.16288450360298157, 0.015828335657715797, -0.007344507612287998, 0.08354310691356659, 0.00027861111448146403, 0.08878035843372345, -0.11932205408811569, -0.018093237653374672, -0.03153328225016594, -0.03319635987281799, -0.130486860871315, -0.07138993591070175, 0.06156524643301964, 0.028095467016100883, -0.06602972000837326, 0.1398407518863678, 0.026440169662237167, 0.15942534804344177, 0.049197953194379807, 0.012499804608523846, 0.07227300107479095, -0.05345509201288223, 0.1283530443906784, 0.13818155229091644, -0.00868943240493536, -0.05460423603653908, -0.1013643890619278, -0.10236792266368866, 0.08925779908895493, -0.05773641914129257, 0.07476430386304855, -0.14885357022285461, -0.06675903499126434, 0.015772046521306038, 0.016141414642333984, -0.09562095999717712, 0.02571965754032135, -0.01625603251159191, -0.18119946122169495, 0.056570518761873245, -0.048285093158483505, 0.0440407395362854, -0.06347788125276566, -0.1110161691904068, -0.17226378619670868, 0.06091433763504028, 0.08593481779098511, -0.053876690566539764, -0.12229149043560028, 0.011023230850696564, -0.00012518465518951416, -0.06341652572154999, -0.05023367330431938, 0.09722746908664703, -0.11020902544260025, 0.031452205032110214, -0.012567701749503613, 0.08853451162576675, -0.03510405123233795, -0.011538895778357983, 0.044220831245183945, -0.08039166033267975, -0.009481523185968399, 0.03534642979502678, -0.026372017338871956, -0.04127239063382149, -0.2689029574394226, 0.0036654395516961813, 0.0341104120016098, 0.02497158572077751, 0.07856601476669312, 0.011906822212040424, 0.021174922585487366, 0.03993808850646019, -0.15396519005298615, -0.013395369984209538, 0.14574195444583893, -0.07689505815505981, -0.022186370566487312, 0.05703273415565491, -0.09054436534643173, 0.013882770203053951, -0.030287226662039757, 0.1345842480659485, 0.023923413828015327, 0.06404478847980499, -0.0851147472858429, 0.10106813907623291, -0.1451139897108078, -0.04998219385743141, -0.01244612317532301, 0.09761348366737366, 0.07019034773111343, -0.10272270441055298, 0.014697125181555748, 0.04210108891129494, 0.19416837394237518, 0.016384804621338844, -0.0356343574821949, -0.03396720811724663, 0.004015897400677204, 0.22076453268527985, 0.03044266067445278, 0.10457023978233337, 0.07281364500522614, -0.026583973318338394, 0.12624378502368927, 0.09929762035608292, 0.11280370503664017, -0.055645186454057693, 0.13904185593128204, 0.04667386785149574, 0.038641396909952164, 0.0614289753139019, 0.06836545467376709, 0.09098632633686066, -0.0008288522367365658, 0.1138714924454689, 0.013811973854899406, -0.02422109805047512, -0.021335409954190254, 0.17759373784065247, 0.10501719266176224, -0.14769648015499115, 0.029047364369034767, -0.01258957851678133, 0.039933037012815475, -0.014194529503583908, -0.15634691715240479, -0.07240267097949982, -0.3315149247646332, 0.1226184144616127, -0.07119352370500565, 0.019930170848965645, 0.007913772016763687, -0.037425633519887924, -0.03296699747443199, -0.04477746784687042, 0.13151589035987854, -0.013641550205647945, -0.006079165264964104, -0.04815853759646416, -0.015360191464424133, -0.11607866734266281, -0.11200575530529022, -0.013207737356424332, -0.13671602308750153, -0.010119039565324783, 0.05595948174595833, 0.003977729007601738, 0.01821410097181797, -0.03142618387937546, 0.0024383175186812878, 0.06541839241981506, -0.05751744285225868, 0.056182678788900375, 0.12097269296646118, 0.08766137808561325, -0.1058853268623352, 0.031048951670527458, 0.2011747509241104, 0.04359564557671547, -0.12483977526426315, 0.01449228823184967, 0.1819491684436798, 0.004885740112513304, 0.017068125307559967, -0.006097703706473112, -0.0540788508951664, -0.07554277032613754, 0.1251034289598465, 0.08296554535627365, -0.09985227137804031, 0.015833314508199692, -0.0726347416639328, -0.01594804972410202, -0.06374675035476685, 0.10130585730075836, 0.09538925439119339, 0.04440245032310486, -0.10621760785579681, -0.08487539738416672, -0.10891728103160858, 0.040588874369859695, -0.08629853278398514, -0.07311757653951645, 0.09629398584365845, -0.07057105004787445, -0.07029950618743896, 0.025521177798509598, -0.17978744208812714, -0.009467960335314274, 0.1711762249469757, -0.24654000997543335, -0.0916430801153183, -0.10857923328876495, 0.14477859437465668, 0.016497576609253883, 0.1013975441455841, -0.006207061931490898, -0.007889035157859325, -0.20577777922153473, 0.024890204891562462, -0.05293011665344238, -0.02073732763528824, 0.07814782857894897, -0.09476397186517715, 0.22629831731319427, -0.08276885002851486, 0.020940175279974937, 0.012659613974392414, 0.0870661810040474, -0.030675338581204414, 0.09283176809549332, -0.03660329803824425, -0.12576518952846527, -0.03620953485369682, 0.03001813031733036, 0.013904244638979435, 0.10071761906147003, 0.09772487729787827, -0.03414725139737129, 0.03389119729399681, 0.09747414290904999, 0.04172342270612717, -0.023843804374337196, 0.0360250361263752, -0.17077107727527618, 0.02182629331946373, -0.018498148769140244, -0.06935930997133255, 0.03687669709324837, -0.06603235751390457, 0.1639697551727295, 0.04022442549467087, 0.0670473501086235, -0.036152735352516174, 0.0073931049555540085, -0.014454689808189869, -0.013775371946394444, -0.026180334389209747, -0.17259705066680908, -0.10422050207853317, -0.1347656100988388, -0.012701659463346004, -0.034971047192811966, 0.04591470584273338, 0.023234914988279343, -0.0003200018545612693, -0.014577031135559082, -0.12090865522623062, 0.04360328987240791, 0.11146783083677292, -0.04631396010518074, -0.026193076744675636 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-classification
CatBarks/bertES_posWeighted0.6000000000000001_model
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T07:10:53+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 46, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06817419826984406, 0.1699906885623932, -0.003845146857202053, 0.018365124240517616, 0.11478200554847717, 0.00763329304754734, 0.07986336201429367, 0.10738246887922287, -0.0269484706223011, 0.1267213374376297, 0.03862300142645836, 0.1017010435461998, 0.11044707149267197, 0.18616852164268494, 0.002953584771603346, -0.2117370218038559, 0.062315817922353745, -0.11355884373188019, 0.01421935111284256, 0.12174045294523239, 0.14285145699977875, -0.10472407191991806, 0.07340893894433975, -0.03533155843615532, -0.019184017553925514, -0.029508300125598907, -0.06138347089290619, -0.062117863446474075, 0.06899366527795792, 0.06911981105804443, 0.06776530295610428, 0.02535320073366165, 0.07980640977621078, -0.2927248775959015, 0.019224179908633232, 0.07704847306013107, 0.004596637096256018, 0.06310366839170456, 0.07900875061750412, -0.06604467332363129, 0.12630145251750946, -0.0469624362885952, 0.15577000379562378, 0.07483451068401337, -0.09700790792703629, -0.1833430528640747, -0.07868417352437973, 0.08138132095336914, 0.1542958915233612, 0.0575118213891983, -0.03566069155931473, 0.14360417425632477, -0.0863327905535698, 0.015191552229225636, 0.06608161330223083, -0.07603584229946136, -0.05265629291534424, 0.04255614057183266, 0.07708034664392471, 0.09375373274087906, -0.1291297972202301, -0.010211804881691933, 0.04229271039366722, 0.01873886212706566, 0.10347303748130798, 0.02310175821185112, 0.11163661628961563, 0.026270611211657524, -0.13941870629787445, -0.06378244608640671, 0.1267201453447342, 0.02999917045235634, -0.05697820335626602, -0.23340454697608948, -0.007031846325844526, -0.028088124468922615, -0.024382783100008965, -0.03983099386096001, 0.03844287618994713, -0.0294374767690897, 0.07875318825244904, 0.011917876079678535, -0.07096433639526367, -0.04893866181373596, 0.08819517493247986, 0.06123629957437515, 0.022971229627728462, -0.02526908740401268, 0.02413375861942768, 0.11652170121669769, 0.09283795207738876, -0.11929406225681305, -0.06425759196281433, -0.06432286649942398, -0.08888134360313416, -0.04847237840294838, 0.03574979677796364, 0.0754702165722847, 0.04938753694295883, 0.19765597581863403, 0.006366121117025614, 0.05646394565701485, 0.0260426327586174, 0.015338202007114887, 0.06355882436037064, 0.07606974244117737, -0.0483609177172184, -0.13532373309135437, -0.041331104934215546, 0.11784996092319489, 0.007102925330400467, -0.032494835555553436, -0.03608081117272377, 0.06173410639166832, 0.05820438638329506, 0.1192656010389328, 0.06626396626234055, 0.019241811707615852, -0.06749388575553894, -0.03806937485933304, 0.1874811202287674, -0.1540532261133194, 0.020778683945536613, 0.01720726117491722, -0.05474008247256279, -0.043989501893520355, 0.0171356238424778, 0.008756347931921482, -0.02707439661026001, 0.10765543580055237, -0.0681026354432106, -0.03794260695576668, -0.10775765031576157, -0.057500679045915604, 0.032596319913864136, -0.011795170605182648, -0.030085675418376923, -0.0443500280380249, -0.1081358790397644, -0.07622874528169632, 0.06656987965106964, -0.06241556629538536, -0.07165607810020447, -0.03565853461623192, -0.05456356331706047, 0.012712954543530941, 0.002376573858782649, 0.12743701040744781, -0.02916865609586239, 0.04608776792883873, -0.04567936435341835, 0.06814887374639511, 0.13260088860988617, 0.03273140639066696, -0.07753180712461472, 0.0658058449625969, -0.21566881239414215, 0.10687019675970078, -0.09710393846035004, 0.030530039221048355, -0.1602926403284073, -0.027380328625440598, 0.025517668575048447, 0.035233598202466965, -0.01142354216426611, 0.1405038684606552, -0.18839864432811737, -0.036833859980106354, 0.17594264447689056, -0.13455410301685333, -0.09238629788160324, 0.06278568506240845, -0.057844966650009155, 0.12792403995990753, 0.05209182947874069, -0.027332304045557976, 0.059202857315540314, -0.13285812735557556, -0.024411480873823166, -0.0557100772857666, -0.0024997375439852476, 0.1512058526277542, 0.06197551265358925, -0.05537422001361847, 0.02062765136361122, 0.020016051828861237, -0.024297641590237617, -0.045233841985464096, -0.034582652151584625, -0.0977277010679245, 0.006374812684953213, -0.07783913612365723, 0.015467152930796146, -0.014978265389800072, -0.08572793006896973, -0.037934768944978714, -0.15898989140987396, -0.0011305080261081457, 0.09650373458862305, 0.007345336955040693, -0.029424650594592094, -0.09241348505020142, 0.005526319146156311, 0.014208783395588398, -0.01407501008361578, -0.15675009787082672, -0.05031281337141991, 0.03119790367782116, -0.16866113245487213, 0.033627450466156006, -0.04903757572174072, 0.03549545630812645, 0.04459671676158905, -0.04535774141550064, -0.02160848118364811, 0.0152364457026124, 0.017460787668824196, -0.02394135482609272, -0.24046528339385986, -0.016492176800966263, -0.049182213842868805, 0.17930001020431519, -0.24510087072849274, 0.04199686273932457, 0.062341514974832535, 0.12092601507902145, 0.005246761720627546, -0.047405339777469635, 0.03611646965146065, -0.04782456159591675, -0.04614211246371269, -0.06458985060453415, -0.004041698761284351, -0.03005247749388218, -0.04619463160634041, 0.04105473682284355, -0.19605930149555206, -0.029964644461870193, 0.11028317362070084, 0.07146124541759491, -0.1701718270778656, -0.07740049809217453, -0.03032514825463295, -0.06061795726418495, -0.09144899994134903, -0.04754206910729408, 0.10501570999622345, 0.0424359068274498, 0.054926108568906784, -0.07243066281080246, -0.047703035175800323, 0.012159520760178566, -0.008316845633089542, -0.035265736281871796, 0.0910128578543663, 0.09147894382476807, -0.1183665320277214, 0.1003284826874733, 0.06719938665628433, 0.061502620577812195, 0.10171586275100708, 0.005867301486432552, -0.09559345990419388, -0.012123096734285355, 0.023821083828806877, 0.014739413745701313, 0.13627171516418457, -0.08041682839393616, 0.03041158802807331, 0.043761420994997025, -0.03445654734969139, 0.011279189959168434, -0.10341424494981766, 0.02347799763083458, 0.03186830133199692, -0.007050554268062115, 0.025736309587955475, -0.054652560502290726, 0.013161799870431423, 0.1042112186551094, 0.03211836516857147, 0.0227707140147686, 0.015011876821517944, -0.03876445069909096, -0.12403564900159836, 0.17888623476028442, -0.09523385018110275, -0.25718894600868225, -0.12982366979122162, 0.0025806569028645754, 0.04723223298788071, -0.01322246715426445, 0.01721704937517643, -0.057064954191446304, -0.10620168596506119, -0.10562704503536224, 0.017637979239225388, 0.05363597348332405, -0.08985256403684616, -0.06360358744859695, 0.05353172495961189, 0.038684699684381485, -0.12286891043186188, 0.023170825093984604, 0.04556644707918167, -0.0685787945985794, 0.004107215907424688, 0.05788148567080498, 0.08483386784791946, 0.18220773339271545, 0.013182112947106361, -0.017085859552025795, 0.012520790100097656, 0.22458304464817047, -0.14599265158176422, 0.09336943179368973, 0.13670575618743896, -0.0603153258562088, 0.08385994285345078, 0.20927630364894867, 0.031639765948057175, -0.09247095137834549, 0.04077373072504997, 0.032938770949840546, -0.040111273527145386, -0.23512989282608032, -0.07784179598093033, 0.0005755177116952837, -0.07578593492507935, 0.10564399510622025, 0.09113350510597229, 0.11394096910953522, 0.05373004451394081, -0.10628228634595871, -0.06785868853330612, 0.04576247185468674, 0.11892180144786835, -0.020387137308716774, 0.0034232554025948048, 0.09533460438251495, -0.032669007778167725, 0.016892950981855392, 0.0903218612074852, 0.010076770558953285, 0.18146716058254242, 0.040793538093566895, 0.12895575165748596, 0.08216089755296707, 0.06404399126768112, 0.023877892643213272, 0.01690720207989216, 0.028041476383805275, 0.02853785827755928, -0.021422842517495155, -0.08959300816059113, -0.01811058260500431, 0.14208537340164185, 0.03174193948507309, 0.030387144535779953, 0.009561240673065186, -0.0344390794634819, 0.0656830444931984, 0.16341377794742584, 0.01373966783285141, -0.23032663762569427, -0.06265294551849365, 0.07538370788097382, -0.07251506298780441, -0.11472991853952408, -0.007447437848895788, 0.029569825157523155, -0.17949488759040833, 0.045079123228788376, -0.02245110087096691, 0.1028464064002037, -0.11004801839590073, -0.024476202204823494, 0.04228143393993378, 0.06811302900314331, -0.03619502857327461, 0.07936927676200867, -0.21071307361125946, 0.14414268732070923, 0.0071875168941915035, 0.0627245381474495, -0.10963346809148788, 0.08230046182870865, 0.02151823230087757, 0.009466269053518772, 0.16101586818695068, -0.0074920570477843285, -0.09318114817142487, -0.07651645690202713, -0.07556641101837158, -0.011319656856358051, 0.09559466689825058, -0.10184428840875626, 0.08486217260360718, -0.008358954451978207, -0.03313955292105675, -0.00388424564152956, -0.1140027567744255, -0.13622364401817322, -0.18601436913013458, 0.05523287504911423, -0.11181046068668365, 0.03691478446125984, -0.11166879534721375, -0.06252610683441162, -0.02911795862019062, 0.19807842373847961, -0.1904531568288803, -0.08140338957309723, -0.14539870619773865, -0.07204011082649231, 0.12212951481342316, -0.04274967685341835, 0.07663191109895706, 0.00015701932716183364, 0.2071707546710968, -0.004644640255719423, 0.0014644638868048787, 0.0856679305434227, -0.09557735919952393, -0.206184521317482, -0.09439684450626373, 0.13821037113666534, 0.12497473508119583, 0.04596934840083122, -0.0036321566440165043, 0.024304913356900215, -0.0027867835015058517, -0.10976199060678482, 0.02332260087132454, 0.1432444006204605, 0.08416087180376053, 0.03885705769062042, -0.02675866149365902, -0.14533737301826477, -0.1054752767086029, -0.05289754271507263, 0.019448768347501755, 0.17674845457077026, -0.07222644239664078, 0.1607094258069992, 0.15837931632995605, -0.06414622813463211, -0.20734171569347382, 0.032782182097435, 0.03679283335804939, -0.011663361452519894, 0.03244366869330406, -0.20815548300743103, 0.07330463081598282, 0.016213007271289825, -0.06075131520628929, 0.1363404095172882, -0.1705039143562317, -0.14891991019248962, 0.0919104814529419, 0.07189090549945831, -0.2193969339132309, -0.13394345343112946, -0.09907522052526474, -0.055755600333213806, -0.10410746932029724, 0.08695419132709503, 0.014253350906074047, 0.004559517838060856, 0.040003977715969086, 0.024713784456253052, 0.021094202995300293, -0.05303549766540527, 0.19554594159126282, -0.004308625590056181, 0.041122131049633026, -0.08143328875303268, -0.08729361742734909, 0.030160382390022278, -0.06146852299571037, 0.07429458200931549, -0.02577015943825245, 0.004456855356693268, -0.1102396696805954, -0.06384536623954773, -0.05289682373404503, 0.03639809414744377, -0.08915901929140091, -0.0958789587020874, -0.05767008289694786, 0.10389325767755508, 0.08919540792703629, -0.03324571251869202, -0.058615610003471375, -0.10058292001485825, 0.0726626068353653, 0.22699709236621857, 0.18807223439216614, 0.07284927368164062, -0.07015843689441681, 0.0006279588560573757, -0.022037893533706665, 0.05516184866428375, -0.20622296631336212, 0.04608523100614548, 0.042553652077913284, 0.028887338936328888, 0.13527612388134003, -0.02506665140390396, -0.1602775603532791, -0.04527048021554947, 0.06014934554696083, -0.06545355916023254, -0.1614707112312317, -0.0005388054414652288, 0.09576781094074249, -0.16179001331329346, -0.06273222714662552, 0.024773813784122467, -0.036137934774160385, -0.025756290182471275, 0.0013679420808330178, 0.08270203322172165, 0.027825508266687393, 0.11478793621063232, 0.06896458566188812, 0.11150709539651871, -0.10231363028287888, 0.08406093716621399, 0.09299708157777786, -0.10971303284168243, 0.03247435390949249, 0.07298728823661804, -0.0610542818903923, -0.03390142321586609, 0.023122351616621017, 0.08364028483629227, 0.026266440749168396, -0.0744837298989296, -0.0008558011031709611, -0.1099681630730629, 0.06663114577531815, 0.13796411454677582, 0.032853204756975174, 0.0030810926109552383, 0.04435998201370239, 0.025823330506682396, -0.09881676733493805, 0.11186433583498001, 0.03916766867041588, 0.03720828518271446, -0.04767070338129997, 0.004865953233093023, 0.041960928589105606, -0.01269921287894249, -0.016253290697932243, -0.039693526923656464, -0.06471271812915802, -0.010708925314247608, -0.15688052773475647, 0.031037067994475365, -0.07176970690488815, 0.009115522727370262, 0.018755896016955376, -0.033779606223106384, 0.0002807097043842077, 0.0073861307464540005, -0.07919271290302277, -0.03761441633105278, -0.006646361667662859, 0.10705258697271347, -0.15747743844985962, 0.008323745802044868, 0.08949586004018784, -0.12556882202625275, 0.07766758650541306, -0.007498627994209528, -0.010838181711733341, 0.01879316382110119, -0.14380721747875214, 0.06054820865392685, -0.008177737705409527, 0.006405212916433811, 0.023949483409523964, -0.20071232318878174, 0.005702852737158537, -0.04664513096213341, -0.053938448429107666, -0.00976315326988697, -0.04211960732936859, -0.11404810100793839, 0.10492629557847977, 0.0196357611566782, -0.0860515683889389, -0.018402770161628723, 0.05309472978115082, 0.10592338442802429, -0.057369641959667206, 0.1371336728334427, -0.02283608354628086, 0.05825338885188103, -0.17831756174564362, -0.016339747235178947, -0.017454219982028008, 0.012596609070897102, -0.03102201037108898, -0.008158523589372635, 0.05483707785606384, -0.015072896145284176, 0.22714339196681976, -0.021177595481276512, 0.030790245160460472, 0.06548503786325455, 0.0070373364724218845, -0.013032838702201843, 0.08790382742881775, 0.04639120027422905, 0.021969040855765343, 0.017426103353500366, 0.016819516196846962, -0.047575462609529495, -0.019116412848234177, -0.12834098935127258, 0.08396804332733154, 0.16439755260944366, 0.08264775574207306, -0.005125291179865599, 0.053218428045511246, -0.11920209228992462, -0.08098750561475754, 0.10049403458833694, -0.033211447298526764, -0.001258186181075871, -0.057700008153915405, 0.14298145473003387, 0.15607422590255737, -0.1750815361738205, 0.06616412103176117, -0.07047461718320847, -0.05687202885746956, -0.11070677638053894, -0.17143365740776062, -0.06694129854440689, -0.03149404004216194, -0.005430171266198158, -0.06143372505903244, 0.06926561146974564, 0.10244123637676239, 0.008475886657834053, 0.002354414900764823, 0.08415096998214722, -0.033749498426914215, -0.0007962242234498262, 0.04344722256064415, 0.05283457785844803, 0.021373692899942398, -0.06691429764032364, 0.0076249162666499615, 0.004598149098455906, 0.038937900215387344, 0.05476561188697815, 0.0317605659365654, -0.014559607952833176, 0.011871086433529854, -0.013089693151414394, -0.09815122187137604, 0.03718226030468941, -0.029980625957250595, -0.0468674972653389, 0.14802806079387665, 0.01827765442430973, 0.0034919960889965296, -0.021031659096479416, 0.23128560185432434, -0.06903756409883499, -0.0798255056142807, -0.14009471237659454, 0.15071772038936615, -0.04670744761824608, 0.05065378174185753, 0.04940982535481453, -0.10087474435567856, 0.03407741338014603, 0.14691931009292603, 0.14527682960033417, -0.02467990294098854, 0.007901503704488277, 0.011187983676791191, 0.0055741616524755955, -0.025625228881835938, 0.05354921892285347, 0.04412171617150307, 0.12145667523145676, -0.06669453531503677, 0.09297986328601837, -0.007810541894286871, -0.0844663754105568, -0.02094031497836113, 0.1328510195016861, 0.0014671299140900373, 0.02338746376335621, -0.0805477648973465, 0.11851188540458679, -0.06559251248836517, -0.25864502787590027, 0.061333827674388885, -0.06666524708271027, -0.15384668111801147, -0.018917718902230263, 0.02399173192679882, 0.00401253392919898, 0.024401430040597916, 0.06268756836652756, -0.06360985338687897, 0.14903949201107025, 0.03688151761889458, -0.07834678888320923, -0.07808853685855865, 0.07696148753166199, -0.08397532254457474, 0.3018210828304291, 0.008228152059018612, 0.04951678216457367, 0.09650786966085434, -0.03327273949980736, -0.13361208140850067, 0.04569283500313759, 0.09728528559207916, -0.06408768892288208, 0.06690182536840439, 0.19748380780220032, -0.008177485316991806, 0.12026696652173996, 0.07469146698713303, -0.08128973841667175, 0.057554539293050766, -0.07613562047481537, -0.09007242321968079, -0.09192728251218796, 0.08888110518455505, -0.060599785298109055, 0.15479759871959686, 0.13393908739089966, -0.04440179467201233, -0.001819826546125114, -0.03071022778749466, 0.05197824910283089, -0.002023093169555068, 0.1104598417878151, 0.022785736247897148, -0.19388216733932495, 0.031831543892621994, -0.014316190034151077, 0.0986877828836441, -0.2479904145002365, -0.07837841659784317, 0.0403057225048542, -0.013808837160468102, -0.05274871736764908, 0.12204353511333466, 0.052187733352184296, 0.04937480762600899, -0.05449601635336876, -0.057812657207250595, -0.00025569170247763395, 0.16358551383018494, -0.1094348207116127, -0.00204258831217885 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
CatBarks/bertES_posWeighted0.6000000000000001_tokenizer
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T07:12:17+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.08389580249786377, 0.19830818474292755, -0.0013316317927092314, 0.02313883788883686, 0.11396584659814835, 0.01961737498641014, 0.053626976907253265, 0.14538456499576569, 0.0060051376931369305, 0.10656800121068954, 0.066679947078228, 0.09131570905447006, 0.09678101539611816, 0.20042605698108673, 0.04371999576687813, -0.17659740149974823, 0.010636410675942898, -0.06930278241634369, -0.010073255747556686, 0.11651819199323654, 0.141214057803154, -0.10151198506355286, 0.07627976685762405, -0.03319970890879631, -0.02870541252195835, -0.0070160143077373505, -0.07769215852022171, -0.05755697935819626, 0.07573003321886063, 0.054863471537828445, 0.04207949340343475, -0.0008347301045432687, 0.08447454124689102, -0.2674994468688965, 0.013753628358244896, 0.07452993094921112, 0.010659529827535152, 0.05990942195057869, 0.07833302766084671, -0.04036625102162361, 0.12881849706172943, -0.06320446729660034, 0.13035163283348083, 0.0906217098236084, -0.0681561604142189, -0.24378153681755066, -0.08239314705133438, 0.06505522131919861, 0.12533815205097198, 0.07694927603006363, -0.02823091857135296, 0.16422191262245178, -0.07247646898031235, 0.019290022552013397, 0.09481704235076904, -0.1151006743311882, -0.060644298791885376, 0.08318385481834412, 0.14101974666118622, 0.10340547561645508, -0.1255619376897812, -0.012289565056562424, 0.04275871813297272, 0.045979104936122894, 0.07389909774065018, 0.011339850723743439, 0.1143413558602333, 0.05629947781562805, -0.13526225090026855, -0.05700986459851265, 0.14547574520111084, 0.023872992023825645, -0.057064127177000046, -0.2138909548521042, -0.002902575535699725, -0.07730814069509506, -0.011685127392411232, -0.06846728920936584, 0.0291305985301733, -0.01194276288151741, 0.060226380825042725, -0.0496203787624836, -0.09797755628824234, -0.046314824372529984, 0.1015089675784111, 0.054820988327264786, 0.011354796588420868, -0.01489334274083376, 0.03576440364122391, 0.13432876765727997, 0.04213530570268631, -0.10012737661600113, -0.07065672427415848, -0.0701170489192009, -0.09620913118124008, -0.03947552293539047, 0.04272124543786049, 0.020167991518974304, 0.042202774435281754, 0.2283228635787964, 0.024096308276057243, 0.05459817871451378, 0.029667891561985016, 0.0026177873369306326, 0.03211980313062668, 0.1073630079627037, -0.041210614144802094, -0.188126802444458, -0.03292805701494217, 0.0931866466999054, -0.009821015410125256, -0.028658604249358177, -0.033444397151470184, 0.035014089196920395, 0.08379437029361725, 0.11821532249450684, 0.08875755965709686, -0.012828069739043713, -0.037612639367580414, -0.03493109717965126, 0.2115669697523117, -0.14141373336315155, 0.045799970626831055, -0.022097334265708923, -0.018195297569036484, -0.06905751675367355, 0.030103791505098343, 0.01831657998263836, -0.003142025787383318, 0.06966056674718857, -0.061253178864717484, -0.05794486775994301, -0.11518853157758713, -0.045523155480623245, 0.04711875319480896, -0.024105608463287354, -0.024469668045639992, -0.07765042781829834, -0.11219723522663116, -0.06417357176542282, 0.06612563133239746, -0.04156653955578804, -0.03974827378988266, 0.005308232270181179, -0.07131324708461761, 0.008387917652726173, 0.008993842639029026, 0.12122467905282974, -0.030063031241297722, 0.05833350867033005, -0.002476902212947607, 0.05916252359747887, 0.10643328726291656, 0.03227818012237549, -0.08492200076580048, 0.057466037571430206, -0.20633617043495178, 0.08371785283088684, -0.11420095711946487, 0.034276340156793594, -0.17048145830631256, -0.024183684960007668, 0.008447963744401932, 0.023597201332449913, 0.023726604878902435, 0.1338067352771759, -0.2097422182559967, -0.016196569427847862, 0.14133213460445404, -0.09649793803691864, -0.12422871589660645, 0.07990546524524689, -0.03459475561976433, 0.1747698187828064, 0.038475677371025085, -0.019652999937534332, 0.09909367561340332, -0.15559963881969452, -0.05852397903800011, -0.026064254343509674, -0.008927824907004833, 0.08823978155851364, 0.07542291283607483, -0.05844951793551445, 0.02285866066813469, 0.02562655322253704, -0.04727208614349365, -0.0268824752420187, -0.05256075784564018, -0.10127434879541397, -0.023140445351600647, -0.09642518311738968, 0.026515161618590355, 0.000058677000197349116, -0.07310442626476288, -0.028560271486639977, -0.17347893118858337, -0.02563360333442688, 0.10103316605091095, 0.004820956848561764, -0.007559072691947222, -0.08540112525224686, 0.022149885073304176, -0.05362366884946823, -0.006164622958749533, -0.16996455192565918, -0.03558015450835228, 0.051895126700401306, -0.14917676150798798, 0.015460150316357613, -0.07327745854854584, 0.07047311216592789, 0.02098717913031578, -0.05859505757689476, -0.03108096309006214, 0.0007694467785768211, 0.004292082041501999, -0.06229274719953537, -0.1903683841228485, -0.058886781334877014, -0.041500482708215714, 0.15720732510089874, -0.24841000139713287, 0.0300158578902483, 0.03247617185115814, 0.13185922801494598, 0.007058668415993452, -0.06344027817249298, 0.02096918225288391, -0.04676475748419762, -0.050621338188648224, -0.06898977607488632, -0.009901339188218117, -0.014539826661348343, -0.031393732875585556, 0.012980648316442966, -0.14970256388187408, -0.060514215379953384, 0.09452559798955917, 0.11224991828203201, -0.14555825293064117, 0.00204002158716321, -0.0460561066865921, -0.07002599537372589, -0.07487804442644119, -0.0761631652712822, 0.07739497721195221, 0.044650159776210785, 0.049250341951847076, -0.06317461282014847, -0.06234706938266754, 0.023210179060697556, 0.005524294450879097, -0.019023682922124863, 0.0948529988527298, 0.074309803545475, -0.09122881293296814, 0.07973480224609375, 0.08461450785398483, 0.04414684325456619, 0.086973637342453, 0.005991141777485609, -0.11396963149309158, -0.03062884695827961, 0.037754856050014496, 0.024159027263522148, 0.15351562201976776, -0.08692087233066559, 0.030462130904197693, 0.052177220582962036, -0.03854219615459442, 0.03157065063714981, -0.0923321321606636, 0.025362705811858177, 0.021495236083865166, -0.006555700208991766, 0.05864228308200836, -0.018769768998026848, -0.01403577346354723, 0.06336429715156555, 0.05677810311317444, 0.044270504266023636, 0.02595379762351513, -0.02093072421848774, -0.1278371512889862, 0.16537296772003174, -0.09028079360723495, -0.2540280222892761, -0.17074446380138397, 0.015454737469553947, 0.03706491366028786, -0.021728800609707832, 0.039588842540979385, -0.06286025792360306, -0.10237989574670792, -0.09417891502380371, 0.0029635571409016848, 0.023925531655550003, -0.058347854763269424, -0.0817074254155159, 0.060779985040426254, 0.04047083482146263, -0.13689260184764862, 0.0349188968539238, 0.06170675903558731, -0.03042641654610634, 0.0018567070364952087, 0.07321398705244064, 0.12743599712848663, 0.14838241040706635, -0.006730219814926386, -0.012446845881640911, 0.035035960376262665, 0.229813352227211, -0.1490442156791687, 0.10630457103252411, 0.14053207635879517, -0.021705523133277893, 0.06635113060474396, 0.1461038440465927, 0.023231739178299904, -0.07546708732843399, 0.04147516191005707, 0.04027445614337921, -0.04228919371962547, -0.2589097023010254, -0.05694316700100899, -0.00946022942662239, -0.07043391466140747, 0.09718906134366989, 0.09238530695438385, 0.11972260475158691, 0.0337289460003376, -0.05568677559494972, -0.025771914049983025, -0.003401360474526882, 0.114128477871418, -0.027640055865049362, -0.004564122296869755, 0.07965842634439468, -0.05878787487745285, 0.011684526689350605, 0.09941446036100388, 0.019347423687577248, 0.17601320147514343, 0.02533329278230667, 0.10681075602769852, 0.06725578010082245, 0.09347675740718842, -0.0015635732561349869, 0.034774236381053925, 0.05337131395936012, 0.022044572979211807, 0.010453542694449425, -0.09408048540353775, -0.012431944720447063, 0.13713060319423676, 0.019816776737570763, 0.009031654335558414, 0.008926562033593655, -0.01010479498654604, 0.03131420537829399, 0.20501568913459778, 0.0009575071162544191, -0.22537250816822052, -0.09500737488269806, 0.059459153562784195, -0.06931101530790329, -0.143676295876503, -0.02094252221286297, 0.030270220711827278, -0.17292405664920807, 0.016790566965937614, -0.0316389761865139, 0.09112390875816345, -0.07145322859287262, -0.028050832450389862, 0.06891903281211853, 0.07569212466478348, -0.012108199298381805, 0.07973295450210571, -0.19069278240203857, 0.12254468351602554, 0.03037673607468605, 0.08605273067951202, -0.11708726733922958, 0.07849059253931046, -0.0019813794642686844, -0.014807495288550854, 0.17999744415283203, -0.014062200672924519, -0.0586031936109066, -0.08878950774669647, -0.08704045414924622, -0.011727320961654186, 0.10361312329769135, -0.09322915226221085, 0.09586969763040543, -0.02775636687874794, -0.03705112263560295, 0.012418309226632118, -0.10469507426023483, -0.1636953055858612, -0.18679304420948029, 0.06244563311338425, -0.07802703976631165, 0.012347841635346413, -0.11227322369813919, -0.06334327906370163, -0.01575082167983055, 0.23160123825073242, -0.16648635268211365, -0.07049825042486191, -0.1498587429523468, -0.03997112438082695, 0.17463743686676025, -0.042160745710134506, 0.06849376112222672, -0.021383514627814293, 0.1873992383480072, -0.008081548847258091, -0.013158116489648819, 0.06569221615791321, -0.09637628495693207, -0.16879262030124664, -0.05748843029141426, 0.14160962402820587, 0.10863390564918518, 0.05731578543782234, -0.0038195757661014795, 0.013171887956559658, -0.03383830562233925, -0.09896382689476013, 0.013824623078107834, 0.13817466795444489, 0.0034514935687184334, 0.00682973163202405, -0.03995988517999649, -0.07027145475149155, -0.05825701728463173, -0.07912654429674149, 0.057147104293107986, 0.187900573015213, -0.09512355923652649, 0.1602867990732193, 0.12431421875953674, -0.06468851119279861, -0.2306901067495346, 0.03996593505144119, 0.04701630026102066, 0.007666614837944508, 0.022401191294193268, -0.19138796627521515, 0.09788824617862701, 0.0009011493530124426, -0.06807263940572739, 0.14616990089416504, -0.16564498841762543, -0.1461436152458191, 0.08002161979675293, 0.025075770914554596, -0.22560662031173706, -0.14821304380893707, -0.1037549376487732, -0.03735695406794548, -0.13707835972309113, 0.048581719398498535, 0.02614329755306244, 0.019834673032164574, 0.025222565978765488, 0.005338077899068594, 0.029657263308763504, -0.07272187620401382, 0.1870686560869217, -0.020297454670071602, 0.0072362530045211315, -0.050640691071748734, -0.04617878794670105, 0.09227550774812698, -0.06150037795305252, 0.11741586774587631, 0.018679620698094368, 0.018796883523464203, -0.1431548148393631, -0.049209367483854294, -0.060803934931755066, 0.04456847906112671, -0.07284719496965408, -0.09393193572759628, -0.04137463867664337, 0.08888561278581619, 0.07211937010288239, -0.032792408019304276, -0.0027768779546022415, -0.07569456845521927, 0.09405932575464249, 0.184477761387825, 0.17357055842876434, 0.009977072477340698, -0.07020942866802216, 0.024555526673793793, -0.042279548943042755, 0.03349342197179794, -0.24652716517448425, 0.03456863760948181, 0.066053606569767, 0.03803660348057747, 0.08509242534637451, -0.016836483031511307, -0.1781480610370636, -0.04086102172732353, 0.08498652279376984, -0.06206206604838371, -0.19876568019390106, -0.02703288197517395, 0.08424776047468185, -0.20383712649345398, -0.032998621463775635, 0.041543323546648026, -0.03834589570760727, -0.02396267279982567, -0.002415500348433852, 0.06396626681089401, -0.008327016606926918, 0.12156640738248825, 0.06747189164161682, 0.10266115516424179, -0.09284433722496033, 0.08920657634735107, 0.10416955500841141, -0.09140542894601822, 0.03545991703867912, 0.10264154523611069, -0.05670900270342827, -0.04460543021559715, 0.033935222774744034, 0.05925208330154419, -0.028357384726405144, -0.06409841030836105, -0.000502707262057811, -0.0359574519097805, 0.04993389546871185, 0.08058220148086548, 0.036113787442445755, -0.01202210783958435, 0.06544706225395203, 0.028145326301455498, -0.11693570017814636, 0.10949387401342392, 0.04405685141682625, 0.04509059712290764, -0.07182393968105316, -0.012280966155230999, 0.015999672934412956, 0.032540347427129745, -0.019734015688300133, -0.014576527290046215, -0.03146412968635559, -0.007561005651950836, -0.1553635597229004, -0.02064543403685093, -0.06516171246767044, 0.006067827809602022, 0.022207623347640038, -0.03830232471227646, -0.012014663778245449, 0.01381110493093729, -0.07979435473680496, -0.07571027427911758, -0.01700955256819725, 0.08539021760225296, -0.1381402313709259, 0.006627439055591822, 0.07182712107896805, -0.10980239510536194, 0.07347989827394485, -0.0048679932951927185, 0.017079560086131096, 0.010923396795988083, -0.11654401570558548, 0.04386281594634056, -0.005810429807752371, 0.01551580335944891, 0.022556742653250694, -0.171111062169075, 0.011553828604519367, -0.038553636521101, -0.03114982508122921, 0.011926400475203991, -0.025060230866074562, -0.11875922232866287, 0.08676479011774063, -0.028097305446863174, -0.037512701004743576, -0.03292486071586609, 0.06296087801456451, 0.08736220002174377, -0.011740099638700485, 0.09667140990495682, -0.025766119360923767, 0.04818311333656311, -0.1756584197282791, -0.01910574547946453, -0.050167568027973175, 0.02537350542843342, -0.01759655587375164, -0.0070639788173139095, 0.055272240191698074, -0.004191063344478607, 0.20991376042366028, -0.03921036794781685, 0.1548677533864975, 0.05199402943253517, -0.009925156831741333, 0.010884369723498821, 0.05032730847597122, 0.06423956155776978, 0.031145188957452774, 0.00853167474269867, 0.04660189896821976, -0.004552975296974182, -0.020357951521873474, -0.13699717819690704, 0.02791593410074711, 0.16117429733276367, 0.061918217688798904, 0.0392887257039547, 0.03704594820737839, -0.1422400325536728, -0.09538721293210983, 0.10306388139724731, -0.0331864058971405, 0.014331420883536339, -0.08317886292934418, 0.17621558904647827, 0.12328410148620605, -0.1574767529964447, 0.0577850341796875, -0.07234696298837662, -0.05066767707467079, -0.1024852767586708, -0.11832084506750107, -0.06293155997991562, -0.06027044355869293, -0.004747506696730852, -0.042489297688007355, 0.05734556168317795, 0.026751231402158737, -0.003270963439717889, -0.006759525276720524, 0.12665949761867523, -0.0249644722789526, -0.004145825747400522, 0.04152364656329155, 0.0326087586581707, 0.019319625571370125, -0.05872373282909393, 0.017997145652770996, 0.018602589145302773, 0.022180357947945595, 0.06835069507360458, 0.0260987039655447, -0.059317342936992645, 0.044286735355854034, 0.00319746439345181, -0.11313364654779434, 0.018146557733416557, -0.00002245741598017048, -0.05020225793123245, 0.13557326793670654, 0.04076748713850975, 0.01548024732619524, -0.029270920902490616, 0.24342355132102966, -0.07199113070964813, -0.08681939542293549, -0.13965600728988647, 0.11511493474245071, -0.023563209921121597, 0.03755274787545204, 0.016542524099349976, -0.12659503519535065, 0.011511262506246567, 0.18531471490859985, 0.12824349105358124, 0.012459068559110165, -0.007656481582671404, 0.05736639350652695, -0.0007639875984750688, -0.05985576659440994, 0.05051197111606598, 0.0664999932050705, 0.16097788512706757, -0.09069112688302994, 0.0652846097946167, -0.008405503816902637, -0.0831485390663147, -0.027498632669448853, 0.11705785244703293, -0.022675158455967903, 0.02148384228348732, -0.03778035193681717, 0.11204422265291214, -0.052532415837049484, -0.2719486355781555, 0.02952493168413639, -0.09503202140331268, -0.13993041217327118, -0.02591860294342041, 0.041448429226875305, -0.03349510580301285, 0.01577647216618061, 0.06254769116640091, -0.045389387756586075, 0.18837277591228485, 0.025987716391682625, -0.08679025620222092, -0.07755549252033234, 0.05874146893620491, -0.08695939928293228, 0.2789687216281891, 0.003863075515255332, 0.04782010242342949, 0.12108923494815826, -0.03053574077785015, -0.18664880096912384, 0.014769754372537136, 0.11989909410476685, -0.09114406257867813, 0.07780203968286514, 0.18139931559562683, -0.005561648402363062, 0.12649618089199066, 0.04705416411161423, -0.03877115994691849, 0.03976387158036232, -0.02721380814909935, -0.03821522742509842, -0.12209630757570267, 0.05661242455244064, -0.0612691193819046, 0.15957388281822205, 0.1158948540687561, -0.05964287370443344, 0.001120698289014399, -0.06126941740512848, 0.06300627440214157, 0.014774397015571594, 0.12115653604269028, 0.018452486023306847, -0.2023056596517563, 0.05087360367178917, -0.03283824771642685, 0.08166342973709106, -0.254973828792572, -0.08186668157577515, 0.07622263580560684, -0.019022729247808456, -0.04275642707943916, 0.12311509251594543, 0.06101066991686821, 0.03676839917898178, -0.03853875398635864, -0.08537755906581879, -0.01412904355674982, 0.15376435220241547, -0.14123432338237762, -0.029574336484074593 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "apache-2.0", "datasets": ["yahma/alpaca-cleaned"]}
text-generation
mzio/hedgehog-alpaca_clean_mistral-mistral_7b_lk_esn_tqk_lora-lk_untied_head-lsc_1
[ "transformers", "safetensors", "mistral", "text-generation", "dataset:yahma/alpaca-cleaned", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T07:16:56+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #dataset-yahma/alpaca-cleaned #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using this raw template. ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #dataset-yahma/alpaca-cleaned #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 77, 29, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #dataset-yahma/alpaca-cleaned #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.07771582156419754, 0.21612484753131866, -0.0047844694927334785, 0.014114837162196636, 0.0953846275806427, 0.01660696603357792, 0.08166776597499847, 0.1127462163567543, -0.028604647144675255, 0.11120131611824036, 0.04334816709160805, 0.09421172738075256, 0.11424840986728668, 0.1900804340839386, -0.008658843114972115, -0.2157048135995865, 0.049661073833703995, -0.09173046052455902, 0.0028698218520730734, 0.11491815000772476, 0.14395353198051453, -0.09707945585250854, 0.0618010014295578, -0.014794007875025272, -0.04085284098982811, -0.01945050247013569, -0.06087480112910271, -0.0397799052298069, 0.04345574602484703, 0.04194121062755585, 0.0761793851852417, -0.00042397965444251895, 0.09625068306922913, -0.285636305809021, 0.01812685839831829, 0.061010442674160004, -0.003266695188358426, 0.07240010797977448, 0.08693910390138626, -0.059112828224897385, 0.11024694889783859, -0.06625385582447052, 0.12976904213428497, 0.07412053644657135, -0.0893634632229805, -0.17535851895809174, -0.08591238409280777, 0.10699781775474548, 0.1713903248310089, 0.06361958384513855, -0.03424747288227081, 0.09355607628822327, -0.07342670112848282, 0.01969364657998085, 0.07022706419229507, -0.1040293350815773, -0.054016854614019394, 0.06094072014093399, 0.09711359441280365, 0.04510744288563728, -0.11203965544700623, -0.030949221923947334, 0.02179657109081745, 0.03154589608311653, 0.08103542029857635, 0.012044847942888737, 0.15255607664585114, 0.025044165551662445, -0.1312762349843979, -0.0671323761343956, 0.09684942662715912, 0.030655624344944954, -0.032531000673770905, -0.22964753210544586, -0.008603191003203392, -0.03227528929710388, -0.043694108724594116, -0.028274131938815117, 0.03507046401500702, -0.004944006912410259, 0.08250968903303146, -0.01529895979911089, -0.07738395035266876, -0.03314000740647316, 0.08219131827354431, 0.02867940068244934, 0.02526806853711605, -0.011974595487117767, 0.010302909649908543, 0.10724682360887527, 0.10748422890901566, -0.12515635788440704, -0.04616093263030052, -0.05062795802950859, -0.07485895603895187, -0.04472269490361214, 0.030222401022911072, 0.05182432755827904, 0.06710723042488098, 0.23923048377037048, -0.016484960913658142, 0.04697664827108383, 0.04194622486829758, 0.0031339572742581367, 0.04934051260352135, 0.09553436934947968, -0.05490439385175705, -0.15383578836917877, -0.011012306436896324, 0.10634520649909973, -0.0030241094063967466, -0.023160135373473167, -0.041811503469944, 0.031371939927339554, 0.06474222987890244, 0.11501879245042801, 0.0903397649526596, 0.014283191412687302, -0.07067177444696426, -0.05354589596390724, 0.17584539949893951, -0.1656314581632614, 0.04179228097200394, 0.03389687091112137, -0.04006258770823479, -0.0728517547249794, 0.009637592360377312, 0.03234219551086426, -0.049244508147239685, 0.07064516842365265, -0.058069683611392975, -0.051478061825037, -0.11920878291130066, -0.046434372663497925, 0.04322061687707901, 0.016531361266970634, -0.033298932015895844, -0.020883120596408844, -0.1304185390472412, -0.08805391937494278, 0.08966159075498581, -0.060835666954517365, -0.07081367820501328, -0.03308245912194252, -0.06741362065076828, 0.016225367784500122, 0.018078215420246124, 0.08994043618440628, -0.023179035633802414, 0.037407100200653076, -0.05157953500747681, 0.053165603429079056, 0.11352986842393875, 0.03846438601613045, -0.07452612370252609, 0.08340329676866531, -0.18324331939220428, 0.11202196031808853, -0.06437448412179947, 0.04496905952692032, -0.15908046066761017, -0.0048432848416268826, 0.03943046182394028, 0.021229716017842293, 0.015701837837696075, 0.14370524883270264, -0.1928284466266632, -0.025386765599250793, 0.17092493176460266, -0.10242339968681335, -0.09256459027528763, 0.03996609151363373, -0.06694407761096954, 0.13442286849021912, 0.05199567228555679, 0.01800447516143322, 0.07007777690887451, -0.08671469986438751, -0.012688662856817245, -0.05231572687625885, 0.01577509194612503, 0.10642183572053909, 0.07247628271579742, -0.07301933318376541, 0.04341031610965729, 0.011342690326273441, -0.02321717143058777, -0.042449548840522766, -0.03403039276599884, -0.10152299702167511, 0.01563330739736557, -0.08274268358945847, -0.002792095998302102, -0.007432715501636267, -0.08223071694374084, -0.019364507868885994, -0.13755302131175995, 0.010291360318660736, 0.07901812344789505, -0.018151728436350822, -0.024608414620161057, -0.09801855683326721, 0.008807063102722168, -0.009268872439861298, -0.010278063826262951, -0.13965755701065063, -0.04775350168347359, 0.029523255303502083, -0.15817894041538239, 0.02159011922776699, -0.08390122652053833, 0.05117771402001381, 0.019979998469352722, -0.03584922105073929, -0.02159365452826023, 0.010663768276572227, 0.017301423475146294, -0.03399752825498581, -0.2273310124874115, -0.03731473907828331, -0.042363811284303665, 0.16415202617645264, -0.226453498005867, 0.03924094885587692, 0.03836655989289284, 0.14044804871082306, -0.0006819614791311324, -0.04809459671378136, 0.029655350372195244, -0.0589580163359642, -0.01610681228339672, -0.06500857323408127, -0.005218290723860264, -0.0076361452229321, -0.04932934045791626, 0.040321797132492065, -0.15906178951263428, -0.05056968331336975, 0.08969724923372269, 0.07773159444332123, -0.12943580746650696, -0.054618895053863525, -0.025748612359166145, -0.06780532747507095, -0.04626419395208359, -0.05615208297967911, 0.09359493106603622, 0.05610647425055504, 0.04533183202147484, -0.06873825937509537, -0.06802522391080856, -0.019543739035725594, -0.01779044233262539, -0.024837257340550423, 0.10253387689590454, 0.06101138889789581, -0.16151723265647888, 0.09876951575279236, 0.059815678745508194, 0.03946325555443764, 0.10134095698595047, -0.0239130686968565, -0.08359424024820328, -0.024528246372938156, 0.02013496495783329, 0.017240924760699272, 0.12583757936954498, -0.05732209235429764, 0.03879523649811745, 0.04289514198899269, -0.0389537438750267, 0.03504751995205879, -0.08584123104810715, 0.013325645588338375, 0.023135147988796234, -0.025492766872048378, 0.001079146284610033, -0.04130476340651512, 0.017202122136950493, 0.08052215725183487, 0.05327271670103073, 0.025206897407770157, 0.02285848744213581, -0.05428728088736534, -0.1274430751800537, 0.16363240778446198, -0.11000863462686539, -0.2052491158246994, -0.1331186443567276, 0.028637465089559555, 0.047228600829839706, -0.017479199916124344, -0.006024222820997238, -0.04585558921098709, -0.0896323099732399, -0.08999603241682053, 0.017736846581101418, 0.05756895989179611, -0.09043356031179428, -0.034985873848199844, 0.03634694218635559, 0.031673502177000046, -0.12661047279834747, 0.02004939131438732, 0.05389060080051422, -0.05941871553659439, -0.014439219608902931, 0.03222181648015976, 0.08460638672113419, 0.19271111488342285, 0.013102749362587929, -0.00471454206854105, 0.026640865951776505, 0.2593030035495758, -0.13546229898929596, 0.10389886051416397, 0.12904657423496246, -0.06831903010606766, 0.07835108041763306, 0.22275742888450623, 0.036109425127506256, -0.0749010220170021, 0.02788729779422283, 0.04443303123116493, -0.019785577431321144, -0.24694497883319855, -0.04723326489329338, -0.017820190638303757, -0.0808071717619896, 0.09177793562412262, 0.077093206346035, 0.10446353256702423, 0.044121697545051575, -0.09468784928321838, -0.05993001535534859, 0.07317155599594116, 0.1058906838297844, -0.020843157544732094, 0.019777918234467506, 0.08422745019197464, -0.04263812676072121, 0.01834273524582386, 0.07574991136789322, 0.027843713760375977, 0.1664409041404724, 0.03658629581332207, 0.1930401623249054, 0.08510687947273254, 0.0691002681851387, 0.0028575430624186993, 0.03260685130953789, 0.0014035828644409776, 0.04058018699288368, 0.006949601694941521, -0.07592315971851349, -0.007670927327126265, 0.1092628687620163, 0.026572057977318764, 0.02946658805012703, 0.019281988963484764, -0.05106370523571968, 0.05771906301379204, 0.2206472009420395, 0.01111611444503069, -0.218385249376297, -0.058525245636701584, 0.08570300787687302, -0.09072815626859665, -0.11198396235704422, -0.02194220758974552, 0.024029459804296494, -0.167983278632164, 0.04518621787428856, -0.039551038295030594, 0.11372452229261398, -0.09781529009342194, -0.029394201934337616, 0.07330207526683807, 0.07281274348497391, -0.024423323571681976, 0.07172216475009918, -0.21157552301883698, 0.11811060458421707, 0.011259488761425018, 0.07561591267585754, -0.10124851018190384, 0.08413684368133545, 0.008685764856636524, -0.014896159991621971, 0.13816867768764496, -0.009202403016388416, -0.0986175611615181, -0.05767184868454933, -0.06072332710027695, -0.002361271996051073, 0.0696164071559906, -0.13147905468940735, 0.0908961221575737, -0.033044375479221344, -0.027134088799357414, 0.005891284439712763, -0.0928170308470726, -0.13281668722629547, -0.17986023426055908, 0.05210689455270767, -0.09922699630260468, 0.023747868835926056, -0.10567543655633926, -0.03971900790929794, 0.004475782625377178, 0.17745341360569, -0.18064703047275543, -0.09371256083250046, -0.13756412267684937, -0.07960241287946701, 0.15872228145599365, -0.05442134290933609, 0.09411142021417618, -0.000038334477721946314, 0.1782410442829132, 0.0006771189509890974, -0.024305855855345726, 0.06742721050977707, -0.08539290726184845, -0.1875481903553009, -0.06324554979801178, 0.13658878207206726, 0.12397241592407227, 0.03485218808054924, 0.01127189863473177, 0.029710231348872185, -0.029678594321012497, -0.09342297166585922, 0.016782542690634727, 0.12295777350664139, 0.0867190957069397, 0.008132142014801502, -0.03464953601360321, -0.1291893571615219, -0.08209105581045151, -0.04149187356233597, 0.0174588430672884, 0.16613097488880157, -0.06912071257829666, 0.13793429732322693, 0.1334521323442459, -0.06699592620134354, -0.20059800148010254, 0.022143106907606125, 0.0366457924246788, 0.015786046162247658, 0.011482645757496357, -0.19657853245735168, 0.06529827415943146, 0.0007949679857119918, -0.05748295411467552, 0.09697605669498444, -0.21207371354103088, -0.1402955800294876, 0.09124720841646194, 0.05314413458108902, -0.22432751953601837, -0.13525880873203278, -0.09022558480501175, -0.059336233884096146, -0.12698516249656677, 0.07623102515935898, -0.014897557906806469, 0.002376660704612732, 0.03857848793268204, 0.04158170148730278, 0.0252078864723444, -0.05063430964946747, 0.18499132990837097, -0.011343657039105892, 0.03714046627283096, -0.08359603583812714, -0.08757001906633377, 0.03935616463422775, -0.062241386622190475, 0.08376965671777725, -0.042236316949129105, 0.016573838889598846, -0.1008477509021759, -0.04940430074930191, -0.06396638602018356, 0.0220806784927845, -0.09476715326309204, -0.08428149670362473, -0.04004237428307533, 0.09246482700109482, 0.10174506157636642, -0.02186393365263939, -0.02374618873000145, -0.08392667025327682, 0.06210574507713318, 0.19850097596645355, 0.18290327489376068, 0.08678274601697922, -0.037151169031858444, 0.005902469158172607, -0.022240566089749336, 0.03833397105336189, -0.17605264484882355, 0.05132452771067619, 0.05588703230023384, 0.02296430431306362, 0.11445748805999756, -0.019621919840574265, -0.15663008391857147, -0.0685109794139862, 0.0647391676902771, -0.04415423423051834, -0.19153471291065216, 0.004317922051995993, 0.05113137885928154, -0.19175466895103455, -0.04738456755876541, 0.038149140775203705, -0.008946494199335575, -0.040451981127262115, 0.007919139228761196, 0.08416066318750381, -0.015109533444046974, 0.10829818248748779, 0.07718230783939362, 0.09428800642490387, -0.10112025588750839, 0.08605486154556274, 0.10192855447530746, -0.027477428317070007, 0.02955560013651848, 0.11430051922798157, -0.04749695584177971, -0.038595493882894516, 0.0625057965517044, 0.12663431465625763, 0.016744449734687805, -0.053523920476436615, -0.007884680293500423, -0.08824802190065384, 0.06422099471092224, 0.1397264450788498, 0.014585083350539207, 0.01331789419054985, 0.05605434253811836, 0.017669981345534325, -0.08917228132486343, 0.13195273280143738, 0.07150115072727203, 0.017738066613674164, -0.038199711591005325, -0.001938110333867371, 0.0027854577638208866, -0.020106328651309013, -0.007762003690004349, -0.003330797888338566, -0.08682660013437271, -0.0002899068349506706, -0.16497790813446045, 0.02530910074710846, -0.08619961887598038, 0.01213335245847702, 0.017149271443486214, -0.02649719826877117, -0.0009513177792541683, 0.008480128832161427, -0.07176674157381058, -0.062312256544828415, -0.02124687284231186, 0.09569758921861649, -0.1644163429737091, 0.010806023143231869, 0.08368449658155441, -0.10606084764003754, 0.07525259256362915, -0.00952221266925335, -0.008048515766859055, 0.007707689423114061, -0.16259190440177917, 0.04496980085968971, -0.03297958895564079, -0.008309888653457165, 0.014987476170063019, -0.1850094348192215, -0.004249627701938152, -0.030481822788715363, -0.0699462741613388, -0.008266553282737732, -0.024692770093679428, -0.09860406070947647, 0.07446827739477158, 0.01320955902338028, -0.07508882135152817, -0.027210913598537445, 0.06286823749542236, 0.10171286761760712, -0.042133208364248276, 0.12826593220233917, -0.014690251089632511, 0.0690094456076622, -0.1790851205587387, -0.012553401291370392, -0.010900845751166344, 0.020704180002212524, -0.04642937704920769, -0.021582962945103645, 0.05125490203499794, -0.012327192351222038, 0.17517325282096863, -0.02406471222639084, 0.013337191194295883, 0.05226506292819977, 0.006703497376292944, 0.02455516904592514, 0.10617800801992416, 0.08295448124408722, 0.0016788090579211712, -0.0005166535265743732, 0.022399986162781715, -0.034818753600120544, -0.044634416699409485, -0.13954399526119232, 0.06315794587135315, 0.19498339295387268, 0.09740789979696274, -0.00895227212458849, 0.06201506406068802, -0.12267479300498962, -0.06276905536651611, 0.11287718266248703, -0.01831529662013054, -0.02008461207151413, -0.07515212148427963, 0.15611302852630615, 0.15563060343265533, -0.2023976594209671, 0.07903747260570526, -0.06045040115714073, -0.05495567247271538, -0.10775808244943619, -0.20822188258171082, -0.06757981330156326, -0.014995492994785309, -0.01817760430276394, -0.06678134948015213, 0.054631397128105164, 0.09100563079118729, -0.009948094375431538, -0.016320766881108284, 0.07828313112258911, -0.01125342771410942, -0.019305596128106117, 0.03087482415139675, 0.058372195810079575, 0.0262908898293972, -0.05599593743681908, 0.010892622172832489, 0.008317782543599606, 0.043188560754060745, 0.06889998912811279, 0.023266904056072235, -0.028698675334453583, 0.02496451511979103, -0.020787496119737625, -0.10595989227294922, 0.04801258072257042, -0.022692998871207237, -0.03016994148492813, 0.15003131330013275, 0.03576577827334404, 0.0008480999385938048, -0.010237414389848709, 0.224643737077713, -0.05836327746510506, -0.11158815771341324, -0.15404045581817627, 0.07588571310043335, -0.04967116191983223, 0.03559815511107445, 0.04677145555615425, -0.11162464320659637, 0.03752642869949341, 0.1309906542301178, 0.1613253355026245, -0.04930732771754265, 0.003140524495393038, 0.01734265498816967, 0.0035472388844937086, -0.034689825028181076, 0.04270601645112038, 0.043722257018089294, 0.1348714679479599, -0.06293362379074097, 0.08951256424188614, 0.00987798348069191, -0.08433863520622253, -0.03557424247264862, 0.1318105012178421, -0.01751910150051117, 0.009138837456703186, -0.055992089211940765, 0.12585033476352692, -0.06711802631616592, -0.21392248570919037, 0.034022945910692215, -0.05586349219083786, -0.13673153519630432, -0.031169062480330467, 0.025294266641139984, -0.006936994381248951, 0.01938675157725811, 0.07031445950269699, -0.042840056121349335, 0.160027876496315, 0.03484959900379181, -0.0472823791205883, -0.06958923488855362, 0.08767925947904587, -0.09805797785520554, 0.2990975081920624, 0.00986191164702177, 0.04011272266507149, 0.11065520346164703, -0.017135057598352432, -0.13034386932849884, 0.013326634652912617, 0.10116901993751526, -0.05006246641278267, 0.06298898160457611, 0.1681535243988037, -0.012074257247149944, 0.11459974199533463, 0.07440294325351715, -0.06998971849679947, 0.04593510553240776, -0.10111568123102188, -0.06788131594657898, -0.10996456444263458, 0.083707794547081, -0.07599937915802002, 0.15296222269535065, 0.1406002640724182, -0.06157723069190979, 0.01678268238902092, -0.02230425924062729, 0.05893619358539581, -0.00108469242695719, 0.1230575442314148, 0.0033224192447960377, -0.16679556667804718, 0.033959608525037766, -0.008213330991566181, 0.1017998605966568, -0.20041826367378235, -0.07542316615581512, 0.034253012388944626, -0.017560124397277832, -0.07884481549263, 0.12485266476869583, 0.07483445852994919, 0.029011918231844902, -0.044935937970876694, -0.059061940759420395, -0.009040787816047668, 0.14041319489479065, -0.09726664423942566, -0.01836003176867962 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-960", "results": []}]}
null
apirbadian/wav2vec2-base-960_causal
[ "transformers", "pytorch", "tf", "tensorboard", "safetensors", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2024-02-14T07:19:00+00:00
[]
[]
TAGS #transformers #pytorch #tf #tensorboard #safetensors #wav2vec2 #generated_from_trainer #endpoints_compatible #region-us
# wav2vec2-base-960 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "# wav2vec2-base-960\n\nThis model was trained from scratch on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- gradient_accumulation_steps: 12\n- total_train_batch_size: 768\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 50\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #pytorch #tf #tensorboard #safetensors #wav2vec2 #generated_from_trainer #endpoints_compatible #region-us \n", "# wav2vec2-base-960\n\nThis model was trained from scratch on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- gradient_accumulation_steps: 12\n- total_train_batch_size: 768\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 50\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ 46, 23, 6, 12, 8, 3, 142, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #tensorboard #safetensors #wav2vec2 #generated_from_trainer #endpoints_compatible #region-us \n# wav2vec2-base-960\n\nThis model was trained from scratch on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- gradient_accumulation_steps: 12\n- total_train_batch_size: 768\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 50\n- num_epochs: 20\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ -0.11276916414499283, 0.14321786165237427, -0.0032729357481002808, 0.07894376665353775, 0.10937415063381195, 0.040605828166007996, 0.10428395867347717, 0.1317668855190277, -0.04442642629146576, 0.10804273188114166, 0.1095120757818222, 0.06803764402866364, 0.06928528845310211, 0.16597312688827515, -0.0010969960130751133, -0.24129050970077515, 0.015333084389567375, -0.019088633358478546, -0.10015828907489777, 0.09608835726976395, 0.0763564333319664, -0.10502894222736359, 0.0636996179819107, 0.007874646224081516, -0.12292768806219101, -0.005792629439383745, -0.05954534187912941, -0.059909794479608536, 0.08998128771781921, -0.011499079875648022, 0.06437500566244125, 0.01605331338942051, 0.10778116434812546, -0.2045639455318451, 0.0007400201866403222, 0.07929723709821701, 0.030749661847949028, 0.1054551899433136, 0.08785032480955124, 0.005962829105556011, 0.10038367658853531, -0.17327862977981567, 0.096429243683815, 0.030122611671686172, -0.07021049410104752, -0.19183453917503357, -0.0758018046617508, 0.08286125957965851, 0.1025763675570488, 0.06845107674598694, 0.0057082646526396275, 0.13517381250858307, -0.0647699385881424, 0.06370589882135391, 0.2240356057882309, -0.2787396311759949, -0.06301718950271606, 0.014192797243595123, 0.03976570442318916, 0.024594536051154137, -0.11579900234937668, -0.016702527180314064, 0.0215415358543396, 0.014816881157457829, 0.11197733879089355, 0.03083086758852005, 0.033312760293483734, 0.004905297886580229, -0.12847813963890076, -0.01526595838367939, 0.08760008215904236, 0.06386595219373703, -0.03528251126408577, -0.1539965718984604, -0.06998886913061142, -0.14101101458072662, -0.013678266666829586, -0.03254437446594238, 0.02664065547287464, -0.05314613878726959, -0.0742046982049942, -0.008862114511430264, -0.040751632302999496, -0.06819727271795273, 0.02645571157336235, 0.15118342638015747, 0.06168343871831894, 0.013263349421322346, -0.0017465805867686868, 0.11590765416622162, 0.06458770483732224, -0.12158410251140594, -0.022273287177085876, -0.009383129887282848, -0.12466274946928024, -0.02660270221531391, -0.018937449902296066, 0.01003529503941536, 0.00595597829669714, 0.14885947108268738, -0.020652782171964645, 0.08407075703144073, 0.07271021604537964, -0.005899778567254543, -0.020723244175314903, 0.10058128833770752, -0.06563464552164078, -0.05320641025900841, -0.027265802025794983, 0.07846571505069733, 0.015866931527853012, -0.01557634025812149, -0.06016374006867409, -0.029351884499192238, 0.09543682634830475, 0.06217280775308609, -0.03563470020890236, 0.01425632368773222, -0.04530983790755272, -0.03404964879155159, 0.021163271740078926, -0.11519287526607513, 0.04946938157081604, 0.0029007073026150465, -0.08050818741321564, 0.016283484175801277, -0.0015442825388163328, -0.02160751447081566, -0.045463524758815765, 0.09573774039745331, -0.09601902216672897, -0.03846519812941551, -0.07391522824764252, -0.04849475249648094, 0.01741252839565277, -0.100331611931324, -0.009590274654328823, -0.04732062295079231, -0.166458398103714, -0.027285516262054443, 0.062168825417757034, -0.07712560147047043, -0.04968852177262306, -0.03729337826371193, -0.04478493332862854, 0.045506350696086884, -0.0009353788336738944, 0.15421463549137115, -0.04026072099804878, 0.06909818202257156, -0.02655084803700447, 0.06073945760726929, 0.09173847734928131, 0.02575560472905636, -0.07751025259494781, 0.049229126423597336, -0.10237235575914383, 0.06579893082380295, -0.07664962857961655, -0.0003628618724178523, -0.1459972858428955, -0.08867576718330383, -0.012915895320475101, -0.032721515744924545, 0.0719858705997467, 0.15437179803848267, -0.14364632964134216, -0.03704835847020149, 0.158384770154953, -0.062241844832897186, -0.07003571093082428, 0.08396587520837784, -0.029084138572216034, -0.03307278826832771, 0.031175529584288597, 0.1258200854063034, 0.0758211687207222, -0.11313339322805405, -0.022819198668003082, 0.004339729901403189, 0.051816076040267944, 0.007415845990180969, 0.07811933010816574, -0.009742138907313347, -0.0014541182899847627, 0.010756316594779491, -0.03555070608854294, 0.010012599639594555, -0.08805257081985474, -0.07533734291791916, -0.05712636932730675, -0.08368200063705444, 0.03597325459122658, -0.004446050152182579, 0.02832242287695408, -0.05529111251235008, -0.14352411031723022, 0.0369124561548233, 0.13292743265628815, -0.0757284015417099, 0.0036079681012779474, -0.07289130985736847, 0.02268991246819496, -0.04185514524579048, -0.019532131031155586, -0.15442334115505219, -0.1099538803100586, 0.0415920726954937, -0.11785496026277542, -0.000450974446721375, -0.002279450185596943, 0.08339729905128479, 0.08389555662870407, -0.04135248810052872, -0.04484611377120018, -0.08239690959453583, -0.010120520368218422, -0.08367055654525757, -0.20187678933143616, -0.0753619372844696, -0.025090999901294708, 0.13027127087116241, -0.20773425698280334, -0.003896906040608883, -0.032599203288555145, 0.16860948503017426, 0.03747643530368805, -0.07658884674310684, 0.019371388480067253, 0.019676338881254196, -0.0066596888937056065, -0.10935310274362564, 0.032133303582668304, -0.021363515406847, -0.11540906876325607, -0.03925834223628044, -0.13516275584697723, 0.04059532657265663, 0.06239727512001991, 0.11825311183929443, -0.09068337082862854, -0.056496571749448776, -0.07872091978788376, -0.06186641380190849, -0.059770237654447556, 0.021931177005171776, 0.13210871815681458, 0.03350156918168068, 0.10712220519781113, -0.05857080593705177, -0.09278305619955063, 0.030698033049702644, 0.04289126768708229, -0.034549303352832794, 0.11087613552808762, 0.09664838761091232, -0.07596227526664734, 0.07586776465177536, 0.1024269089102745, -0.017916597425937653, 0.13542161881923676, -0.04398396611213684, -0.10582126677036285, -0.029769059270620346, 0.009730967693030834, 0.002133969683200121, 0.1308850198984146, -0.0865313783288002, 0.024391304701566696, 0.04579365998506546, 0.017308061942458153, 0.021101100370287895, -0.14622615277767181, -0.007579253986477852, 0.02830091491341591, -0.03174437955021858, -0.015338728204369545, 0.003678339533507824, 0.014783631078898907, 0.08281897008419037, 0.022511126473546028, -0.012157042510807514, 0.021513905376195908, -0.0014836352784186602, -0.07265940308570862, 0.184295654296875, -0.10794393718242645, -0.11387380957603455, -0.09909898787736893, 0.05555602163076401, -0.04643867164850235, -0.041622262448072433, 0.0005062076379545033, -0.07624652981758118, -0.061567895114421844, -0.08552714437246323, -0.014959044754505157, -0.06628651916980743, 0.04216182976961136, 0.06806790083646774, 0.0024297088384628296, 0.06567049771547318, -0.11796972900629044, 0.02276865392923355, -0.012748369947075844, -0.03754643350839615, 0.01022901851683855, 0.06831473112106323, 0.07493007183074951, 0.1158444955945015, 0.003562425496056676, 0.031051699072122574, -0.02227635122835636, 0.2172514945268631, -0.07415952533483505, 0.013227075338363647, 0.10064303874969482, 0.0250245314091444, 0.061862844973802567, 0.08293963223695755, 0.037302304059267044, -0.07932434976100922, 0.025848018005490303, 0.06303439289331436, -0.023004112765192986, -0.2353072464466095, -0.026697278022766113, -0.031211653724312782, -0.05070040374994278, 0.1400497555732727, 0.06300508975982666, -0.039290353655815125, 0.05833916738629341, -0.019607553258538246, 0.009098995476961136, -0.026660729199647903, 0.09271041303873062, 0.0346597321331501, 0.06766685843467712, 0.08952783048152924, -0.010693366639316082, -0.029689349234104156, 0.05722793936729431, 0.013246811926364899, 0.26914870738983154, -0.027583211660385132, 0.1214529275894165, 0.005022573284804821, 0.14122997224330902, -0.023207983002066612, 0.0811515673995018, 0.0235455222427845, -0.0021015028469264507, 0.0031268640886992216, -0.07215607911348343, -0.006522857118397951, 0.03963717445731163, 0.013086022809147835, 0.03029509447515011, -0.09068746119737625, 0.05943036451935768, 0.008970203809440136, 0.27509596943855286, 0.056354474276304245, -0.3014368414878845, -0.0723629966378212, 0.0005943691357970238, -0.04279978945851326, -0.08413620293140411, 0.011207396164536476, 0.0992339551448822, -0.11129377782344818, 0.07454381138086319, -0.08425280451774597, 0.07691467553377151, -0.03862716630101204, -0.02372163161635399, 0.04691505804657936, 0.15358802676200867, -0.009935163892805576, 0.07790060341358185, -0.1714155077934265, 0.20046594738960266, 0.008780740201473236, 0.10541640967130661, -0.09098069369792938, 0.03112270124256611, -0.007630605250597, -0.009408152662217617, 0.13072359561920166, 0.0076715233735740185, -0.09163807332515717, -0.12891706824302673, -0.130588099360466, 0.028364934027194977, 0.12032855302095413, -0.06476075947284698, 0.0873679518699646, -0.03827084228396416, -0.016976237297058105, 0.035390738397836685, -0.06251110136508942, -0.15012526512145996, -0.13888047635555267, 0.03949578106403351, 0.009350360371172428, -0.02592018060386181, -0.07655564695596695, -0.12037734687328339, -0.019162341952323914, 0.17415009438991547, -0.06679381430149078, -0.051554009318351746, -0.158308744430542, 0.04245388135313988, 0.17483367025852203, -0.052678778767585754, 0.033539339900016785, 0.003989486955106258, 0.14520025253295898, 0.02223735675215721, -0.08527040481567383, 0.08110318332910538, -0.08082365989685059, -0.20260487496852875, -0.058560580015182495, 0.13098107278347015, 0.06986512243747711, 0.03211463987827301, -0.01621425151824951, 0.02467920258641243, -0.012187798507511616, -0.08912105113267899, 0.07112526148557663, 0.08679889142513275, 0.05781454220414162, 0.036851443350315094, -0.047508228570222855, 0.07654697448015213, -0.013544030487537384, -0.025375159457325935, 0.08218009024858475, 0.26074090600013733, -0.08923744410276413, 0.10191794484853745, 0.06486193090677261, -0.0504794679582119, -0.13984644412994385, 0.01568826660513878, 0.10943201929330826, 0.03490781784057617, 0.042740028351545334, -0.2077510803937912, 0.1110006645321846, 0.10763246566057205, -0.012774976901710033, 0.07980620861053467, -0.3137153685092926, -0.12851731479167938, 0.07794170826673508, 0.10529029369354248, 0.05288458988070488, -0.11051689088344574, -0.03338479995727539, -0.013759829103946686, -0.08671949058771133, 0.12138950079679489, -0.0450187511742115, 0.1089492067694664, -0.03504304587841034, 0.06677596271038055, 0.030730532482266426, -0.059100423008203506, 0.1409463882446289, 0.028910251334309578, 0.06558959186077118, -0.02548334188759327, 0.055938970297575, 0.03461695462465286, -0.08025795221328735, 0.03774822875857353, -0.08222363889217377, 0.07140659540891647, -0.14258185029029846, -0.027277741581201553, -0.05545560643076897, 0.0671992376446724, -0.04595800116658211, -0.06416904181241989, -0.03136526420712471, 0.05302596837282181, 0.07903392612934113, -0.031847257167100906, 0.08209066838026047, 0.04933895170688629, 0.07274355739355087, 0.09528689086437225, 0.07751430571079254, 0.0028957983013242483, -0.11161614954471588, -0.01135688740760088, -0.018810011446475983, 0.061897777020931244, -0.08158860355615616, 0.014435268938541412, 0.13094773888587952, 0.05306987091898918, 0.09097955375909805, 0.05137085169553757, -0.07070913910865784, -0.02759256213903427, 0.04318723455071449, -0.1231304183602333, -0.1558164656162262, -0.0016729552298784256, -0.016986241564154625, -0.13351933658123016, 0.031134484335780144, 0.10226944088935852, -0.055306270718574524, -0.01458183117210865, -0.003867741907015443, 0.02979171648621559, 0.0101214200258255, 0.18752124905586243, 0.025311864912509918, 0.08370331674814224, -0.0823305994272232, 0.1266266107559204, 0.04668127000331879, -0.09330076724290848, 0.06584502011537552, 0.06662071496248245, -0.08173131197690964, 0.00292508234269917, 0.06824474036693573, 0.10932773351669312, -0.033826280385255814, -0.03191766515374184, -0.06894063949584961, -0.08505267649888992, 0.07654687762260437, 0.04821814224123955, 0.01986522227525711, 0.006463745143264532, -0.02908848039805889, 0.02842191979289055, -0.14144161343574524, 0.08863052725791931, 0.06843044608831406, 0.07400720566511154, -0.14554311335086823, 0.09780240803956985, -0.0056991418823599815, 0.03000013157725334, -0.016058970242738724, 0.022238345816731453, -0.10288910567760468, -0.03494477644562721, -0.08034677803516388, -0.018876492977142334, -0.057345546782016754, -0.00267677940428257, -0.012608200311660767, -0.03851941227912903, -0.03991822525858879, 0.03910573944449425, -0.06343390047550201, -0.06335566192865372, 0.003512592287734151, 0.034558169543743134, -0.1286495476961136, 0.0021449243649840355, 0.016920601949095726, -0.12047798931598663, 0.09323740005493164, 0.05277412757277489, 0.031702809035778046, 0.00776680838316679, -0.08881864696741104, 0.01379216555505991, 0.007496088743209839, -0.004460127092897892, 0.0482538640499115, -0.129622682929039, -0.009591215290129185, -0.04908981919288635, 0.009088099002838135, -0.0014697355218231678, 0.026742810383439064, -0.12913188338279724, -0.04751959070563316, -0.06607668101787567, -0.039128974080085754, -0.062452953308820724, 0.03864595666527748, 0.0807623341679573, 0.011437068693339825, 0.14749930799007416, -0.057054974138736725, 0.04612329974770546, -0.19031809270381927, -0.02597450278699398, 0.00305936043150723, -0.010249773971736431, -0.028573201969265938, -0.0026792914140969515, 0.08452633023262024, -0.054684385657310486, 0.12494637817144394, -0.05463319644331932, 0.03815643489360809, 0.024348517879843712, -0.07191036641597748, -0.040517453104257584, 0.013462141156196594, 0.21580904722213745, 0.05170578509569168, -0.00677027041092515, 0.08378913253545761, -0.014159392565488815, 0.04879910498857498, 0.0716983824968338, 0.1710611879825592, 0.1352061778306961, -0.024660376831889153, 0.0702691450715065, 0.038231611251831055, -0.14183656871318817, -0.18113885819911957, 0.14364434778690338, -0.02656712755560875, 0.12757320702075958, -0.03568723052740097, 0.17423328757286072, 0.09818429499864578, -0.1598237156867981, 0.023525599390268326, -0.015962187200784683, -0.09784658253192902, -0.12206468731164932, -0.09777410328388214, -0.07355061918497086, -0.13090023398399353, 0.03483854606747627, -0.095304474234581, 0.03117157518863678, 0.0407308004796505, 0.039542339742183685, 0.026045208796858788, 0.1331232488155365, 0.017885219305753708, 0.01980685256421566, 0.05978637561202049, 0.051021162420511246, -0.011225984431803226, -0.008176463656127453, -0.08303602784872055, 0.023860281333327293, -0.022180553525686264, 0.0750354751944542, -0.06125523895025253, -0.013845141045749187, 0.05831017717719078, 0.03265681117773056, -0.07127340137958527, 0.017946215346455574, -0.0022935238666832447, 0.02655000053346157, 0.041311249136924744, 0.0400274433195591, -0.011397738941013813, -0.06893837451934814, 0.2538858950138092, -0.08033592253923416, -0.016425594687461853, -0.11706069856882095, 0.18312327563762665, 0.02691883035004139, -0.010613393038511276, 0.07545534521341324, -0.09542345255613327, -0.02509257383644581, 0.12597134709358215, 0.1266368329524994, -0.02364201843738556, -0.027529960498213768, 0.0013601852115243673, -0.021152077242732048, -0.044746994972229004, 0.11698231846094131, 0.09112092107534409, 0.04006526246666908, -0.05076879635453224, 0.0122933154925704, -0.023588381707668304, -0.042239777743816376, -0.097456194460392, 0.0831240862607956, 0.016598770394921303, -0.008847292512655258, -0.03663632646203041, 0.06603418290615082, -0.01625952124595642, -0.17301276326179504, 0.06862901151180267, -0.12058009207248688, -0.1885911077260971, -0.029613735154271126, 0.04706251621246338, -0.014218672178685665, 0.055648405104875565, 0.0021108677610754967, -0.013492511585354805, 0.13897430896759033, 0.013061828911304474, -0.06272341310977936, -0.09331487864255905, 0.06262391060590744, -0.02227203920483589, 0.21954680979251862, 0.00878535583615303, 0.04670992121100426, 0.10342330485582352, 0.020485691726207733, -0.16487981379032135, 0.003172672353684902, 0.07551687210798264, -0.08624164015054703, 0.044856201857328415, 0.17625091969966888, -0.03687399998307228, 0.08157947659492493, 0.029683437198400497, -0.10573747009038925, -0.044716574251651764, -0.032873909920454025, -0.004585744347423315, -0.061382606625556946, 0.0240272618830204, -0.03353389352560043, 0.16228130459785461, 0.20524534583091736, -0.04701587185263634, -0.018327757716178894, -0.06511380523443222, 0.05285651236772537, 0.0317976176738739, 0.07274644821882248, 0.0016428747912868857, -0.20462386310100555, 0.031841982156038284, 0.027355633676052094, 0.041046738624572754, -0.20273539423942566, -0.09207747876644135, 0.015863971784710884, -0.06056251376867294, -0.0651007667183876, 0.10743527114391327, 0.04194319248199463, 0.02954273298382759, -0.04084762930870056, -0.08162801712751389, -0.03944544121623039, 0.1313115358352661, -0.171952024102211, -0.03907075151801109 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.8979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.1023 | 1.0 | 2346 | 7.0562 | | 6.8881 | 2.0 | 4692 | 6.8893 | | 6.8726 | 3.0 | 7038 | 6.8893 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "bert-base-cased", "model-index": [{"name": "bert-base-cased-wikitext2", "results": []}]}
fill-mask
rahulshah9713/bert-base-cased-wikitext2
[ "transformers", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "base_model:bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T07:19:46+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-wikitext2 ========================= This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 6.8979 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.1.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ -0.10224424302577972, 0.08625488728284836, -0.0022950780112296343, 0.10785072296857834, 0.13122808933258057, 0.02467336319386959, 0.16126017272472382, 0.1082226037979126, -0.06502716988325119, 0.050076745450496674, 0.13649293780326843, 0.11379656195640564, 0.01935269497334957, 0.15738029778003693, -0.03986970707774162, -0.22010625898838043, 0.012426342815160751, 0.029581978917121887, -0.08445096760988235, 0.11240007728338242, 0.08660601824522018, -0.12784387171268463, 0.08335219323635101, 0.00439339829608798, -0.16965611279010773, 0.01628454215824604, 0.026953760534524918, -0.053104937076568604, 0.13261651992797852, 0.02392582967877388, 0.14859938621520996, 0.01460022758692503, 0.09674832969903946, -0.18928205966949463, 0.015036793425679207, 0.06716672331094742, -0.007514351047575474, 0.0776604413986206, 0.019885124638676643, 0.021419169381260872, 0.07803250849246979, -0.08296364545822144, 0.06762219220399857, 0.018528560176491737, -0.1201966255903244, -0.22026580572128296, -0.07984550297260284, 0.04252969101071358, 0.09269601106643677, 0.08166682720184326, -0.00497758574783802, 0.1368541419506073, -0.05339783802628517, 0.0839858427643776, 0.23098282516002655, -0.3247266709804535, -0.07087074220180511, 0.04246877506375313, 0.04616715759038925, 0.05165383219718933, -0.10265330970287323, -0.015549111180007458, 0.060729943215847015, 0.029704339802265167, 0.14145603775978088, -0.028386756777763367, -0.04872315376996994, -0.001654051709920168, -0.146356001496315, -0.021465953439474106, 0.12274070829153061, 0.05333956703543663, -0.045595932751894, -0.044404007494449615, -0.06926877051591873, -0.15103745460510254, -0.050123486667871475, -0.02507937140762806, 0.04676424339413643, -0.026452915742993355, -0.07483679801225662, -0.01346814725548029, -0.10661070793867111, -0.08793693780899048, -0.05842364579439163, 0.15226490795612335, 0.03949999436736107, 0.011313758790493011, -0.015790529549121857, 0.0933566465973854, -0.055118873715400696, -0.13439521193504333, 0.02101302146911621, 0.02935211732983589, 0.001268814317882061, -0.04482907056808472, -0.055195003747940063, -0.07567571848630905, 0.03148737549781799, 0.15366719663143158, -0.047084663063287735, 0.04547584801912308, 0.02485322393476963, 0.053621187806129456, -0.11653730273246765, 0.1558132767677307, -0.04769982397556305, -0.02865339256823063, 0.01809598132967949, 0.07805419713258743, 0.05392300337553024, -0.00003328093953314237, -0.11742161959409714, 0.02941311150789261, 0.0903252437710762, 0.008973229676485062, -0.061362236738204956, 0.06928951293230057, -0.05310502648353577, 0.014123036526143551, 0.023535771295428276, -0.08526881784200668, 0.02671794779598713, -0.004546350799500942, -0.04214753955602646, -0.08078715950250626, 0.04409691318869591, 0.01661102846264839, 0.019648900255560875, 0.10681504756212234, -0.0948297530412674, 0.0035035114269703627, -0.09917787462472916, -0.12275739014148712, 0.018185285851359367, -0.08110588043928146, 0.021599121391773224, -0.10745803266763687, -0.16464778780937195, 0.002897754078730941, 0.07200842350721359, -0.02339942753314972, -0.022007521241903305, -0.033575426787137985, -0.07765308022499084, 0.013665585778653622, -0.010951628908514977, 0.1043962761759758, -0.06380030512809753, 0.09843365103006363, 0.04469093680381775, 0.08523252606391907, -0.04883314669132233, 0.03024880960583687, -0.09319271147251129, 0.03448197990655899, -0.1928599327802658, -0.010208802297711372, -0.07157561182975769, 0.052741676568984985, -0.07676425576210022, -0.08133583515882492, -0.023385783657431602, 0.013777934946119785, 0.08560999482870102, 0.09259875863790512, -0.16794070601463318, -0.06564626842737198, 0.18967634439468384, -0.0966368019580841, -0.13427457213401794, 0.12978947162628174, -0.049293383955955505, 0.044342394918203354, 0.044554322957992554, 0.1562807708978653, 0.0631498470902443, -0.13953833281993866, 0.00800411868840456, 0.0015349072637036443, 0.05477044731378555, -0.04932664707303047, 0.06659577041864395, -0.004466215148568153, -0.0006356902304105461, 0.014252321794629097, -0.047298260033130646, 0.05375181511044502, -0.0831107497215271, -0.09048275649547577, -0.0388631671667099, -0.10860534012317657, 0.0600300058722496, 0.05537951737642288, 0.057498749345541, -0.11714030057191849, -0.10591954737901688, 0.04245999455451965, 0.07568635791540146, -0.06476340442895889, 0.017771048471331596, -0.07896332442760468, 0.08884657174348831, -0.07050058245658875, -0.02509169466793537, -0.14412333071231842, -0.060587912797927856, 0.010363224893808365, -0.02109292894601822, 0.007782672066241503, 0.0011226334609091282, 0.08887441456317902, 0.085785873234272, -0.0688425749540329, -0.02765008993446827, -0.038390908390283585, 0.01514886599034071, -0.12184059619903564, -0.20887118577957153, -0.03430992364883423, -0.036139100790023804, 0.13266025483608246, -0.2078922688961029, 0.045657411217689514, -0.03666739910840988, 0.08899575471878052, 0.036916691809892654, -0.012872985564172268, -0.050178393721580505, 0.07269509881734848, -0.02538456581532955, -0.06167375296354294, 0.05253742262721062, 0.012158619239926338, -0.08399219810962677, -0.03938034176826477, -0.14256834983825684, 0.19486837089061737, 0.1298266500234604, -0.08125293254852295, -0.09134814888238907, 0.010858791880309582, -0.05359627678990364, -0.031454041600227356, -0.042348749935626984, 0.002997930161654949, 0.11745334416627884, -0.012583511881530285, 0.13650289177894592, -0.07321112602949142, -0.027738673612475395, 0.03774910420179367, -0.05162905156612396, 0.0033154920674860477, 0.08115604519844055, 0.12985560297966003, -0.08314335346221924, 0.15189403295516968, 0.18154576420783997, -0.10730180889368057, 0.13738001883029938, -0.035491861402988434, -0.0661080926656723, -0.028600841760635376, 0.0016823764890432358, 0.013261353597044945, 0.14880402386188507, -0.1269264966249466, 0.0018651892896741629, 0.008341620676219463, -0.0008409694419242442, 0.014563128352165222, -0.22920498251914978, -0.037405189126729965, 0.03654755651950836, -0.047106098383665085, -0.009195645339787006, -0.011733097024261951, -0.01606878452003002, 0.09201200306415558, 0.0035953109618276358, -0.09044472128152847, 0.04128729924559593, -0.0023310736287385225, -0.07639188319444656, 0.20431649684906006, -0.0818851888179779, -0.1283608078956604, -0.1351628452539444, -0.07197118550539017, -0.026797644793987274, 0.025587311014533043, 0.06065160036087036, -0.07276158034801483, -0.046653393656015396, -0.09610334038734436, -0.010558477602899075, 0.04970603063702583, 0.04228172451257706, 0.02343127317726612, -0.009042304940521717, 0.09691043943166733, -0.10202602297067642, -0.01437419280409813, -0.04695519804954529, -0.05260098725557327, 0.0328914038836956, 0.039368756115436554, 0.12108836323022842, 0.13510070741176605, -0.021426858380436897, -0.0019880468025803566, -0.027692535892128944, 0.2284335494041443, -0.06246955320239067, -0.01739863120019436, 0.12889781594276428, -0.023505475372076035, 0.049846649169921875, 0.1363486796617508, 0.06592683494091034, -0.09030706435441971, 0.01915660686790943, 0.043891195207834244, -0.03284474462270737, -0.19026941061019897, -0.02906855195760727, -0.042590510100126266, -0.016695957630872726, 0.0969889685511589, 0.03227029740810394, 0.025343749672174454, 0.06705844402313232, 0.03227661922574043, 0.07154078781604767, -0.027330921962857246, 0.06399934738874435, 0.07860160619020462, 0.038254741579294205, 0.12248384207487106, -0.043379832059144974, -0.06224103644490242, 0.023507708683609962, 0.00009205776586895809, 0.20760145783424377, 0.023885386064648628, 0.1142134740948677, 0.07411986589431763, 0.17635577917099, -0.002522688591852784, 0.07843916118144989, -0.009087649174034595, -0.06167103350162506, -0.004732219967991114, -0.05627191439270973, -0.0211686659604311, 0.03816079720854759, -0.0770171657204628, 0.06760998070240021, -0.10554037243127823, 0.02109663560986519, 0.046631935983896255, 0.25567424297332764, 0.05849641561508179, -0.3296108543872833, -0.09303207695484161, 0.011686466634273529, -0.021035367622971535, -0.025009173899888992, 0.019135568290948868, 0.13148440420627594, -0.04608103632926941, 0.02999252825975418, -0.07663176953792572, 0.06909945607185364, 0.004265919793397188, 0.04287072643637657, 0.07265371084213257, 0.1032138541340828, -0.0034953344147652388, 0.056784387677907944, -0.26984626054763794, 0.2963288128376007, 0.010225625708699226, 0.08920887112617493, -0.05687801167368889, 0.010096908546984196, 0.03761788830161095, 0.06456190347671509, 0.0907568484544754, -0.021801890805363655, -0.057415980845689774, -0.19420945644378662, -0.056002769619226456, 0.03018670529127121, 0.09055837243795395, -0.021044710651040077, 0.10088004916906357, -0.02944016456604004, -0.01057105977088213, 0.09014161676168442, 0.020576177164912224, -0.09108056128025055, -0.08972163498401642, -0.012464353814721107, 0.03638853505253792, -0.0498390756547451, -0.09479130804538727, -0.11082369834184647, -0.1340603232383728, 0.16035544872283936, -0.03495466709136963, -0.016048718243837357, -0.09739042073488235, 0.06510352343320847, 0.06186744570732117, -0.07614730298519135, 0.06732770800590515, 0.008687824942171574, 0.09284543246030807, 0.014888633973896503, -0.05575814098119736, 0.12672314047813416, -0.08768977224826813, -0.15693531930446625, -0.0877390131354332, 0.09653954207897186, 0.023819541558623314, 0.055036600679159164, -0.002010733587667346, 0.010923926718533039, -0.00917037297040224, -0.06749273836612701, 0.038026362657547, -0.018223581835627556, 0.0658784955739975, 0.0015944823389872909, -0.07056891918182373, 0.0016023233765736222, -0.042273398488759995, -0.020345201715826988, 0.147374227643013, 0.2795346677303314, -0.09476669132709503, 0.002002180553972721, 0.0621248222887516, -0.05617326870560646, -0.2184876948595047, 0.031233955174684525, 0.0361902192234993, 0.015828050673007965, 0.0544518381357193, -0.13981327414512634, 0.1120159924030304, 0.09032951295375824, -0.032039061188697815, 0.12081066519021988, -0.2816196084022522, -0.13184545934200287, 0.14549189805984497, 0.16503457725048065, 0.11747720837593079, -0.15266747772693634, -0.025249207392334938, -0.02645869553089142, -0.11520332098007202, 0.08122730255126953, -0.11678588390350342, 0.1102663055062294, -0.010076510719954967, 0.05381675809621811, -0.0016159156803041697, -0.07445837557315826, 0.1263611763715744, -0.03620105981826782, 0.10653188824653625, -0.06138912960886955, -0.009246821515262127, 0.05544212833046913, -0.05247451737523079, 0.0140867093577981, -0.10461318492889404, 0.0260623712092638, -0.017715008929371834, -0.02572321705520153, -0.05564267560839653, 0.048551637679338455, -0.03708672896027565, -0.06410984694957733, -0.027668442577123642, 0.033522747457027435, 0.03117223270237446, -0.017528899013996124, 0.12298072874546051, 0.019095951691269875, 0.17241311073303223, 0.11827997118234634, 0.05603841692209244, -0.06343011558055878, -0.04972574859857559, 0.0008748644031584263, -0.04012506455183029, 0.07427866011857986, -0.12960071861743927, 0.031041881069540977, 0.10975078493356705, 0.012609441764652729, 0.1448669582605362, 0.0756460651755333, -0.04572277516126633, 0.011878601275384426, 0.08236518502235413, -0.16174332797527313, -0.091029092669487, 0.008793947286903858, -0.037372831255197525, -0.13025055825710297, 0.056560639292001724, 0.1041947603225708, -0.07663875818252563, 0.01024125050753355, -0.008768676780164242, 0.01668868400156498, -0.0587545707821846, 0.18866775929927826, 0.0656580999493599, 0.051839932799339294, -0.06889139115810394, 0.05946744978427887, 0.02180764451622963, -0.07542365044355392, 0.015035311691462994, 0.03018938936293125, -0.07571815699338913, -0.04381636902689934, 0.0706268697977066, 0.18911544978618622, -0.0000759113027015701, -0.05939105898141861, -0.15120349824428558, -0.11081210523843765, 0.049340154975652695, 0.1982641965150833, 0.0915784016251564, 0.0005021487013436854, -0.024042194709181786, 0.031751327216625214, -0.10808168351650238, 0.10713767260313034, 0.03228282555937767, 0.08055617660284042, -0.14188556373119354, 0.127700537443161, 0.002301102504134178, 0.016447775065898895, -0.0270723644644022, 0.05743313208222389, -0.11749880760908127, -0.007519124541431665, -0.12277450412511826, -0.019445875659585, -0.030772952362895012, -0.006236715707927942, 0.010302292183041573, -0.05326082184910774, -0.07221809774637222, 0.02000495046377182, -0.1044611856341362, -0.026680484414100647, 0.047265976667404175, 0.0412302128970623, -0.1227080374956131, -0.03650258481502533, 0.033292368054389954, -0.06750253587961197, 0.05185636505484581, 0.025968266651034355, 0.0281366053968668, 0.055810097604990005, -0.1810234785079956, 0.022427543997764587, 0.06655660271644592, 0.008698907680809498, 0.050464432686567307, -0.0921599417924881, -0.01687394641339779, -0.012331687845289707, 0.041217174381017685, 0.008529320359230042, 0.09072025120258331, -0.12912581861019135, 0.0058596171438694, -0.023323746398091316, -0.06647124141454697, -0.04682207107543945, 0.007581511978060007, 0.09288649260997772, -0.005768258590251207, 0.1999104768037796, -0.10848744958639145, 0.021416286006569862, -0.20310959219932556, 0.009949271567165852, -0.00625534076243639, -0.08924639225006104, -0.10065669566392899, -0.04412941262125969, 0.05052478611469269, -0.05983225628733635, 0.142153799533844, 0.005319332238286734, 0.022306708618998528, 0.030454976484179497, -0.05539299175143242, 0.04424377530813217, 0.025120535865426064, 0.22132724523544312, 0.018972918391227722, -0.042022883892059326, 0.019592737779021263, 0.043651971966028214, 0.10905196517705917, 0.07550586760044098, 0.17940768599510193, 0.16104912757873535, -0.016258643940091133, 0.11287780851125717, 0.05217405781149864, -0.05911560729146004, -0.1346914917230606, 0.04644550383090973, -0.0504620224237442, 0.09744144231081009, -0.019987914711236954, 0.201613187789917, 0.10247953236103058, -0.15711989998817444, 0.01673024147748947, -0.0519757941365242, -0.0761590451002121, -0.11722802370786667, -0.06271999329328537, -0.09045519679784775, -0.13976886868476868, 0.007938041351735592, -0.09714626520872116, 0.0006185044185258448, 0.10255733132362366, 0.0010011456906795502, -0.006920025683939457, 0.2043738216161728, -0.00034785555908456445, 0.05289061367511749, 0.035972144454717636, 0.01307853776961565, -0.0371575765311718, -0.0897432491183281, -0.08547578752040863, -0.0018545219209045172, -0.025597207248210907, 0.021023202687501907, -0.06258080154657364, -0.037939395755529404, 0.054617833346128464, 0.0074155586771667, -0.10243459790945053, 0.005803392734378576, 0.015510780736804008, 0.05034470930695534, 0.04245845600962639, 0.008473746478557587, 0.022297199815511703, -0.005949870217591524, 0.18495801091194153, -0.08157920837402344, -0.0771646797657013, -0.11297457665205002, 0.21850675344467163, 0.020801985636353493, 0.011869512498378754, 0.006089183036237955, -0.08153953403234482, 0.02326294034719467, 0.23600228130817413, 0.20028270781040192, -0.07044944167137146, 0.01198184210807085, 0.009356476366519928, -0.01538932602852583, -0.06585613638162613, 0.09859250485897064, 0.12300091981887817, 0.037379711866378784, -0.07572534680366516, -0.06216707080602646, -0.045053280889987946, -0.00784276146441698, -0.05167147517204285, 0.0312604159116745, 0.04017000272870064, 0.01768048293888569, -0.04534926265478134, 0.04583890736103058, -0.01871582865715027, -0.12338266521692276, 0.0828312486410141, -0.19344709813594818, -0.14696277678012848, -0.00580199621617794, 0.12047779560089111, -0.011842356994748116, 0.0579829104244709, -0.03654524311423302, 0.0027473168447613716, 0.08029589802026749, -0.020048726350069046, -0.058213766664266586, -0.09439953416585922, 0.06335350126028061, -0.08490974456071854, 0.26154887676239014, -0.035011328756809235, 0.05082992836833, 0.13323359191417694, 0.04852866753935814, -0.07036352902650833, 0.08543785661458969, 0.05055573955178261, -0.09532483667135239, 0.013336231000721455, 0.08257661014795303, -0.04661941155791283, 0.10361923277378082, 0.04621607065200806, -0.13149292767047882, 0.021000947803258896, -0.0841454342007637, -0.07956395298242569, -0.04702315106987953, -0.019856268540024757, -0.06792443245649338, 0.13339455425739288, 0.18783354759216309, -0.026782339438796043, 0.003508190391585231, -0.0501997135579586, 0.03451338782906532, 0.07456300407648087, 0.03692929446697235, -0.04850904271006584, -0.23415566980838776, 0.041474830359220505, 0.04816430062055588, -0.019468920305371284, -0.2834966778755188, -0.09947860240936279, 0.0022027369122952223, -0.055859342217445374, -0.0926193818449974, 0.06366552412509918, 0.12419722974300385, 0.06371985375881195, -0.06277163326740265, -0.10206100344657898, -0.07097192108631134, 0.15009532868862152, -0.1450861096382141, -0.1035168468952179 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EngToFil This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9377 - Bleu: 17.4001 - Gen Len: 17.2588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.5791 | 1.0 | 2438 | 1.0743 | 12.9852 | 17.3555 | | 0.3516 | 2.0 | 4876 | 0.9317 | 16.1227 | 17.3014 | | 0.2143 | 3.0 | 7314 | 0.9377 | 17.4001 | 17.2588 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["bleu"], "base_model": "t5-base", "model-index": [{"name": "EngToFil", "results": []}]}
text2text-generation
roval15/EngToFil
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T07:21:32+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
EngToFil ======== This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9377 * Bleu: 17.4001 * Gen Len: 17.2588 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.002 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ 76, 112, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ -0.09584876894950867, 0.10827510058879852, -0.0034182709641754627, 0.0786469429731369, 0.09391017258167267, -0.019630558788776398, 0.18177427351474762, 0.1456061154603958, -0.131374329328537, 0.06661754846572876, 0.13922983407974243, 0.11654013395309448, 0.04745641350746155, 0.17750076949596405, -0.07943274080753326, -0.2155456691980362, 0.06354498863220215, 0.03192227706313133, -0.01798572763800621, 0.11873961240053177, 0.08788567781448364, -0.1219886839389801, 0.0903412401676178, 0.020817939192056656, -0.15760886669158936, -0.0010431838454678655, 0.01298659760504961, -0.0903819277882576, 0.10293618589639664, 0.038279544562101364, 0.09228874742984772, 0.056622862815856934, 0.04429442808032036, -0.1783275157213211, 0.01232686173170805, 0.07252994924783707, -0.005500831641256809, 0.09195423871278763, 0.05152123421430588, -0.016711905598640442, 0.08985510468482971, -0.08318604528903961, 0.07622959464788437, 0.028105029836297035, -0.1259121596813202, -0.25713276863098145, -0.11067935079336166, 0.05114440247416496, 0.09454312175512314, 0.07595720142126083, -0.009437291882932186, 0.18612657487392426, -0.014010069891810417, 0.11081811040639877, 0.23966893553733826, -0.3211779296398163, -0.053504686802625656, -0.01813315786421299, 0.052112165838479996, 0.0919804498553276, -0.07786180824041367, -0.02018265798687935, 0.03684645891189575, 0.030191641300916672, 0.1514604687690735, -0.010755825787782669, -0.02412204071879387, -0.025604110211133957, -0.13536307215690613, -0.059691496193408966, 0.16084077954292297, 0.04304838553071022, -0.059201035648584366, -0.07681237161159515, -0.07810033112764359, -0.16538690030574799, -0.051229190081357956, -0.002629826543852687, 0.041849445551633835, -0.030148502439260483, -0.08092547208070755, -0.02167760208249092, -0.08176586776971817, -0.0518791563808918, -0.040694452822208405, 0.13866488635540009, 0.05125901475548744, 0.012819281779229641, -0.058685507625341415, 0.07002484053373337, -0.0458173006772995, -0.16235238313674927, -0.02171097695827484, 0.010508399456739426, 0.013684403151273727, -0.0459478385746479, -0.03312366083264351, -0.13895979523658752, 0.025707723572850227, 0.17417775094509125, -0.10986115783452988, 0.08559075742959976, -0.052385151386260986, 0.035142600536346436, -0.09205779433250427, 0.16269589960575104, -0.01884799264371395, 0.0199452992528677, 0.03845135495066643, 0.08730572462081909, 0.08687876909971237, -0.026509812101721764, -0.10749280452728271, 0.04676821827888489, 0.12407150119543076, 0.041453562676906586, -0.03654268756508827, 0.06382747739553452, -0.03552611544728279, -0.0003501325845718384, 0.074496790766716, -0.10524163395166397, 0.027784891426563263, -0.006780846510082483, -0.03917048126459122, -0.048479728400707245, 0.02959328144788742, 0.01116848737001419, -0.02879568561911583, 0.07495687156915665, -0.07362936437129974, 0.005347863771021366, -0.07550260424613953, -0.13829776644706726, 0.03550789877772331, -0.07773765921592712, 0.0059915161691606045, -0.11124975234270096, -0.141595721244812, -0.0026884383987635374, 0.04764152318239212, -0.03745058923959732, -0.030625123530626297, -0.048575762659311295, -0.09780031442642212, 0.04860161617398262, -0.027225522324442863, 0.05722358822822571, -0.07756209373474121, 0.08601649850606918, 0.052790071815252304, 0.07049400359392166, -0.04980020225048065, 0.02690654620528221, -0.09268385171890259, 0.05307547375559807, -0.24022561311721802, 0.04020911455154419, -0.056392960250377655, 0.08992412686347961, -0.1030389666557312, -0.07808757573366165, 0.022719860076904297, -0.01769317500293255, 0.10424153506755829, 0.09749317914247513, -0.16126006841659546, -0.052525948733091354, 0.2115209847688675, -0.11593333631753922, -0.1647448092699051, 0.13873328268527985, -0.03850933536887169, 0.005914711393415928, 0.05678087845444679, 0.21767769753932953, 0.06455357372760773, -0.10880064964294434, -0.01347486674785614, -0.05172667279839516, 0.05608533322811127, -0.05263768509030342, 0.07017107307910919, -0.0008556864340789616, 0.0530703105032444, 0.0003809314512182027, 0.0022712245117872953, 0.033610083162784576, -0.06585425138473511, -0.07361359894275665, -0.06203315034508705, -0.07567383348941803, 0.0066638486459851265, 0.027149830013513565, 0.052589140832424164, -0.1482597440481186, -0.11408481001853943, 0.050865501165390015, 0.07126668095588684, -0.08262833207845688, 0.05261276662349701, -0.11633079499006271, 0.11771942675113678, -0.0709872618317604, 0.0003195884346496314, -0.1633562445640564, -0.03585141524672508, 0.030399899929761887, -0.008322594687342644, 0.009362597018480301, -0.07575160264968872, 0.07641107589006424, 0.08237255364656448, -0.04605581611394882, -0.04622628167271614, -0.007249762769788504, 0.020482361316680908, -0.1085740327835083, -0.2082967907190323, -0.014357680454850197, -0.04536007344722748, 0.09339872002601624, -0.16525398194789886, 0.055466119199991226, 0.07185844331979752, 0.12142207473516464, 0.05356541648507118, -0.02024984173476696, 0.002205069875344634, 0.06279553472995758, -0.04851211979985237, -0.0781363993883133, 0.04555528610944748, 0.0386589914560318, -0.0858016163110733, 0.023219285532832146, -0.1961289346218109, 0.17722852528095245, 0.1427183300256729, 0.016991712152957916, -0.06237773597240448, -0.004872117657214403, -0.0406857505440712, -0.02409326285123825, -0.020713163539767265, 0.01461566612124443, 0.13198745250701904, 0.017220906913280487, 0.1581425815820694, -0.10922303050756454, -0.04569303244352341, 0.0516953244805336, -0.045538291335105896, -0.010460621677339077, 0.09782222658395767, 0.021835079416632652, -0.13967737555503845, 0.13924206793308258, 0.16302239894866943, -0.05965141952037811, 0.12567952275276184, -0.07653724402189255, -0.0610383078455925, -0.025468910112977028, 0.028276460245251656, 0.04479316994547844, 0.11169962584972382, -0.09524153918027878, -0.009898706339299679, 0.019661596044898033, 0.021411696448922157, 0.0007357279537245631, -0.19127941131591797, 0.010154145769774914, 0.04501497000455856, -0.059089627116918564, -0.03655581548810005, -0.011371968314051628, 0.005374411586672068, 0.09504882991313934, 0.004174263682216406, -0.061707690358161926, 0.0340614840388298, 0.013891509734094143, -0.0751073956489563, 0.18519620597362518, -0.10769125819206238, -0.15770697593688965, -0.12396381050348282, -0.07801549881696701, -0.05655823275446892, 0.0030849408358335495, 0.08968612551689148, -0.0736645758152008, -0.06251112371683121, -0.13615533709526062, -0.04328988492488861, 0.019797444343566895, 0.025265395641326904, 0.0371270626783371, -0.010016285814344883, 0.08856157958507538, -0.10719218850135803, -0.021978549659252167, -0.00783700030297041, 0.01547732949256897, 0.05615435168147087, 0.01612362451851368, 0.10837271064519882, 0.11649899184703827, -0.03566322103142738, 0.029174095019698143, -0.04307306930422783, 0.21261796355247498, -0.06478215754032135, -0.011217907071113586, 0.13536974787712097, -0.018338847905397415, 0.08356112986803055, 0.13295263051986694, 0.035506367683410645, -0.09833314269781113, 0.013018540106713772, 0.012113702483475208, -0.038858622312545776, -0.2146846354007721, -0.00450088968500495, -0.04311075061559677, 0.005582074169069529, 0.09465739876031876, 0.03981233015656471, 0.03375040739774704, 0.04686206579208374, -0.0015018901322036982, 0.044616080820560455, 0.014489809982478619, 0.11694340407848358, 0.11543726921081543, 0.05788407102227211, 0.13871589303016663, -0.06972622871398926, -0.024783190339803696, 0.04113561660051346, 0.004884291440248489, 0.19229084253311157, 0.0023400536738336086, 0.18962079286575317, 0.05008157715201378, 0.15296952426433563, 0.03325639292597771, 0.06837990880012512, -0.018384655937552452, -0.01898214966058731, -0.004653079900890589, -0.05599159374833107, -0.035174645483493805, 0.025638939812779427, -0.09464896470308304, 0.04021698608994484, -0.11065620183944702, 0.03928964585065842, 0.05507541820406914, 0.2972080409526825, 0.03861483559012413, -0.3734009265899658, -0.10179553925991058, 0.025387009605765343, -0.041380152106285095, -0.05220538377761841, 0.015292814001441002, 0.10801427066326141, -0.04106827452778816, 0.08609435707330704, -0.0826900526881218, 0.09545271098613739, -0.032720256596803665, 0.02740136906504631, 0.024864263832569122, 0.09061183780431747, -0.023817116394639015, 0.042400456964969635, -0.28960734605789185, 0.2599356770515442, 0.034341081976890564, 0.08306492120027542, -0.05083374306559563, 0.021521737799048424, 0.013056122697889805, 0.08512718975543976, 0.0666346624493599, -0.02236032672226429, -0.1512039601802826, -0.15261515974998474, -0.11022614687681198, 0.016505133360624313, 0.08981622010469437, 0.028263112530112267, 0.12335216253995895, -0.01977032609283924, -0.005761454347521067, 0.05621742457151413, -0.04331684485077858, -0.07646992057561874, -0.1046518012881279, 0.007712312508374453, 0.05943667143583298, -0.00321291689760983, -0.09337183833122253, -0.09016154706478119, -0.07059752196073532, 0.17611299455165863, -0.005558888893574476, -0.06715797632932663, -0.12026365101337433, 0.01261448860168457, 0.061671823263168335, -0.07834335416555405, 0.04158986359834671, -0.016647104173898697, 0.1323840320110321, -0.0019831713289022446, -0.07265115529298782, 0.1274368166923523, -0.062109723687171936, -0.17713041603565216, -0.048201948404312134, 0.11297066509723663, -0.002693484304472804, 0.03963687643408775, 0.0009987466037273407, 0.032476212829351425, -0.012659703381359577, -0.0650368258357048, 0.022187571972608566, 0.004253467079252005, 0.08140944689512253, -0.046930622309446335, -0.009281311184167862, 0.0014036860084161162, -0.06348493695259094, -0.028871288523077965, 0.15403704345226288, 0.28370559215545654, -0.07856182008981705, 0.05475856736302376, 0.053169526159763336, -0.045752160251140594, -0.1571931540966034, 0.009638086892664433, 0.023291604593396187, -0.0015301486710086465, 0.0015494945691898465, -0.13794484734535217, 0.020192865282297134, 0.07982578128576279, -0.025083767250180244, 0.0733637586236, -0.28513404726982117, -0.13397839665412903, 0.1128632202744484, 0.14685659110546112, 0.09278041869401932, -0.17390061914920807, -0.053075581789016724, -0.03649596497416496, -0.10961349308490753, 0.11549555510282516, -0.15633340179920197, 0.09623407572507858, -0.015463407151401043, 0.061962246894836426, 0.0072241309098899364, -0.06209861487150192, 0.12023063004016876, -0.0467657595872879, 0.09616308659315109, -0.07566319406032562, 0.05959934741258621, 0.11496064811944962, -0.10116327553987503, 0.05526464432477951, -0.1333613246679306, 0.04321205988526344, -0.07702486962080002, -0.01704319193959236, -0.043555598706007004, 0.007142672315239906, -0.03371512144804001, -0.027480406686663628, -0.048408813774585724, -0.0032942926045507193, 0.06281685829162598, -0.02710842713713646, 0.20744657516479492, 0.008182305842638016, 0.1546095758676529, 0.17770375311374664, 0.10891111940145493, -0.11778930574655533, -0.014027631841599941, 0.02029500901699066, -0.045838940888643265, 0.051028355956077576, -0.17155951261520386, 0.05293510481715202, 0.11217481642961502, -0.006728687323629856, 0.11767776310443878, 0.05478162690997124, -0.07065893709659576, 0.026151468977332115, 0.061774902045726776, -0.17246291041374207, -0.11845024675130844, 0.008091901428997517, 0.07902329415082932, -0.11498977243900299, 0.06733957678079605, 0.1373710185289383, -0.06685183197259903, -0.008910159580409527, 0.005219707265496254, 0.025054030120372772, -0.008510598912835121, 0.1655074805021286, 0.02708275616168976, 0.06559503078460693, -0.09477678686380386, 0.08653055876493454, 0.04967080429196358, -0.11046595871448517, 0.0622212216258049, 0.08908341825008392, -0.1088053360581398, -0.031088106334209442, 0.05436807498335838, 0.16684018075466156, -0.03079218789935112, -0.07705990970134735, -0.1676548719406128, -0.13318727910518646, 0.07457893341779709, 0.21609212458133698, 0.05134042352437973, 0.007846532389521599, -0.007227283902466297, -0.005242971237748861, -0.11930441111326218, 0.11096221953630447, 0.038946375250816345, 0.09481720626354218, -0.13996607065200806, 0.10799966752529144, -0.006544946227222681, 0.007612777873873711, -0.01254943571984768, 0.03244640305638313, -0.11169786751270294, 0.0034971588756889105, -0.1582912802696228, 0.02148565836250782, -0.04766799136996269, 0.002939051017165184, -0.010601854883134365, -0.03431949019432068, -0.06095527485013008, 0.023387443274259567, -0.0993722602725029, -0.030338268727064133, 0.017923647537827492, 0.026750599965453148, -0.13363276422023773, -0.025124117732048035, 0.003966480027884245, -0.09454428404569626, 0.07301245629787445, 0.031115230172872543, -0.006452710833400488, 0.029340602457523346, -0.06416389346122742, 0.011657489463686943, 0.06523080170154572, 0.0024292445741593838, 0.05346790701150894, -0.11767091602087021, -0.022703487426042557, 0.022923583164811134, 0.011377792805433273, 0.027097778394818306, 0.11061497777700424, -0.10998464375734329, 0.002316672820597887, -0.0008710694964975119, -0.04853583127260208, -0.05451992154121399, 0.05555952712893486, 0.1030648797750473, -0.0008317414904013276, 0.19165846705436707, -0.09952376037836075, -0.00002872612458304502, -0.18577979505062103, 0.0056847259402275085, 0.008741948753595352, -0.14124205708503723, -0.07949744910001755, -0.026356827467679977, 0.06056525930762291, -0.07304202765226364, 0.11541223526000977, -0.015280312858521938, 0.026747969910502434, 0.05704156309366226, -0.06212865561246872, -0.0014821627410128713, 0.03186666592955589, 0.19473205506801605, 0.014498189091682434, -0.0436406172811985, 0.0545002818107605, 0.0016292763175442815, 0.09616650640964508, 0.07481410354375839, 0.1803748905658722, 0.1475370079278946, 0.016411466524004936, 0.11703366786241531, 0.039021942764520645, -0.026958750560879707, -0.14743304252624512, 0.0631149634718895, -0.046585813164711, 0.13195671141147614, -0.0049576908349990845, 0.1813446581363678, 0.16812317073345184, -0.13382157683372498, 0.022191321477293968, -0.03695536032319069, -0.07864063233137131, -0.11280874907970428, -0.07999330013990402, -0.10174950212240219, -0.15511517226696014, -0.01199771836400032, -0.11320718377828598, 0.04135241359472275, 0.042857490479946136, 0.01920856162905693, 0.0037381863221526146, 0.14418542385101318, 0.04520979896187782, 0.016443271189928055, 0.0518009178340435, -0.0028293069917708635, -0.04649382084608078, -0.026820337399840355, -0.09377029538154602, 0.0380912609398365, -0.012461259961128235, 0.04208359867334366, 0.006431129761040211, 0.007563035469502211, 0.060887038707733154, -0.017649227753281593, -0.1149682030081749, 0.01818072237074375, 0.03551417589187622, 0.056334178894758224, 0.041103340685367584, 0.02354251965880394, -0.005596118047833443, -0.00345090520568192, 0.19260483980178833, -0.0788426399230957, -0.06352126598358154, -0.11240477114915848, 0.2339208722114563, 0.01560420822352171, -0.024484608322381973, 0.020171841606497765, -0.0805908590555191, 0.009027686901390553, 0.17448659241199493, 0.15196791291236877, -0.013993102125823498, -0.0011759038316085935, -0.05165440961718559, -0.011694853194057941, -0.04320200905203819, 0.09835308790206909, 0.12164905667304993, -0.0065751769579946995, -0.05713856220245361, -0.04108865559101105, -0.048525020480155945, -0.006137706805020571, -0.05880458280444145, 0.06810548156499863, 0.00839204527437687, 0.0018224765080958605, -0.03396081551909447, 0.05781304091215134, -0.032041437923908234, -0.06265435367822647, 0.007855154573917389, -0.18322136998176575, -0.14517396688461304, -0.00013455789303407073, 0.0896119698882103, -0.023333843797445297, 0.04080183431506157, -0.003790210699662566, 0.004233185667544603, 0.08382262289524078, -0.02159089595079422, -0.06097329407930374, -0.07456932961940765, 0.07130078971385956, -0.16106832027435303, 0.20922969281673431, -0.020293651148676872, 0.01938495598733425, 0.14532020688056946, 0.03223523497581482, -0.11640794575214386, 0.08750835806131363, 0.04245425760746002, -0.05885297432541847, 0.02042851597070694, 0.11726715415716171, -0.03110377863049507, 0.1048097088932991, 0.044846061617136, -0.10980338603258133, -0.01285501103848219, -0.09847623854875565, -0.04565760865807533, -0.032296013087034225, -0.039427854120731354, -0.049862802028656006, 0.12109933793544769, 0.16165052354335785, -0.051241304725408554, 0.0116190230473876, -0.04771075025200844, 0.022655852138996124, 0.06852898001670837, -0.013899454846978188, -0.025594491511583328, -0.2655247151851654, 0.020297862589359283, 0.09096215665340424, 0.0010208617895841599, -0.3067520558834076, -0.0822141095995903, -0.00604578573256731, -0.031167060136795044, -0.11088630557060242, 0.08982881158590317, 0.1168711856007576, 0.050262775272130966, -0.07359454780817032, -0.039497289806604385, -0.06804941594600677, 0.17197532951831818, -0.12063662707805634, -0.07166485488414764 ]
null
null
ml-agents
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mathreader/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget"]}
reinforcement-learning
mathreader/ppo-SnowballTarget
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
2024-02-14T07:24:50+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us
# ppo Agent playing SnowballTarget This is a trained model of a ppo agent playing SnowballTarget using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: mathreader/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: mathreader/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n", "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: mathreader/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 50, 206 ]
[ "passage: TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: mathreader/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ -0.049716766923666, 0.06008027121424675, -0.0037121407222002745, 0.10820401459932327, 0.17737063765525818, -0.011932635679841042, 0.1515120565891266, 0.09856344759464264, 0.13295072317123413, 0.07563396543264389, 0.08268941193819046, 0.09915347397327423, 0.061698172241449356, 0.1343485414981842, 0.07353392243385315, -0.22901535034179688, -0.054397907108068466, -0.10441700369119644, 0.0011219857260584831, 0.07962029427289963, 0.0392223596572876, -0.034662406891584396, 0.026656556874513626, 0.048408862203359604, -0.011343846097588539, -0.0024206913076341152, -0.06862341612577438, -0.04389017075300217, 0.05679916962981224, -0.022828400135040283, 0.006053664721548557, -0.044560983777046204, 0.0910935252904892, -0.16561388969421387, 0.02501414716243744, 0.04359870404005051, -0.010293512605130672, -0.017221709713339806, 0.14350105822086334, 0.016906052827835083, 0.08983676880598068, -0.12197859585285187, 0.10308555513620377, 0.0756264477968216, -0.05830027535557747, 0.00694153131917119, -0.07897908985614777, 0.04558485001325607, 0.20992164313793182, 0.14029251039028168, -0.003875045571476221, 0.08249367773532867, -0.022128207609057426, 0.05499716103076935, 0.1633119136095047, -0.28287217020988464, -0.07185395807027817, 0.18329612910747528, -0.035991258919239044, 0.03680562600493431, -0.016840346157550812, 0.04700091481208801, -0.01938682794570923, 0.028438439592719078, -0.015263266861438751, 0.031672652810811996, 0.2868700325489044, 0.01886208914220333, -0.09973645210266113, -0.08501067757606506, -0.014599166810512543, 0.019830316305160522, -0.044081494212150574, -0.19076411426067352, 0.006146445870399475, 0.11802977323532104, 0.004891650285571814, 0.030126286670565605, 0.052494727075099945, 0.018627559766173363, -0.10252146422863007, -0.15512031316757202, -0.03423153981566429, -0.05157729983329773, 0.0898284837603569, 0.10827846825122833, -0.038316257297992706, -0.013192485086619854, 0.04069671407341957, 0.08682435750961304, 0.1055387556552887, -0.05221668630838394, -0.03178418427705765, -0.01888607069849968, -0.1416768729686737, -0.018265828490257263, -0.04084900766611099, -0.026865025982260704, 0.032172173261642456, 0.14428308606147766, 0.1714504212141037, 0.03383609279990196, 0.02770310640335083, 0.03146745637059212, 0.014299129135906696, 0.11423163115978241, 0.04393896833062172, -0.023750590160489082, 0.004976364783942699, 0.030151227489113808, 0.06403832882642746, -0.09384731948375702, -0.08685798197984695, 0.05720864236354828, -0.03429168090224266, 0.13290069997310638, 0.16588258743286133, -0.02952098287642002, -0.012619276531040668, -0.03517026826739311, 0.016558559611439705, -0.15504755079746246, 0.08124289661645889, 0.05847594887018204, -0.0482247956097126, -0.07393518090248108, -0.05749782547354698, 0.04938318952918053, -0.08750130981206894, 0.035053372383117676, 0.007592863403260708, 0.0751425176858902, -0.0033850986510515213, -0.039315659552812576, 0.05100681632757187, -0.11592651903629303, -0.014899102970957756, -0.1538396030664444, -0.1152864322066307, -0.0889812633395195, 0.04196905344724655, -0.05380524322390556, -0.11162323504686356, -0.10145089030265808, 0.03844703733921051, -0.06126191467046738, 0.0278201662003994, -0.022222258150577545, -0.0563751757144928, -0.021856969222426414, -0.11203023046255112, 0.05768061429262161, 0.1729021519422531, 0.008604830130934715, -0.030214689671993256, 0.026615239679813385, -0.17554308474063873, 0.17156551778316498, -0.13576056063175201, 0.14857390522956848, -0.08775442093610764, 0.03816693648695946, 0.126529723405838, -0.02343275211751461, 0.056769244372844696, 0.19154506921768188, -0.10547353327274323, -0.07559173554182053, 0.02324211783707142, -0.08881015330553055, -0.11114701628684998, 0.05430402606725693, 0.015000269748270512, 0.06856074184179306, 0.060240987688302994, 0.19993777573108673, 0.10513424128293991, -0.23296715319156647, 0.03272680938243866, 0.008852341212332249, -0.12566426396369934, 0.0008132611401379108, 0.12031480669975281, -0.07388880848884583, -0.011734587140381336, -0.03982441499829292, -0.12688036262989044, 0.09444880485534668, -0.011678002774715424, -0.06525570899248123, 0.027945533394813538, -0.04892701283097267, -0.04674955829977989, 0.0013530233409255743, 0.049332622438669205, -0.03654934838414192, -0.04534640163183212, -0.0082966648042202, 0.02392154559493065, -0.004876698367297649, 0.07431052625179291, -0.03210633620619774, 0.11651953309774399, -0.02405582182109356, 0.013618024997413158, -0.12427884340286255, -0.13716408610343933, -0.017225047573447227, 0.021789884194731712, 0.08055000752210617, -0.09729041904211044, 0.10426400601863861, 0.07455567270517349, 0.03793642669916153, -0.07320958375930786, -0.05899970978498459, 0.011505127884447575, -0.11164884269237518, -0.10355275869369507, -0.07265441864728928, -0.06374450027942657, 0.11180558800697327, -0.0799601674079895, 0.06929434090852737, -0.06422755867242813, 0.0922645851969719, -0.016856012865900993, -0.07299480587244034, 0.03647506237030029, -0.019066834822297096, 0.043953847140073776, -0.09721659123897552, 0.10000597685575485, 0.07803399115800858, -0.12366795539855957, 0.02497703768312931, 0.04555986076593399, -0.08080074936151505, 0.13003338873386383, 0.05003609135746956, -0.002559829503297806, -0.056337445974349976, -0.06282347440719604, 0.006921469233930111, -0.07864515483379364, 0.01574012078344822, 0.21005435287952423, 0.1319858282804489, 0.08049234002828598, -0.029856372624635696, -0.06084508076310158, -0.029142269864678383, -0.05272134020924568, -0.06730379164218903, 0.13704439997673035, 0.04278586059808731, -0.016601216048002243, 0.03910285606980324, 0.002256925916299224, 0.09249988943338394, 0.1106032207608223, -0.010265897028148174, -0.11615979671478271, 0.013422307558357716, 0.052209995687007904, 0.06247992068529129, -0.003736271057277918, 0.06190044805407524, -0.02227315865457058, -0.011405725963413715, -0.06381431221961975, -0.008453884162008762, -0.111594058573246, -0.06101629510521889, 0.06071016937494278, -0.001452479511499405, 0.0010096820769831538, -0.07423805445432663, -0.044702861458063126, 0.029700197279453278, 0.09268611669540405, 0.001054454711265862, 0.03927047178149223, -0.035856954753398895, -0.12976427376270294, 0.04463478922843933, -0.08410010486841202, -0.2241957038640976, -0.11260513961315155, -0.0437786802649498, -0.0722084641456604, 0.014378433115780354, 0.0745767280459404, -0.1774541586637497, -0.004073175135999918, -0.10061272233724594, 0.0172448568046093, -0.006381668150424957, -0.03741305693984032, 0.14737769961357117, 0.08952975273132324, -0.03099677339196205, -0.07303182035684586, 0.012355486862361431, 0.015396028757095337, -0.0631701797246933, -0.003796113422140479, 0.07572438567876816, 0.08843911439180374, 0.07297047227621078, 0.06308501213788986, 0.0581134669482708, -0.027098357677459717, 0.15918219089508057, -0.053913068026304245, 0.02448984421789646, 0.06579132378101349, 0.002547801937907934, 0.07744546234607697, 0.011542443186044693, 0.032127901911735535, -0.0015784280840307474, 0.012676294893026352, 0.00898648239672184, -0.07706759870052338, -0.21624107658863068, -0.07706938683986664, -0.0017327963141724467, 0.1677127182483673, 0.16267536580562592, 0.08751808851957321, -0.11882342398166656, 0.023986903950572014, 0.010435353964567184, -0.10910534113645554, 0.12006619572639465, 0.12421823292970657, -0.05582292377948761, -0.016819477081298828, 0.0362708643078804, -0.043938636779785156, 0.04983598738908768, 0.057463277131319046, -0.036939505487680435, 0.10115781426429749, 0.018703317269682884, -0.0189714003354311, -0.031012117862701416, -0.07654865086078644, -0.05454724282026291, 0.1432245969772339, 0.062025804072618484, 0.026758477091789246, 0.016406038776040077, -0.06342913210391998, -0.07529366761445999, 0.12561669945716858, 0.16049298644065857, -0.0745229497551918, -0.05727311596274376, 0.10609497129917145, 0.05838173255324364, 0.2051137089729309, -0.003293708898127079, -0.10642322897911072, -0.06340541690587997, -0.00012923769827466458, -0.11329935491085052, 0.009297667071223259, 0.033144671469926834, -0.023462185636162758, -0.16129539906978607, 0.051878221333026886, -0.00994714442640543, 0.10947255790233612, 0.026644185185432434, -0.03686895966529846, 0.05455630645155907, 0.013288413174450397, -0.032923005521297455, 0.037626393139362335, -0.15723852813243866, 0.02073199488222599, 0.0013669268228113651, 0.10313507169485092, -0.06266222894191742, 0.02766445465385914, 0.08936920017004013, -0.04509887099266052, 0.1586725413799286, 0.04396696761250496, -0.01840548776090145, -0.12922616302967072, -0.17471319437026978, -0.050753116607666016, -0.0249013714492321, -0.11644338816404343, 0.06829667091369629, 0.04123637452721596, -0.0159611813724041, -0.10026895254850388, 0.012678341008722782, -0.04077525809407234, -0.13150712847709656, -0.03470470756292343, -0.11631637066602707, 0.06140252202749252, -0.052852991968393326, -0.08310408890247345, -0.09214238077402115, 0.17724692821502686, 0.10261701047420502, -0.11039779335260391, -0.11614776402711868, 0.017279397696256638, -0.05286427587270737, -0.027970969676971436, 0.06623028963804245, 0.01991359516978264, 0.10644609481096268, -0.11798356473445892, -0.06218007951974869, -0.021861091256141663, -0.1016470268368721, -0.08895426243543625, 0.03575799614191055, 0.16933386027812958, 0.03710249066352844, 0.08824535459280014, -0.013522983528673649, 0.10243241488933563, -0.008733765222132206, -0.07507018744945526, 0.12180924415588379, 0.09237450361251831, -0.028586048632860184, 0.056253090500831604, 0.03517550975084305, 0.05805061757564545, -0.12038225680589676, -0.018137091770768166, 0.21303099393844604, 0.26572421193122864, -0.06474035978317261, 0.18589745461940765, 0.019927004352211952, -0.04301034286618233, -0.16591626405715942, -0.04893513023853302, 0.009483620524406433, -0.04280904680490494, 0.10188068449497223, -0.19648362696170807, 0.08769959956407547, 0.012005634605884552, -0.010947713628411293, 0.04240589216351509, -0.1757250875234604, -0.08446215093135834, 0.01546041201800108, 0.10297322273254395, -0.057591311633586884, -0.11017172783613205, -0.07691475003957748, 0.01869378611445427, -0.07791195064783096, 0.028296077623963356, -0.11390722543001175, 0.05661937594413757, 0.017864694818854332, 0.026192577555775642, 0.06024868041276932, -0.061360955238342285, 0.1358165740966797, -0.037981417030096054, -0.05738689377903938, -0.059117455035448074, 0.03411265090107918, -0.009749311953783035, -0.0946660116314888, 0.06261054426431656, -0.008526205085217953, -0.017894165590405464, -0.19102302193641663, -0.057604141533374786, 0.02328546717762947, 0.029524216428399086, -0.03887141868472099, -0.07503000646829605, -0.025271112099289894, 0.061618562787771225, 0.08649083226919174, 0.021236546337604523, 0.11124562472105026, -0.00044363600318320096, -0.003943093121051788, 0.07003486156463623, 0.052281320095062256, 0.03919041156768799, -0.1336560696363449, -0.06085959076881409, -0.07176811993122101, 0.003345237346366048, -0.06036592647433281, -0.017307648435235023, 0.05743642896413803, 0.061938490718603134, -0.0012470954097807407, 0.05716270953416824, -0.0781375914812088, -0.010717284865677357, 0.023154735565185547, -0.0877431109547615, -0.13225014507770538, -0.07928770035505295, -0.09327255934476852, 0.009862707927823067, -0.07848622649908066, 0.08482532203197479, -0.044058263301849365, -0.005765121895819902, 0.013518163934350014, 0.04478532075881958, 0.0015003046719357371, 0.043107662349939346, 0.013631880283355713, 0.030609801411628723, -0.07419945299625397, 0.12571491301059723, 0.013582228682935238, -0.0593528226017952, 0.04695815593004227, 0.19416369497776031, -0.055728986859321594, -0.0735127404332161, -0.05077224597334862, 0.08384383469820023, 0.03379632532596588, -0.007486884016543627, -0.04269915819168091, -0.05789020657539368, 0.12044388800859451, -0.14549490809440613, 0.006443897727876902, -0.11813578009605408, 0.0009171438869088888, 0.05568312481045723, -0.04897357150912285, 0.06226595491170883, -0.012781401164829731, -0.05840681493282318, -0.12307724356651306, 0.06460729986429214, 0.02736230567097664, 0.08307723701000214, -0.012497263960540295, -0.029104869812726974, -0.1391192227602005, 0.02850249782204628, 0.010988415218889713, 0.007039382588118315, -0.1640603095293045, 0.020854471251368523, -0.006300708279013634, 0.029569149017333984, 0.027357306331396103, 0.05959663912653923, -0.0413234680891037, -0.09837055951356888, -0.05886102095246315, 0.05695011466741562, -0.0851241946220398, -0.023251287639141083, -0.02555556409060955, -0.090450718998909, 0.056339770555496216, 0.0737224593758583, -0.022543160244822502, -0.04753025993704796, -0.06583617627620697, 0.00984665285795927, -0.020031487569212914, -0.04753633961081505, 0.04249631240963936, -0.13302229344844818, 0.02357620559632778, -0.05904795601963997, -0.11091156303882599, 0.03955774009227753, 0.12493821978569031, -0.07103610038757324, 0.06259133666753769, 0.049192313104867935, -0.07874783128499985, -0.07594915479421616, -0.0068143075332045555, 0.0763571485877037, 0.060322899371385574, 0.10934096574783325, -0.08586825430393219, 0.19810837507247925, -0.11581443250179291, -0.030018508434295654, 0.015909571200609207, 0.06705481559038162, 0.050106607377529144, -0.08442777395248413, 0.04720888286828995, -0.011836735531687737, 0.06170960143208504, 0.08016226440668106, 0.01658415049314499, 0.05305875465273857, 0.05413951352238655, 0.13249024748802185, 0.02197256311774254, 0.08454848825931549, -0.006146728526800871, 0.029508132487535477, 0.11271432042121887, 0.0037364771123975515, 0.06490185111761093, -0.05340931564569473, 0.07328785955905914, 0.049769725650548935, 0.08969723433256149, 0.07442618161439896, 0.054602574557065964, -0.08980762958526611, -0.16626350581645966, -0.03116459771990776, 0.03423187881708145, 0.031707312911748886, -0.044624052941799164, 0.1654243767261505, 0.13319669663906097, -0.19412796199321747, 0.016351720318198204, -0.005971014034003019, 0.03837219998240471, -0.06852169334888458, -0.08023637533187866, 0.008870173245668411, -0.1354101449251175, 0.09623663872480392, -0.020188629627227783, 0.0057131098583340645, -0.03299012407660484, 0.005347271449863911, 0.030974527820944786, 0.033589743077754974, -0.04387742280960083, 0.004826259333640337, 0.046534810215234756, -0.03484785929322243, 0.007283026352524757, -0.01107204519212246, -0.08733675628900528, -0.04089643061161041, -0.052731238305568695, -0.011784528382122517, 0.03249206766486168, 0.0005459205131046474, 0.06361489742994308, 0.004746962338685989, -0.06262863427400589, 0.06893676519393921, 0.0009334940114058554, 0.012220862321555614, 0.2190825641155243, 0.09940452873706818, -0.044824179261922836, -0.04703454300761223, 0.19913408160209656, -0.03606950491666794, -0.06572706997394562, -0.09667651355266571, 0.11893077194690704, -0.04824039712548256, -0.04045834392309189, -0.034847527742385864, -0.1761319637298584, -0.06634173542261124, 0.1508706957101822, 0.12426344305276871, -0.02315036952495575, 0.007492669392377138, -0.057048626244068146, 0.004689290188252926, 0.03175157308578491, 0.08849310874938965, 0.07407738268375397, 0.06472983956336975, -0.11054094135761261, 0.0006338167586363852, -0.07819847017526627, -0.1074196919798851, -0.18968182802200317, 0.05342981219291687, 0.029026582837104797, -0.025021253153681755, -0.013441633433103561, 0.12903566658496857, -0.09657427668571472, -0.09038208425045013, 0.10801070928573608, -0.03932058811187744, -0.07137405872344971, 0.002464380580931902, 0.02798059955239296, -0.005476281046867371, 0.11636093258857727, 0.09030934423208237, 0.04768236726522446, 0.018238279968500137, -0.017608560621738434, -0.09046871960163116, 0.0313916839659214, 0.045243311673402786, -0.1305059790611267, 0.22221128642559052, -0.015236075036227703, -0.0013634858187288046, 0.0958375558257103, 0.07215718179941177, -0.1759265512228012, 0.01581612601876259, 0.053515344858169556, -0.16844774782657623, 0.022419055923819542, 0.08354195207357407, -0.04004468023777008, 0.006565701682120562, 0.05264558643102646, -0.03367864713072777, 0.0068253385834395885, 0.1773318350315094, 0.040945690125226974, -0.03621206432580948, 0.07402027398347855, -0.14582690596580505, 0.10115493834018707, 0.09293396025896072, -0.0544763021171093, 0.012799668125808239, -0.032492250204086304, 0.0055901408195495605, -0.01752723567187786, -0.008974729105830193, -0.026296094059944153, -0.12768149375915527, -0.02210824005305767, -0.060727860778570175, 0.031033962965011597, -0.21620723605155945, -0.1308615803718567, -0.051097072660923004, -0.07627899944782257, -0.05325367674231529, 0.0892566666007042, 0.074905626475811, -0.05649963393807411, 0.014247102662920952, -0.1345197856426239, 0.030642639845609665, 0.15112240612506866, -0.07103205472230911, -0.0005818131030537188 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
YashRawal225/Instructiontune
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T07:27:33+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 56, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.05921921506524086, 0.15253323316574097, -0.004925556480884552, 0.01970141939818859, 0.09812989830970764, 0.008722675032913685, 0.07155127823352814, 0.11091651022434235, -0.02038503810763359, 0.11541511863470078, 0.03161177039146423, 0.09504877775907516, 0.11244720220565796, 0.1593349277973175, 0.0006018498679623008, -0.22924894094467163, 0.050943523645401, -0.12565383315086365, -0.028005311265587807, 0.1202453151345253, 0.14323006570339203, -0.10873830318450928, 0.07482945919036865, -0.03924073651432991, -0.006830108352005482, -0.03327549248933792, -0.06254202127456665, -0.05196645110845566, 0.05287102237343788, 0.06693000346422195, 0.07382122427225113, 0.0121690658852458, 0.09054198116064072, -0.27071383595466614, 0.02402324043214321, 0.07869837433099747, -0.00047617589007131755, 0.07642106711864471, 0.049837369471788406, -0.08698169887065887, 0.07614438980817795, -0.060363397002220154, 0.14962489902973175, 0.07956483215093613, -0.09049813449382782, -0.19196605682373047, -0.07841940224170685, 0.10002946108579636, 0.18888257443904877, 0.05783533677458763, -0.02747977338731289, 0.11718999594449997, -0.08618196099996567, 0.013946855440735817, 0.06651762872934341, -0.05830651894211769, -0.055825375020504, 0.07012750208377838, 0.08251979202032089, 0.08537944406270981, -0.13050076365470886, -0.011774240992963314, 0.015172234736382961, 0.00940374843776226, 0.0883294939994812, 0.017624128609895706, 0.13745273649692535, 0.04126768559217453, -0.1351923644542694, -0.04287068545818329, 0.09870852530002594, 0.035997726023197174, -0.04835180938243866, -0.24833782017230988, -0.023138362914323807, -0.039952121675014496, -0.03223174810409546, -0.0381147637963295, 0.04236193001270294, -0.01381280180066824, 0.07635250687599182, -0.0030598659068346024, -0.08292017132043839, -0.042900193482637405, 0.07140932232141495, 0.06195797771215439, 0.025352943688631058, -0.016651969403028488, 0.0064301020465791225, 0.12258180975914001, 0.11147689074277878, -0.12772345542907715, -0.053019966930150986, -0.06414514780044556, -0.08524893969297409, -0.04640465974807739, 0.03045455552637577, 0.03743596002459526, 0.047410931438207626, 0.2386423945426941, 0.0032438088674098253, 0.054757438600063324, 0.046099163591861725, 0.014072372578084469, 0.06632840633392334, 0.10764557868242264, -0.05884917825460434, -0.09735266119241714, -0.030795203521847725, 0.10186740756034851, 0.006704956758767366, -0.041407015174627304, -0.05594591051340103, 0.06964502483606339, 0.020676078274846077, 0.1224241703748703, 0.07868597656488419, 0.002938423305749893, -0.07543925195932388, -0.06281042098999023, 0.18152743577957153, -0.1571107804775238, 0.0444292388856411, 0.03200872242450714, -0.03442244604229927, -0.009351148270070553, 0.00990392453968525, 0.02681080251932144, -0.02011663094162941, 0.09737543761730194, -0.05644093081355095, -0.033681318163871765, -0.11296935379505157, -0.0371013842523098, 0.030811145901679993, 0.01213210541754961, -0.029025491327047348, -0.0342867337167263, -0.0882277637720108, -0.0636090338230133, 0.09107700735330582, -0.07191670686006546, -0.04744245857000351, -0.017612621188163757, -0.07794062048196793, 0.022423118352890015, 0.017721612006425858, 0.09050743281841278, -0.021899394690990448, 0.03913994878530502, -0.056751471012830734, 0.06101011112332344, 0.11571475863456726, 0.028108863160014153, -0.058606795966625214, 0.06155762821435928, -0.2421950101852417, 0.10317995399236679, -0.07758963108062744, 0.051325954496860504, -0.1530446857213974, -0.026070065796375275, 0.03956404700875282, 0.012061306275427341, -0.008345595560967922, 0.1417774260044098, -0.2185831218957901, -0.03138069063425064, 0.1676056981086731, -0.10102425515651703, -0.07971794903278351, 0.06269615143537521, -0.05407082289457321, 0.11134804040193558, 0.04596652463078499, -0.023191405460238457, 0.05842197686433792, -0.14511504769325256, -0.00791724119335413, -0.04188765957951546, -0.017894908785820007, 0.16635635495185852, 0.07102048397064209, -0.06073606386780739, 0.07092984020709991, 0.019934939220547676, -0.016795052215456963, -0.04869792237877846, -0.028511613607406616, -0.10498060286045074, 0.011810078285634518, -0.059134796261787415, 0.02167343720793724, -0.021296551451086998, -0.09382132440805435, -0.029188871383666992, -0.17379464209079742, -0.0012200147612020373, 0.08734307438135147, -0.010546354576945305, -0.02201107330620289, -0.11164727807044983, 0.008580547757446766, 0.03398929536342621, 0.0007392297266051173, -0.13708379864692688, -0.059298936277627945, 0.02737307921051979, -0.16233380138874054, 0.02912268228828907, -0.05535917729139328, 0.046022266149520874, 0.040077272802591324, -0.03548351675271988, -0.0344831608235836, 0.01168955210596323, 0.011000183410942554, -0.01812567003071308, -0.25495970249176025, -0.017501724883913994, -0.02502158097922802, 0.17353887856006622, -0.22721131145954132, 0.04271984100341797, 0.07614967226982117, 0.14550280570983887, 0.0073052942752838135, -0.034482456743717194, 0.014565827324986458, -0.07198352366685867, -0.03167816624045372, -0.06257235258817673, -0.010083765722811222, -0.03872835263609886, -0.06014038994908333, 0.04782424867153168, -0.16939696669578552, -0.03236479312181473, 0.10534932464361191, 0.06398996710777283, -0.14835967123508453, -0.030286256223917007, -0.0393594354391098, -0.047035153955221176, -0.06618485599756241, -0.054856978356838226, 0.12015452980995178, 0.05620792135596275, 0.04745647683739662, -0.07151947915554047, -0.07490099221467972, 0.007241961546242237, -0.019977761432528496, -0.0163256898522377, 0.09354335069656372, 0.06967450678348541, -0.12794628739356995, 0.09154868870973587, 0.0982460081577301, 0.08392132818698883, 0.10398648679256439, -0.015390566550195217, -0.08757331967353821, -0.041474130004644394, 0.023933125659823418, 0.014664852991700172, 0.1483616679906845, -0.016296299174427986, 0.054420776665210724, 0.0360836423933506, -0.013510678894817829, 0.01076538860797882, -0.09628108888864517, 0.02706051431596279, 0.02971329540014267, -0.015405743382871151, 0.03466423228383064, -0.04367179423570633, 0.019455796107649803, 0.09001301974058151, 0.041830018162727356, 0.0396038182079792, 0.010561688803136349, -0.04398298263549805, -0.11032342165708542, 0.17876994609832764, -0.12373854219913483, -0.2460412234067917, -0.13813963532447815, 0.010937176644802094, 0.04738753288984299, -0.011057097464799881, 0.006951550021767616, -0.06640941649675369, -0.1170244961977005, -0.09733203053474426, 0.01991088129580021, 0.04529648274183273, -0.07728998363018036, -0.06572148203849792, 0.06318122148513794, 0.037644270807504654, -0.13899093866348267, 0.023945696651935577, 0.0469096377491951, -0.0813174769282341, -0.0011905812425538898, 0.07709334045648575, 0.06798645853996277, 0.17623907327651978, 0.014159789308905602, -0.023712651804089546, 0.025652561336755753, 0.21002908051013947, -0.14298869669437408, 0.1094568595290184, 0.1327279806137085, -0.08898334950208664, 0.08212688565254211, 0.20222385227680206, 0.0385010726749897, -0.10506977140903473, 0.03657889738678932, 0.027060477063059807, -0.02792542427778244, -0.24959829449653625, -0.06908850371837616, 0.001758498721756041, -0.053698375821113586, 0.06916391849517822, 0.08716317266225815, 0.09721273928880692, 0.016790922731161118, -0.10066783428192139, -0.0790279284119606, 0.05001477152109146, 0.10897587984800339, -0.001458899350836873, -0.014394176192581654, 0.09075857698917389, -0.02953648567199707, 0.01689162664115429, 0.09213569760322571, 0.0019032615236938, 0.1793205291032791, 0.052213337272405624, 0.17340974509716034, 0.07910763472318649, 0.06269825994968414, 0.021207094192504883, 0.006816241890192032, 0.02095629647374153, 0.01695442944765091, -0.004212336614727974, -0.0863528773188591, -0.0027415938675403595, 0.1203664243221283, 0.050876569002866745, 0.03059028834104538, 0.014285655692219734, -0.03054206818342209, 0.08466528356075287, 0.177787184715271, 0.001063879462890327, -0.1876421719789505, -0.07282958924770355, 0.07934894412755966, -0.08512143790721893, -0.10675539821386337, -0.029639042913913727, 0.040873926132917404, -0.17292065918445587, 0.01861744187772274, -0.020119842141866684, 0.10806277394294739, -0.12885749340057373, -0.017452897503972054, 0.055447377264499664, 0.06997017562389374, -0.009931124746799469, 0.06633757054805756, -0.1625119000673294, 0.1177479475736618, 0.01653103344142437, 0.06594116985797882, -0.09538834542036057, 0.095417320728302, -0.006962447427213192, 0.007516060955822468, 0.1403670459985733, 0.010755252093076706, -0.0641925036907196, -0.0961010679602623, -0.10299893468618393, -0.010606445372104645, 0.1309773176908493, -0.14660196006298065, 0.08697716891765594, -0.02743646875023842, -0.0437387153506279, 0.0037594304885715246, -0.12246467173099518, -0.13224415481090546, -0.18235477805137634, 0.05769521743059158, -0.13171130418777466, 0.040173836052417755, -0.1089821308851242, -0.04585907980799675, -0.021465247496962547, 0.1977471560239792, -0.23280778527259827, -0.06815840303897858, -0.15394872426986694, -0.08265888690948486, 0.1454220414161682, -0.04706942290067673, 0.08337214589118958, 0.000301246385788545, 0.19080647826194763, 0.020952312275767326, -0.017133628949522972, 0.1067209243774414, -0.09975022822618484, -0.20161914825439453, -0.09120959788560867, 0.15868841111660004, 0.13963958621025085, 0.038726504892110825, -0.004869744647294283, 0.032236017286777496, -0.021885421127080917, -0.12115032970905304, 0.02010788396000862, 0.17255425453186035, 0.08749033510684967, 0.026468761265277863, -0.028463367372751236, -0.11846643686294556, -0.07225121557712555, -0.03745346516370773, 0.02470988966524601, 0.1813775599002838, -0.07139390707015991, 0.18551595509052277, 0.14274363219738007, -0.054879751056432724, -0.19840270280838013, 0.02148755080997944, 0.04472679644823074, 0.0060237692669034, 0.03174281120300293, -0.20237314701080322, 0.09144619107246399, 0.0006281035020947456, -0.05034751072525978, 0.13383205235004425, -0.18327344954013824, -0.15106844902038574, 0.061150215566158295, 0.04303572699427605, -0.19199669361114502, -0.1237611323595047, -0.08872545510530472, -0.046805474907159805, -0.1568751484155655, 0.1029038056731224, 0.0011325168889015913, 0.007591354660689831, 0.03782656043767929, 0.024313677102327347, 0.012553532607853413, -0.041947584599256516, 0.19289998710155487, -0.02507353574037552, 0.034427378326654434, -0.0793621614575386, -0.06381990760564804, 0.06411149352788925, -0.057697590440511703, 0.0750909373164177, -0.025500034913420677, 0.015388053841888905, -0.10115842521190643, -0.047956179827451706, -0.029484452679753304, 0.01986371912062168, -0.09421123564243317, -0.09366033226251602, -0.04838487133383751, 0.0944879949092865, 0.08926530182361603, -0.037268105894327164, -0.033034052699804306, -0.07874293625354767, 0.04173892363905907, 0.17448031902313232, 0.18235735595226288, 0.045147113502025604, -0.07717937231063843, -0.0013610349269583821, -0.014655699953436852, 0.04845907539129257, -0.22060799598693848, 0.06062275543808937, 0.045259539037942886, 0.01552091259509325, 0.11744016408920288, -0.020618194714188576, -0.1619492471218109, -0.0666290745139122, 0.06087447330355644, -0.06730270385742188, -0.1811886727809906, 0.00352504407055676, 0.0753183513879776, -0.16591353714466095, -0.03711319714784622, 0.04232833534479141, -0.011535273864865303, -0.04050648957490921, 0.013207654468715191, 0.08094717562198639, 0.0073035703971982, 0.07697968184947968, 0.05389590561389923, 0.09186159074306488, -0.10275198519229889, 0.07336891442537308, 0.08092255145311356, -0.08580191433429718, 0.029650582000613213, 0.0956844761967659, -0.0660475566983223, -0.03553546592593193, 0.039692267775535583, 0.08463539928197861, 0.025261107832193375, -0.04666709899902344, 0.003693421371281147, -0.09922701120376587, 0.05857077240943909, 0.11215036362409592, 0.035282451659440994, 0.011146705597639084, 0.03799959644675255, 0.04474346339702606, -0.07786709815263748, 0.11944296956062317, 0.024733934551477432, 0.020655835047364235, -0.04009570553898811, -0.040743377059698105, 0.03469119220972061, -0.027051862329244614, -0.011984582990407944, -0.035381630063056946, -0.07329677045345306, -0.014250458218157291, -0.16089624166488647, -0.006425157655030489, -0.039050452411174774, 0.006492188666015863, 0.0227071400731802, -0.03757927939295769, 0.008156952448189259, 0.012379756197333336, -0.06891508400440216, -0.05483170598745346, -0.0225595161318779, 0.09499263763427734, -0.16361327469348907, 0.02182857319712639, 0.08322018384933472, -0.12078364938497543, 0.09284685552120209, 0.016550488770008087, 0.002410374814644456, 0.028476644307374954, -0.15792103111743927, 0.04754367470741272, -0.020290223881602287, 0.012727295979857445, 0.04053649678826332, -0.2180718630552292, -0.005482743959873915, -0.04065772518515587, -0.055209364742040634, -0.008002875372767448, -0.03194994851946831, -0.11256447434425354, 0.09542836248874664, 0.010766619816422462, -0.0858173593878746, -0.029525602236390114, 0.032997291535139084, 0.07880192995071411, -0.02688010409474373, 0.15163032710552216, -0.004930328112095594, 0.07543973624706268, -0.17439891397953033, -0.02280678227543831, -0.009784235619008541, 0.02145213820040226, -0.02418927662074566, -0.016610441729426384, 0.04521343484520912, -0.027311841025948524, 0.18978725373744965, -0.02763848751783371, 0.047156915068626404, 0.06419318169355392, 0.01327395811676979, -0.016141459345817566, 0.11109550297260284, 0.05755641311407089, 0.024413742125034332, 0.02059282548725605, 0.0006552583072334528, -0.04046328365802765, -0.012729931622743607, -0.18779614567756653, 0.06844497472047806, 0.14769941568374634, 0.09005311876535416, -0.014767808839678764, 0.06981590390205383, -0.09979446232318878, -0.11724765598773956, 0.10648569464683533, -0.06312347948551178, -0.011802246794104576, -0.06541955471038818, 0.14070585370063782, 0.1514706313610077, -0.1892511397600174, 0.06684626638889313, -0.06704412400722504, -0.05669668689370155, -0.11357752978801727, -0.1923627108335495, -0.05791294202208519, -0.05011613294482231, -0.018368201330304146, -0.05373769626021385, 0.06899537891149521, 0.057158127427101135, 0.011277895420789719, 0.008883214555680752, 0.0839093029499054, -0.009658100083470345, 0.001425864058546722, 0.031231271103024483, 0.06669623404741287, 0.016144385561347008, -0.0304893609136343, 0.01806715875864029, -0.003015234600752592, 0.033999331295490265, 0.059489116072654724, 0.036065202206373215, -0.028380198404192924, 0.013694645836949348, -0.03632815182209015, -0.11369726806879044, 0.043240632861852646, -0.028342511504888535, -0.07773103564977646, 0.13286112248897552, 0.026473212987184525, 0.005609886720776558, -0.022322779521346092, 0.2495104819536209, -0.07400858402252197, -0.09536818414926529, -0.1448878049850464, 0.11703428626060486, -0.04134928435087204, 0.06479805707931519, 0.03765689954161644, -0.10748469084501266, 0.018750222399830818, 0.12525403499603271, 0.1550474315881729, -0.04537956044077873, 0.019106155261397362, 0.02858782559633255, 0.004584235139191151, -0.04013598710298538, 0.05142189934849739, 0.06933367252349854, 0.14214643836021423, -0.05173535272479057, 0.08858583122491837, 0.0017827433766797185, -0.10212727636098862, -0.04129546508193016, 0.11294585466384888, -0.012940747663378716, 0.016553698107600212, -0.05866444855928421, 0.1253037303686142, -0.059382375329732895, -0.23649652302265167, 0.061238259077072144, -0.07580125331878662, -0.14206883311271667, -0.02515989914536476, 0.0734870657324791, -0.015550101175904274, 0.026368482038378716, 0.07198820263147354, -0.07507873326539993, 0.18898127973079681, 0.03871531784534454, -0.05198408663272858, -0.05836968496441841, 0.07604995369911194, -0.117560975253582, 0.2752254605293274, 0.01097069587558508, 0.05294901132583618, 0.10413134098052979, -0.02049596607685089, -0.13178466260433197, 0.024117950350046158, 0.09550730884075165, -0.08813395351171494, 0.04131056368350983, 0.21484604477882385, -0.005940921604633331, 0.1187596246600151, 0.07743308693170547, -0.07539036870002747, 0.047102998942136765, -0.1141449362039566, -0.0771128386259079, -0.08687382191419601, 0.09549140185117722, -0.0675748735666275, 0.14216206967830658, 0.12683449685573578, -0.054658904671669006, 0.010759806260466576, -0.02898469939827919, 0.045599378645420074, 0.0063186027109622955, 0.10157246887683868, 0.009957551956176758, -0.18577666580677032, 0.02454824559390545, 0.017152229323983192, 0.10993915796279907, -0.1806284487247467, -0.09123970568180084, 0.04470835253596306, 0.0021878182888031006, -0.06369121372699738, 0.12484876811504364, 0.057084910571575165, 0.04630184918642044, -0.044473882764577866, -0.029204387217760086, -0.0060947248712182045, 0.1420498490333557, -0.10524781048297882, -0.003831128589808941 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "apache-2.0", "library_name": "transformers"}
text-generation
DKYoon/kosolar-hermes-test
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T07:43:24+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 68, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.05421007052063942, 0.21353216469287872, -0.005195770412683487, 0.015510992147028446, 0.09552915394306183, 0.007233798038214445, 0.06299852579832077, 0.11748887598514557, -0.05413045361638069, 0.1254425197839737, 0.042821433395147324, 0.11764875799417496, 0.11788404732942581, 0.14865340292453766, -0.009830472990870476, -0.2117120623588562, 0.04803319647908211, -0.09720031917095184, -0.012052030302584171, 0.1252613067626953, 0.15213333070278168, -0.10217810422182083, 0.06851313263177872, -0.024368764832615852, -0.027055442333221436, -0.037150971591472626, -0.05546269938349724, -0.04745631664991379, 0.039544492959976196, 0.04528430104255676, 0.06970518082380295, 0.001712438534013927, 0.08877605944871902, -0.2992722690105438, 0.014970153570175171, 0.0640135332942009, -0.001543649472296238, 0.07006900012493134, 0.08662033081054688, -0.06534518301486969, 0.11219346523284912, -0.05878305807709694, 0.13900697231292725, 0.08096235245466232, -0.08774862438440323, -0.1692102998495102, -0.08263298124074936, 0.1174328476190567, 0.17627361416816711, 0.058563701808452606, -0.03340518847107887, 0.10680689662694931, -0.07751280069351196, 0.018406087532639503, 0.04142440855503082, -0.10325261205434799, -0.061977569013834, 0.0889614075422287, 0.1026742234826088, 0.04743117466568947, -0.12422743439674377, -0.025862542912364006, 0.018615398555994034, 0.02007068693637848, 0.08595702797174454, 0.015395105816423893, 0.14564822614192963, 0.03601236268877983, -0.1341829150915146, -0.0676095113158226, 0.10975120216608047, 0.0368351936340332, -0.033129241317510605, -0.2364804446697235, -0.012580571696162224, -0.022237909957766533, -0.03624308109283447, -0.044529348611831665, 0.04631321132183075, -0.0005323975346982479, 0.09220490604639053, -0.010182738304138184, -0.07924249023199081, -0.04084255173802376, 0.08169548213481903, 0.044452786445617676, 0.026453007012605667, -0.020324107259511948, 0.0203366931527853, 0.10622947663068771, 0.08327034115791321, -0.11443831771612167, -0.05162142962217331, -0.05888386815786362, -0.07111316919326782, -0.04280072823166847, 0.034990426152944565, 0.03930659219622612, 0.07840628921985626, 0.24959580600261688, 0.029059061780571938, 0.048530738800764084, 0.03179147467017174, 0.010655518621206284, 0.04971959441900253, 0.09806057065725327, -0.05242425575852394, -0.13289262354373932, -0.02298697642982006, 0.09952209144830704, 0.007216785568743944, -0.026848504319787025, -0.03550588712096214, 0.06144018843770027, 0.04493623599410057, 0.11029700189828873, 0.09567772597074509, 0.02058328315615654, -0.07759489119052887, -0.05045783892273903, 0.18797671794891357, -0.15546999871730804, 0.03424759581685066, 0.03241557255387306, -0.03225022181868553, -0.042539987713098526, 0.010223302990198135, 0.03644843399524689, -0.03834828361868858, 0.08707873523235321, -0.055407486855983734, -0.05217565596103668, -0.11175728589296341, -0.028877221047878265, 0.04535342752933502, 0.011876794509589672, -0.030229168012738228, -0.029383152723312378, -0.09198717027902603, -0.08744015544652939, 0.09337115287780762, -0.06617824733257294, -0.07453399896621704, -0.033669911324977875, -0.07625599950551987, 0.02099107764661312, 0.018597649410367012, 0.08792351931333542, -0.02761901170015335, 0.04983241856098175, -0.055906862020492554, 0.046567339450120926, 0.10784912109375, 0.037745919078588486, -0.06983573734760284, 0.07124537974596024, -0.20427170395851135, 0.088422030210495, -0.08268746733665466, 0.045390188694000244, -0.16388723254203796, -0.024082660675048828, 0.03879587724804878, 0.01778320223093033, -0.0032686772756278515, 0.13137176632881165, -0.19658426940441132, -0.01668846420943737, 0.17825444042682648, -0.10253147780895233, -0.08507469296455383, 0.052842628210783005, -0.056965745985507965, 0.1198565885424614, 0.03634784743189812, 0.018906032666563988, 0.05675210803747177, -0.10537079721689224, -0.01592581532895565, -0.05311892181634903, -0.007714042440056801, 0.12185113877058029, 0.08123867958784103, -0.09110184758901596, 0.04094868525862694, 0.01818959414958954, -0.037934836000204086, -0.06679833680391312, -0.030334651470184326, -0.10395018756389618, 0.011312548071146011, -0.0824674665927887, 0.010543725453317165, -0.012028217315673828, -0.09357302635908127, -0.029082268476486206, -0.15845413506031036, -0.02274945005774498, 0.08667369186878204, -0.005154716316610575, -0.024379126727581024, -0.1027505174279213, 0.025411827489733696, 0.013339781202375889, -0.008432595059275627, -0.12652909755706787, -0.02950648032128811, 0.029136933386325836, -0.1445825845003128, 0.025755291804671288, -0.07152844220399857, 0.04687676951289177, 0.012527765706181526, -0.03304968401789665, -0.022122470661997795, 0.01316812727600336, 0.017333848401904106, -0.027659740298986435, -0.22898216545581818, -0.023435210809111595, -0.03599431738257408, 0.16630098223686218, -0.229477196931839, 0.039603669196367264, 0.05587010458111763, 0.14605022966861725, -0.0025137641932815313, -0.05595584213733673, 0.02650558017194271, -0.06440931558609009, -0.027612756937742233, -0.05448679253458977, 0.003134383587166667, -0.016004344448447227, -0.0415244959294796, 0.025792177766561508, -0.1693287044763565, -0.03902023285627365, 0.10298878699541092, 0.048855215311050415, -0.12400372326374054, -0.03926670551300049, -0.03078654408454895, -0.05742620304226875, -0.04631776735186577, -0.059575360268354416, 0.09847971796989441, 0.0571528784930706, 0.04098925739526749, -0.0692935362458229, -0.07416164129972458, -0.00269014248624444, -0.022786108776926994, -0.022351281717419624, 0.09653493016958237, 0.08616705983877182, -0.12496592849493027, 0.09849628806114197, 0.0806584507226944, 0.057344526052474976, 0.08248010277748108, -0.021596938371658325, -0.07536353170871735, -0.025714652612805367, 0.03437156602740288, 0.021032460033893585, 0.12986093759536743, -0.07052668184041977, 0.04064677283167839, 0.045514266937971115, -0.03359606862068176, 0.025925764814019203, -0.08497381955385208, 0.017476709559559822, 0.02272469736635685, -0.021497435867786407, 0.02897656336426735, -0.04235527291893959, 0.013233993202447891, 0.0862521231174469, 0.04959078133106232, 0.022235149517655373, 0.020284386351704597, -0.050040870904922485, -0.11617273092269897, 0.16021136939525604, -0.11329260468482971, -0.20821933448314667, -0.13356228172779083, 0.03088466450572014, 0.037179749459028244, -0.01598362997174263, -0.0025709797628223896, -0.051371123641729355, -0.1025322750210762, -0.09225393831729889, 0.006456200033426285, 0.040953103452920914, -0.09247945994138718, -0.04293585941195488, 0.04079096391797066, 0.04231250286102295, -0.13822127878665924, 0.01610880345106125, 0.04589884355664253, -0.08359266072511673, -0.01120610348880291, 0.06256414204835892, 0.08998946845531464, 0.19560815393924713, 0.013581868261098862, -0.012131399475038052, 0.023843638598918915, 0.22275377810001373, -0.1383862942457199, 0.1014406755566597, 0.13049447536468506, -0.07322458177804947, 0.08163802325725555, 0.21160255372524261, 0.040092695504426956, -0.09270840883255005, 0.02441057190299034, 0.04003278911113739, -0.023381903767585754, -0.2509364187717438, -0.07303188741207123, -0.004622313659638166, -0.06134811416268349, 0.08438423275947571, 0.08801863342523575, 0.09943808615207672, 0.038168229162693024, -0.0836082473397255, -0.08809591829776764, 0.06154439225792885, 0.10864007472991943, -0.004196378868073225, 0.005868837237358093, 0.09007053822278976, -0.03175199031829834, 0.01909078285098076, 0.08826909214258194, 0.01844124309718609, 0.14803802967071533, 0.04756850376725197, 0.17049501836299896, 0.08995312452316284, 0.08402234315872192, -0.0015238280175253749, 0.021388573572039604, 0.010524826124310493, 0.04439735412597656, -0.0017697714501991868, -0.07938341051340103, -0.018823746591806412, 0.11968310177326202, 0.05288228765130043, 0.015503411181271076, 0.01803954504430294, -0.0391206219792366, 0.0744151771068573, 0.19708149135112762, -0.003263753140345216, -0.19755280017852783, -0.05384271964430809, 0.07781800627708435, -0.09241209179162979, -0.10619477927684784, 0.0019064407097175717, 0.02124488726258278, -0.16801559925079346, 0.040584951639175415, -0.0322476401925087, 0.11023034900426865, -0.1111789122223854, -0.021756893023848534, 0.07052167505025864, 0.05959389731287956, -0.014178748242557049, 0.07435203343629837, -0.2035863697528839, 0.11238204687833786, 0.009567494504153728, 0.0717628002166748, -0.09909266978502274, 0.0891956314444542, -0.001081119291484356, -0.025000736117362976, 0.1611567735671997, -0.006757483817636967, -0.07005572319030762, -0.06452172249555588, -0.09549829363822937, -0.007743114605545998, 0.09846057742834091, -0.13114306330680847, 0.0837324783205986, -0.03229309991002083, -0.03283150866627693, 0.000035455705074127764, -0.09856724739074707, -0.11704195290803909, -0.17358876764774323, 0.05246591195464134, -0.1162688285112381, 0.03708010911941528, -0.10647160559892654, -0.029181834310293198, -0.03587225452065468, 0.18525031208992004, -0.20157071948051453, -0.0807575136423111, -0.13813824951648712, -0.09876710921525955, 0.1394060254096985, -0.04165269434452057, 0.09829629957675934, -0.008952802047133446, 0.16236551105976105, 0.009415987879037857, -0.01310163363814354, 0.07753563672304153, -0.09245961159467697, -0.20152728259563446, -0.0660102367401123, 0.16194145381450653, 0.10931919515132904, 0.036590855568647385, 0.005600698292255402, 0.03727604076266289, -0.026978204026818275, -0.11075286567211151, 0.02552393265068531, 0.14167837798595428, 0.0849403515458107, 0.002661976730450988, -0.01830657199025154, -0.13354960083961487, -0.08307620137929916, -0.04577168449759483, 0.024014126509428024, 0.1599515974521637, -0.07414983958005905, 0.15789707005023956, 0.1328311711549759, -0.06604088842868805, -0.2016577124595642, 0.005006593186408281, 0.024452360346913338, -0.009555138647556305, 0.015897223725914955, -0.17855186760425568, 0.08419980853796005, 0.011494292877614498, -0.05953359231352806, 0.08966474235057831, -0.18357999622821808, -0.1389443427324295, 0.0829738900065422, 0.05449368804693222, -0.20674683153629303, -0.13991928100585938, -0.0965299978852272, -0.03951890766620636, -0.1560729444026947, 0.09325455129146576, -0.002555206185206771, 0.002427567495033145, 0.03608793020248413, 0.010130190290510654, 0.027736838907003403, -0.05545626953244209, 0.1822115033864975, 0.0015607478562742472, 0.028007594868540764, -0.0849214494228363, -0.09926366060972214, 0.028430836275219917, -0.04676833376288414, 0.07731037586927414, -0.034188736230134964, 0.015682758763432503, -0.11721178144216537, -0.04310533404350281, -0.05702150613069534, 0.014305627904832363, -0.10113276541233063, -0.09224298596382141, -0.04827515035867691, 0.08720213174819946, 0.10896769165992737, -0.018856149166822433, -0.03554953634738922, -0.08316361904144287, 0.0637880191206932, 0.22650088369846344, 0.19465456902980804, 0.07965768128633499, -0.0686941146850586, 0.0003643847012426704, -0.025200067088007927, 0.04334692284464836, -0.19990992546081543, 0.055416274815797806, 0.060230378061532974, 0.018969237804412842, 0.10871423035860062, -0.026253951713442802, -0.14472559094429016, -0.0721317008137703, 0.06167231872677803, -0.0606088787317276, -0.20093978941440582, 0.011844802647829056, 0.05368282273411751, -0.17043231427669525, -0.042620155960321426, 0.035140108317136765, -0.01567363739013672, -0.03511351719498634, 0.011021547019481659, 0.09591306746006012, -0.007927972823381424, 0.09122961759567261, 0.07482846081256866, 0.09281997382640839, -0.09625906497240067, 0.08788356184959412, 0.10036601126194, -0.06110791116952896, 0.031820133328437805, 0.09031558781862259, -0.04985802620649338, -0.03767872974276543, 0.05876798555254936, 0.0977143719792366, 0.0181441493332386, -0.05742422118782997, 0.001989413984119892, -0.09092903882265091, 0.060996487736701965, 0.11156345158815384, 0.024177588522434235, 0.01323536317795515, 0.054828476160764694, 0.031693775206804276, -0.08715648204088211, 0.12227930873632431, 0.0558650903403759, 0.01360325701534748, -0.043362557888031006, -0.01541239582002163, 0.011019410565495491, -0.03362196311354637, -0.004392077215015888, -0.0068086134269833565, -0.07655733823776245, -0.006663029082119465, -0.13749735057353973, 0.020432505756616592, -0.07976438105106354, 0.01191214844584465, 0.024302974343299866, -0.02403266914188862, 0.007492481265217066, -0.0005300515913404524, -0.0747627392411232, -0.05692018195986748, -0.009850657545030117, 0.10309379547834396, -0.16633078455924988, 0.019606593996286392, 0.08275865763425827, -0.10563306510448456, 0.09102261066436768, -0.009379170835018158, -0.0074268514290452, 0.0061704558320343494, -0.1587742269039154, 0.053865980356931686, -0.028385495766997337, 0.005714855622500181, 0.005054907873272896, -0.18175947666168213, -0.0027730907313525677, -0.030795710161328316, -0.07112878561019897, -0.006538000423461199, -0.027773858979344368, -0.11184186488389969, 0.09471060335636139, 0.010890747420489788, -0.08225402235984802, -0.02280508726835251, 0.03642101585865021, 0.08786973357200623, -0.0425306037068367, 0.14135800302028656, -0.01673547364771366, 0.06452823430299759, -0.17004156112670898, -0.008491916581988335, -0.010103556327521801, 0.0216610599309206, -0.05692877247929573, -0.00717727467417717, 0.04933054745197296, -0.021108359098434448, 0.18962650001049042, -0.024675166234374046, 0.01256572362035513, 0.059918999671936035, 0.028900403529405594, 0.002346554771065712, 0.09849470108747482, 0.06742341816425323, 0.010411731898784637, 0.008202279917895794, 0.01431958843022585, -0.04742715507745743, -0.03674702346324921, -0.17788489162921906, 0.06548750400543213, 0.20393411815166473, 0.1029265746474266, -0.01982530765235424, 0.06886112689971924, -0.11523269861936569, -0.10029982775449753, 0.1369268149137497, -0.03827545791864395, -0.0034170160070061684, -0.07522282749414444, 0.14319820702075958, 0.14159227907657623, -0.1937766969203949, 0.07344622910022736, -0.07756593823432922, -0.047934211790561676, -0.10181821882724762, -0.20400717854499817, -0.06506483256816864, -0.04013410210609436, -0.012756729498505592, -0.057141683995723724, 0.06803543120622635, 0.09175455570220947, -0.005058931186795235, -0.016183175146579742, 0.06868628412485123, -0.03566555678844452, 0.0012162495404481888, 0.03283097967505455, 0.05696803331375122, 0.01834675297141075, -0.06658197939395905, 0.010480284690856934, -0.013662338256835938, 0.0498485192656517, 0.07791288942098618, 0.03786285221576691, -0.024411363527178764, 0.014696408063173294, -0.028134189546108246, -0.10276906192302704, 0.05010531097650528, -0.02319330908358097, -0.050738364458084106, 0.15068596601486206, 0.02490590326488018, 0.006162187084555626, -0.010335122235119343, 0.2244664579629898, -0.06681383401155472, -0.10548964142799377, -0.14899702370166779, 0.07716231048107147, -0.052965231239795685, 0.04415183141827583, 0.051153216511011124, -0.11254875361919403, 0.02664860151708126, 0.15966027975082397, 0.16181878745555878, -0.033362921327352524, 0.01282995380461216, 0.028031745925545692, 0.005923285614699125, -0.026338767260313034, 0.03893594443798065, 0.050021905452013016, 0.1392587572336197, -0.0639779195189476, 0.0686778649687767, 0.005723598878830671, -0.08273192495107651, -0.02065124548971653, 0.12605585157871246, -0.014959827065467834, 0.002611157251521945, -0.053577721118927, 0.12211853265762329, -0.06959804892539978, -0.2090820074081421, 0.038501229137182236, -0.07648737728595734, -0.1334782987833023, -0.02732706442475319, 0.0442705899477005, -0.0013251103227958083, 0.018473748117685318, 0.0755845382809639, -0.06794920563697815, 0.1716848760843277, 0.03500717878341675, -0.06667187064886093, -0.050138216465711594, 0.07921779155731201, -0.07963936775922775, 0.30680927634239197, 0.01832200214266777, 0.04667375981807709, 0.10743077099323273, -0.017963936552405357, -0.12426140904426575, 0.02700815349817276, 0.103448286652565, -0.07143918424844742, 0.05799660459160805, 0.16167333722114563, -0.004595374222844839, 0.1301085501909256, 0.07091037184000015, -0.0756249725818634, 0.04676031321287155, -0.07615955173969269, -0.07484336942434311, -0.10520949959754944, 0.09598609805107117, -0.08931051939725876, 0.14986251294612885, 0.12488403171300888, -0.0589633472263813, 0.010744609870016575, -0.025451499968767166, 0.06114969030022621, -0.009655525907874107, 0.12451629340648651, 0.011233685538172722, -0.18578436970710754, 0.02956356108188629, -0.028040342032909393, 0.10093195736408234, -0.18736286461353302, -0.07799412310123444, 0.03976720571517944, -0.00040075325523503125, -0.0820973664522171, 0.1183193176984787, 0.07633206248283386, 0.029269572347402573, -0.04921464994549751, -0.02453635446727276, -0.010994812473654747, 0.1487521231174469, -0.09453071653842926, -0.0056170192547142506 ]
null
null
transformers
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 2.895499120347367e-06 f1_micro: 0.0012045290291496024 f1_weighted: 2.8982892905428352e-06 precision_macro: 1.4494934165458512e-06 precision_micro: 0.0012045290291496024 precision_weighted: 1.4508901820640839e-06 recall_macro: 0.0012033694344163659 recall_micro: 0.0012045290291496024 recall_weighted: 0.0012045290291496024 accuracy: 0.0012045290291496024
{"tags": ["autotrain", "image-classification"], "datasets": ["footballer-retrain-1/autotrain-data"], "widget": [{"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", "example_title": "Tiger"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg", "example_title": "Teapot"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg", "example_title": "Palace"}]}
image-classification
IsaacMwesigwa/footballer-retrain-1
[ "transformers", "safetensors", "resnet", "image-classification", "autotrain", "dataset:footballer-retrain-1/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T07:44:40+00:00
[]
[]
TAGS #transformers #safetensors #resnet #image-classification #autotrain #dataset-footballer-retrain-1/autotrain-data #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 2.895499120347367e-06 f1_micro: 0.0012045290291496024 f1_weighted: 2.8982892905428352e-06 precision_macro: 1.4494934165458512e-06 precision_micro: 0.0012045290291496024 precision_weighted: 1.4508901820640839e-06 recall_macro: 0.0012033694344163659 recall_micro: 0.0012045290291496024 recall_weighted: 0.0012045290291496024 accuracy: 0.0012045290291496024
[ "# Model Trained Using AutoTrain\n\n- Problem type: Image Classification", "## Validation Metricsg\nloss: nan\n\nf1_macro: 2.895499120347367e-06\n\nf1_micro: 0.0012045290291496024\n\nf1_weighted: 2.8982892905428352e-06\n\nprecision_macro: 1.4494934165458512e-06\n\nprecision_micro: 0.0012045290291496024\n\nprecision_weighted: 1.4508901820640839e-06\n\nrecall_macro: 0.0012033694344163659\n\nrecall_micro: 0.0012045290291496024\n\nrecall_weighted: 0.0012045290291496024\n\naccuracy: 0.0012045290291496024" ]
[ "TAGS\n#transformers #safetensors #resnet #image-classification #autotrain #dataset-footballer-retrain-1/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\n- Problem type: Image Classification", "## Validation Metricsg\nloss: nan\n\nf1_macro: 2.895499120347367e-06\n\nf1_micro: 0.0012045290291496024\n\nf1_weighted: 2.8982892905428352e-06\n\nprecision_macro: 1.4494934165458512e-06\n\nprecision_micro: 0.0012045290291496024\n\nprecision_weighted: 1.4508901820640839e-06\n\nrecall_macro: 0.0012033694344163659\n\nrecall_micro: 0.0012045290291496024\n\nrecall_weighted: 0.0012045290291496024\n\naccuracy: 0.0012045290291496024" ]
[ 59, 16, 154 ]
[ "passage: TAGS\n#transformers #safetensors #resnet #image-classification #autotrain #dataset-footballer-retrain-1/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\n- Problem type: Image Classification## Validation Metricsg\nloss: nan\n\nf1_macro: 2.895499120347367e-06\n\nf1_micro: 0.0012045290291496024\n\nf1_weighted: 2.8982892905428352e-06\n\nprecision_macro: 1.4494934165458512e-06\n\nprecision_micro: 0.0012045290291496024\n\nprecision_weighted: 1.4508901820640839e-06\n\nrecall_macro: 0.0012033694344163659\n\nrecall_micro: 0.0012045290291496024\n\nrecall_weighted: 0.0012045290291496024\n\naccuracy: 0.0012045290291496024" ]
[ -0.13544388115406036, 0.14192038774490356, 0.0007574896444566548, 0.11854667961597443, 0.12229610234498978, 0.005948365665972233, 0.026026949286460876, 0.11572933942079544, -0.10052729398012161, 0.1382841318845749, 0.16707748174667358, 0.0238802470266819, 0.08487453311681747, 0.1283455193042755, -0.10634919255971909, -0.06539209932088852, 0.003235472831875086, -0.012960977852344513, 0.07168379426002502, 0.07459782063961029, 0.040072422474622726, -0.1385989785194397, 0.11936789005994797, -0.02682461217045784, -0.2603840231895447, 0.059303414076566696, 0.12564106285572052, -0.07524334639310837, 0.04780140891671181, 0.10596482455730438, 0.10148094594478607, -0.07087168097496033, 0.10464304685592651, -0.0447780005633831, -0.01831822469830513, 0.024568133056163788, 0.003397580934688449, 0.02721255086362362, 0.1255088448524475, 0.04917073994874954, -0.01563294790685177, -0.030657127499580383, 0.054915688931941986, 0.0562044121325016, -0.09183728694915771, -0.03258068114519119, -0.09694492071866989, 0.03956805169582367, 0.06175405904650688, 0.1271592378616333, -0.0066471705213189125, 0.1875229924917221, -0.03864796459674835, 0.0491509884595871, 0.10212967544794083, -0.2160821110010147, -0.09332286566495895, 0.1536596715450287, -0.10436060279607773, -0.029022132977843285, -0.08672647178173065, 0.05092860013246536, 0.1307671070098877, 0.0313839428126812, -0.02448086254298687, 0.031996261328458786, 0.005600607953965664, 0.001468086731620133, -0.0618867389857769, -0.03907957300543785, 0.17700359225273132, 0.02403680607676506, -0.08510193228721619, -0.09844464808702469, -0.04103590175509453, -0.15958844125270844, -0.08743643015623093, -0.0248254481703043, 0.00470153009518981, -0.07283589243888855, -0.13174477219581604, 0.1443057805299759, -0.03580477833747864, -0.08057428896427155, -0.19565939903259277, 0.0826740562915802, -0.02223256602883339, 0.0263046994805336, 0.003261781297624111, 0.05825463682413101, 0.011978010646998882, -0.09552467614412308, 0.005892741959542036, 0.02211444266140461, -0.11188486963510513, -0.09053898602724075, -0.00803056638687849, -0.003225983353331685, 0.0331849530339241, 0.125650092959404, 0.014872489497065544, 0.06992363929748535, -0.025791985914111137, 0.006385381333529949, -0.10519919544458389, 0.1661989539861679, -0.15032805502414703, -0.10393080860376358, 0.024230873212218285, 0.021205084398388863, 0.05483970418572426, -0.003257746109738946, -0.051186904311180115, -0.07720911502838135, 0.0923246368765831, 0.01865052990615368, -0.030990535393357277, 0.01035338081419468, -0.07327079772949219, -0.007536664605140686, -0.012550842016935349, -0.07218146324157715, 0.03130721300840378, -0.042891763150691986, -0.18047823011875153, -0.018265439197421074, 0.024046503007411957, 0.020299648866057396, -0.009596606716513634, 0.07313217967748642, -0.14369052648544312, -0.0032186773605644703, -0.050320208072662354, -0.09052891284227371, 0.05738232657313347, -0.06278211623430252, 0.027801552787423134, -0.13195139169692993, -0.21635828912258148, -0.05732410401105881, -0.057720065116882324, -0.13843245804309845, -0.006573460064828396, -0.07400874048471451, -0.1255185306072235, 0.047329340130090714, 0.05692777782678604, 0.09596724063158035, -0.03406889736652374, 0.03138595446944237, 0.018816834315657616, 0.09915747493505478, -0.048993468284606934, 0.014619095250964165, -0.0995880737900734, -0.025216061621904373, -0.17869685590267181, 0.044762250036001205, -0.014887308701872826, 0.054327018558979034, -0.0798795148730278, 0.0015464455354958773, -0.026103883981704712, -0.012854932807385921, 0.06870387494564056, 0.13246911764144897, -0.17745809257030487, -0.04875513166189194, 0.06929345428943634, -0.09742294251918793, -0.11744420975446701, 0.14156579971313477, 0.007120250724256039, -0.008176973089575768, 0.07529330253601074, 0.08683004975318909, 0.06375139951705933, -0.12768279016017914, -0.05676134303212166, -0.06252389401197433, -0.07090602070093155, -0.04258870705962181, 0.0528593510389328, 0.01936427131295204, -0.060979194939136505, -0.012289481237530708, 0.0756334513425827, 0.06976378709077835, -0.07825516164302826, -0.06123422458767891, -0.01586942747235298, -0.10711465775966644, 0.029202794656157494, 0.05475429445505142, 0.042627930641174316, -0.10343268513679504, -0.015105567872524261, 0.028790364041924477, 0.09036015719175339, 0.03299190476536751, -0.089083731174469, -0.1319342851638794, 0.06734796613454819, -0.18104948103427887, -0.04683718830347061, -0.17177799344062805, -0.11800096929073334, 0.004774501081556082, -0.021889222785830498, -0.015279542654752731, -0.06661058962345123, 0.11004095524549484, 0.06558170914649963, -0.05061478912830353, -0.02696366421878338, 0.05181965231895447, -0.007701363414525986, -0.07758385688066483, -0.1088348776102066, 0.03546532988548279, 0.03448941558599472, 0.19343888759613037, -0.22566504776477814, -0.029487410560250282, 0.02219199761748314, 0.1269151121377945, 0.051187675446271896, -0.04630149155855179, -0.048834264278411865, 0.042926687747240067, -0.005295373499393463, -0.0829206258058548, 0.045940279960632324, -0.016876205801963806, -0.060856085270643234, -0.012750024907290936, -0.19917909801006317, 0.3131137788295746, 0.14600880444049835, 0.06229199841618538, -0.11626710742712021, 0.0035414500162005424, 0.01926872879266739, -0.07398016005754471, -0.11164737492799759, -0.007215190213173628, 0.05084295943379402, 0.00144874001853168, 0.1266542673110962, -0.09020260721445084, -0.037208180874586105, 0.06930220127105713, -0.001465602545067668, -0.05566676706075668, 0.1311018168926239, -0.05743885785341263, -0.18254782259464264, 0.12753231823444366, 0.033699195832014084, -0.061270423233509064, 0.15893813967704773, 0.011771800927817822, -0.05743240565061569, -0.0476006418466568, -0.02311592921614647, 0.002762699266895652, 0.10911697894334793, 0.0808178037405014, 0.04673940688371658, 0.0006145043880678713, -0.004947193898260593, -0.02279319241642952, -0.07792497426271439, -0.029555007815361023, 0.01009286381304264, 0.01722310110926628, -0.035907842218875885, -0.012832093052566051, 0.07667092233896255, 0.18860679864883423, 0.0008388174464926124, -0.07084816694259644, 0.042660269886255264, -0.01771918311715126, -0.07494891434907913, 0.17745067179203033, -0.07503996044397354, -0.12911048531532288, -0.1879175305366516, -0.035269398242235184, -0.12816716730594635, 0.004345483612269163, -0.02250990830361843, -0.09549158811569214, -0.05976792424917221, -0.08096050471067429, -0.026293475180864334, 0.02609766088426113, -0.04961400479078293, 0.07807544618844986, -0.022595703601837158, 0.0756848156452179, -0.05367612466216087, -0.039061397314071655, -0.012318216264247894, -0.06354116648435593, 0.053983207792043686, 0.004983437247574329, 0.15439453721046448, 0.1408531665802002, -0.09032303839921951, 0.03841034322977066, -0.05198023095726967, 0.10628273338079453, -0.02825150266289711, 0.0003907379286829382, 0.15547573566436768, 0.04286427050828934, 0.02797117456793785, 0.12667228281497955, 0.015743637457489967, -0.07956302911043167, 0.0496731773018837, 0.05135505646467209, -0.011683548800647259, -0.09599513560533524, -0.13655206561088562, 0.03860846906900406, 0.016215436160564423, 0.1633872389793396, 0.007687241304665804, 0.08161620050668716, 0.08695816993713379, -0.0008352189906872809, 0.061191655695438385, -0.018752794712781906, 0.05586401745676994, 0.07819946855306625, 0.04200412333011627, 0.13947167992591858, -0.08221012353897095, -0.03149855136871338, 0.06899472326040268, -0.05957398936152458, 0.0808771401643753, 0.0015670533757656813, -0.0004323517205193639, -0.039272747933864594, 0.07764479517936707, 0.049743346869945526, 0.12332156300544739, 0.08642961084842682, -0.09720047563314438, 0.02024799957871437, -0.08010294288396835, -0.05992991849780083, 0.028217468410730362, -0.010989268310368061, 0.14820775389671326, -0.1239367201924324, 0.08903450518846512, 0.03746427595615387, 0.1296290159225464, 0.09393422305583954, -0.5027257204055786, -0.09348944574594498, 0.00986810028553009, 0.050415292382240295, -0.12562589347362518, 0.03370717912912369, 0.1132473573088646, -0.10875178128480911, 0.03924945369362831, -0.03183438256382942, 0.06592188775539398, 0.016374018043279648, -0.0025842031463980675, 0.01979907788336277, 0.08448047935962677, -0.044843483716249466, 0.023671023547649384, -0.16043926775455475, 0.1469895988702774, 0.05199098959565163, 0.0923803523182869, -0.09314631670713425, -0.02002999559044838, 0.0718640610575676, -0.04520625248551369, 0.1661345362663269, -0.00321126077324152, -0.1349598616361618, -0.4090368449687958, -0.05479707196354866, -0.026879608631134033, 0.02938017062842846, 0.06326544284820557, 0.10060357302427292, -0.04610326513648033, 0.007239882368594408, 0.029996946454048157, -0.07895399630069733, -0.09792125225067139, -0.022345654666423798, -0.04688276723027229, 0.14384545385837555, -0.01496979407966137, -0.0543816015124321, -0.08602915704250336, -0.08313462138175964, 0.013542956672608852, -0.04210270941257477, -0.05509195104241371, -0.12415463477373123, 0.16808821260929108, 0.10516439378261566, -0.0669453889131546, 0.05723130330443382, 0.01678238995373249, 0.1529640257358551, 0.020136449486017227, -0.07316899299621582, 0.08019060641527176, -0.09397916495800018, -0.06475480645895004, -0.025793785229325294, 0.03446311876177788, 0.057735394686460495, 0.027621721848845482, 0.0490630678832531, 0.08348020166158676, 0.004853178281337023, -0.07889456301927567, 0.0912143811583519, -0.002984398975968361, 0.15842857956886292, 0.11478043347597122, -0.012586190365254879, -0.16385343670845032, -0.02755373902618885, 0.04078090935945511, 0.07039564847946167, 0.24419733881950378, -0.10998650640249252, -0.0560004822909832, 0.019733339548110962, -0.026192735880613327, -0.2737204432487488, 0.06434981524944305, 0.0181474257260561, 0.06378902494907379, 0.030678164213895798, 0.025727076455950737, 0.17774680256843567, 0.17529897391796112, 0.008416026830673218, 0.04483003541827202, -0.26680561900138855, -0.09236498177051544, 0.20976302027702332, 0.11182230710983276, 0.13519753515720367, -0.09439931064844131, -0.03611050173640251, -0.12352859228849411, -0.13648512959480286, -0.011525497771799564, -0.02578112855553627, 0.04635437950491905, -0.05825217440724373, 0.03450818359851837, 0.05203970894217491, -0.0696466714143753, 0.10221213102340698, 0.000615631346590817, 0.11949224770069122, -0.0813346579670906, -0.07302147150039673, 0.01913139782845974, -0.06240691989660263, 0.10086645185947418, 0.12173239886760712, 0.0491352416574955, -0.08011087030172348, 0.025272859260439873, -0.02002331241965294, 0.046630192548036575, -0.037025436758995056, 0.008062691427767277, -0.04307546094059944, 0.07146069407463074, -0.05409053713083267, -0.06238778308033943, -0.06419484317302704, -0.009498401544988155, 0.12217947095632553, 0.15565824508666992, 0.0599081888794899, -0.038136549293994904, -0.01798386499285698, 0.04203644394874573, -0.06567437201738358, 0.05326661467552185, 0.004682252649217844, 0.06547418236732483, 0.1562274545431137, 0.038266103714704514, 0.10733854025602341, 0.05180561542510986, -0.023734597489237785, 0.024062851443886757, 0.04087962582707405, -0.05630787834525108, 0.061088018119335175, -0.04031811282038689, -0.016118226572871208, -0.04310724511742592, -0.03262999653816223, 0.06311018019914627, -0.07313935458660126, 0.031078781932592392, 0.00007192109478637576, 0.0021013219375163317, 0.02844705618917942, 0.2655797302722931, -0.025063833221793175, 0.03812727332115173, -0.115877166390419, 0.17114686965942383, 0.008006168529391289, -0.143509641289711, 0.017044510692358017, -0.08268586546182632, -0.09854568541049957, 0.006011204794049263, 0.01975960284471512, 0.18673759698867798, -0.15895240008831024, -0.069224514067173, -0.10325552523136139, -0.17180012166500092, 0.09007710218429565, 0.2650618553161621, 0.07525394856929779, 0.010650059208273888, -0.006273216102272272, -0.06851605325937271, -0.08547443896532059, 0.10251178592443466, 0.15639840066432953, 0.049971744418144226, -0.14374059438705444, 0.10513660311698914, -0.03192737326025963, -0.048459164798259735, -0.03206026926636696, 0.038105908781290054, -0.13562238216400146, -0.0007418758468702435, -0.08507582545280457, 0.06601663678884506, -0.02235490456223488, -0.00381665350869298, -0.022919099777936935, 0.016994144767522812, -0.06409415602684021, 0.024677667766809464, -0.03926236554980278, -0.009146256372332573, 0.054995886981487274, 0.0736289843916893, -0.11288302391767502, -0.07215368002653122, 0.031630296260118484, -0.002375531941652298, -0.0005632885731756687, 0.08821315318346024, 0.09748455137014389, -0.005823482759296894, -0.04853614419698715, -0.03506408631801605, 0.05520329624414444, -0.06521299481391907, 0.03778449445962906, -0.164644256234169, 0.04912792518734932, 0.04453359171748161, -0.03414573147892952, 0.06747666746377945, 0.01840856485068798, -0.08746699243783951, -0.005017126444727182, -0.062008731067180634, -0.030892087146639824, -0.16116316616535187, 0.037520572543144226, 0.20878443121910095, 0.019903969019651413, 0.14129523932933807, -0.11003197729587555, -0.0112896878272295, -0.21233266592025757, -0.007046765182167292, -0.04154602438211441, -0.09425324201583862, -0.11709324270486832, 0.014093626290559769, 0.07356718182563782, 0.0027127726934850216, 0.055616263300180435, -0.043683283030986786, 0.015750186517834663, 0.03828674554824829, 0.1409723311662674, -0.07311581820249557, 0.013905316591262817, 0.18773986399173737, 0.07580117136240005, -0.049929168075323105, 0.08465781807899475, 0.08223944157361984, 0.12637421488761902, 0.013088075444102287, 0.052788376808166504, 0.08296848088502884, -0.09199269860982895, 0.124596007168293, 0.006018678657710552, -0.04781285673379898, 0.007865626364946365, 0.19154959917068481, -0.13342639803886414, -0.01565571501851082, -0.038618821650743484, 0.017555315047502518, 0.20008206367492676, -0.12261897325515747, -0.021828321740031242, -0.09710203111171722, -0.03671782463788986, -0.10344063490629196, -0.058564603328704834, -0.12360122799873352, -0.08313733339309692, 0.0025184445548802614, -0.10192420333623886, 0.05096283555030823, 0.16597440838813782, 0.029934899881482124, -0.015136550180613995, 0.19975189864635468, -0.2154131680727005, -0.039976030588150024, 0.01468473207205534, -0.028972353786230087, -0.031897954642772675, -0.03955560177564621, -0.056460510939359665, 0.08194033056497574, -0.0012784998398274183, 0.03860129788517952, -0.009653966873884201, 0.04484480991959572, 0.014643573202192783, -0.0029174494557082653, -0.08438386023044586, -0.02383069507777691, 0.02948675863444805, 0.025957366451621056, -0.018707921728491783, -0.0008073099888861179, 0.06385589390993118, -0.04151477292180061, 0.19450049102306366, -0.10871551930904388, -0.008302600122988224, -0.08561571687459946, 0.21056251227855682, 0.022407200187444687, 0.07354467362165451, 0.012234247289597988, -0.06268364936113358, 0.10884951800107956, 0.12044668942689896, 0.051068998873233795, -0.0427766889333725, -0.07408375293016434, -0.034955207258462906, -0.015608595684170723, -0.07333708554506302, 0.05337007716298103, 0.041794270277023315, -0.004058996215462685, -0.07730263471603394, 0.07147808372974396, -0.032441142946481705, -0.026034068316221237, 0.03272867947816849, 0.0507059171795845, 0.01658027432858944, 0.06289636343717575, -0.07446601241827011, 0.07894738763570786, 0.017775099724531174, 0.01777845434844494, 0.1441383957862854, -0.12394142895936966, -0.12431956082582474, 0.06324397027492523, 0.0099634425714612, -0.02652803808450699, 0.10981864482164383, -0.0776485875248909, 0.037461135536432266, -0.04419334605336189, -0.036074329167604446, -0.13984958827495575, -0.15748444199562073, -0.03386320546269417, 0.15338680148124695, 0.26114723086357117, -0.014348396100103855, 0.07714125514030457, 0.10791698843240738, -0.026638276875019073, -0.15698325634002686, 0.08623094111680984, -0.04794749245047569, -0.10202520340681076, 0.07889548689126968, 0.10488490760326385, -0.00001295445781579474, 0.18935413658618927, 0.02529623918235302, -0.178688183426857, 0.02168230526149273, -0.0760238841176033, -0.04332885518670082, -0.06804927438497543, 0.06179213151335716, -0.025198597460985184, 0.16575384140014648, 0.106301449239254, -0.03237199783325195, 0.019466951489448547, -0.03551240637898445, 0.035433512181043625, 0.04248310253024101, 0.08775344491004944, 0.048364706337451935, -0.11789526790380478, 0.06124329939484596, -0.122977115213871, -0.03568948432803154, -0.3253629207611084, -0.039285868406295776, -0.0048903776332736015, -0.09536714851856232, -0.03021501563489437, 0.09053435176610947, 0.07551493495702744, 0.05272708088159561, -0.04625541344285011, -0.2081894874572754, 0.08932597190141678, 0.17578382790088654, -0.025720270350575447, -0.11520671099424362 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
sunyijia97/llama2-7b-qlora-cstuqa-v2
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-14T07:47:33+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-bert-finetuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the `glue/cola` dataset. It achieves the following results on the evaluation set: - Loss: 0.7912 - Matthews Correlation: 0.5700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4544 | 1.0 | 1069 | 0.4632 | 0.4992 | | 0.3314 | 2.0 | 2138 | 0.5560 | 0.5731 | | 0.1905 | 3.0 | 3207 | 0.7912 | 0.5700 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "base_model": "bert-base-cased", "model-index": [{"name": "test-bert-finetuned-cola", "results": []}]}
text-classification
lorisrossi/test-bert-finetuned-cola
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-14T07:58:11+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-glue #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
test-bert-finetuned-cola ======================== This model is a fine-tuned version of bert-base-cased on the 'glue/cola' dataset. It achieves the following results on the evaluation set: * Loss: 0.7912 * Matthews Correlation: 0.5700 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-glue #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ 73, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-glue #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1" ]
[ -0.09632422775030136, 0.11117282509803772, -0.0022634388878941536, 0.11507847905158997, 0.14354343712329865, 0.020181747153401375, 0.16234521567821503, 0.11438678205013275, -0.04984274506568909, 0.044385265558958054, 0.12468381971120834, 0.1141277328133583, 0.02530534751713276, 0.1282668560743332, -0.06980833411216736, -0.2208675742149353, 0.008113622665405273, 0.0311126708984375, -0.060834094882011414, 0.11531315743923187, 0.09186607599258423, -0.12708330154418945, 0.10002013295888901, -0.01418385747820139, -0.16507340967655182, 0.00329781835898757, 0.024705426767468452, -0.04962126910686493, 0.13183780014514923, 0.038388628512620926, 0.13361941277980804, 0.02957329899072647, 0.08526655286550522, -0.20402710139751434, 0.013449585065245628, 0.05924929305911064, -0.001760980230756104, 0.08809301257133484, 0.042155470699071884, 0.002977324416860938, 0.04284769296646118, -0.09980043768882751, 0.06244566664099693, 0.02371952123939991, -0.1278330534696579, -0.21783941984176636, -0.08284961432218552, 0.03404737636446953, 0.09276747703552246, 0.07295919954776764, -0.014660700224339962, 0.12433154135942459, -0.04298260435461998, 0.08713628351688385, 0.21270641684532166, -0.3155301809310913, -0.06437120586633682, 0.05163562297821045, 0.036212772130966187, 0.09114674478769302, -0.1027429923415184, -0.0075553907081484795, 0.054069191217422485, 0.027346372604370117, 0.13670390844345093, -0.02654348313808441, -0.0525011382997036, 0.007737922482192516, -0.13778896629810333, -0.011488365940749645, 0.15568001568317413, 0.05698792263865471, -0.04093331843614578, -0.05923828110098839, -0.061338651925325394, -0.12410537153482437, -0.042572103440761566, -0.010577435605227947, 0.05060988664627075, -0.02094881422817707, -0.06608761847019196, -0.023931831121444702, -0.10443960130214691, -0.0681934654712677, -0.05506547912955284, 0.12414586544036865, 0.024474838748574257, 0.0018059136345982552, -0.0184150580316782, 0.09708641469478607, -0.030056428164243698, -0.13907624781131744, 0.02397065982222557, 0.023353181779384613, -0.0001626500452402979, -0.05237659439444542, -0.04484553635120392, -0.07465176284313202, 0.025457240641117096, 0.14133712649345398, -0.03498178720474243, 0.051552530378103256, 0.0027793028857558966, 0.04634604975581169, -0.10198673605918884, 0.1838194578886032, -0.042320143431425095, -0.04610715061426163, 0.015874279662966728, 0.08685862272977829, 0.05062165483832359, -0.01808823086321354, -0.13210301101207733, 0.03178595006465912, 0.11145264655351639, 0.016719575971364975, -0.046910058706998825, 0.07146967202425003, -0.05706821009516716, -0.012339157983660698, 0.03252195566892624, -0.08688902854919434, 0.029258551076054573, 0.00527002802118659, -0.047840338200330734, -0.060661207884550095, 0.02141844667494297, 0.029314301908016205, 0.01574842631816864, 0.10423412173986435, -0.0887226015329361, 0.007115243002772331, -0.07796690613031387, -0.1271878480911255, 0.022932404652237892, -0.08335568755865097, 0.017428014427423477, -0.11005742102861404, -0.1658957153558731, -0.007017233874648809, 0.06041298806667328, -0.029804524034261703, -0.02899155206978321, -0.05007704347372055, -0.07067857682704926, 0.018967965617775917, -0.015122280456125736, 0.08373882621526718, -0.06438890844583511, 0.09255369007587433, 0.03757816180586815, 0.06040153652429581, -0.06196024641394615, 0.036594245582818985, -0.0957048311829567, 0.04036358743906021, -0.18029727041721344, 0.020131636410951614, -0.06424043327569962, 0.07420796155929565, -0.09121283888816833, -0.06763114035129547, 0.01250807661563158, 0.0014288199599832296, 0.06411498785018921, 0.09210434556007385, -0.18298490345478058, -0.06463468074798584, 0.15462462604045868, -0.08445699512958527, -0.1555076539516449, 0.1368887722492218, -0.05528882518410683, 0.040978651493787766, 0.064153291285038, 0.20090891420841217, 0.07188894599676132, -0.09106626361608505, -0.004987450782209635, 0.0026193030644208193, 0.07876509428024292, -0.046313125640153885, 0.08485009521245956, -0.0028335971292108297, 0.00010313008533557877, 0.013201212510466576, -0.05654865503311157, 0.05228465795516968, -0.0750117227435112, -0.0879184827208519, -0.03369678556919098, -0.10205438733100891, 0.05747784674167633, 0.05355866625905037, 0.05528298392891884, -0.109612837433815, -0.09269621968269348, 0.057799965143203735, 0.0654447004199028, -0.06882376223802567, 0.017941003665328026, -0.07033240795135498, 0.09491224586963654, -0.07503313571214676, -0.01997866854071617, -0.1464306116104126, -0.07473934441804886, 0.018691014498472214, -0.003030516440048814, 0.015507986769080162, -0.004587222822010517, 0.0752798393368721, 0.0772300735116005, -0.07193649560213089, -0.030842218548059464, -0.004880085587501526, 0.021768953651189804, -0.12968650460243225, -0.20009289681911469, -0.026284819468855858, -0.0311359241604805, 0.1629009246826172, -0.22829866409301758, 0.05195627361536026, 0.007457040715962648, 0.09410817176103592, 0.046495646238327026, -0.011024377308785915, -0.04130235314369202, 0.062483906745910645, -0.037061721086502075, -0.06519602984189987, 0.06413038074970245, 0.010227391496300697, -0.10626445710659027, -0.0342283695936203, -0.15880751609802246, 0.1856301873922348, 0.131498783826828, -0.0683882087469101, -0.06465654075145721, -0.01216110959649086, -0.03632574528455734, -0.022132840007543564, -0.04024219512939453, -0.006423947401344776, 0.13498258590698242, 0.0018579220632091165, 0.15297219157218933, -0.08141616731882095, -0.034119896590709686, 0.023233624175190926, -0.04398435726761818, -0.0002672898699529469, 0.11439693719148636, 0.09361250698566437, -0.10619887709617615, 0.15573808550834656, 0.19873477518558502, -0.07070717215538025, 0.1306433081626892, -0.0397045724093914, -0.04801829531788826, -0.03157314658164978, -0.007163232658058405, 0.013126522302627563, 0.1271701157093048, -0.1009141206741333, 0.0003582388744689524, 0.01311794389039278, 0.014746282249689102, 0.00931414682418108, -0.21583878993988037, -0.027333447709679604, 0.03931049630045891, -0.04696860536932945, 0.0018359834793955088, -0.02479085512459278, -0.007377060130238533, 0.09784010797739029, 0.01454139407724142, -0.07866544276475906, 0.04179780185222626, -0.007251551374793053, -0.0819501206278801, 0.2048874944448471, -0.07980458438396454, -0.1508423238992691, -0.14196431636810303, -0.07580775767564774, -0.04861433058977127, 0.024585815146565437, 0.06046135351061821, -0.07696457952260971, -0.039953578263521194, -0.11241401731967926, 0.008799061179161072, 0.032711103558540344, 0.02508358098566532, 0.011206055991351604, -0.009642300195991993, 0.08361811190843582, -0.09783951938152313, -0.015063097700476646, -0.03757363185286522, -0.03757522627711296, 0.02954190969467163, 0.026222556829452515, 0.11735924333333969, 0.1413019746541977, -0.017548900097608566, -0.0000950331159401685, -0.03434129059314728, 0.22887036204338074, -0.06405748426914215, -0.0032226459588855505, 0.13014435768127441, -0.035849347710609436, 0.050945382565259933, 0.15068873763084412, 0.06740693002939224, -0.08876881003379822, 0.016233069822192192, 0.040491726249456406, -0.031071985140442848, -0.20486898720264435, -0.03912169486284256, -0.0376809686422348, 0.017241353169083595, 0.0928138941526413, 0.030215544626116753, 0.010578757151961327, 0.06027858331799507, 0.02922721579670906, 0.06650832295417786, -0.009226063266396523, 0.06846646964550018, 0.10447236895561218, 0.03868938609957695, 0.13227199018001556, -0.04402589052915573, -0.055935002863407135, 0.038575511425733566, 0.007099768612533808, 0.18874551355838776, 0.02519029751420021, 0.14200139045715332, 0.048734746873378754, 0.15094374120235443, 0.0012501744786277413, 0.054286785423755646, -0.00969986617565155, -0.03839262202382088, -0.017505161464214325, -0.048904526978731155, -0.02008356899023056, 0.03235848620533943, -0.07449831068515778, 0.054739560931921005, -0.1109008640050888, -0.0011323296930640936, 0.06222762167453766, 0.22772762179374695, 0.06036593019962311, -0.32658928632736206, -0.08891569823026657, 0.03992414474487305, -0.019518176093697548, -0.02309887669980526, 0.018755940720438957, 0.1266053318977356, -0.05353774130344391, 0.035741325467824936, -0.07911644130945206, 0.08475514501333237, -0.044723428785800934, 0.047871917486190796, 0.07194032520055771, 0.0819663554430008, -0.013231463730335236, 0.06776055693626404, -0.2632790505886078, 0.26959702372550964, 0.023772425949573517, 0.05995829775929451, -0.05192210152745247, -0.00046006988850422204, 0.03141377493739128, 0.08439307659864426, 0.07701223343610764, -0.01686115562915802, -0.04757793992757797, -0.21108396351337433, -0.07114272564649582, 0.03183312341570854, 0.09332197904586792, -0.05227030813694, 0.1025385782122612, -0.03860238566994667, -0.0027261897921562195, 0.08327572047710419, 0.006162672769278288, -0.0748651996254921, -0.10008804500102997, -0.006268694996833801, 0.04643517732620239, -0.032923322170972824, -0.08435004949569702, -0.10238167643547058, -0.14139342308044434, 0.15460750460624695, -0.04997524991631508, -0.0275446567684412, -0.10691617429256439, 0.05873189494013786, 0.05239230394363403, -0.08289719372987747, 0.03298017755150795, 0.0009776432998478413, 0.10285370796918869, 0.017650024965405464, -0.06324261426925659, 0.1305132508277893, -0.07019633054733276, -0.16934426128864288, -0.07592026889324188, 0.10883848369121552, 0.017906824126839638, 0.05029130354523659, -0.0047722687013447285, 0.01708969473838806, -0.01843717321753502, -0.07063550502061844, 0.027602167800068855, 0.002561764093115926, 0.04962000250816345, 0.01637147180736065, -0.06040444225072861, -0.0069771697744727135, -0.058603428304195404, -0.026879901066422462, 0.160884290933609, 0.2808166444301605, -0.09050488471984863, 0.008033419959247112, 0.054510608315467834, -0.06256905198097229, -0.20910996198654175, 0.04284539446234703, 0.01655624620616436, 0.0015243407106027007, 0.05482759326696396, -0.13540874421596527, 0.11664983630180359, 0.09378532320261002, -0.03176164999604225, 0.09815111756324768, -0.27101486921310425, -0.13352997601032257, 0.12791360914707184, 0.14979949593544006, 0.10411272197961807, -0.16192759573459625, -0.042438261210918427, -0.03674411401152611, -0.123649001121521, 0.12024905532598495, -0.1402929276227951, 0.104274682700634, -0.005690371617674828, 0.045751288533210754, 0.004084419459104538, -0.057136714458465576, 0.1363590657711029, -0.008999768644571304, 0.10413070023059845, -0.060704104602336884, -0.03307170048356056, 0.04947143793106079, -0.06294715404510498, 0.015227450989186764, -0.12712588906288147, 0.030605437234044075, -0.06812340766191483, -0.027780616655945778, -0.049518972635269165, 0.030857987701892853, -0.0402078852057457, -0.06303081661462784, -0.0384034663438797, 0.03622547909617424, 0.038083940744400024, -0.010586954653263092, 0.15156885981559753, 0.004294510465115309, 0.15864937007427216, 0.12729422748088837, 0.08217719942331314, -0.07567261904478073, -0.022502969950437546, -0.0065290858037769794, -0.04269050434231758, 0.05505489557981491, -0.1478346735239029, 0.04508746787905693, 0.12921002507209778, 0.00043931687832809985, 0.1555328369140625, 0.07247107475996017, -0.029807722195982933, 0.006339344661682844, 0.06447741389274597, -0.16308103501796722, -0.1189703419804573, -0.009863609448075294, -0.03032008744776249, -0.1414354294538498, 0.05139964073896408, 0.13124629855155945, -0.06017496436834335, 0.00392473628744483, -0.002347326837480068, 0.020526858046650887, -0.032682351768016815, 0.17218580842018127, 0.07182610034942627, 0.050144486129283905, -0.08007017523050308, 0.07754264026880264, 0.0523238368332386, -0.0754089206457138, 0.008548853918910027, 0.042693816125392914, -0.08782921731472015, -0.05035265535116196, 0.051608216017484665, 0.20870733261108398, -0.033485665917396545, -0.048195838928222656, -0.15194489061832428, -0.12476460635662079, 0.04666203632950783, 0.17407849431037903, 0.09638179838657379, 0.007457722444087267, -0.030051294714212418, 0.008189000189304352, -0.09957855939865112, 0.1252480298280716, 0.037685826420784, 0.08666271716356277, -0.1533987820148468, 0.11675039678812027, -0.005632512271404266, 0.014792467467486858, -0.02460610307753086, 0.04960915073752403, -0.11911420524120331, -0.012455104850232601, -0.13264742493629456, -0.005730888806283474, -0.01855766586959362, 0.00907975248992443, 0.0007410231628455222, -0.06133699789643288, -0.059002965688705444, 0.00036975654074922204, -0.0973580852150917, -0.026529978960752487, 0.03586483374238014, 0.05713288486003876, -0.12328551709651947, -0.04850304126739502, 0.029240284115076065, -0.06714173406362534, 0.07461509108543396, 0.0017167949117720127, 0.025653131306171417, 0.05200382322072983, -0.17545291781425476, 0.02345380187034607, 0.051106106489896774, 0.01742970570921898, 0.050988391041755676, -0.09269269555807114, -0.020651234313845634, -0.009392534382641315, 0.043148789554834366, 0.024952488020062447, 0.09828472882509232, -0.12079755961894989, 0.009831896051764488, -0.0260003712028265, -0.06317707151174545, -0.05245015397667885, 0.030850393697619438, 0.08375246822834015, 0.014757565222680569, 0.20015022158622742, -0.09484125673770905, 0.022846782580018044, -0.20709377527236938, 0.010360308922827244, -0.005037834867835045, -0.12057637423276901, -0.11142470687627792, -0.05940909683704376, 0.05131002888083458, -0.06225113570690155, 0.14130134880542755, 0.02105492725968361, 0.03434867039322853, 0.040551088750362396, -0.023435553535819054, 0.04316083341836929, 0.03108074702322483, 0.2094893455505371, 0.026172544807195663, -0.04291068762540817, 0.03181064873933792, 0.03127478063106537, 0.1071501076221466, 0.08710607886314392, 0.18104912340641022, 0.16881032288074493, -0.030766820535063744, 0.0928591936826706, 0.05106201767921448, -0.051132868975400925, -0.14038167893886566, 0.05623435601592064, -0.05238479748368263, 0.1030072271823883, -0.024485347792506218, 0.21627482771873474, 0.08130666613578796, -0.1634959578514099, 0.01208711601793766, -0.06358878314495087, -0.0821504220366478, -0.11003175377845764, -0.050399865955114365, -0.09747681021690369, -0.1338365077972412, -0.013012351468205452, -0.1081344485282898, -0.0005006547435186803, 0.11257341504096985, -0.0017412283923476934, -0.011563612148165703, 0.1698230355978012, 0.0013492668513208628, 0.037683188915252686, 0.052978143095970154, 0.007325585000216961, -0.037592943757772446, -0.08514154702425003, -0.08799127489328384, 0.003854515962302685, -0.006642910186201334, 0.019654346629977226, -0.05047989264130592, -0.025224024429917336, 0.041325949132442474, -0.011932672001421452, -0.11841826885938644, 0.005828914698213339, 0.01987442560493946, 0.0473872646689415, 0.04209928214550018, 0.009369165636599064, 0.014053909108042717, 0.0026353555731475353, 0.21775691211223602, -0.07649394124746323, -0.05620577558875084, -0.09842351078987122, 0.21597519516944885, 0.006979482714086771, 0.004919437225908041, 0.005974362604320049, -0.09412545710802078, 0.02781265415251255, 0.22229568660259247, 0.19919194281101227, -0.09873068332672119, 0.005676899570971727, -0.007784360554069281, -0.008379300124943256, -0.032848939299583435, 0.09238005429506302, 0.10503392666578293, 0.012006760574877262, -0.08011578768491745, -0.042010750621557236, -0.03490293771028519, -0.009781880304217339, -0.035216160118579865, 0.06545113027095795, 0.03837990388274193, 0.02076558582484722, -0.053496479988098145, 0.06154783070087433, -0.027760423719882965, -0.1141093298792839, 0.04940066859126091, -0.2113800346851349, -0.1531151533126831, -0.020571470260620117, 0.11939773708581924, -0.017148656770586967, 0.0510362908244133, -0.031671345233917236, 0.004742169752717018, 0.06426740437746048, -0.020249495282769203, -0.06525348126888275, -0.06745404750108719, 0.06591960042715073, -0.10775215178728104, 0.24242988228797913, -0.03915407136082649, 0.034283265471458435, 0.13763898611068726, 0.03926514834165573, -0.07649526000022888, 0.07888150215148926, 0.05011666566133499, -0.06201796233654022, 0.03128170967102051, 0.07693019509315491, -0.04339104890823364, 0.1266605257987976, 0.061953406780958176, -0.13728436827659607, 0.01561457198113203, -0.054387763142585754, -0.09361380338668823, -0.05117334797978401, -0.03994036465883255, -0.06324756890535355, 0.1362641453742981, 0.1783173680305481, -0.03603227809071541, 0.002826298587024212, -0.04221564158797264, 0.014164990745484829, 0.0681971088051796, 0.04400170221924782, -0.03558284416794777, -0.22412903606891632, 0.026399999856948853, 0.05485064536333084, -0.005033142399042845, -0.30419546365737915, -0.08682624250650406, -0.012424547225236893, -0.03824201598763466, -0.09114395081996918, 0.09024719893932343, 0.12692059576511383, 0.04906238988041878, -0.06823951750993729, -0.08203181624412537, -0.07275653630495071, 0.1568075567483902, -0.12955747544765472, -0.09582880139350891 ]
null
null
transformers
# ONS-SOLAR-10.7B-AWQ ### Model Details - Base Model: [ONS-AI-RESEARCH/ONS-SOLAR-10.7B](https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B) - Quantization by AutoAWQ(https://github.com/casper-hansen/AutoAWQ)
{"language": ["ko"], "license": "cc-by-nc-4.0", "tags": ["SOLAR-10.7B", "AWQ"]}
text-generation
ONS-AI-RESEARCH/ONS-SOLAR-10.7B-AWQ
[ "transformers", "safetensors", "llama", "text-generation", "SOLAR-10.7B", "AWQ", "conversational", "ko", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
2024-02-14T07:58:34+00:00
[]
[ "ko" ]
TAGS #transformers #safetensors #llama #text-generation #SOLAR-10.7B #AWQ #conversational #ko #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# ONS-SOLAR-10.7B-AWQ ### Model Details - Base Model: ONS-AI-RESEARCH/ONS-SOLAR-10.7B - Quantization by AutoAWQ(URL
[ "# ONS-SOLAR-10.7B-AWQ", "### Model Details\n- Base Model: ONS-AI-RESEARCH/ONS-SOLAR-10.7B\n- Quantization by AutoAWQ(URL" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #SOLAR-10.7B #AWQ #conversational #ko #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# ONS-SOLAR-10.7B-AWQ", "### Model Details\n- Base Model: ONS-AI-RESEARCH/ONS-SOLAR-10.7B\n- Quantization by AutoAWQ(URL" ]
[ 77, 13, 34 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #SOLAR-10.7B #AWQ #conversational #ko #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# ONS-SOLAR-10.7B-AWQ### Model Details\n- Base Model: ONS-AI-RESEARCH/ONS-SOLAR-10.7B\n- Quantization by AutoAWQ(URL" ]
[ -0.052611470222473145, 0.03513207659125328, -0.002735910937190056, -0.012951208278536797, 0.08405614644289017, -0.04916226863861084, 0.23155778646469116, 0.02642827108502388, 0.03603234514594078, 0.04559815675020218, 0.12634296715259552, 0.18272262811660767, 0.055202968418598175, 0.09816976636648178, -0.07395239174365997, -0.16032667458057404, 0.07059008628129959, 0.027383409440517426, 0.10466185957193375, 0.05555542930960655, 0.06794038414955139, -0.043529488146305084, 0.08456052094697952, -0.0570395290851593, -0.07577705383300781, -0.0004733341047540307, -0.01627838984131813, -0.15915651619434357, 0.11322284489870071, 0.11121022701263428, -0.0056962622329592705, 0.09382916986942291, 0.014622866176068783, -0.18355228006839752, 0.011915601789951324, -0.04972677677869797, -0.10424724221229553, 0.0817793607711792, 0.0372309610247612, 0.060064129531383514, 0.10424426943063736, -0.03063223324716091, -0.04358833283185959, 0.032888226211071014, -0.00702986866235733, 0.016725150868296623, -0.020733026787638664, 0.03098706342279911, 0.1248270645737648, 0.04988490045070648, 0.013402190059423447, 0.18251080811023712, 0.026575881987810135, 0.10131043195724487, 0.04630502313375473, -0.3015351891517639, 0.00889070238918066, 0.10793805867433548, 0.02209334634244442, 0.043940361589193344, -0.04472668841481209, 0.08745168894529343, 0.06482353806495667, -0.04012801870703697, 0.022726140916347504, -0.04688161611557007, -0.08132901787757874, 0.05525098368525505, -0.08553478866815567, -0.014660576358437538, 0.3277135193347931, 0.0703749880194664, -0.07431384176015854, -0.06925223022699356, -0.11700863391160965, 0.01018076203763485, -0.03510144725441933, 0.05086946114897728, -0.01857427880167961, 0.041279662400484085, -0.0898750051856041, 0.06497760117053986, -0.1245570257306099, 0.0006047536735422909, -0.14323368668556213, 0.3026719093322754, -0.01234067976474762, 0.03573072701692581, -0.07472401112318039, 0.0654461532831192, 0.06916721165180206, -0.1069285050034523, 0.0017451836029067636, -0.03069501928985119, 0.041309330612421036, 0.043551135808229446, -0.04537622258067131, 0.04759994149208069, 0.06216391921043396, 0.23070061206817627, 0.10858822613954544, -0.017678452655673027, -0.005925342440605164, 0.04091603681445122, 0.0008700048783794045, 0.09373278170824051, 0.033616937696933746, -0.065799780189991, 0.05835335701704025, -0.04592704027891159, 0.13766685128211975, -0.049137651920318604, -0.14723844826221466, 0.01685173623263836, 0.005053877830505371, -0.0059635634534060955, 0.035595279186964035, 0.0598343163728714, -0.03185369074344635, 0.009274628013372421, 0.20727670192718506, -0.034804217517375946, -0.029901940375566483, 0.02433609776198864, 0.09115719795227051, -0.001934769214130938, 0.06568890810012817, 0.038367997854948044, 0.060184333473443985, -0.021774964407086372, -0.04974282532930374, -0.07519905269145966, 0.0029451297596096992, -0.02059532143175602, 0.02730199508368969, 0.15894965827465057, 0.10461928695440292, -0.22800354659557343, -0.10813716053962708, 0.033315062522888184, -0.030688006430864334, -0.07122962176799774, -0.11334630101919174, 0.013015315867960453, -0.06972233951091766, 0.02543814480304718, -0.04839580878615379, 0.039748795330524445, -0.019956832751631737, 0.04489823430776596, 0.11709120124578476, 0.09761910140514374, -0.13036781549453735, 0.017031477764248848, -0.09765833616256714, 0.0286240391433239, 0.01397665124386549, 0.04307309538125992, -0.05536172166466713, 0.1260293871164322, -0.04064866900444031, -0.0004904143279418349, -0.0869077518582344, 0.030430860817432404, 0.05375079810619354, 0.20970137417316437, -0.1389487236738205, -0.06478887051343918, 0.05905201658606529, -0.12718111276626587, -0.156798854470253, 0.06722314655780792, 0.044664040207862854, 0.05854608863592148, 0.00026070320745930076, 0.048197776079177856, -0.0355924554169178, 0.025906814262270927, -0.0942213386297226, 0.08583858609199524, 0.026280153542757034, -0.14048561453819275, 0.08064243942499161, 0.07273073494434357, -0.2277338206768036, 0.022470492869615555, 0.05393694341182709, 0.04979206994175911, -0.04783042520284653, -0.08392692357301712, -0.09224027395248413, -0.009524480439722538, -0.11701339483261108, -0.015460171736776829, 0.005956872366368771, -0.033814456313848495, -0.018578067421913147, -0.005289970897138119, 0.07437358796596527, -0.05989988520741463, 0.04890400543808937, -0.11266780644655228, 0.039720725268125534, -0.10839587450027466, 0.05280598998069763, -0.018164193257689476, 0.04595716670155525, 0.03059706836938858, -0.010386810638010502, -0.018209397792816162, -0.06884044408798218, -0.0013291183859109879, 0.046849824488162994, -0.026630427688360214, -0.010342348366975784, 0.11590367555618286, 0.03956974670290947, -0.12173278629779816, -0.1362091302871704, 0.0003395755193196237, -0.00876010861247778, 0.13659387826919556, -0.20558258891105652, 0.043020669370889664, 0.09173700958490372, 0.06240608170628548, -0.06005857512354851, 0.042564332485198975, 0.02149427868425846, 0.046267539262771606, -0.08490940183401108, 0.002323054475709796, 0.033153798431158066, 0.029997562989592552, -0.21984240412712097, 0.14305007457733154, -0.1799023151397705, 0.08250913769006729, 0.15264379978179932, -0.1125321313738823, 0.06218220293521881, -0.02555393986403942, -0.022600773721933365, -0.040597058832645416, 0.00376138836145401, -0.021507669240236282, -0.09316194802522659, -0.07687005400657654, 0.07828274369239807, -0.03529706969857216, -0.01677829958498478, 0.041885487735271454, -0.04066162183880806, -0.047675345093011856, 0.1545044183731079, 0.14302046597003937, -0.1296394020318985, 0.10203529894351959, 0.17856912314891815, -0.010223046876490116, 0.027546970173716545, -0.01630430854856968, -0.04243173077702522, -0.02586277388036251, -0.012538895010948181, 0.04768133535981178, 0.10684330761432648, -0.08700984716415405, 0.024556005373597145, 0.1014075055718422, -0.06752420961856842, 0.03277788683772087, -0.12025347352027893, -0.03674831986427307, -0.0025812648236751556, 0.03372121974825859, -0.0439135804772377, 0.026585467159748077, -0.07566560059785843, 0.051249705255031586, -0.054018285125494, -0.094587542116642, 0.07845503091812134, 0.005787086673080921, -0.10557839274406433, 0.22351416945457458, -0.03546519577503204, -0.17037224769592285, -0.25122734904289246, -0.07207750529050827, -0.05736478418111801, 0.01770769990980625, 0.0751170814037323, -0.04424136132001877, -0.10302459448575974, -0.09488903731107712, -0.0010266362223774195, 0.006780664902180433, 0.09143072366714478, 0.06009776517748833, -0.0032732405234128237, -0.013671809807419777, -0.07187400013208389, -0.0004393463605083525, 0.052505698055028915, -0.08397350460290909, 0.1825755387544632, -0.07069703191518784, 0.11576958000659943, 0.0922575518488884, 0.01892169378697872, -0.05156668648123741, 0.014126908034086227, 0.2074868530035019, -0.08767025917768478, 0.016167698428034782, 0.16415825486183167, 0.014949945732951164, 0.0005393899627961218, 0.1278810203075409, 0.06797996163368225, -0.09298611432313919, 0.0424564927816391, -0.09780878573656082, -0.09240996092557907, -0.18363043665885925, -0.10015363991260529, -0.04257728159427643, 0.11951693892478943, -0.002756643109023571, 0.10305709391832352, 0.15557996928691864, 0.18570367991924286, -0.043222300708293915, 0.024442343041300774, -0.021125981584191322, 0.13719400763511658, 0.18840056657791138, 0.06852172315120697, 0.1668424755334854, -0.09492050856351852, -0.01204207818955183, 0.0868779867887497, 0.11373382061719894, 0.014043597504496574, 0.14260521531105042, 0.03394421935081482, 0.03416169434785843, 0.09752164781093597, 0.11555268615484238, 0.10765446722507477, 0.03691231831908226, -0.07147107273340225, -0.0010936064645648003, -0.06584577262401581, 0.014927225187420845, 0.08734241127967834, -0.14507684111595154, -0.011778672225773335, 0.01746174320578575, -0.02459520660340786, 0.038736291229724884, 0.09804262965917587, 0.07387103885412216, -0.2159946858882904, -0.09493403136730194, 0.12333424389362335, -0.09270646423101425, -0.052834268659353256, 0.04999934509396553, 0.06354646384716034, -0.06331726163625717, 0.10389763116836548, -0.027419770136475563, 0.06644251197576523, -0.042045559734106064, 0.05631240829825401, 0.00674486393108964, -0.013769776560366154, -0.0015664740931242704, 0.09255810081958771, -0.3151417076587677, 0.1481446772813797, 0.032119959592819214, -0.00684951338917017, -0.046849027276039124, 0.026503607630729675, -0.08394397050142288, 0.12564541399478912, 0.04741575941443443, -0.02208942547440529, -0.09412369132041931, -0.03336228430271149, -0.06444399803876877, 0.09480661153793335, 0.023747824132442474, -0.05339091271162033, 0.08133350312709808, -0.0011511968914419413, 0.00690383929759264, 0.0035210230853408575, 0.07807249575853348, -0.09075795114040375, -0.1415214091539383, 0.05630730465054512, 0.15356940031051636, 0.11518871784210205, -0.05477912351489067, -0.01728764921426773, -0.24716825783252716, 0.08345874398946762, -0.23752321302890778, -0.03514046221971512, -0.0663319006562233, -0.05106387287378311, 0.046217601746320724, -0.05449896305799484, 0.024170124903321266, -0.012299420312047005, -0.012305899523198605, 0.01223307941108942, -0.16131621599197388, 0.08727379888296127, -0.1591293066740036, -0.14435364305973053, 0.022028449922800064, 0.06415290385484695, -0.0418875515460968, 0.02784646488726139, -0.03004482388496399, 0.0064041996374726295, -0.17326365411281586, -0.1460888385772705, 0.031934987753629684, -0.04897577688097954, 0.0004561862151604146, -0.03412207216024399, -0.035393718630075455, -0.0959661528468132, -0.03365616127848625, -0.14420901238918304, 0.038932915776968, 0.26210030913352966, -0.045241571962833405, 0.04425663501024246, 0.20230421423912048, -0.011045166291296482, -0.18361033499240875, -0.1779760718345642, -0.16200405359268188, 0.01886889338493347, 0.04968557879328728, -0.1237216591835022, 0.10538839548826218, 0.06333997845649719, -0.049455441534519196, -0.07546347379684448, -0.17304450273513794, -0.10216310620307922, 0.15246498584747314, -0.013049325905740261, 0.2110964059829712, -0.16756637394428253, -0.09472820162773132, -0.12561316788196564, -0.21452032029628754, 0.14538581669330597, -0.06782496720552444, 0.044890932738780975, -0.022366182878613472, 0.08625125885009766, -0.005463871173560619, -0.0036080118734389544, 0.21770219504833221, -0.008578287437558174, 0.0005245610955171287, -0.03929614648222923, 0.027950182557106018, 0.06865759193897247, 0.044813647866249084, 0.020915335044264793, -0.12476187199354172, 0.0570007748901844, -0.12560483813285828, -0.0181745532900095, 0.019128311425447464, 0.03671615198254585, -0.03307271748781204, -0.039898697286844254, -0.024517469108104706, -0.06501373648643494, -0.0011328948894515634, -0.01005776971578598, 0.23882783949375153, -0.025697164237499237, 0.09141457080841064, 0.21388688683509827, 0.1672831028699875, -0.013318932615220547, 0.1452060043811798, -0.06395619362592697, -0.08639518916606903, 0.06534548103809357, -0.12117113173007965, 0.010286940261721611, 0.02314816787838936, -0.030163433402776718, -0.030256614089012146, 0.07459773868322372, 0.06578779965639114, 0.017761021852493286, 0.12363766878843307, -0.13600941002368927, -0.1521981656551361, -0.03330034017562866, 0.19628025591373444, -0.01588663086295128, 0.20539046823978424, 0.1377648413181305, -0.05830440670251846, -0.03719135373830795, 0.028750592842698097, 0.03243696689605713, -0.04570816084742546, 0.06131303682923317, 0.009157557971775532, 0.08384012430906296, -0.13068203628063202, 0.06937175244092941, 0.026403319090604782, 0.04618856683373451, -0.041700467467308044, 0.015847569331526756, -0.0986863523721695, -0.06887534260749817, -0.0555909164249897, -0.06453576683998108, -0.27049365639686584, -0.13503098487854004, -0.04875025153160095, -0.13818807899951935, 0.03125203028321266, 0.07436008751392365, 0.031086914241313934, 0.013323472812771797, -0.0015693492023274302, 0.0073188478127121925, -0.04675353318452835, 0.021347157657146454, -0.08310939371585846, 0.090985968708992, -0.10876990854740143, -0.07839475572109222, -0.08144163340330124, 0.09660358726978302, -0.07587103545665741, 0.00046024384209886193, -0.12870968878269196, 0.0026139349211007357, -0.07396947592496872, -0.039984457194805145, -0.11857921630144119, 0.01227710023522377, 0.011545004323124886, -0.06442127376794815, -0.07843969017267227, 0.0055557540617883205, -0.018870772793889046, 0.04570098966360092, -0.005236627534031868, 0.06774792820215225, 0.0030126641504466534, 0.04610128328204155, 0.062047652900218964, -0.105015330016613, 0.08626473695039749, 0.06891331821680069, -0.04321051388978958, -0.02723340503871441, -0.12401829659938812, 0.08726615458726883, 0.0731804296374321, 0.022396419197320938, -0.02594599686563015, 0.028878716751933098, -0.033622074872255325, 0.08224140852689743, -0.023602614179253578, 0.01633470319211483, 0.16495130956172943, -0.07676781713962555, 0.0012704565888270736, -0.11346159130334854, -0.0316154770553112, -0.09428374469280243, -0.006967687513679266, -0.008571562357246876, -0.020844031125307083, 0.09610322117805481, -0.08161446452140808, -0.066016785800457, -0.09948664158582687, 0.04070696979761124, 0.007801348809152842, -0.14998382329940796, -0.1272144764661789, -0.06320490688085556, 0.05037836730480194, 0.0611424520611763, 0.2605127692222595, -0.11800835281610489, 0.015770621597766876, 0.021395452320575714, 0.12060867995023727, 0.05825667083263397, -0.009587492793798447, 0.3958779275417328, 0.1529913693666458, 0.08554261177778244, -0.06492525339126587, 0.033819567412137985, 0.00543602928519249, -0.03183634951710701, -0.07339729368686676, 0.06900456547737122, -0.153412327170372, 0.13454951345920563, 0.011652117595076561, -0.030439192429184914, -0.07935071736574173, 0.019433002918958664, -0.16954836249351501, 0.013429651968181133, -0.07473572343587875, 0.0962396189570427, 0.17339682579040527, -0.0014642664464190602, -0.010663872584700584, 0.045402757823467255, -0.017407823354005814, -0.11749885976314545, -0.1534976214170456, -0.10463947057723999, -0.19391845166683197, 0.02234538458287716, -0.08012556284666061, -0.03927513211965561, 0.13213218748569489, -0.01608610711991787, -0.01868443749845028, 0.045805539935827255, 0.09490793943405151, -0.009464403614401817, -0.03751075640320778, -0.05120725557208061, 0.030454864725470543, -0.10966809093952179, -0.06521013379096985, 0.002007962204515934, 0.03239213675260544, 0.00040680827805772424, 0.03806854039430618, 0.10458286106586456, 0.09206057339906693, -0.03750872239470482, -0.08401749283075333, -0.015594011172652245, -0.024136990308761597, -0.02533615753054619, 0.10220171511173248, -0.014902221038937569, -0.004141658078879118, 0.03953469544649124, 0.1920190304517746, -0.1148630902171135, -0.08709681779146194, -0.054441992193460464, 0.14427915215492249, -0.11297528445720673, 0.09481340646743774, 0.02210688218474388, -0.0809827521443367, -0.05531717464327812, 0.2266557514667511, 0.032258059829473495, 0.015496201813220978, 0.019131600856781006, 0.07893528789281845, -0.007471755612641573, 0.017249837517738342, 0.029175179079174995, 0.06865706294775009, 0.1842866688966751, -0.05251621454954147, -0.050741035491228104, 0.006583156064152718, -0.005253036972135305, -0.07602864503860474, 0.07522048056125641, -0.08811723440885544, -0.12189390510320663, -0.016737863421440125, 0.054978758096694946, -0.07214891165494919, -0.0070533170364797115, -0.006074666045606136, -0.07435350120067596, -0.027017030864953995, -0.054371725767850876, 0.12779538333415985, -0.01355760172009468, -0.017819242551922798, -0.07090501487255096, 0.022237859666347504, 0.00025040627224370837, 0.02709645964205265, -0.039846356958150864, 0.09785810112953186, 0.03122706711292267, -0.10723926872015, 0.044497210532426834, -0.029932305216789246, 0.10207677632570267, 0.08677016943693161, 0.042504169046878815, -0.07705476135015488, 0.14360131323337555, 0.021723013371229172, -0.1522902548313141, 0.0912124291062355, 0.045793406665325165, 0.02571726217865944, 0.08743828535079956, 0.03233679011464119, -0.06949753314256668, 0.020148111507296562, 0.05139488726854324, 0.02011042647063732, -0.015112213790416718, -0.03712089732289314, -0.06467751413583755, 0.09925886988639832, -0.04169817641377449, -0.09605388343334198, -0.018601609393954277, -0.028651311993598938, 0.06225608289241791, -0.034847136586904526, -0.0282264556735754, 0.04970046505331993, -0.13799963891506195, -0.026651889085769653, -0.02559482678771019, 0.10402298718690872, -0.1549462080001831, -0.012877506203949451, -0.035048533231019974, -0.010183890350162983, -0.11543890088796616, 0.017103122547268867, 0.21830616891384125, -0.03221387788653374, -0.07323231548070908, -0.2092398703098297, 0.00907464325428009, 0.09841112047433853, -0.08921262621879578, -0.08451498299837112 ]
null
null
null
# Model card for PTA-Text - A *Text Only* Click Model # Table of Contents 0. [TL;DR](#TL;DR) 1. [Using the model](#running-the-model) 2. [Contribution](#contribution) 3. [Citation](#citation) # TL;DR ## Details for PTA-Text: -> __Input__: An image with a header containing the desired UI click command. -> __Output__: [x,y] coordinate in relative coordinates 0-1 range. __PTA-Text__ is an image encoder based on Matcha, which is an extension of Pix2Struct # Installation ```bash pip install askui-ml-helper ``` Download the checkpoint ".pt" model from files in this model card. Or download it from your terminal ```bash curl -L "https://huggingface.co/AskUI/pta-text-0.1/resolve/main/pta-text-v0.1.pt?download=true" -o pta-text-v0.1.pt ``` ## Running the model ### Get the annotated image You can run the model in full precision on CPU: ```python import requests from PIL import Image from askui_ml_helper.utils.pta_text import PtaTextInference pta_text_inference = PtaTextInference("pta-text-v0.1.pt") url = "https://docs.askui.com/assets/images/how_askui_works_architecture-363bc8be35bd228e884c83d15acd19f7.png" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") prompt = 'click on the text "Operating System"' render_image = pta_text_inference.process_image_and_draw_circle(image, prompt, radius=15) render_image.show() >>> Uploaded image with "a red dot", where click operation is predicted ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f993a63777efc07d7f1e2ce/ZNwjdENJqn-1VpXDcm_Wg.png) ### Get the coordinates ```python import requests from PIL import Image from askui_ml_helper.utils.pta_text import PtaTextInference pta_text_inference = PtaTextInference("pta-text-v0.1.pt") url = "https://docs.askui.com/assets/images/how_askui_works_architecture-363bc8be35bd228e884c83d15acd19f7.png" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") prompt = 'click on the text "Operating System"' coordinates, _ = pta_text_inference.process_image(image, prompt) coordinates >>> [0.3981265723705292, 0.13768285512924194] ``` # Contribution An AskUI's open source initiative. This model is contributed and added to the Hugging Face ecosystem by [Murali Manohar @ AskUI](https://huggingface.co/gitlost-murali). # Citation TODO
{"license": "gpl-3.0", "tags": ["ui-automation", "automation", "agents", "llm-agents", "vision"]}
null
AskUI/pta-text-0.1
[ "ui-automation", "automation", "agents", "llm-agents", "vision", "license:gpl-3.0", "has_space", "region:us" ]
2024-02-14T07:58:56+00:00
[]
[]
TAGS #ui-automation #automation #agents #llm-agents #vision #license-gpl-3.0 #has_space #region-us
# Model card for PTA-Text - A *Text Only* Click Model # Table of Contents 0. TL;DR 1. Using the model 2. Contribution 3. Citation # TL;DR ## Details for PTA-Text: -> __Input__: An image with a header containing the desired UI click command. -> __Output__: [x,y] coordinate in relative coordinates 0-1 range. __PTA-Text__ is an image encoder based on Matcha, which is an extension of Pix2Struct # Installation Download the checkpoint ".pt" model from files in this model card. Or download it from your terminal ## Running the model ### Get the annotated image You can run the model in full precision on CPU: !image/png ### Get the coordinates # Contribution An AskUI's open source initiative. This model is contributed and added to the Hugging Face ecosystem by Murali Manohar @ AskUI. TODO
[ "# Model card for PTA-Text - A *Text Only* Click Model", "# Table of Contents\n\n0. TL;DR\n1. Using the model\n2. Contribution\n3. Citation", "# TL;DR", "## Details for PTA-Text: \n-> __Input__: An image with a header containing the desired UI click command.\n\n-> __Output__: [x,y] coordinate in relative coordinates 0-1 range.\n\n__PTA-Text__ is an image encoder based on Matcha, which is an extension of Pix2Struct", "# Installation\n\n\n\nDownload the checkpoint \".pt\" model from files in this model card.\nOr download it from your terminal", "## Running the model", "### Get the annotated image\n\nYou can run the model in full precision on CPU:\n\n\n!image/png", "### Get the coordinates", "# Contribution\n\nAn AskUI's open source initiative. This model is contributed and added to the Hugging Face ecosystem by Murali Manohar @ AskUI.\n\nTODO" ]
[ "TAGS\n#ui-automation #automation #agents #llm-agents #vision #license-gpl-3.0 #has_space #region-us \n", "# Model card for PTA-Text - A *Text Only* Click Model", "# Table of Contents\n\n0. TL;DR\n1. Using the model\n2. Contribution\n3. Citation", "# TL;DR", "## Details for PTA-Text: \n-> __Input__: An image with a header containing the desired UI click command.\n\n-> __Output__: [x,y] coordinate in relative coordinates 0-1 range.\n\n__PTA-Text__ is an image encoder based on Matcha, which is an extension of Pix2Struct", "# Installation\n\n\n\nDownload the checkpoint \".pt\" model from files in this model card.\nOr download it from your terminal", "## Running the model", "### Get the annotated image\n\nYou can run the model in full precision on CPU:\n\n\n!image/png", "### Get the coordinates", "# Contribution\n\nAn AskUI's open source initiative. This model is contributed and added to the Hugging Face ecosystem by Murali Manohar @ AskUI.\n\nTODO" ]
[ 37, 16, 21, 4, 76, 24, 5, 24, 6, 37 ]
[ "passage: TAGS\n#ui-automation #automation #agents #llm-agents #vision #license-gpl-3.0 #has_space #region-us \n# Model card for PTA-Text - A *Text Only* Click Model# Table of Contents\n\n0. TL;DR\n1. Using the model\n2. Contribution\n3. Citation# TL;DR## Details for PTA-Text: \n-> __Input__: An image with a header containing the desired UI click command.\n\n-> __Output__: [x,y] coordinate in relative coordinates 0-1 range.\n\n__PTA-Text__ is an image encoder based on Matcha, which is an extension of Pix2Struct# Installation\n\n\n\nDownload the checkpoint \".pt\" model from files in this model card.\nOr download it from your terminal## Running the model### Get the annotated image\n\nYou can run the model in full precision on CPU:\n\n\n!image/png### Get the coordinates# Contribution\n\nAn AskUI's open source initiative. This model is contributed and added to the Hugging Face ecosystem by Murali Manohar @ AskUI.\n\nTODO" ]
[ -0.07024060934782028, -0.03093462996184826, 0.00013397500151768327, 0.06351475417613983, 0.0828494057059288, 0.06092264875769615, 0.18037059903144836, 0.06297094374895096, 0.1024930328130722, 0.04073579981923103, 0.05896299332380295, 0.07495423406362534, 0.13733825087547302, 0.21525901556015015, -0.023556938394904137, -0.16499453783035278, 0.024303091689944267, -0.01880035735666752, 0.04548752307891846, 0.030462568625807762, 0.037950675934553146, -0.010945984162390232, 0.11532415449619293, 0.026114175096154213, -0.08008253574371338, -0.009237785823643208, -0.08790186047554016, -0.036945704370737076, 0.06624073535203934, 0.11695045232772827, 0.0010018859757110476, 0.018681438639760017, 0.007948529906570911, -0.08358985185623169, 0.03946736454963684, -0.0022617049980908632, -0.05730507895350456, 0.02173762023448944, 0.09157950431108475, 0.08592476695775986, 0.07064004987478256, 0.12799394130706787, 0.010728076100349426, 0.051097214221954346, -0.055641621351242065, -0.04522416368126869, -0.03140709176659584, 0.09988738596439362, 0.028233712539076805, 0.03206993266940117, 0.015669621527194977, 0.23064295947551727, -0.022933805361390114, 0.04800837114453316, 0.12805743515491486, -0.08276453614234924, -0.04608268663287163, 0.03990611061453819, 0.009059001691639423, 0.09631207585334778, 0.001081339200027287, 0.005039552226662636, 0.057774998247623444, -0.004611195530742407, 0.005727778188884258, -0.06618835777044296, -0.012662789784371853, -0.061717163771390915, -0.09564714878797531, -0.06405047327280045, 0.3352310359477997, 0.05590382590889931, -0.08865509182214737, -0.08607348799705505, -0.06431425362825394, 0.10045237094163895, -0.021951012313365936, -0.010807901620864868, 0.03995528072118759, 0.015738630667328835, 0.052412476390600204, -0.08775363117456436, -0.08443279564380646, -0.08498066663742065, -0.07611800730228424, 0.1737850308418274, 0.05656450614333153, 0.0868927538394928, -0.054708581417798996, 0.0332944430410862, -0.19802409410476685, -0.03887471556663513, -0.10610810667276382, -0.08065556734800339, 0.001632085768505931, -0.029765436425805092, -0.00014358125918079168, -0.1524960696697235, 0.0844806507229805, 0.15526480972766876, 0.011972615495324135, -0.013171453960239887, -0.057735323905944824, 0.07836656272411346, 0.13834992051124573, 0.11649007350206375, -0.16597704589366913, 0.03774351254105568, 0.03934788331389427, -0.04778066277503967, 0.03379135578870773, -0.042680248618125916, -0.07610367238521576, 0.016768520697951317, -0.0718335285782814, -0.02242632582783699, 0.12213089317083359, 0.06424198299646378, -0.04901795834302902, -0.10849368572235107, 0.22752121090888977, -0.0300601739436388, -0.032623883336782455, 0.021083692088723183, -0.08630640804767609, 0.06190985441207886, 0.08495387434959412, -0.03904833644628525, -0.08281522989273071, -0.0653836578130722, -0.06379764527082443, 0.02365289442241192, -0.06411812454462051, -0.09574851393699646, 0.021506043151021004, -0.18748335540294647, 0.017138609662652016, -0.23496851325035095, -0.08161305636167526, -0.019605590030550957, 0.056008122861385345, -0.011720830574631691, 0.00660867802798748, -0.023205004632472992, 0.0536377876996994, -0.08751286566257477, -0.00407159049063921, -0.13139137625694275, -0.03966182470321655, 0.01497432217001915, -0.09827224165201187, 0.12552043795585632, -0.14608585834503174, 0.06462705135345459, -0.0675651952624321, 0.016388557851314545, -0.08360359072685242, 0.05820998176932335, -0.006160358898341656, 0.05792281776666641, -0.02138466015458107, 0.013540861196815968, -0.011157821863889694, 0.009480318985879421, 0.08618728816509247, 0.224212646484375, 0.012139104306697845, -0.00009679307549959049, 0.14243273437023163, -0.11532903462648392, -0.19820623099803925, 0.1560285985469818, 0.04178716614842415, 0.13081003725528717, 0.010148442350327969, 0.17466120421886444, 0.05850673094391823, -0.2575914263725281, 0.0013368504587560892, 0.07701488584280014, -0.12793537974357605, -0.09869813174009323, 0.06828988343477249, 0.03432910889387131, -0.029806138947606087, 0.025099417194724083, -0.007693219929933548, 0.04526785761117935, -0.010369542986154556, -0.02305387705564499, 0.005307865794748068, -0.10698416829109192, -0.10595202445983887, -0.0038099312223494053, -0.006597745232284069, 0.027301114052534103, 0.01940477080643177, -0.09412535279989243, 0.13101166486740112, -0.01774684712290764, 0.01666565239429474, -0.13672149181365967, 0.24417227506637573, -0.15782348811626434, 0.018803125247359276, -0.06427466869354248, 0.02607562579214573, 0.04634157195687294, 0.05756246671080589, 0.1172783374786377, 0.03767041489481926, 0.03998709097504616, 0.05178370326757431, 0.05811871215701103, -0.0541701503098011, 0.011325405910611153, -0.06342870742082596, 0.02778208628296852, -0.10631909966468811, -0.02608521841466427, -0.08033347874879837, 0.051482927054166794, -0.03688117489218712, 0.05492633581161499, 0.02053683251142502, -0.03187033161520958, 0.04314388334751129, 0.010738853365182877, 0.06458070874214172, -0.014187327586114407, -0.05731644108891487, -0.007320409640669823, 0.025411250069737434, 0.05643315240740776, -0.10609693080186844, 0.09068100899457932, -0.020199673250317574, 0.10796497017145157, 0.08591168373823166, -0.10706306248903275, -0.061544205993413925, 0.007918501272797585, -0.012448742054402828, -0.022153913974761963, -0.05933097377419472, -0.01915222406387329, 0.05644649639725685, 0.023037493228912354, 0.06231136620044708, -0.1112818568944931, 0.06730674207210541, 0.03728890046477318, -0.11549783498048782, -0.06204940751194954, 0.013354236260056496, 0.17393279075622559, -0.06145532429218292, 0.08818963915109634, -0.022095391526818275, -0.02256331965327263, 0.1940356343984604, 0.06048613041639328, -0.0651601031422615, -0.015088695101439953, 0.12242794781923294, 0.024666139855980873, 0.11167319864034653, -0.10849394649267197, 0.04675494506955147, 0.04910161346197128, -0.012484454549849033, 0.05010947585105896, -0.09351453185081482, -0.030537575483322144, 0.029125642031431198, 0.0258184801787138, -0.04198451712727547, 0.0596318282186985, -0.028905222192406654, 0.10000495612621307, 0.06105860322713852, 0.0587417408823967, -0.01469417568296194, -0.01834091544151306, -0.10591346025466919, 0.1275676190853119, -0.02352292463183403, -0.2733903229236603, -0.10851734131574631, -0.0621056966483593, -0.06920001655817032, 0.031147880479693413, 0.05937139689922333, -0.03534707427024841, 0.00926632434129715, -0.08853930234909058, -0.07808702439069748, 0.05132189765572548, -0.043858032673597336, -0.04898323863744736, 0.01359726395457983, -0.04725470393896103, -0.08363352715969086, -0.02512729912996292, -0.03345342352986336, -0.07909400016069412, 0.1441435068845749, -0.11523626744747162, 0.18168294429779053, 0.08179109543561935, 0.02198071964085102, -0.0013248033355921507, -0.004868761170655489, 0.1413954645395279, -0.0702318549156189, 0.05474298819899559, 0.17899711430072784, 0.011858527548611164, 0.08323316276073456, 0.1684398055076599, -0.00008460052049485967, -0.11163333058357239, 0.001120327040553093, -0.13290534913539886, -0.10017280280590057, -0.12870055437088013, -0.041192661970853806, -0.11212006211280823, 0.14804336428642273, 0.05231909081339836, -0.014112353324890137, 0.08960585296154022, 0.18326440453529358, 0.01590736210346222, 0.12870602309703827, -0.033473674207925797, 0.11803944408893585, -0.010903134942054749, -0.01418348029255867, 0.05898601934313774, -0.08318725228309631, 0.01957450807094574, 0.19581227004528046, 0.05775795131921768, 0.18318510055541992, -0.05489937216043472, 0.06519478559494019, 0.06995543837547302, 0.0988122969865799, 0.023273753002285957, 0.09621379524469376, -0.025797506794333458, 0.025473685935139656, -0.03970128670334816, -0.03875960037112236, -0.13239941000938416, 0.12877927720546722, 0.09895727038383484, -0.07467152178287506, 0.033776480704545975, -0.002317412057891488, 0.05239477753639221, 0.1455608606338501, -0.0007133772596716881, -0.24174854159355164, -0.010972270742058754, 0.006751436274498701, 0.07099828869104385, -0.09088409692049026, 0.0006101514445617795, 0.09980658441781998, -0.1009245365858078, 0.045934103429317474, 0.035556137561798096, 0.11190332472324371, -0.061659518629312515, -0.06454968452453613, -0.048391468822956085, 0.08627782016992569, -0.0320892371237278, 0.0034663258120417595, -0.13525374233722687, 0.10729192942380905, -0.02128494530916214, 0.013327231630682945, -0.11002758145332336, -0.02337237261235714, 0.08381514251232147, 0.19774821400642395, 0.05884784087538719, 0.026696855202317238, 0.09729117900133133, -0.10696244239807129, -0.057978108525276184, 0.01944919489324093, -0.020411567762494087, -0.009342140518128872, -0.024160893633961678, 0.018799854442477226, 0.0816163644194603, -0.1001395434141159, 0.18030886352062225, -0.022163113579154015, -0.0756426602602005, 0.03573395311832428, 0.040410950779914856, 0.1123664379119873, -0.006482864264398813, 0.030673028901219368, 0.042402420192956924, 0.07172893732786179, -0.00491706095635891, -0.08027108013629913, -0.12952028214931488, -0.020592426881194115, -0.04706817865371704, -0.08295939117670059, -0.007005867548286915, -0.07835549116134644, -0.010684321634471416, -0.01910165697336197, -0.049563534557819366, 0.07538178563117981, -0.1273614764213562, 0.0013455923181027174, 0.0026126219891011715, -0.07532653957605362, 0.0302719809114933, -0.0019101640209555626, -0.010575925000011921, -0.04640382155776024, -0.03896958753466606, -0.1016237810254097, 0.0064744544215500355, 0.13082975149154663, -0.04051750525832176, 0.10835468769073486, -0.05447620525956154, -0.17631100118160248, -0.05753497779369354, -0.06696934998035431, 0.06403007358312607, 0.20343758165836334, -0.02515631541609764, 0.06525834649801254, 0.20756717026233673, -0.03569212183356285, -0.2090281844139099, -0.02703774720430374, 0.0067846267484128475, -0.01214195229113102, 0.03296877071261406, -0.16578969359397888, -0.04322509840130806, -0.015857074409723282, -0.03750772401690483, 0.16422799229621887, -0.14943626523017883, -0.09171820431947708, 0.06998194754123688, 0.14368408918380737, 0.1967044472694397, -0.09431734681129456, -0.017070414498448372, -0.004476485308259726, -0.15468750894069672, 0.020621636882424355, 0.06673116981983185, 0.08558575063943863, -0.03405775874853134, 0.07733006030321121, 0.028584472835063934, -0.028442349284887314, 0.049824368208646774, -0.13263455033302307, 0.03401123732328415, -0.1167040541768074, 0.04775110259652138, -0.014137647114694118, -0.01783645525574684, 0.19418565928936005, 0.04366929084062576, 0.0159444622695446, -0.10723218321800232, -0.05384134501218796, -0.019662916660308838, 0.036465682089328766, 0.031837914139032364, -0.12443534284830093, -0.08018620312213898, 0.025267697870731354, 0.05942913889884949, 0.053599946200847626, -0.0148650873452425, -0.06338276714086533, 0.02728460170328617, 0.10087712854146957, 0.0688839927315712, -0.06657769531011581, -0.011146806180477142, -0.07403943687677383, -0.028694910928606987, 0.12142186611890793, -0.11658535152673721, -0.0017394954338669777, 0.034801214933395386, -0.0008805095567367971, 0.10455824434757233, 0.011759701184928417, -0.11500779539346695, 0.12210999429225922, 0.05942409485578537, -0.07502428442239761, -0.09946699440479279, 0.0077584353275597095, 0.08504358679056168, 0.0198726337403059, 0.05595868080854416, 0.09712345153093338, -0.06263094395399094, 0.0073578013107180595, -0.053975529968738556, 0.05532553419470787, -0.020060790702700615, 0.012491974979639053, 0.11800403892993927, -0.038922928273677826, -0.00907939299941063, 0.06537193059921265, 0.007450628560036421, -0.0859345942735672, 0.04912595450878143, 0.04394588991999626, -0.0692199096083641, -0.10224128514528275, -0.006172866560518742, -0.03250662237405777, -0.04175787419080734, -0.12207949161529541, -0.016567716374993324, 0.009241072461009026, 0.060636620968580246, 0.056141674518585205, 0.03194404020905495, -0.042140670120716095, 0.03950328379869461, 0.04738008603453636, -0.08074291050434113, -0.013786371797323227, -0.0696619376540184, 0.008671386167407036, -0.06003425642848015, -0.15405243635177612, 0.08044618368148804, 0.08994560688734055, -0.0531507171690464, -0.10938479006290436, -0.1687549203634262, -0.009694487787783146, -0.05979368835687637, 0.06130945309996605, -0.09838201105594635, 0.022223571315407753, -0.005574531387537718, -0.04732661321759224, -0.07284791022539139, 0.04305099695920944, -0.06167251616716385, 0.02931571565568447, -0.00353308767080307, 0.05027085170149803, -0.06853349506855011, -0.036549098789691925, 0.061792418360710144, -0.03348977863788605, 0.07610831409692764, 0.017465980723500252, -0.11890848726034164, -0.1063980683684349, -0.10932973772287369, 0.023566177114844322, -0.029209554195404053, 0.07793369889259338, 0.022828560322523117, -0.05483424663543701, 0.07072607427835464, 0.025803616270422935, -0.04555143415927887, -0.04965813085436821, 0.18198181688785553, -0.031557951122522354, 0.13139916956424713, -0.051488541066646576, -0.08320075273513794, -0.0876312181353569, 0.046865303069353104, 0.01666051521897316, 0.06534339487552643, 0.0010851998813450336, -0.009701654314994812, 0.10144045203924179, -0.08663001656532288, -0.027452170848846436, 0.08161941915750504, 0.01240510307252407, 0.03266730532050133, -0.11134717613458633, 0.01999705284833908, -0.015451149083673954, 0.1927919089794159, 0.03360578790307045, -0.09643416851758957, -0.011454515159130096, 0.11930550634860992, 0.042888011783361435, -0.09100551903247833, -0.033155106008052826, -0.035298895090818405, 0.009070529602468014, -0.06021316349506378, 0.02914254181087017, 0.0036495274398475885, -0.06309006363153458, 0.01267995685338974, -0.04235908389091492, -0.027611734345555305, 0.014130826108157635, 0.0067186253145337105, 0.016995318233966827, -0.017489023506641388, -0.1679774522781372, -0.008718320168554783, 0.037480928003787994, -0.022160787135362625, 0.12518487870693207, 0.170170858502388, -0.07740440964698792, 0.04428786039352417, 0.07117626070976257, -0.004594535566866398, -0.0897158831357956, -0.24464848637580872, -0.052761852741241455, -0.17190466821193695, 0.06874923408031464, -0.07976125925779343, -0.012576012872159481, 0.07998548448085785, 0.007503117434680462, 0.009835941717028618, 0.125851109623909, -0.11173773556947708, -0.07589304447174072, 0.01625005714595318, -0.03737272322177887, -0.05512140318751335, -0.06363082677125931, -0.015715710818767548, 0.02959689125418663, -0.01113572996109724, 0.06441500037908554, 0.05401098355650902, 0.04246039316058159, 0.059929415583610535, -0.049515388906002045, -0.053985826671123505, -0.05359708517789841, 0.004151335917413235, -0.08152233064174652, 0.07242146879434586, 0.003034094115719199, 0.0009743997361510992, 0.040817201137542725, 0.06749320030212402, -0.026329444721341133, -0.04186060279607773, -0.19293899834156036, 0.03586144372820854, -0.13066235184669495, -0.0563523955643177, -0.009835145436227322, -0.03822673112154007, -0.05945400893688202, 0.3424270451068878, 0.174321711063385, -0.08535939455032349, -0.024228962138295174, -0.01137098204344511, 0.024528605863451958, -0.025121167302131653, 0.14911969006061554, 0.02006825990974903, 0.22305457293987274, -0.018981965258717537, 0.06458007544279099, -0.07739118486642838, -0.023530276492238045, 0.027623746544122696, -0.03644101321697235, -0.018828783184289932, -0.053779393434524536, -0.0910172164440155, 0.056309085339307785, -0.15023410320281982, -0.04958455264568329, 0.1390596628189087, -0.012523368000984192, -0.0008227358339354396, -0.042490363121032715, -0.016840791329741478, 0.003693519625812769, 0.06823818385601044, -0.02446591667830944, -0.009169467724859715, 0.07900002598762512, 0.022967129945755005, -0.154061421751976, -0.01593862660229206, 0.05214236304163933, -0.11409511417150497, 0.14607678353786469, -0.03768569976091385, 0.10594747960567474, 0.05462181568145752, 0.025478504598140717, -0.06751476973295212, 0.07883670181035995, 0.0016935021849349141, -0.04251041263341904, -0.04897092282772064, 0.006172683089971542, -0.054739098995923996, 0.012440585531294346, 0.05553677678108215, -0.07548170536756516, 0.014133364893496037, 0.01906711421906948, 0.08404533565044403, -0.06075255200266838, 0.05755549296736717, -0.17136691510677338, 0.13767826557159424, 0.03378971293568611, -0.004218341317027807, -0.07016251236200333, -0.09980250895023346, 0.08848630636930466, 0.028008010238409042, -0.10558835417032242, -0.009601225145161152, -0.11565752327442169, -0.0539766326546669, -0.04299517720937729, 0.03644862025976181, -0.15604464709758759, -0.011767805553972721, -0.08534178882837296, -0.03353823348879814, -0.02550501748919487, 0.03364069014787674, 0.08697888255119324, 0.01908869296312332, -0.03925621509552002, -0.08148014545440674, 0.029347827658057213, 0.044257454574108124, -0.011134411208331585, -0.0760340467095375 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300m-england-0214-parallel-6-23-avatar This model is a fine-tuned version of [vitouphy/wav2vec2-xls-r-300m-english](https://huggingface.co/vitouphy/wav2vec2-xls-r-300m-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3132 - Wer: 0.1562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1227 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3737 | 1.0 | 1227 | 0.2256 | 0.2230 | | 0.2198 | 2.0 | 2454 | 0.1969 | 0.1926 | | 0.1735 | 3.0 | 3681 | 0.1860 | 0.1772 | | 0.1398 | 4.0 | 4908 | 0.1814 | 0.1758 | | 0.1138 | 5.0 | 6135 | 0.1861 | 0.1698 | | 0.0949 | 6.0 | 7362 | 0.1818 | 0.1636 | | 0.0766 | 7.0 | 8589 | 0.1907 | 0.1626 | | 0.0635 | 8.0 | 9816 | 0.1989 | 0.1618 | | 0.0521 | 9.0 | 11043 | 0.2132 | 0.1601 | | 0.0397 | 10.0 | 12270 | 0.2270 | 0.1570 | | 0.0313 | 11.0 | 13497 | 0.2336 | 0.1576 | | 0.0234 | 12.0 | 14724 | 0.2622 | 0.1577 | | 0.0177 | 13.0 | 15951 | 0.2771 | 0.1573 | | 0.0131 | 14.0 | 17178 | 0.2950 | 0.1568 | | 0.0101 | 15.0 | 18405 | 0.3132 | 0.1562 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.14.7 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "vitouphy/wav2vec2-xls-r-300m-english", "model-index": [{"name": "wav2vec2-300m-england-0214-parallel-6-23-avatar", "results": []}]}
automatic-speech-recognition
Lin25/wav2vec2-300m-england-0214-parallel-6-23-avatar
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:vitouphy/wav2vec2-xls-r-300m-english", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-14T07:59:26+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-vitouphy/wav2vec2-xls-r-300m-english #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-300m-england-0214-parallel-6-23-avatar =============================================== This model is a fine-tuned version of vitouphy/wav2vec2-xls-r-300m-english on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3132 * Wer: 0.1562 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1227 * num\_epochs: 15 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.0.dev0 * Pytorch 1.12.1+cu113 * Datasets 2.14.7 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1227\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 1.12.1+cu113\n* Datasets 2.14.7\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-vitouphy/wav2vec2-xls-r-300m-english #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1227\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 1.12.1+cu113\n* Datasets 2.14.7\n* Tokenizers 0.15.0" ]
[ 80, 159, 4, 40 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-vitouphy/wav2vec2-xls-r-300m-english #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1227\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 1.12.1+cu113\n* Datasets 2.14.7\n* Tokenizers 0.15.0" ]
[ -0.12465691566467285, 0.13422846794128418, -0.0033921669237315655, 0.04942885786294937, 0.08694503456354141, 0.02121187187731266, 0.10567963868379593, 0.14321152865886688, -0.05826539918780327, 0.12673917412757874, 0.11136090010404587, 0.0845835879445076, 0.07596516609191895, 0.1459297239780426, -0.02841995656490326, -0.29495757818222046, 0.0224810428917408, -0.016161799430847168, -0.1142239198088646, 0.10135062783956528, 0.08888418972492218, -0.10815936326980591, 0.030373359099030495, 0.006174994166940451, -0.08791209757328033, -0.013285565190017223, -0.03192336484789848, -0.0618252195417881, 0.10925420373678207, 0.05721037834882736, 0.0789627730846405, 0.038640573620796204, 0.0832996517419815, -0.27146294713020325, 0.013236995786428452, 0.05100950598716736, 0.02037181332707405, 0.07485561817884445, 0.09717301279306412, -0.01830236427485943, 0.10736017674207687, -0.10179122537374496, 0.07814016193151474, 0.03811271861195564, -0.09145806729793549, -0.3031558394432068, -0.07879561185836792, 0.05247556045651436, 0.14443330466747284, 0.08126156777143478, -0.03472461551427841, 0.07135944068431854, -0.056889958679676056, 0.07816186547279358, 0.22543039917945862, -0.2625831067562103, -0.06478251516819, -0.01270261686295271, 0.046449512243270874, 0.05287967249751091, -0.1144741028547287, -0.019110586494207382, 0.020056825131177902, 0.01791469193994999, 0.08630358427762985, 0.01640322245657444, 0.05626271665096283, 0.019265267997980118, -0.1485597789287567, -0.031407251954078674, 0.11930002272129059, 0.09399271011352539, -0.01598619483411312, -0.1202399805188179, -0.033291932195425034, -0.1576727032661438, -0.05974581465125084, -0.011626476421952248, 0.0199188981205225, -0.035975679755210876, -0.08254094421863556, 0.020756477490067482, -0.06593198329210281, -0.07009761035442352, 0.013556314632296562, 0.13418807089328766, 0.04965931922197342, -0.03940175846219063, 0.029303492978215218, 0.08000955730676651, 0.039811696857213974, -0.1509731411933899, 0.0010899495100602508, 0.030081072822213173, -0.10689733177423477, -0.012487096711993217, -0.01752214878797531, -0.0037971828132867813, 0.031802933663129807, 0.14865058660507202, -0.02718919701874256, 0.09470890462398529, 0.02501765266060829, 0.010753295384347439, -0.08100786060094833, 0.14188045263290405, -0.06458915770053864, -0.08041055500507355, -0.04937044158577919, 0.11280500143766403, 0.023620815947651863, -0.016562215983867645, -0.07768469303846359, 0.02609618753194809, 0.0910460501909256, 0.04789042845368385, -0.002183925360441208, 0.00941375084221363, -0.07486971467733383, -0.023043794557452202, 0.04457709193229675, -0.10666938871145248, 0.05648881942033768, 0.040808551013469696, -0.0424368754029274, -0.005682796239852905, -0.0050771646201610565, 0.03140757232904434, -0.005957894492894411, 0.11618456989526749, -0.06692945957183838, -0.01908540353178978, -0.052657317370176315, -0.09988176077604294, 0.03331562876701355, -0.03511057794094086, -0.0008417097269557416, -0.07353773713111877, -0.08586865663528442, -0.05412377789616585, 0.05573324114084244, -0.057308558374643326, -0.062025632709264755, -0.07954680919647217, -0.05664779990911484, 0.0692707896232605, -0.009371276944875717, 0.1232767179608345, -0.0534224733710289, 0.09213440120220184, 0.004930954892188311, 0.0687665119767189, 0.05363429710268974, 0.05418974533677101, -0.03217229247093201, 0.04693179205060005, -0.1655811071395874, 0.07958008348941803, -0.10107725858688354, 0.0462600402534008, -0.16477049887180328, -0.08749037981033325, -0.010742590762674809, 0.0037504418287426233, 0.0900646448135376, 0.11584417521953583, -0.1839005947113037, -0.09751975536346436, 0.1800609976053238, -0.08436178416013718, -0.10292261838912964, 0.14855927228927612, -0.018097100779414177, -0.04493969306349754, 0.03095185197889805, 0.18467818200588226, 0.09480796754360199, -0.1019318625330925, -0.014242682605981827, -0.048202622681856155, 0.125900000333786, 0.030600544065237045, 0.11503001302480698, -0.055704984813928604, 0.015985598787665367, -0.006210555788129568, -0.022121546790003777, 0.05842384323477745, -0.07523756474256516, -0.08422631770372391, -0.013014234602451324, -0.07502517849206924, 0.026611171662807465, 0.05130164325237274, 0.025490496307611465, -0.08779723197221756, -0.13890734314918518, 0.009012717753648758, 0.112187460064888, -0.09905129671096802, 0.02573724091053009, -0.07166428864002228, 0.06583460420370102, -0.02471533976495266, -0.005061803851276636, -0.13695982098579407, -0.011253075674176216, 0.02891036868095398, -0.04860220104455948, 0.006382744759321213, -0.023464569821953773, 0.07495082914829254, 0.05582648143172264, -0.0624234601855278, -0.06751437485218048, -0.03387540578842163, 0.010957157239317894, -0.07078094780445099, -0.2536008656024933, -0.04739753529429436, -0.041560348123311996, 0.17449812591075897, -0.23287859559059143, 0.007978971116244793, 0.009731430560350418, 0.14297343790531158, 0.0404483899474144, -0.049616739153862, -0.004274751991033554, 0.05847722664475441, -0.029938064515590668, -0.06424052268266678, 0.03185473382472992, -0.012096774764358997, -0.13092069327831268, 0.010333947837352753, -0.1443648487329483, 0.09557273238897324, 0.10555122047662735, 0.043106622993946075, -0.08215141296386719, -0.08893183618783951, -0.056019674986600876, -0.04625513032078743, -0.032676562666893005, -0.005051587242633104, 0.1368291676044464, 0.022296762093901634, 0.09638182073831558, -0.07204465568065643, -0.03881654888391495, 0.03599295765161514, 0.014294483698904514, -0.04407728835940361, 0.16101762652397156, 0.07079316675662994, -0.07004653662443161, 0.10077449679374695, 0.13098689913749695, -0.04669530689716339, 0.12386652827262878, -0.06117767095565796, -0.09604673832654953, -0.03909028694033623, 0.028104135766625404, 0.038013212382793427, 0.10401234775781631, -0.12499450147151947, 0.00011558888218132779, 0.020688150078058243, 0.02525905705988407, 0.0072943586856126785, -0.17663924396038055, -0.01109160203486681, 0.051894038915634155, -0.05910249054431915, -0.0072919102385640144, -0.014158312231302261, -0.018293175846338272, 0.08396372199058533, 0.013992696069180965, -0.06050700694322586, -0.02008850686252117, -0.015141600742936134, -0.10052376240491867, 0.18735739588737488, -0.12100609391927719, -0.13682174682617188, -0.1107015609741211, -0.024012308567762375, -0.004433472640812397, -0.013666593469679356, 0.054017987102270126, -0.11229386925697327, -0.042320843786001205, -0.08469092100858688, 0.02971469797194004, -0.059263020753860474, 0.0501706637442112, 0.024538688361644745, 0.006641092710196972, 0.04327184706926346, -0.0882573127746582, 0.021516606211662292, -0.019353307783603668, 0.006218044552952051, 0.01273646391928196, 0.013273934833705425, 0.09901361912488937, 0.16751913726329803, 0.051268115639686584, 0.025012869387865067, -0.047743625938892365, 0.17528291046619415, -0.1031772792339325, 0.005883621983230114, 0.09682352095842361, 0.0012472504749894142, 0.04982517287135124, 0.16714616119861603, 0.04836713522672653, -0.08160148561000824, 0.02094469591975212, 0.02905653603374958, -0.010264560580253601, -0.23609279096126556, -0.04486323148012161, -0.05981893837451935, -0.008341739885509014, 0.11863920092582703, 0.040315914899110794, -0.02237948402762413, 0.03303240239620209, -0.014322753064334393, -0.004443172365427017, 0.014414799399673939, 0.06731575727462769, 0.08740384131669998, 0.04183557257056236, 0.12013236433267593, -0.025197764858603477, -0.028503015637397766, 0.039633914828300476, -0.006057452410459518, 0.22490598261356354, 0.013164778240025043, 0.15907412767410278, 0.03730512037873268, 0.14815069735050201, 0.013581855222582817, 0.04572770744562149, 0.013271297328174114, -0.025757092982530594, 0.0042893411591649055, -0.06349009275436401, -0.0153342979028821, 0.06815525889396667, 0.10480351746082306, 0.015667922794818878, -0.11365535855293274, 0.016864264383912086, 0.028722455725073814, 0.2802526652812958, 0.10110834985971451, -0.2881394326686859, -0.08494052290916443, 0.024226831272244453, -0.06429651379585266, -0.023689718917012215, 0.030396588146686554, 0.10517676174640656, -0.055776551365852356, 0.08272742480039597, -0.05832483991980553, 0.07868875563144684, -0.05875645577907562, -0.0075154732912778854, 0.040583688765764236, 0.0838610976934433, -0.011864845640957355, 0.05436096340417862, -0.23350310325622559, 0.300857812166214, 0.002144297119230032, 0.06185218319296837, -0.041023120284080505, 0.02903771586716175, 0.023582953959703445, -0.02367059886455536, 0.09743359684944153, -0.012309964746236801, -0.14949147403240204, -0.1586543619632721, -0.10755860805511475, 0.023196902126073837, 0.11868114769458771, -0.06869807839393616, 0.10237953066825867, -0.022582538425922394, -0.035772960633039474, 0.06107112765312195, -0.0437554307281971, -0.11314672976732254, -0.13791383802890778, 0.01837385818362236, 0.02390027418732643, 0.04385851323604584, -0.08861307799816132, -0.11458326876163483, -0.09115555882453918, 0.15207993984222412, -0.09642759710550308, -0.008278883993625641, -0.13828150928020477, 0.07758791744709015, 0.1609092801809311, -0.08590144664049149, 0.04970823600888252, 0.006224216427654028, 0.12112695723772049, -0.004389591049402952, -0.021128958091139793, 0.12441623210906982, -0.08886036276817322, -0.19982311129570007, -0.07579217851161957, 0.16541942954063416, 0.039482783526182175, 0.06833011656999588, -0.020997148007154465, 0.041578106582164764, -0.009769851341843605, -0.0781874731183052, 0.08743233233690262, 0.05540665239095688, 0.022205648943781853, 0.038115572184324265, -0.023264657706022263, -0.03284603729844093, -0.06224752217531204, -0.07518796622753143, 0.13796380162239075, 0.3099845349788666, -0.09964250773191452, 0.054175637662410736, 0.07267068326473236, -0.04165518283843994, -0.14749953150749207, -0.011213596910238266, 0.11096030473709106, 0.032545384019613266, 0.019626058638095856, -0.1909829080104828, 0.04654333367943764, 0.08012045174837112, -0.022109389305114746, 0.054848238825798035, -0.299514502286911, -0.13938665390014648, 0.11130546778440475, 0.0951491966843605, -0.023050449788570404, -0.1629284918308258, -0.07291495054960251, -0.01841890625655651, -0.08837102353572845, 0.058659877628088, -0.021678363904356956, 0.10548903048038483, 0.0014504729770123959, 0.0050860196352005005, 0.014934753999114037, -0.056419748812913895, 0.15836037695407867, -0.0077098277397453785, 0.03126494586467743, -0.0105955321341753, 0.022249100729823112, -0.03787294030189514, -0.0649576187133789, 0.0032912935130298138, -0.08965753763914108, 0.03260745853185654, -0.11746523529291153, -0.03461860492825508, -0.06254439055919647, 0.013990161940455437, -0.04498837888240814, -0.03865162655711174, -0.041557587683200836, 0.049785126000642776, 0.07602188736200333, -0.00866411067545414, 0.13438765704631805, -0.03367864340543747, 0.1528163105249405, 0.09713498502969742, 0.08908714354038239, 0.0037102289497852325, -0.06963146477937698, -0.010377682745456696, -0.034309402108192444, 0.03859543427824974, -0.1360805630683899, 0.026729537174105644, 0.14457173645496368, 0.035194989293813705, 0.1566532403230667, 0.04956107586622238, -0.08772237598896027, 0.010831729508936405, 0.07128259539604187, -0.08107803761959076, -0.17113368213176727, -0.016871606931090355, 0.044225748628377914, -0.14615696668624878, 0.002111061243340373, 0.10808148235082626, -0.034818731248378754, -0.008472893387079239, 0.009534978307783604, 0.041008636355400085, -0.017468124628067017, 0.21549323201179504, 0.035228949040174484, 0.07741193473339081, -0.08696434646844864, 0.0661788135766983, 0.0627426728606224, -0.18075448274612427, 0.048869747668504715, 0.08888214826583862, -0.05956956371665001, -0.0223891269415617, 0.034298304468393326, 0.08823622018098831, 0.013687703758478165, -0.05001280456781387, -0.10624095052480698, -0.1416071206331253, 0.09546911716461182, 0.08980558812618256, 0.0286586731672287, 0.010445079766213894, -0.018578147515654564, 0.028939250856637955, -0.08818807452917099, 0.11803793907165527, 0.08050849288702011, 0.06904196739196777, -0.13148103654384613, 0.0962539091706276, 0.005609280429780483, -0.014090328477323055, 0.0027510446961969137, 0.016220945864915848, -0.12626852095127106, 0.00307014980353415, -0.10474570840597153, -0.010948458686470985, -0.08163022249937057, -0.004538469947874546, 0.007960007525980473, -0.06569186598062515, -0.044137779623270035, 0.0034379728604108095, -0.10066719353199005, -0.04576309770345688, -0.022153012454509735, 0.06914004683494568, -0.11724007874727249, -0.020933514460921288, 0.033753279596567154, -0.1112338975071907, 0.09764771163463593, 0.03073752298951149, 0.036367110908031464, 0.019938191398978233, -0.09965749830007553, 0.021258065477013588, 0.032896630465984344, -0.006201489828526974, 0.02797832153737545, -0.18904319405555725, -0.016797177493572235, -0.026024438440799713, 0.01231157872825861, 0.0006191044813022017, 0.042001478374004364, -0.1148499995470047, -0.0026931690517812967, -0.06373682618141174, -0.07059185951948166, -0.054164156317710876, 0.05040789768099785, 0.0708576962351799, 0.01201667357236147, 0.14907217025756836, -0.0870274007320404, 0.053721170872449875, -0.2193002998828888, 0.0027807094156742096, -0.031426187604665756, -0.05132703110575676, -0.05167054384946823, -0.019764194265007973, 0.08048106729984283, -0.054605633020401, 0.0773584246635437, -0.06151328608393669, 0.0437510684132576, 0.04007377475500107, -0.10574456304311752, 0.025782490149140358, 0.04471040144562721, 0.19997578859329224, 0.05083022639155388, -0.02550613135099411, 0.04279240965843201, 0.0024539080914109945, 0.07178132981061935, 0.137655571103096, 0.13864757120609283, 0.16311699151992798, 0.04619503393769264, 0.08988433331251144, 0.056616492569446564, -0.12446460127830505, -0.14952975511550903, 0.13274778425693512, -0.0505509190261364, 0.12263701856136322, -0.0036637966986745596, 0.19783629477024078, 0.1195773184299469, -0.19866126775741577, 0.0333433635532856, -0.03165009990334511, -0.0888478234410286, -0.11334225535392761, -0.0694054514169693, -0.09658876061439514, -0.18413053452968597, 0.0030663402285426855, -0.10130501538515091, 0.043609704822301865, 0.02714058943092823, 0.04914320260286331, 0.05326608940958977, 0.09732173383235931, 0.05968717113137245, 0.016358498483896255, 0.09090957045555115, 0.02789892442524433, -0.020201245322823524, -0.025575658306479454, -0.08776678144931793, 0.03609349951148033, -0.04193320870399475, 0.04367658123373985, -0.04059930145740509, -0.0959504172205925, 0.07702730596065521, 0.020310360938310623, -0.10311459749937057, 0.01788952387869358, -0.006651570554822683, 0.05427092686295509, 0.10480048507452011, 0.040353260934352875, -0.016790350899100304, -0.015592037700116634, 0.21644027531147003, -0.09369787573814392, -0.04794204607605934, -0.13067875802516937, 0.21886341273784637, -0.002035768935456872, 0.00789148174226284, 0.018390290439128876, -0.08484547585248947, -0.001614079112187028, 0.1462174952030182, 0.14836829900741577, -0.008537434972822666, -0.0128974923864007, 0.03556783124804497, -0.00969971064478159, -0.03504331409931183, 0.060224808752536774, 0.12247539311647415, 0.08845093101263046, -0.05734921619296074, -0.047053441405296326, -0.045989684760570526, -0.054885007441043854, -0.028954679146409035, 0.07112771272659302, 0.02638692781329155, -0.013109331950545311, -0.007614858448505402, 0.11813981086015701, -0.036612775176763535, -0.13547247648239136, 0.03129667788743973, -0.19458259642124176, -0.18193116784095764, -0.030999675393104553, 0.0831923708319664, 0.03019033372402191, 0.04178052768111229, 0.004377693869173527, -0.032944366335868835, 0.1087295338511467, 0.005747510585933924, -0.061776306480169296, -0.09095799177885056, 0.07698226720094681, -0.06195938214659691, 0.17110060155391693, -0.03269008919596672, 0.02339637652039528, 0.13258329033851624, 0.07403609901666641, -0.08537306636571884, 0.04070720076560974, 0.0881977528333664, -0.09510976076126099, 0.06531482934951782, 0.16427946090698242, -0.043467238545417786, 0.1507003903388977, 0.06624232977628708, -0.10473897308111191, 0.03149082884192467, -0.09452635049819946, -0.06903994083404541, -0.05181585252285004, 0.028023090213537216, -0.04808000475168228, 0.15068504214286804, 0.18012842535972595, -0.06588926166296005, -0.02063954994082451, -0.028162136673927307, 0.01489912997931242, 0.0314309261739254, 0.14450062811374664, -0.02213136851787567, -0.2586686909198761, 0.026346303522586823, 0.005942780990153551, 0.03500347584486008, -0.24705246090888977, -0.09849528968334198, 0.018885361030697823, -0.04813682660460472, -0.07339941710233688, 0.11952648311853409, 0.08413115888834, 0.0388621985912323, -0.06799168139696121, -0.1152370497584343, -0.0226230900734663, 0.16855163872241974, -0.16250088810920715, -0.05446529760956764 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alpaca-finetuned-model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.2.0+cpu - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "t5-small", "model-index": [{"name": "alpaca-finetuned-model", "results": []}]}
text2text-generation
CaptYogesh56/alpaca-finetuned-model
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "trl", "sft", "generated_from_trainer", "base_model:t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-14T07:59:33+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #trl #sft #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# alpaca-finetuned-model This model is a fine-tuned version of t5-small on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.2.0+cpu - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# alpaca-finetuned-model\n\nThis model is a fine-tuned version of t5-small on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250", "### Training results", "### Framework versions\n\n- Transformers 4.36.0\n- Pytorch 2.2.0+cpu\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #trl #sft #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# alpaca-finetuned-model\n\nThis model is a fine-tuned version of t5-small on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250", "### Training results", "### Framework versions\n\n- Transformers 4.36.0\n- Pytorch 2.2.0+cpu\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 83, 31, 6, 12, 8, 3, 89, 4, 35 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #trl #sft #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# alpaca-finetuned-model\n\nThis model is a fine-tuned version of t5-small on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250### Training results### Framework versions\n\n- Transformers 4.36.0\n- Pytorch 2.2.0+cpu\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.09630518406629562, 0.10533656924962997, -0.003492772812023759, 0.09651003032922745, 0.11142749339342117, 0.0063317385502159595, 0.12754859030246735, 0.15166567265987396, -0.13843584060668945, 0.06679695099592209, 0.06107112020254135, 0.04863906279206276, 0.06087315455079079, 0.1577957719564438, -0.03722827881574631, -0.1933993399143219, 0.0005154501996003091, -0.03082863800227642, -0.05293022841215134, 0.11102452129125595, 0.1104305163025856, -0.09260127693414688, 0.08716116100549698, -0.021294711157679558, -0.13800017535686493, 0.02502208948135376, -0.010635711252689362, -0.057258136570453644, 0.1004936546087265, 0.020833730697631836, 0.09818297624588013, 0.0497579500079155, 0.13122668862342834, -0.21165914833545685, 0.002950275084003806, 0.09398523718118668, 0.02960287593305111, 0.08194862306118011, 0.03691908344626427, -0.00016877033340279013, 0.06630486249923706, -0.1479070484638214, 0.09658295661211014, 0.0359075665473938, -0.0950934886932373, -0.08400996774435043, -0.09915296733379364, 0.07272063195705414, 0.08627700805664062, 0.11302784830331802, 0.01990172453224659, 0.1621422916650772, -0.07071615010499954, 0.07728206366300583, 0.20432159304618835, -0.23512865602970123, -0.05719488486647606, 0.04765257611870766, 0.06290283799171448, 0.09951901435852051, -0.110395148396492, -0.0002116767136612907, 0.052757378667593, 0.015871375799179077, 0.10590206831693649, -0.02493974007666111, -0.12789593636989594, -0.02351413294672966, -0.10219860076904297, -0.03828325495123863, 0.16938720643520355, 0.02636478655040264, -0.04901774972677231, -0.08726609498262405, -0.059003472328186035, -0.11847368627786636, -0.02457890473306179, -0.04031728580594063, 0.0531180277466774, -0.03338376805186272, -0.02780819498002529, -0.06001167744398117, -0.11067313700914383, -0.060520149767398834, 0.003967482130974531, 0.027608009055256844, 0.03176372870802879, 0.01411037053912878, -0.04111376032233238, 0.10708985477685928, -0.00495370477437973, -0.12737110257148743, -0.029347430914640427, 0.00757452892139554, -0.06793846935033798, -0.06490446627140045, -0.013728522695600986, -0.053379226475954056, 0.019074810668826103, 0.13305683434009552, -0.08349539339542389, 0.056410908699035645, -0.0217804703861475, 0.0236115250736475, -0.053784534335136414, 0.1364857703447342, -0.012168888933956623, -0.03451395407319069, 0.03683091700077057, 0.09719978272914886, 0.03099478781223297, -0.012307357043027878, -0.08697839081287384, -0.011039222590625286, 0.08192691206932068, 0.09581159800291061, -0.02120574750006199, 0.031988475471735, -0.03225111961364746, -0.012264838442206383, 0.07833369821310043, -0.13399142026901245, 0.031308434903621674, -0.012311429716646671, -0.060739193111658096, -0.03487358242273331, 0.05450916290283203, 0.0013787774369120598, -0.04770558699965477, 0.0235709510743618, -0.0646793469786644, -0.011523387394845486, -0.07094953954219818, -0.07266582548618317, 0.03865872696042061, -0.08731809258460999, -0.0249169934540987, -0.09960658848285675, -0.20879951119422913, -0.04841335117816925, 0.010150562971830368, -0.05363877862691879, -0.05376408249139786, -0.04779944196343422, -0.07768795639276505, 0.019714992493391037, -0.008500035852193832, 0.1140068992972374, -0.05611743777990341, 0.061664313077926636, -0.02191423997282982, 0.01479832548648119, 0.02450340986251831, 0.034410517662763596, -0.10488612949848175, 0.018890559673309326, -0.13905413448810577, 0.06422894448041916, -0.07277237623929977, 0.05812419578433037, -0.13027839362621307, -0.06942171603441238, -0.003916677553206682, -0.03465959429740906, 0.03888997435569763, 0.14012402296066284, -0.18566513061523438, -0.01509704627096653, 0.16030552983283997, -0.08685841411352158, -0.07717028260231018, 0.08339100331068039, -0.02969559095799923, 0.047132592648267746, 0.07958728075027466, 0.1207553893327713, 0.1327059268951416, -0.1502203792333603, 0.005209718830883503, 0.030338602140545845, 0.056429196149110794, 0.00278813811019063, 0.053064845502376556, -0.0206194669008255, 0.05471835657954216, 0.005985699128359556, -0.055903658270835876, -0.017102444544434547, -0.05927610397338867, -0.08336424827575684, -0.05726029723882675, -0.08923682570457458, 0.008062876760959625, 0.04093819111585617, 0.036196257919073105, -0.08240387588739395, -0.12520857155323029, 0.053774382919073105, 0.12870913743972778, -0.05090157687664032, 0.03107548877596855, -0.07020499557256699, 0.030414549633860588, -0.012351884506642818, -0.022627471014857292, -0.17856723070144653, -0.12336545437574387, 0.05201685428619385, -0.03728616237640381, 0.05694126710295677, 0.02732275053858757, 0.059563927352428436, 0.06492340564727783, -0.05990516394376755, -0.006689224857836962, -0.06494785845279694, 0.0011189337819814682, -0.10690552741289139, -0.21016864478588104, -0.018480956554412842, -0.030694646760821342, 0.16073380410671234, -0.23065818846225739, 0.03231604024767876, 0.021483225747942924, 0.12547114491462708, 0.031983934342861176, -0.04163380712270737, 0.00955529697239399, 0.03882787749171257, -0.01840955577790737, -0.10460963100194931, 0.035459816455841064, 0.0026413940358906984, -0.07440610975027084, -0.002037243451923132, -0.17671480774879456, 0.03377018868923187, 0.08413539081811905, 0.06439059972763062, -0.11901841312646866, -0.00543355755507946, -0.05064691975712776, -0.042449548840522766, -0.07775108516216278, -0.009621430188417435, 0.16986201703548431, 0.012923424132168293, 0.13894915580749512, -0.07418698072433472, -0.08125783503055573, 0.002611443167552352, 0.012001908384263515, 0.0194004587829113, 0.08659514784812927, 0.038158394396305084, -0.1215655580163002, 0.10389122366905212, 0.10408205538988113, -0.045286066830158234, 0.1179945170879364, -0.06627421826124191, -0.09354482591152191, 0.0011433569015935063, 0.03105010837316513, 0.021951263770461082, 0.10347804427146912, -0.035865332931280136, 0.002497144741937518, 0.026467911899089813, -0.0016916112508624792, 0.013954313471913338, -0.17883360385894775, -0.0033633026760071516, 0.03545442596077919, -0.05941800773143768, 0.012132275849580765, -0.0372634194791317, 0.021420106291770935, 0.08786188066005707, 0.006468015257269144, -0.037364427000284195, 0.01641811989247799, -0.006306830793619156, -0.09212987869977951, 0.1838323324918747, -0.10509038716554642, -0.18508633971214294, -0.10764748603105545, 0.09298128634691238, -0.01488925889134407, -0.01877918466925621, 0.022974597290158272, -0.06377849727869034, -0.05419217050075531, -0.13237905502319336, -0.045549582690000534, -0.014198895543813705, -0.010448791086673737, 0.011131656356155872, 0.04136158153414726, 0.08628769218921661, -0.13493198156356812, 0.00844795722514391, 0.015262597240507603, -0.1129007637500763, -0.01322202105075121, 0.017175285145640373, 0.100185327231884, 0.15178506076335907, -0.025280067697167397, -0.004816542845219374, -0.054161787033081055, 0.15411020815372467, -0.09170247614383698, 0.030438294634222984, 0.12413793057203293, 0.022859802469611168, 0.05234314501285553, 0.1284739077091217, 0.020011311396956444, -0.0755244567990303, 0.03337547183036804, 0.05954696983098984, -0.03303554654121399, -0.2607603371143341, -0.025593144819140434, -0.03201409429311752, -0.023053772747516632, 0.09557227790355682, 0.07289627194404602, 0.08828677237033844, 0.03927597030997276, -0.025747910141944885, 0.051406968384981155, 0.03274545073509216, 0.08156383782625198, 0.06807961314916611, 0.04800252988934517, 0.10291416943073273, -0.054146889597177505, -0.011389254592359066, 0.07279255241155624, 0.029889093711972237, 0.21670733392238617, -0.02113371156156063, 0.16810284554958344, 0.031045664101839066, 0.11894470453262329, -0.016512935981154442, 0.03901062160730362, 0.04027552157640457, 0.010613879188895226, 0.005347111728042364, -0.07933197915554047, -0.007800038438290358, 0.048908255994319916, -0.031587254256010056, 0.02608814835548401, -0.0815453752875328, 0.04606659337878227, 0.02365843392908573, 0.28266292810440063, 0.0479874350130558, -0.30319127440452576, -0.07267992198467255, 0.017843084409832954, -0.04371853917837143, -0.03815951198339462, 0.014050043188035488, 0.1173429787158966, -0.12197743356227875, 0.06724114716053009, -0.03326507285237312, 0.10539186000823975, -0.04281924292445183, -0.005009061191231012, 0.0331004336476326, 0.087868832051754, -0.004357112571597099, 0.08066799491643906, -0.22838029265403748, 0.2142842411994934, 0.02203996852040291, 0.10432351380586624, -0.05548711493611336, 0.03326087072491646, 0.020626356825232506, 0.1322123259305954, 0.13488346338272095, -0.019535429775714874, -0.05808747187256813, -0.14894698560237885, -0.11694315075874329, 0.021695444360375404, 0.0943903923034668, -0.04702033847570419, 0.0690876841545105, -0.05091341212391853, -0.009984133765101433, 0.04903734102845192, -0.09314471483230591, -0.1808972805738449, -0.11760449409484863, 0.026241278275847435, 0.013167070224881172, -0.06283446401357651, -0.08489538729190826, -0.09494823962450027, -0.019168563187122345, 0.18496288359165192, -0.04062582924962044, -0.04898509383201599, -0.1539696753025055, 0.04498047009110451, 0.10500176250934601, -0.06545321643352509, 0.016161521896719933, 0.005506003275513649, 0.13655459880828857, 0.02772657945752144, -0.08097918331623077, 0.054784324020147324, -0.0728834718465805, -0.1949109137058258, -0.0574563704431057, 0.1342768371105194, 0.04074661061167717, 0.057116568088531494, 0.015277705155313015, 0.018947960808873177, 0.02952982299029827, -0.07403939217329025, -0.012311208993196487, 0.09941674023866653, 0.08552876114845276, 0.02177833579480648, -0.06756964325904846, 0.004861519671976566, -0.052460700273513794, -0.0349346399307251, 0.11565832793712616, 0.19889403879642487, -0.08997917920351028, 0.10347172617912292, 0.06452487409114838, -0.10142368078231812, -0.20462293922901154, 0.057522136718034744, 0.06926395744085312, 0.014811301603913307, 0.02119596302509308, -0.15121421217918396, 0.0855267345905304, 0.10003063827753067, -0.02764863520860672, 0.05964110419154167, -0.3257165551185608, -0.15433618426322937, 0.08154075592756271, 0.06811085343360901, -0.031788647174835205, -0.15728434920310974, -0.04765540361404419, -0.04387331008911133, -0.0957467257976532, 0.0959523618221283, -0.14430966973304749, 0.10343839973211288, 0.0032770370598882437, 0.046840425580739975, 0.01700725592672825, -0.027727263048291206, 0.12312926352024078, 0.02527286298573017, 0.08340967446565628, -0.06508434563875198, 0.025506794452667236, 0.12188556045293808, -0.08180496096611023, 0.06750801205635071, -0.0685880184173584, 0.07120003551244736, -0.11070185899734497, -0.010665049776434898, -0.0650046095252037, 0.08094265311956406, -0.05332415550947189, -0.05246119201183319, -0.06710178405046463, 0.04017963260412216, 0.05879815295338631, -0.03699645400047302, 0.10025105625391006, -0.004252170212566853, 0.11169842630624771, 0.16083362698554993, 0.13335508108139038, 0.004015705082565546, -0.08609846234321594, 0.006028032395988703, -0.038409966975450516, 0.0489591509103775, -0.15435445308685303, 0.029806768521666527, 0.12027017772197723, 0.035262905061244965, 0.11967072635889053, 0.02080759033560753, -0.054131437093019485, -0.00822538323700428, 0.043017130345106125, -0.09625326842069626, -0.1256990283727646, -0.002200015587732196, 0.005904525984078646, -0.11965277791023254, 0.016512561589479446, 0.1371675431728363, -0.08825043588876724, -0.011295286938548088, -0.008704165928065777, 0.02625148929655552, -0.02251778356730938, 0.18992643058300018, 0.04763000085949898, 0.06308148801326752, -0.07789047062397003, 0.14193204045295715, 0.09218058735132217, -0.07295242697000504, 0.04602452367544174, 0.1051672175526619, -0.09663502871990204, -0.036856889724731445, 0.12535537779331207, 0.13679139316082, -0.05285700410604477, -0.05221395567059517, -0.09017493575811386, -0.08904435485601425, 0.05202293395996094, 0.173991397023201, 0.02981516160070896, 0.022703494876623154, -0.012594122439622879, 0.020523522049188614, -0.13366039097309113, 0.09040872752666473, 0.03297781944274902, 0.07479867339134216, -0.1325865089893341, 0.1306038796901703, 0.020534193143248558, 0.028047194704413414, -0.020970221608877182, 0.03500611335039139, -0.06443514674901962, -0.014928490854799747, -0.12297596782445908, 0.027871310710906982, 0.00047539800289087, -0.00449938140809536, -0.010228232480585575, -0.044003624469041824, -0.02888312377035618, 0.057096514850854874, -0.06124376878142357, -0.060262035578489304, -0.01156864408403635, 0.06487356871366501, -0.14409513771533966, -0.01960364356637001, 0.023520929738879204, -0.08713843673467636, 0.06962337344884872, 0.01899322308599949, 0.008938290178775787, 0.029400911182165146, -0.13939566910266876, 0.013788282871246338, 0.031404055655002594, 0.03793025016784668, 0.048120755702257156, -0.06845469027757645, -0.016627419739961624, -0.02409590594470501, 0.023514287546277046, 0.02551659382879734, 0.04043564572930336, -0.1040782630443573, -0.019313106313347816, -0.038401518017053604, -0.06251832097768784, -0.058146920055150986, 0.05487913265824318, 0.11751426756381989, 0.00271780276671052, 0.13076156377792358, -0.08257784694433212, 0.04877571389079094, -0.19821274280548096, -0.02256966009736061, 0.011806655675172806, -0.03769565001130104, -0.09530998766422272, -0.03693997859954834, 0.09513390809297562, -0.06152131408452988, 0.0908655896782875, -0.007899719290435314, 0.12680712342262268, 0.05279168114066124, -0.04280399903655052, 0.004549263045191765, 0.03762079030275345, 0.1487722098827362, 0.06234388053417206, -0.018529638648033142, 0.0749039500951767, -0.04342219978570938, 0.07157247513532639, -0.01837090589106083, 0.20321598649024963, 0.1466020941734314, -0.020758507773280144, 0.07988934963941574, 0.06152595207095146, -0.10937464237213135, -0.13073013722896576, 0.07114729285240173, -0.0353933647274971, 0.11269304156303406, -0.06983869522809982, 0.14358878135681152, 0.12746138870716095, -0.16229787468910217, 0.041622333228588104, -0.07915893197059631, -0.10259325802326202, -0.12092113494873047, -0.058064889162778854, -0.09270848333835602, -0.10298824310302734, 0.002464824356138706, -0.1061057522892952, 0.04071887955069542, 0.08345387130975723, 0.016227848827838898, 0.010612630285322666, 0.15316879749298096, -0.023952879011631012, 0.010281842201948166, 0.06496882438659668, 0.01822817325592041, 0.01740872487425804, -0.07817024737596512, -0.06118800491094589, 0.0483669638633728, 0.01768401823937893, 0.0533880814909935, -0.03291041776537895, 0.045911986380815506, 0.045553289353847504, -0.010989397764205933, -0.07086502015590668, 0.036774251610040665, 0.008817147463560104, 0.029367802664637566, 0.03788364306092262, 0.05570036172866821, 0.011628233827650547, -0.012211724184453487, 0.2705574929714203, -0.07596287131309509, -0.10672736167907715, -0.126305490732193, 0.20520541071891785, 0.019874369725584984, -0.013418425805866718, 0.060367025434970856, -0.11286116391420364, -0.005855135153979063, 0.18428774178028107, 0.16618409752845764, -0.049301981925964355, -0.0049318671226501465, -0.027519825845956802, -0.012574306689202785, -0.05492626503109932, 0.11412003636360168, 0.08092515170574188, 0.006826207973062992, -0.07202311605215073, -0.00887742917984724, 0.029530363157391548, -0.03353505954146385, -0.09075316786766052, 0.08608707040548325, -0.016377070918679237, 0.022076230496168137, -0.027060354128479958, 0.0749255046248436, 0.02091658115386963, -0.17545722424983978, 0.046500157564878464, -0.16494238376617432, -0.15708035230636597, -0.016967443749308586, 0.07428393512964249, -0.02936640940606594, 0.02208809182047844, -0.003912873100489378, -0.0007238516118377447, 0.116094671189785, -0.02524140290915966, -0.07713781297206879, -0.09527461230754852, 0.06934216618537903, -0.10987190157175064, 0.22767327725887299, -0.019584784284234047, 0.0546221099793911, 0.09663069993257523, 0.0031421754974871874, -0.1351393759250641, 0.04323335364460945, 0.07276980578899384, -0.034237414598464966, 0.03918891027569771, 0.14990369975566864, -0.04514934867620468, 0.09769010543823242, 0.048734117299318314, -0.115573450922966, -0.007802191190421581, -0.027022281661629677, -0.017709387466311455, -0.08239354193210602, -0.02343449741601944, -0.06619752198457718, 0.15837597846984863, 0.17016837000846863, -0.028071388602256775, 0.016299491748213768, -0.07227867841720581, 0.007693496532738209, 0.0565883107483387, 0.051237668842077255, -0.009236258454620838, -0.1824360191822052, 0.026695525273680687, 0.021224241703748703, 0.055056873708963394, -0.22291219234466553, -0.09099569171667099, 0.0342952236533165, -0.050846174359321594, -0.07926419377326965, 0.11993212252855301, 0.06048068404197693, 0.025311656296253204, -0.03219374641776085, -0.14246578514575958, -0.027604997158050537, 0.14193780720233917, -0.16273868083953857, -0.04665517061948776 ]