Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
File size: 2,091 Bytes
ad80063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
language:
- en
configs:
- config_name: words
  data_files:
  - split: words
    path: words.parquet
- config_name: associations
  data_files:
  - split: associations_weat
    path: associations_weat.parquet
- config_name: associations_wefat
  data_files:  
  - split: associations_wefat
    path: associations_wefat.parquet
---

# Usage

When downloading, specify which files you want to download and set the split to `train` (required by `datasets`).

```python
from datasets import load_dataset

words = load_dataset("fairnlp/weat", data_files=["words.parquet"], split="train")
associations = load_dataset("fairnlp/weat", data_files=["associations_weat.parquet"], split="train")
```

# Dataset Card for Word Embedding Association Test (WEAT)

This dataset contains the source words of the original Word Embedding Association Test (WEAT) as
described [by Caliskan et. al. (2016)](https://arxiv.org/abs/1608.07187).

## Dataset Details

The dataset contains word lists and attribute lists used to compute several WEAT scores for different embedding
associations. For details on the methodology, please refer to the original paper. This dataset is contributed to Hugging
Face as part of the WEAT implementation in the [FairNLP `fairscore` library](https://github.com/FairNLP/fairscore/).

### Dataset Sources

- **Paper [optional]:** lcs.bath.ac.uk/~jjb/ftp/CaliskanSemantics-Arxiv.pdf

**BibTeX:**

```bibtex
@article{DBLP:journals/corr/IslamBN16,
  author       = {Aylin Caliskan Islam and
                  Joanna J. Bryson and
                  Arvind Narayanan},
  title        = {Semantics derived automatically from language corpora necessarily
                  contain human biases},
  journal      = {CoRR},
  volume       = {abs/1608.07187},
  year         = {2016},
  url          = {http://arxiv.org/abs/1608.07187},
  eprinttype    = {arXiv},
  eprint       = {1608.07187},
  timestamp    = {Sat, 23 Jan 2021 01:20:12 +0100},
  biburl       = {https://dblp.org/rec/journals/corr/IslamBN16.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```