|
import os |
|
import glob |
|
|
|
import datasets |
|
|
|
|
|
_LANGUAGES = sorted( |
|
[ |
|
"en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr", |
|
"sk", "sl", "et", "lt", "pt", "bg", "el", "lv", "mt", "sv", "da" |
|
] |
|
) |
|
_LANGUAGES_V2 = [f"{x}_v2" for x in _LANGUAGES] |
|
|
|
_YEARS = list(range(2009, 2020 + 1)) |
|
|
|
_CONFIG_TO_LANGS = { |
|
"400k": _LANGUAGES, |
|
"100k": _LANGUAGES, |
|
"10k": _LANGUAGES, |
|
} |
|
|
|
_CONFIG_TO_YEARS = { |
|
"400k": _YEARS + [f"{y}_2" for y in _YEARS], |
|
"100k": _YEARS, |
|
"10k": [2019, 2020], |
|
|
|
} |
|
for lang in _LANGUAGES: |
|
_CONFIG_TO_YEARS[lang] = _YEARS |
|
|
|
_BASE_URL = "https://dl.fbaipublicfiles.com/voxpopuli/" |
|
|
|
_DATA_URL = _BASE_URL + "audios/{lang}_{year}.tar" |
|
|
|
_META_URL = _BASE_URL + "https://dl.fbaipublicfiles.com/voxpopuli/annotations/unlabelled_v2.tsv.gz" |
|
|
|
|
|
class Voxpopuli(datasets.GeneratorBasedBuilder): |
|
"""The Voxpopuli dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=name, |
|
|
|
description="", |
|
) |
|
for name in _LANGUAGES + ["10k", "100k", "400k"] |
|
] |
|
|
|
|
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"language": datasets.ClassLabel(names=_LANGUAGES), |
|
"year": datasets.Value("int16"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
features=features, |
|
|
|
|
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
languages = [self.config.name] if self.config.name in _LANGUAGES else _LANGUAGES |
|
years = _CONFIG_TO_YEARS[self.config.name] |
|
|
|
urls = [_DATA_URL.format(lang=language, year=year) for language in languages for year in years] |
|
|
|
langs_data_dirs = dl_manager.download_and_extract(urls) |
|
print(langs_data_dirs) |
|
print(glob.glob(f"{langs_data_dirs[0]}/**/*.ogg", recursive=True)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dirs": langs_data_dirs, |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dirs): |
|
for data_dir in data_dirs: |
|
for file in glob.glob(f"{data_dir}/**/*.ogg", recursive=True): |
|
path_components = file.split(os.sep) |
|
language, year = path_components[-3:-1] |
|
with open(file) as f: |
|
yield file, { |
|
"path": file, |
|
"language": language, |
|
"year": year, |
|
"audio": {"path": file} |
|
} |
|
|