|
import json |
|
import boto3 |
|
import time |
|
from botocore.exceptions import ClientError |
|
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth, RequestError |
|
import pprint |
|
from retrying import retry |
|
|
|
valid_embedding_models = ["cohere.embed-multilingual-v3", "cohere.embed-english-v3", "amazon.titan-embed-text-v1"] |
|
pp = pprint.PrettyPrinter(indent=2) |
|
|
|
|
|
def interactive_sleep(seconds: int): |
|
""" |
|
Support functionality to induce an artificial 'sleep' to the code in order to wait for resources to be available |
|
Args: |
|
seconds (int): number of seconds to sleep for |
|
""" |
|
dots = '' |
|
for i in range(seconds): |
|
dots += '.' |
|
print(dots, end='\r') |
|
time.sleep(1) |
|
|
|
|
|
class BedrockKnowledgeBase: |
|
""" |
|
Support class that allows for: |
|
- creation (or retrieval) of a Knowledge Base for Amazon Bedrock with all its pre-requisites |
|
(including OSS, IAM roles and Permissions and S3 bucket) |
|
- Ingestion of data into the Knowledge Base |
|
- Deletion of all resources created |
|
""" |
|
def __init__( |
|
self, |
|
kb_name, |
|
kb_description=None, |
|
data_bucket_name=None, |
|
embedding_model="amazon.titan-embed-text-v1" |
|
): |
|
""" |
|
Class initializer |
|
Args: |
|
kb_name (str): the knowledge base name |
|
kb_description (str): knowledge base description |
|
data_bucket_name (str): name of s3 bucket to connect with knowledge base |
|
embedding_model (str): embedding model to use |
|
""" |
|
boto3_session = boto3.session.Session() |
|
self.region_name = boto3_session.region_name |
|
self.iam_client = boto3_session.client('iam') |
|
self.account_number = boto3.client('sts').get_caller_identity().get('Account') |
|
self.suffix = str(self.account_number)[:4] |
|
self.identity = boto3.client('sts').get_caller_identity()['Arn'] |
|
self.aoss_client = boto3_session.client('opensearchserverless') |
|
self.s3_client = boto3.client('s3') |
|
self.bedrock_agent_client = boto3.client('bedrock-agent') |
|
credentials = boto3.Session().get_credentials() |
|
self.awsauth = AWSV4SignerAuth(credentials, self.region_name, 'aoss') |
|
|
|
self.kb_name = kb_name |
|
self.kb_description = kb_description |
|
if data_bucket_name is not None: |
|
self.bucket_name = data_bucket_name |
|
else: |
|
self.bucket_name = f"{self.kb_name}-{self.suffix}" |
|
if embedding_model not in valid_embedding_models: |
|
valid_embeddings_str = str(valid_embedding_models) |
|
raise ValueError(f"Invalid embedding model. Your embedding model should be one of {valid_embeddings_str}") |
|
self.embedding_model = embedding_model |
|
self.encryption_policy_name = f"bedrock-sample-rag-sp-{self.suffix}" |
|
self.network_policy_name = f"bedrock-sample-rag-np-{self.suffix}" |
|
self.access_policy_name = f'bedrock-sample-rag-ap-{self.suffix}' |
|
self.kb_execution_role_name = f'AmazonBedrockExecutionRoleForKnowledgeBase_{self.suffix}' |
|
self.fm_policy_name = f'AmazonBedrockFoundationModelPolicyForKnowledgeBase_{self.suffix}' |
|
self.s3_policy_name = f'AmazonBedrockS3PolicyForKnowledgeBase_{self.suffix}' |
|
self.oss_policy_name = f'AmazonBedrockOSSPolicyForKnowledgeBase_{self.suffix}' |
|
|
|
self.vector_store_name = f'bedrock-sample-rag-{self.suffix}' |
|
self.index_name = f"bedrock-sample-rag-index-{self.suffix}" |
|
print("========================================================================================") |
|
print(f"Step 1 - Creating or retrieving {self.bucket_name} S3 bucket for Knowledge Base documents") |
|
self.create_s3_bucket() |
|
print("========================================================================================") |
|
print(f"Step 2 - Creating Knowledge Base Execution Role ({self.kb_execution_role_name}) and Policies") |
|
self.bedrock_kb_execution_role = self.create_bedrock_kb_execution_role() |
|
print("========================================================================================") |
|
print(f"Step 3 - Creating OSS encryption, network and data access policies") |
|
self.encryption_policy, self.network_policy, self.access_policy = self.create_policies_in_oss() |
|
print("========================================================================================") |
|
print(f"Step 4 - Creating OSS Collection (this step takes a couple of minutes to complete)") |
|
self.host, self.collection, self.collection_id, self.collection_arn = self.create_oss() |
|
|
|
self.oss_client = OpenSearch( |
|
hosts=[{'host': self.host, 'port': 443}], |
|
http_auth=self.awsauth, |
|
use_ssl=True, |
|
verify_certs=True, |
|
connection_class=RequestsHttpConnection, |
|
timeout=300 |
|
) |
|
print("========================================================================================") |
|
print(f"Step 5 - Creating OSS Vector Index") |
|
self.create_vector_index() |
|
print("========================================================================================") |
|
print(f"Step 6 - Creating Knowledge Base") |
|
self.knowledge_base, self.data_source = self.create_knowledge_base() |
|
print("========================================================================================") |
|
|
|
def create_s3_bucket(self): |
|
""" |
|
Check if bucket exists, and if not create S3 bucket for knowledge base data source |
|
""" |
|
try: |
|
self.s3_client.head_bucket(Bucket=self.bucket_name) |
|
print(f'Bucket {self.bucket_name} already exists - retrieving it!') |
|
except ClientError as e: |
|
print(f'Creating bucket {self.bucket_name}') |
|
if self.region_name == "us-east-1": |
|
self.s3_client.create_bucket( |
|
Bucket=self.bucket_name |
|
) |
|
else: |
|
self.s3_client.create_bucket( |
|
Bucket=self.bucket_name, |
|
CreateBucketConfiguration={'LocationConstraint': self.region_name} |
|
) |
|
|
|
def create_bedrock_kb_execution_role(self): |
|
""" |
|
Create Knowledge Base Execution IAM Role and its required policies. |
|
If role and/or policies already exist, retrieve them |
|
Returns: |
|
IAM role |
|
""" |
|
foundation_model_policy_document = { |
|
"Version": "2012-10-17", |
|
"Statement": [ |
|
{ |
|
"Effect": "Allow", |
|
"Action": [ |
|
"bedrock:InvokeModel", |
|
], |
|
"Resource": [ |
|
f"arn:aws:bedrock:{self.region_name}::foundation-model/{self.embedding_model}" |
|
] |
|
} |
|
] |
|
} |
|
|
|
s3_policy_document = { |
|
"Version": "2012-10-17", |
|
"Statement": [ |
|
{ |
|
"Effect": "Allow", |
|
"Action": [ |
|
"s3:GetObject", |
|
"s3:ListBucket" |
|
], |
|
"Resource": [ |
|
f"arn:aws:s3:::{self.bucket_name}", |
|
f"arn:aws:s3:::{self.bucket_name}/*" |
|
], |
|
"Condition": { |
|
"StringEquals": { |
|
"aws:ResourceAccount": f"{self.account_number}" |
|
} |
|
} |
|
} |
|
] |
|
} |
|
|
|
assume_role_policy_document = { |
|
"Version": "2012-10-17", |
|
"Statement": [ |
|
{ |
|
"Effect": "Allow", |
|
"Principal": { |
|
"Service": "bedrock.amazonaws.com" |
|
}, |
|
"Action": "sts:AssumeRole" |
|
} |
|
] |
|
} |
|
try: |
|
|
|
fm_policy = self.iam_client.create_policy( |
|
PolicyName=self.fm_policy_name, |
|
PolicyDocument=json.dumps(foundation_model_policy_document), |
|
Description='Policy for accessing foundation model', |
|
) |
|
except self.iam_client.exceptions.EntityAlreadyExistsException: |
|
fm_policy = self.iam_client.get_policy( |
|
PolicyArn=f"arn:aws:iam::{self.account_number}:policy/{self.fm_policy_name}" |
|
) |
|
|
|
try: |
|
s3_policy = self.iam_client.create_policy( |
|
PolicyName=self.s3_policy_name, |
|
PolicyDocument=json.dumps(s3_policy_document), |
|
Description='Policy for reading documents from s3') |
|
except self.iam_client.exceptions.EntityAlreadyExistsException: |
|
s3_policy = self.iam_client.get_policy( |
|
PolicyArn=f"arn:aws:iam::{self.account_number}:policy/{self.s3_policy_name}" |
|
) |
|
|
|
try: |
|
bedrock_kb_execution_role = self.iam_client.create_role( |
|
RoleName=self.kb_execution_role_name, |
|
AssumeRolePolicyDocument=json.dumps(assume_role_policy_document), |
|
Description='Amazon Bedrock Knowledge Base Execution Role for accessing OSS and S3', |
|
MaxSessionDuration=3600 |
|
) |
|
except self.iam_client.exceptions.EntityAlreadyExistsException: |
|
bedrock_kb_execution_role = self.iam_client.get_role( |
|
RoleName=self.kb_execution_role_name |
|
) |
|
|
|
s3_policy_arn = s3_policy["Policy"]["Arn"] |
|
fm_policy_arn = fm_policy["Policy"]["Arn"] |
|
|
|
|
|
self.iam_client.attach_role_policy( |
|
RoleName=bedrock_kb_execution_role["Role"]["RoleName"], |
|
PolicyArn=fm_policy_arn |
|
) |
|
self.iam_client.attach_role_policy( |
|
RoleName=bedrock_kb_execution_role["Role"]["RoleName"], |
|
PolicyArn=s3_policy_arn |
|
) |
|
return bedrock_kb_execution_role |
|
|
|
def create_oss_policy_attach_bedrock_execution_role(self, collection_id): |
|
""" |
|
Create OpenSearch Serverless policy and attach it to the Knowledge Base Execution role. |
|
If policy already exists, attaches it |
|
""" |
|
|
|
oss_policy_document = { |
|
"Version": "2012-10-17", |
|
"Statement": [ |
|
{ |
|
"Effect": "Allow", |
|
"Action": [ |
|
"aoss:APIAccessAll" |
|
], |
|
"Resource": [ |
|
f"arn:aws:aoss:{self.region_name}:{self.account_number}:collection/{collection_id}" |
|
] |
|
} |
|
] |
|
} |
|
|
|
oss_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.oss_policy_name}" |
|
created = False |
|
try: |
|
self.iam_client.create_policy( |
|
PolicyName=self.oss_policy_name, |
|
PolicyDocument=json.dumps(oss_policy_document), |
|
Description='Policy for accessing opensearch serverless', |
|
) |
|
created = True |
|
except self.iam_client.exceptions.EntityAlreadyExistsException: |
|
print(f"Policy {oss_policy_arn} already exists, skipping creation") |
|
print("Opensearch serverless arn: ", oss_policy_arn) |
|
|
|
self.iam_client.attach_role_policy( |
|
RoleName=self.bedrock_kb_execution_role["Role"]["RoleName"], |
|
PolicyArn=oss_policy_arn |
|
) |
|
return created |
|
|
|
def create_policies_in_oss(self): |
|
""" |
|
Create OpenSearch Serverless encryption, network and data access policies. |
|
If policies already exist, retrieve them |
|
""" |
|
try: |
|
encryption_policy = self.aoss_client.create_security_policy( |
|
name=self.encryption_policy_name, |
|
policy=json.dumps( |
|
{ |
|
'Rules': [{'Resource': ['collection/' + self.vector_store_name], |
|
'ResourceType': 'collection'}], |
|
'AWSOwnedKey': True |
|
}), |
|
type='encryption' |
|
) |
|
except self.aoss_client.exceptions.ConflictException: |
|
encryption_policy = self.aoss_client.get_security_policy( |
|
name=self.encryption_policy_name, |
|
type='encryption' |
|
) |
|
|
|
try: |
|
network_policy = self.aoss_client.create_security_policy( |
|
name=self.network_policy_name, |
|
policy=json.dumps( |
|
[ |
|
{'Rules': [{'Resource': ['collection/' + self.vector_store_name], |
|
'ResourceType': 'collection'}], |
|
'AllowFromPublic': True} |
|
]), |
|
type='network' |
|
) |
|
except self.aoss_client.exceptions.ConflictException: |
|
network_policy = self.aoss_client.get_security_policy( |
|
name=self.network_policy_name, |
|
type='network' |
|
) |
|
|
|
try: |
|
access_policy = self.aoss_client.create_access_policy( |
|
name=self.access_policy_name, |
|
policy=json.dumps( |
|
[ |
|
{ |
|
'Rules': [ |
|
{ |
|
'Resource': ['collection/' + self.vector_store_name], |
|
'Permission': [ |
|
'aoss:CreateCollectionItems', |
|
'aoss:DeleteCollectionItems', |
|
'aoss:UpdateCollectionItems', |
|
'aoss:DescribeCollectionItems'], |
|
'ResourceType': 'collection' |
|
}, |
|
{ |
|
'Resource': ['index/' + self.vector_store_name + '/*'], |
|
'Permission': [ |
|
'aoss:CreateIndex', |
|
'aoss:DeleteIndex', |
|
'aoss:UpdateIndex', |
|
'aoss:DescribeIndex', |
|
'aoss:ReadDocument', |
|
'aoss:WriteDocument'], |
|
'ResourceType': 'index' |
|
}], |
|
'Principal': [self.identity, self.bedrock_kb_execution_role['Role']['Arn']], |
|
'Description': 'Easy data policy'} |
|
]), |
|
type='data' |
|
) |
|
except self.aoss_client.exceptions.ConflictException: |
|
access_policy = self.aoss_client.get_access_policy( |
|
name=self.access_policy_name, |
|
type='data' |
|
) |
|
|
|
return encryption_policy, network_policy, access_policy |
|
|
|
def create_oss(self): |
|
""" |
|
Create OpenSearch Serverless Collection. If already existent, retrieve |
|
""" |
|
try: |
|
collection = self.aoss_client.create_collection(name=self.vector_store_name, type='VECTORSEARCH') |
|
collection_id = collection['createCollectionDetail']['id'] |
|
collection_arn = collection['createCollectionDetail']['arn'] |
|
except self.aoss_client.exceptions.ConflictException: |
|
collection = self.aoss_client.batch_get_collection(names=[self.vector_store_name])['collectionDetails'][0] |
|
pp.pprint(collection) |
|
collection_id = collection['id'] |
|
collection_arn = collection['arn'] |
|
pp.pprint(collection) |
|
|
|
|
|
host = collection_id + '.' + self.region_name + '.aoss.amazonaws.com' |
|
print(host) |
|
|
|
|
|
response = self.aoss_client.batch_get_collection(names=[self.vector_store_name]) |
|
|
|
while (response['collectionDetails'][0]['status']) == 'CREATING': |
|
print('Creating collection...') |
|
interactive_sleep(30) |
|
response = self.aoss_client.batch_get_collection(names=[self.vector_store_name]) |
|
print('\nCollection successfully created:') |
|
pp.pprint(response["collectionDetails"]) |
|
|
|
try: |
|
created = self.create_oss_policy_attach_bedrock_execution_role(collection_id) |
|
if created: |
|
|
|
print("Sleeping for a minute to ensure data access rules have been enforced") |
|
interactive_sleep(60) |
|
return host, collection, collection_id, collection_arn |
|
except Exception as e: |
|
print("Policy already exists") |
|
pp.pprint(e) |
|
|
|
def create_vector_index(self): |
|
""" |
|
Create OpenSearch Serverless vector index. If existent, ignore |
|
""" |
|
body_json = { |
|
"settings": { |
|
"index.knn": "true", |
|
"number_of_shards": 1, |
|
"knn.algo_param.ef_search": 512, |
|
"number_of_replicas": 0, |
|
}, |
|
"mappings": { |
|
"properties": { |
|
"vector": { |
|
"type": "knn_vector", |
|
"dimension": 1536, |
|
"method": { |
|
"name": "hnsw", |
|
"engine": "faiss", |
|
"space_type": "l2" |
|
}, |
|
}, |
|
"text": { |
|
"type": "text" |
|
}, |
|
"text-metadata": { |
|
"type": "text"} |
|
} |
|
} |
|
} |
|
|
|
|
|
try: |
|
response = self.oss_client.indices.create(index=self.index_name, body=json.dumps(body_json)) |
|
print('\nCreating index:') |
|
pp.pprint(response) |
|
|
|
|
|
interactive_sleep(60) |
|
except RequestError as e: |
|
|
|
|
|
print( |
|
f'Error while trying to create the index, with error {e.error}\nyou may unmark the delete above to ' |
|
f'delete, and recreate the index') |
|
|
|
@retry(wait_random_min=1000, wait_random_max=2000, stop_max_attempt_number=7) |
|
def create_knowledge_base(self): |
|
""" |
|
Create Knowledge Base and its Data Source. If existent, retrieve |
|
""" |
|
opensearch_serverless_configuration = { |
|
"collectionArn": self.collection_arn, |
|
"vectorIndexName": self.index_name, |
|
"fieldMapping": { |
|
"vectorField": "vector", |
|
"textField": "text", |
|
"metadataField": "text-metadata" |
|
} |
|
} |
|
|
|
|
|
chunking_strategy_configuration = { |
|
"chunkingStrategy": "FIXED_SIZE", |
|
"fixedSizeChunkingConfiguration": { |
|
"maxTokens": 512, |
|
"overlapPercentage": 20 |
|
} |
|
} |
|
|
|
|
|
s3_configuration = { |
|
"bucketArn": f"arn:aws:s3:::{self.bucket_name}", |
|
|
|
} |
|
|
|
|
|
embedding_model_arn = f"arn:aws:bedrock:{self.region_name}::foundation-model/{self.embedding_model}" |
|
try: |
|
create_kb_response = self.bedrock_agent_client.create_knowledge_base( |
|
name=self.kb_name, |
|
description=self.kb_description, |
|
roleArn=self.bedrock_kb_execution_role['Role']['Arn'], |
|
knowledgeBaseConfiguration={ |
|
"type": "VECTOR", |
|
"vectorKnowledgeBaseConfiguration": { |
|
"embeddingModelArn": embedding_model_arn |
|
} |
|
}, |
|
storageConfiguration={ |
|
"type": "OPENSEARCH_SERVERLESS", |
|
"opensearchServerlessConfiguration": opensearch_serverless_configuration |
|
} |
|
) |
|
kb = create_kb_response["knowledgeBase"] |
|
pp.pprint(kb) |
|
except self.bedrock_agent_client.exceptions.ConflictException: |
|
kbs = self.bedrock_agent_client.list_knowledge_bases( |
|
maxResults=100 |
|
) |
|
kb_id = None |
|
for kb in kbs['knowledgeBaseSummaries']: |
|
if kb['name'] == self.kb_name: |
|
kb_id = kb['knowledgeBaseId'] |
|
response = self.bedrock_agent_client.get_knowledge_base(knowledgeBaseId=kb_id) |
|
kb = response['knowledgeBase'] |
|
pp.pprint(kb) |
|
|
|
|
|
try: |
|
create_ds_response = self.bedrock_agent_client.create_data_source( |
|
name=self.kb_name, |
|
description=self.kb_description, |
|
knowledgeBaseId=kb['knowledgeBaseId'], |
|
dataSourceConfiguration={ |
|
"type": "S3", |
|
"s3Configuration": s3_configuration |
|
}, |
|
vectorIngestionConfiguration={ |
|
"chunkingConfiguration": chunking_strategy_configuration |
|
} |
|
) |
|
ds = create_ds_response["dataSource"] |
|
pp.pprint(ds) |
|
except self.bedrock_agent_client.exceptions.ConflictException: |
|
ds_id = self.bedrock_agent_client.list_data_sources( |
|
knowledgeBaseId=kb['knowledgeBaseId'], |
|
maxResults=100 |
|
)['dataSourceSummaries'][0]['dataSourceId'] |
|
get_ds_response = self.bedrock_agent_client.get_data_source( |
|
dataSourceId=ds_id, |
|
knowledgeBaseId=kb['knowledgeBaseId'] |
|
) |
|
ds = get_ds_response["dataSource"] |
|
pp.pprint(ds) |
|
return kb, ds |
|
|
|
def start_ingestion_job(self): |
|
""" |
|
Start an ingestion job to synchronize data from an S3 bucket to the Knowledge Base |
|
""" |
|
|
|
start_job_response = self.bedrock_agent_client.start_ingestion_job( |
|
knowledgeBaseId=self.knowledge_base['knowledgeBaseId'], |
|
dataSourceId=self.data_source["dataSourceId"] |
|
) |
|
job = start_job_response["ingestionJob"] |
|
pp.pprint(job) |
|
|
|
while job['status'] != 'COMPLETE': |
|
get_job_response = self.bedrock_agent_client.get_ingestion_job( |
|
knowledgeBaseId=self.knowledge_base['knowledgeBaseId'], |
|
dataSourceId=self.data_source["dataSourceId"], |
|
ingestionJobId=job["ingestionJobId"] |
|
) |
|
job = get_job_response["ingestionJob"] |
|
pp.pprint(job) |
|
interactive_sleep(40) |
|
|
|
def get_knowledge_base_id(self): |
|
""" |
|
Get Knowledge Base Id |
|
""" |
|
pp.pprint(self.knowledge_base["knowledgeBaseId"]) |
|
return self.knowledge_base["knowledgeBaseId"] |
|
|
|
def get_bucket_name(self): |
|
""" |
|
Get the name of the bucket connected with the Knowledge Base Data Source |
|
""" |
|
pp.pprint(f"Bucket connected with KB: {self.bucket_name}") |
|
return self.bucket_name |
|
|
|
def delete_kb(self, delete_s3_bucket=False, delete_iam_roles_and_policies=True): |
|
""" |
|
Delete the Knowledge Base resources |
|
Args: |
|
delete_s3_bucket (bool): boolean to indicate if s3 bucket should also be deleted |
|
delete_iam_roles_and_policies (bool): boolean to indicate if IAM roles and Policies should also be deleted |
|
""" |
|
self.bedrock_agent_client.delete_data_source( |
|
dataSourceId=self.data_source["dataSourceId"], |
|
knowledgeBaseId=self.knowledge_base['knowledgeBaseId'] |
|
) |
|
self.bedrock_agent_client.delete_knowledge_base( |
|
knowledgeBaseId=self.knowledge_base['knowledgeBaseId'] |
|
) |
|
self.oss_client.indices.delete(index=self.index_name) |
|
self.aoss_client.delete_collection(id=self.collection_id) |
|
self.aoss_client.delete_access_policy( |
|
type="data", |
|
name=self.access_policy_name |
|
) |
|
self.aoss_client.delete_security_policy( |
|
type="network", |
|
name=self.network_policy_name |
|
) |
|
self.aoss_client.delete_security_policy( |
|
type="encryption", |
|
name=self.encryption_policy_name |
|
) |
|
if delete_s3_bucket: |
|
self.delete_s3() |
|
if delete_iam_roles_and_policies: |
|
self.delete_iam_roles_and_policies() |
|
|
|
def delete_iam_roles_and_policies(self): |
|
""" |
|
Delete IAM Roles and policies used by the Knowledge Base |
|
""" |
|
fm_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.fm_policy_name}" |
|
s3_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.s3_policy_name}" |
|
oss_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{self.oss_policy_name}" |
|
self.iam_client.detach_role_policy( |
|
RoleName=self.kb_execution_role_name, |
|
PolicyArn=s3_policy_arn |
|
) |
|
self.iam_client.detach_role_policy( |
|
RoleName=self.kb_execution_role_name, |
|
PolicyArn=fm_policy_arn |
|
) |
|
self.iam_client.detach_role_policy( |
|
RoleName=self.kb_execution_role_name, |
|
PolicyArn=oss_policy_arn |
|
) |
|
self.iam_client.delete_role(RoleName=self.kb_execution_role_name) |
|
self.iam_client.delete_policy(PolicyArn=s3_policy_arn) |
|
self.iam_client.delete_policy(PolicyArn=fm_policy_arn) |
|
self.iam_client.delete_policy(PolicyArn=oss_policy_arn) |
|
return 0 |
|
|
|
def delete_s3(self): |
|
""" |
|
Delete the objects contained in the Knowledge Base S3 bucket. |
|
Once the bucket is empty, delete the bucket |
|
""" |
|
objects = self.s3_client.list_objects(Bucket=self.bucket_name) |
|
if 'Contents' in objects: |
|
for obj in objects['Contents']: |
|
self.s3_client.delete_object(Bucket=self.bucket_name, Key=obj['Key']) |
|
self.s3_client.delete_bucket(Bucket=self.bucket_name) |