Update files from the datasets library (from 1.1.3)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.1.3
- conll2000.py +92 -15
- dataset_infos.json +1 -1
conll2000.py
CHANGED
@@ -77,9 +77,86 @@ class Conll2000(datasets.GeneratorBasedBuilder):
|
|
77 |
features=datasets.Features(
|
78 |
{
|
79 |
"id": datasets.Value("string"),
|
80 |
-
"
|
81 |
-
"
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
}
|
84 |
),
|
85 |
supervised_keys=None,
|
@@ -104,22 +181,22 @@ class Conll2000(datasets.GeneratorBasedBuilder):
|
|
104 |
logging.info("⏳ Generating examples from = %s", filepath)
|
105 |
with open(filepath, encoding="utf-8") as f:
|
106 |
guid = 0
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
for line in f:
|
111 |
if line == "" or line == "\n":
|
112 |
-
if
|
113 |
-
yield guid, {"id": str(guid), "
|
114 |
guid += 1
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
else:
|
119 |
# conll2000 tokens are space separated
|
120 |
splits = line.split(" ")
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
# last example
|
125 |
-
yield guid, {"id": str(guid), "
|
|
|
77 |
features=datasets.Features(
|
78 |
{
|
79 |
"id": datasets.Value("string"),
|
80 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
81 |
+
"pos_tags": datasets.Sequence(
|
82 |
+
datasets.features.ClassLabel(
|
83 |
+
names=[
|
84 |
+
"''",
|
85 |
+
"#",
|
86 |
+
"$",
|
87 |
+
"(",
|
88 |
+
")",
|
89 |
+
",",
|
90 |
+
".",
|
91 |
+
":",
|
92 |
+
"``",
|
93 |
+
"CC",
|
94 |
+
"CD",
|
95 |
+
"DT",
|
96 |
+
"EX",
|
97 |
+
"FW",
|
98 |
+
"IN",
|
99 |
+
"JJ",
|
100 |
+
"JJR",
|
101 |
+
"JJS",
|
102 |
+
"MD",
|
103 |
+
"NN",
|
104 |
+
"NNP",
|
105 |
+
"NNPS",
|
106 |
+
"NNS",
|
107 |
+
"PDT",
|
108 |
+
"POS",
|
109 |
+
"PRP",
|
110 |
+
"PRP$",
|
111 |
+
"RB",
|
112 |
+
"RBR",
|
113 |
+
"RBS",
|
114 |
+
"RP",
|
115 |
+
"SYM",
|
116 |
+
"TO",
|
117 |
+
"UH",
|
118 |
+
"VB",
|
119 |
+
"VBD",
|
120 |
+
"VBG",
|
121 |
+
"VBN",
|
122 |
+
"VBP",
|
123 |
+
"VBZ",
|
124 |
+
"WDT",
|
125 |
+
"WP",
|
126 |
+
"WP$",
|
127 |
+
"WRB",
|
128 |
+
]
|
129 |
+
)
|
130 |
+
),
|
131 |
+
"chunk_tags": datasets.Sequence(
|
132 |
+
datasets.features.ClassLabel(
|
133 |
+
names=[
|
134 |
+
"O",
|
135 |
+
"B-ADJP",
|
136 |
+
"I-ADJP",
|
137 |
+
"B-ADVP",
|
138 |
+
"I-ADVP",
|
139 |
+
"B-CONJP",
|
140 |
+
"I-CONJP",
|
141 |
+
"B-INTJ",
|
142 |
+
"I-INTJ",
|
143 |
+
"B-LST",
|
144 |
+
"I-LST",
|
145 |
+
"B-NP",
|
146 |
+
"I-NP",
|
147 |
+
"B-PP",
|
148 |
+
"I-PP",
|
149 |
+
"B-PRT",
|
150 |
+
"I-PRT",
|
151 |
+
"B-SBAR",
|
152 |
+
"I-SBAR",
|
153 |
+
"B-UCP",
|
154 |
+
"I-UCP",
|
155 |
+
"B-VP",
|
156 |
+
"I-VP",
|
157 |
+
]
|
158 |
+
)
|
159 |
+
),
|
160 |
}
|
161 |
),
|
162 |
supervised_keys=None,
|
|
|
181 |
logging.info("⏳ Generating examples from = %s", filepath)
|
182 |
with open(filepath, encoding="utf-8") as f:
|
183 |
guid = 0
|
184 |
+
tokens = []
|
185 |
+
pos_tags = []
|
186 |
+
chunk_tags = []
|
187 |
for line in f:
|
188 |
if line == "" or line == "\n":
|
189 |
+
if tokens:
|
190 |
+
yield guid, {"id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "chunk_tags": chunk_tags}
|
191 |
guid += 1
|
192 |
+
tokens = []
|
193 |
+
pos_tags = []
|
194 |
+
chunk_tags = []
|
195 |
else:
|
196 |
# conll2000 tokens are space separated
|
197 |
splits = line.split(" ")
|
198 |
+
tokens.append(splits[0])
|
199 |
+
pos_tags.append(splits[1])
|
200 |
+
chunk_tags.append(splits[2].rstrip())
|
201 |
# last example
|
202 |
+
yield guid, {"id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "chunk_tags": chunk_tags}
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"conll2000": {"description": " Text chunking consists of dividing a text in syntactically correlated parts of words. For example, the sentence\n He reckons the current account deficit will narrow to only # 1.8 billion in September . can be divided as follows:\n[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to ] [NP only # 1.8 billion ]\n[PP in ] [NP September ] .\n\nText chunking is an intermediate step towards full parsing. It was the shared task for CoNLL-2000. Training and test\ndata for this task is available. This data consists of the same partitions of the Wall Street Journal corpus (WSJ)\nas the widely used data for noun phrase chunking: sections 15-18 as training data (211727 tokens) and section 20 as\ntest data (47377 tokens). The annotation of the data has been derived from the WSJ corpus by a program written by\nSabine Buchholz from Tilburg University, The Netherlands.\n", "citation": "@inproceedings{tksbuchholz2000conll,\n author = \"Tjong Kim Sang, Erik F. and Sabine Buchholz\",\n title = \"Introduction to the CoNLL-2000 Shared Task: Chunking\",\n editor = \"Claire Cardie and Walter Daelemans and Claire\n Nedellec and Tjong Kim Sang, Erik\",\n booktitle = \"Proceedings of CoNLL-2000 and LLL-2000\",\n publisher = \"Lisbon, Portugal\",\n pages = \"127--132\",\n year = \"2000\"\n}\n", "homepage": "https://www.clips.uantwerpen.be/conll2000/chunking/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "
|
|
|
1 |
+
{"conll2000": {"description": " Text chunking consists of dividing a text in syntactically correlated parts of words. For example, the sentence\n He reckons the current account deficit will narrow to only # 1.8 billion in September . can be divided as follows:\n[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to ] [NP only # 1.8 billion ]\n[PP in ] [NP September ] .\n\nText chunking is an intermediate step towards full parsing. It was the shared task for CoNLL-2000. Training and test\ndata for this task is available. This data consists of the same partitions of the Wall Street Journal corpus (WSJ)\nas the widely used data for noun phrase chunking: sections 15-18 as training data (211727 tokens) and section 20 as\ntest data (47377 tokens). The annotation of the data has been derived from the WSJ corpus by a program written by\nSabine Buchholz from Tilburg University, The Netherlands.\n", "citation": "@inproceedings{tksbuchholz2000conll,\n author = \"Tjong Kim Sang, Erik F. and Sabine Buchholz\",\n title = \"Introduction to the CoNLL-2000 Shared Task: Chunking\",\n editor = \"Claire Cardie and Walter Daelemans and Claire\n Nedellec and Tjong Kim Sang, Erik\",\n booktitle = \"Proceedings of CoNLL-2000 and LLL-2000\",\n publisher = \"Lisbon, Portugal\",\n pages = \"127--132\",\n year = \"2000\"\n}\n", "homepage": "https://www.clips.uantwerpen.be/conll2000/chunking/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"num_classes": 44, "names": ["''", "#", "$", "(", ")", ",", ".", ":", "``", "CC", "CD", "DT", "EX", "FW", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WP$", "WRB"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "chunk_tags": {"feature": {"num_classes": 23, "names": ["O", "B-ADJP", "I-ADJP", "B-ADVP", "I-ADVP", "B-CONJP", "I-CONJP", "B-INTJ", "I-INTJ", "B-LST", "I-LST", "B-NP", "I-NP", "B-PP", "I-PP", "B-PRT", "I-PRT", "B-SBAR", "I-SBAR", "B-UCP", "I-UCP", "B-VP", "I-VP"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "conll2000", "config_name": "conll2000", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5356965, "num_examples": 8937, "dataset_name": "conll2000"}, "test": {"name": "test", "num_bytes": 1201151, "num_examples": 2013, "dataset_name": "conll2000"}}, "download_checksums": {"https://github.com/teropa/nlp/raw/master/resources/corpora/conll2000/train.txt": {"num_bytes": 2842164, "checksum": "82033cd7a72b209923a98007793e8f9de3abc1c8b79d646c50648eb949b87cea"}, "https://github.com/teropa/nlp/raw/master/resources/corpora/conll2000/test.txt": {"num_bytes": 639396, "checksum": "73b7b1e565fa75a1e22fe52ecdf41b6624d6f59dacb591d44252bf4d692b1628"}}, "download_size": 3481560, "post_processing_size": null, "dataset_size": 6558116, "size_in_bytes": 10039676}}
|