Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
espejelomar commited on
Commit
36472f8
·
1 Parent(s): 5598cd9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -40
README.md CHANGED
@@ -4,6 +4,11 @@ language:
4
  - en
5
  paperswithcode_id: embedding-data/SPECTER
6
  pretty_name: SPECTER
 
 
 
 
 
7
  ---
8
 
9
  # Dataset Card for "SPECTER"
@@ -41,39 +46,43 @@ pretty_name: SPECTER
41
 
42
  ### Dataset Summary
43
 
44
- SPECTER: Document-level Representation Learning using Citation-informed Transformers.
45
- A new method to generate document-level embedding of scientific documents based on
46
- pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph.
47
- Unlike existing pretrained language models, SPECTER can be easily applied to
48
- downstream applications without task-specific fine-tuning.
49
 
50
  Disclaimer: The team releasing SPECTER did not upload the dataset to the Hub and did not write a dataset card.
51
  These steps were done by the Hugging Face team.
52
 
53
- ### Supported Tasks and Leaderboards
54
-
55
- [More Information Needed](https://github.com/allenai/specter)
56
-
57
- ### Languages
58
-
59
- [More Information Needed](https://github.com/allenai/specter)
60
-
61
  ## Dataset Structure
62
- Specter requires two main files as input to embed the document.
63
- A text file with ids of the documents you want to embed and a json metadata file
64
- consisting of the title and abstract information.
65
- Sample files are provided in the `data/` directory to get you started.
66
- Input data format is according to:
67
 
68
- metadata.json format:
69
 
70
  ```
 
 
 
 
 
 
71
 
72
- {
73
- 'doc_id': {'title': 'representation learning of scientific documents',
74
- 'abstract': 'we propose a new model for representing abstracts'},
75
- }
 
 
 
 
 
 
 
 
 
 
76
  ```
 
 
 
 
77
 
78
  ### Curation Rationale
79
 
@@ -129,24 +138,7 @@ metadata.json format:
129
 
130
  ### Citation Information
131
 
132
- ```
133
- @inproceedings{specter2020cohan,
134
- title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}},
135
- author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
136
- booktitle={ACL},
137
- year={2020}
138
- }
139
-
140
- ```
141
- SciDocs benchmark
142
-
143
- SciDocs evaluation framework consists of a suite of evaluation tasks designed for document-level tasks.
144
-
145
- Link to SciDocs:
146
-
147
- - [https://github.com/allenai/scidocs](https://github.com/allenai/scidocs)
148
 
149
 
150
  ### Contributions
151
 
152
- Thanks to [@armancohan](https://github.com/armancohan), [@sergeyf](https://github.com/sergeyf), [@haroldrubio](https://github.com/haroldrubio), [@jinamshah](https://github.com/jinamshah) for adding this dataset.
 
4
  - en
5
  paperswithcode_id: embedding-data/SPECTER
6
  pretty_name: SPECTER
7
+ task_categories:
8
+ - sentence-similarity
9
+ - paraphrase-mining
10
+ task_ids:
11
+ - semantic-similarity-classification
12
  ---
13
 
14
  # Dataset Card for "SPECTER"
 
46
 
47
  ### Dataset Summary
48
 
49
+ Dataset containing triplets (three sentences): anchor, positive, and negative. Contains titles of papers.
 
 
 
 
50
 
51
  Disclaimer: The team releasing SPECTER did not upload the dataset to the Hub and did not write a dataset card.
52
  These steps were done by the Hugging Face team.
53
 
 
 
 
 
 
 
 
 
54
  ## Dataset Structure
55
+ Each example in the dataset contains triplets of equivalent sentences and is formatted as a dictionary with the key "set" and a list with the sentences as "value".
 
 
 
 
56
 
57
+ Each example is a dictionary with a key, "set", containing a list of three sentences (anchor, positive, and negative):
58
 
59
  ```
60
+ {"set": [anchor, positive, negative]}
61
+ {"set": [anchor, positive, negative]}
62
+ ...
63
+ {"set": [anchor, positive, negative]}
64
+ ```
65
+ This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train models using triplets.
66
 
67
+ ### Usage Example
68
+ Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
69
+ ```python
70
+ from datasets import load_dataset
71
+ dataset = load_dataset("embedding-data/SPECTER")
72
+ ```
73
+ The dataset is loaded as a `DatasetDict` and has the format:
74
+ ```python
75
+ DatasetDict({
76
+ train: Dataset({
77
+ features: ['set'],
78
+ num_rows: 684100
79
+ })
80
+ })
81
  ```
82
+ Review an example `i` with:
83
+ ```python
84
+ dataset["train"][i]["set"]
85
+
86
 
87
  ### Curation Rationale
88
 
 
138
 
139
  ### Citation Information
140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
 
143
  ### Contributions
144