import json import datasets from pathlib import Path import pandas as pd BASE_DATA_PATH = Path("./data") class CSCOMMConfig(datasets.BuilderConfig): """BuilderConfig for CSCOMM.""" def __init__(self, key, pretraining=False, data_path="./data", **kwargs): """BuilderConfig for CSCOMM. Args: key: `string` **kwargs: keyword arguments forwarded to super. """ # Version history: # 0.0.1: Initial version. super(CSCOMMConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs) self.key = key self.pretraining = pretraining class CSCOMM(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ CSCOMMConfig( name="AP", key="ap" ), CSCOMMConfig( name="AP+P", key="ap_p" ), CSCOMMConfig( name="AP+J", key="ap_j" ), CSCOMMConfig( name="AP+PJ", key="ap_pj" ), CSCOMMConfig( name="BA", key="ba" ), CSCOMMConfig( name="BA+P", key="ba_p" ), CSCOMMConfig( name="BA+J", key="ba_j" ), CSCOMMConfig( name="BA+PJ", key="ba_pj" ), CSCOMMConfig( name="pretrain-unlabeled", key="pt_un", pretraining=True ), CSCOMMConfig( name="pretrain-labeled", key="pt_la", pretraining=True ), CSCOMMConfig( name="pretrain-both", key="pt_unla", pretraining=True ), ] def _info(self): features = { "round_id": datasets.Value("string"), "source": datasets.Value("string") } if not self.config.pretraining: features["commentary"] = datasets.Value("string") return datasets.DatasetInfo( features=datasets.Features(features), ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract({ "train": f"./data/{self.config.key}/train.csv", "valid": f"./data/{self.config.key}/valid.csv", "test": f"./data/{self.config.key}/test.csv" }) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": dl_dir["train"], "split": datasets.Split.TRAIN, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": dl_dir["valid"], "split": datasets.Split.VALIDATION, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": dl_dir["test"], "split": datasets.Split.TEST, }, ), ] def _generate_examples(self, data_file, split): df = pd.read_csv(data_file) for i, row in enumerate(df.itertuples()): example = {"round_id": row.round_id, "source": row.source} if not self.config.pretraining: example["commentary"] = row.commentary yield i, example