#!/usr/bin/python import datasets import pyarrow as pa import pyarrow.parquet as pq BASE_DATASET = "ejschwartz/oo-method-test" class OOMethodTestDataset(datasets.ArrowBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name="combined", version=datasets.Version("1.0.0"), description="All data files combined", ), datasets.BuilderConfig( name="byrow", version=datasets.Version("1.0.0"), description="Split by example (dumb)", ), datasets.BuilderConfig( name="byfuncname", version=datasets.Version("1.0.0"), description="Split by function name", ) ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _info(self): return datasets.DatasetInfo() def _split_generators(self, dl_manager): ds = datasets.load_dataset(BASE_DATASET) #print(files) #print(downloaded_files) if self.config.name == "combined": return [ datasets.SplitGenerator( name="combined", gen_kwargs={ "ds": ds['combined'], }, ), ] elif self.config.name == "byrow": ds = ds['combined'].train_test_split(test_size=0.1, seed=42) #print(ds) return [ datasets.SplitGenerator( name="train", gen_kwargs={ "ds": ds['train'], }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "ds": ds['test'], }, ), ] elif self.config.name == "byfuncname": ds = ds['combined'] unique_names = ds.unique('Name') nameds = datasets.Dataset.from_dict({'Name': unique_names}) name_split = nameds.train_test_split(test_size=0.1, seed=42) #print(name_split) train_name = name_split['train']['Name'] test_name = name_split['test']['Name'] return [ datasets.SplitGenerator( name="train", gen_kwargs={ "ds": ds.filter(lambda r: r['Name'] in train_name), }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "ds": ds.filter(lambda r: r['Name'] in test_name), }, ), ] else: assert False def _generate_tables(self, ds): # Converting to pandas is silly, but the old version of datasets doesn't # seem to have a way to convert to Arrow? for i, batch in enumerate(ds.to_pandas(batched=True)): yield i, pa.Table.from_pandas(batch)