File size: 4,967 Bytes
f464dd6 62519ba 6cd4595 62519ba a748732 b7f5a37 f464dd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: other
license_name: license-agreement-on-the-use-of-enmap-data
license_link: https://geoservice.dlr.de/resources/licenses/enmap/EnMAP-Data_License_v1_1.pdf
---
# How to use it
Install Dataset4EO
```git clone --branch streaming https://github.com/EarthNets/Dataset4EO.git```
```pip install -e .```
Then download the dataset from this Huggingface repo.
```python
import dataset4eo as eodata
import time
train_dataset = eodata.StreamingDataset(input_dir="optimized_enmap_corine", num_channels=202, channels_to_select=[0,1,2], shuffle=True, drop_last=True)
sample = dataset[101]
print(sample.keys())
print(sample["image"])
print(sample["simage"].shape)
print(sample["label"])
```
The land cover types of the [CORINE dataset](https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/html/index.html):
| # | Code | Land Cover Type |
|----|--------|-----------------------------------------------------------|
| 0 | 1.1.1 | Continuous urban fabric |
| 1 | 1.1.2 | Discontinuous urban fabric |
| 2 | 1.2.1 | Industrial or commercial units |
| 3 | 1.2.2 | Road and rail networks and associated land |
| 4 | 1.2.3 | Port areas |
| 5 | 1.2.4 | Airports |
| 6 | 1.3.1 | Mineral extraction sites |
| 7 | 1.3.2 | Dump sites |
| 8 | 1.3.3 | Construction sites |
| 9 | 1.4.1 | Green urban areas |
| 10 | 1.4.2 | Sport and leisure facilities |
| 11 | 2.1.1 | Non-irrigated arable land |
| 12 | 2.1.2 | Permanently irrigated land |
| 13 | 2.1.3 | Rice fields |
| 14 | 2.2.1 | Vineyards |
| 15 | 2.2.2 | Fruit trees and berry plantations |
| 16 | 2.2.3 | Olive groves |
| 17 | 2.3.1 | Pastures |
| 18 | 2.4.1 | Annual crops associated with permanent crops |
| 19 | 2.4.2 | Complex cultivation patterns |
| 20 | 2.4.3 | Land principally occupied by agriculture, with significant areas of natural vegetation |
| 21 | 2.4.4 | Agro-forestry areas |
| 22 | 3.1.1 | Broad-leaved forest |
| 23 | 3.1.2 | Coniferous forest |
| 24 | 3.1.3 | Mixed forest |
| 25 | 3.2.1 | Natural grassland |
| 26 | 3.2.2 | Moors and heathland |
| 27 | 3.2.3 | Sclerophyllous vegetation |
| 28 | 3.2.4 | Transitional woodland/shrub |
| 29 | 3.3.1 | Beaches, dunes, sands |
| 30 | 3.3.2 | Bare rock |
| 31 | 3.3.3 | Sparsely vegetated areas |
| 32 | 3.3.4 | Burnt areas |
| 33 | 3.3.5 | Glaciers and perpetual snow |
| 34 | 4.1.1 | Inland marshes |
| 35 | 4.1.2 | Peatbogs |
| 36 | 4.2.1 | Salt marshes |
| 37 | 4.2.2 | Salines |
| 38 | 4.2.3 | Intertidal flats |
| 39 | 5.1.1 | Water courses |
| 40 | 5.1.2 | Water bodies |
| 41 | 5.2.1 | Coastal lagoons |
| 42 | 5.2.2 | Estuaries |
| 43 | 5.2.3 | Sea and ocean |
We acknowledge and give full credit to the original authors of SpectralEarth for their effort in creating this dataset.
The dataset is re-hosted in compliance with its original license to facilitate further research. Please cite the following paper for the creation of the dataset:
```
@article{braham2024spectralearth,
title={SpectralEarth: Training Hyperspectral Foundation Models at Scale},
author={Braham, Nassim Ait Ali and Albrecht, Conrad M and Mairal, Julien and Chanussot, Jocelyn and Wang, Yi and Zhu, Xiao Xiang},
journal={arXiv preprint arXiv:2408.08447},
year={2024}
}
``` |