Datasets:
File size: 3,793 Bytes
514ed0a d28ef4a 514ed0a d28ef4a 514ed0a d28ef4a 4b4b6b7 d28ef4a 0a53517 d28ef4a 0a53517 4b4b6b7 0a53517 4b4b6b7 d28ef4a 0a53517 4b4b6b7 d28ef4a 4b4b6b7 d28ef4a a2f6df9 4b4b6b7 d28ef4a 4b4b6b7 a2f6df9 4b4b6b7 d28ef4a 0a53517 d28ef4a 0a53517 d28ef4a 0a53517 d28ef4a 0a53517 d28ef4a 0a53517 d28ef4a 0a53517 d28ef4a 0a53517 d28ef4a 0a53517 d28ef4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: string
splits:
- name: train
num_bytes: 65880607.6
num_examples: 16
- name: test
num_bytes: 15634112.4
num_examples: 4
download_size: 81521051
dataset_size: 81514720
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- object-detection
language:
- en
tags:
- objectdetection d
- detection
- syntheticdata
- yolov8
- yolo
- labels
- labeled
- label
- indoor
- cpg
- can
size_categories:
- 1K<n<10K
---
# Soup Can Object Detection Dataset Sample
[Duality.ai](https://www.duality.ai/edu) just released a 1000 image dataset used to train a YOLOv8 model for object detection -- and it's 100% free!
Just [create an EDU account here](https://falcon.duality.ai/secure/documentation/ex2-dataset?sidebarMode=learn&highlight=dataset&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan).
This HuggingFace dataset is a 20 image and label sample, but you can get the rest at no cost by [creating a FalconCloud account](https://falcon.duality.ai/secure/documentation/ex2-dataset?sidebarMode=learn&highlight=dataset&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan). Once you verify your email, the link will redirect you to the dataset page.

# Dataset Overview
This dataset consists of high-quality images of soup cans captured in various poses and lighting conditions .This dataset is structured to train and test object detection models, specifically YOLO-based and other object detection frameworks.
#### Why Use This Dataset?
- Single Object Detection: Specifically curated for detecting soup cans, making it ideal for fine-tuning models for retail, inventory management, or robotics applications.
- Varied Environments: The dataset contains images with different lighting conditions, poses, and occlusions to help solve traditional recall problems in real world object detection.
- Accurate Annotations: Bounding box annotations are precise and automatically labeled in YOLO format as the data is created.
Create your own specialized data!
You can create a dataset like this but with a digital twin of your choosing! [Create an account and follow this tutorial to learn how](https://falcon.duality.ai/secure/documentation/ex2-objdetection-newtwin?sidebarMode=learn&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan).
# Dataset Structure
The dataset is organized as follows:
```plaintext
Object Detection Dataset 02/
|-- images/
| |-- 000000000.png
| |-- 000000001.png
| |-- ...
|-- labels/
| |-- 000000000.txt
| |-- 000000001.txt
| |-- ...
```
### Components
Images: RGB images of the object in `.png` format.
Labels: Text files (`.txt`) containing bounding box annotations for each class:
- 0 = soup
### Example Annotation (YOLO Format):
```plaintext
0 0.475 0.554 0.050 0.050
```
- 0 represents the object class (soup can).
- The next four values represent the bounding box coordinates (normalized x_center, y_center, width, height).
### Usage
This dataset is designed to be used with popular deep learning frameworks. Run these commands:
```plaintext
from datasets import load_dataset
```
```plaintext
dataset = load_dataset("your-huggingface-username/YOLOv8-Object-Detection-02-Dataset")
```
To train a YOLOv8 model, you can use Ultralytics' yolo package:
```plaintext
yolo train model=yolov8n.pt data=soup_can.yaml epochs=50 imgsz=640
```
Licensing
License: Apache 2.0
Attribution: If you use this dataset in research or commercial projects, please provide appropriate credit. |