File size: 3,793 Bytes
514ed0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d28ef4a
514ed0a
 
 
 
 
 
 
d28ef4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514ed0a
d28ef4a
4b4b6b7
d28ef4a
0a53517
d28ef4a
0a53517
4b4b6b7
 
0a53517
4b4b6b7
d28ef4a
 
0a53517
4b4b6b7
 
 
d28ef4a
4b4b6b7
d28ef4a
a2f6df9
4b4b6b7
 
 
d28ef4a
4b4b6b7
 
a2f6df9
4b4b6b7
 
 
 
 
 
 
 
 
d28ef4a
0a53517
d28ef4a
0a53517
d28ef4a
0a53517
 
d28ef4a
0a53517
d28ef4a
0a53517
 
 
d28ef4a
0a53517
 
d28ef4a
0a53517
 
d28ef4a
0a53517
 
 
 
 
 
 
 
 
 
 
 
d28ef4a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 65880607.6
    num_examples: 16
  - name: test
    num_bytes: 15634112.4
    num_examples: 4
  download_size: 81521051
  dataset_size: 81514720
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- object-detection
language:
- en
tags:
- objectdetection d
- detection
- syntheticdata
- yolov8
- yolo
- labels
- labeled
- label
- indoor
- cpg
- can
size_categories:
- 1K<n<10K
---

# Soup Can Object Detection Dataset Sample

 [Duality.ai](https://www.duality.ai/edu) just released a 1000 image dataset used to train a YOLOv8 model for object detection -- and it's 100% free!

 Just [create an EDU account here](https://falcon.duality.ai/secure/documentation/ex2-dataset?sidebarMode=learn&highlight=dataset&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan). 

This HuggingFace dataset is a 20 image and label sample, but you can get the rest at no cost by [creating a FalconCloud account](https://falcon.duality.ai/secure/documentation/ex2-dataset?sidebarMode=learn&highlight=dataset&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan). Once you verify your email, the link will redirect you to the dataset page.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66c8dc99951843ca6762fe02/ieA6xPKurg_zObz7lOk7N.png)
# Dataset Overview
This dataset consists of high-quality images of soup cans captured in various  poses and lighting conditions .This dataset is structured to train and test object detection models, specifically YOLO-based and other object detection frameworks.

#### Why Use This Dataset?
- Single Object Detection: Specifically curated for detecting soup cans, making it ideal for fine-tuning models for retail, inventory management, or robotics applications.

- Varied Environments: The dataset contains images with different lighting conditions, poses, and occlusions to help solve traditional recall problems in real world object detection.

- Accurate Annotations: Bounding box annotations are precise and automatically labeled in YOLO format as the data is created.
Create your own specialized data!
You can create a dataset like this but with a digital twin of your choosing! [Create an account and follow this tutorial to learn how](https://falcon.duality.ai/secure/documentation/ex2-objdetection-newtwin?sidebarMode=learn&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan).

# Dataset Structure

The dataset is organized as follows:

```plaintext
Object Detection Dataset 02/
|-- images/
|   |-- 000000000.png
|   |-- 000000001.png
|   |-- ...
|-- labels/
|   |-- 000000000.txt
|   |-- 000000001.txt
|   |-- ...
```

### Components

Images: RGB images of the object in `.png` format.

Labels: Text files (`.txt`) containing bounding box annotations for each class:
- 0 = soup

### Example Annotation (YOLO Format):

```plaintext
0 0.475 0.554 0.050 0.050
```

- 0 represents the object class (soup can).
- The next four values represent the bounding box coordinates (normalized x_center, y_center, width, height).

### Usage
This dataset is designed to be used with popular deep learning frameworks. Run these commands:

```plaintext
from datasets import load_dataset
```
```plaintext
dataset = load_dataset("your-huggingface-username/YOLOv8-Object-Detection-02-Dataset")
```
 
To train a YOLOv8 model, you can use Ultralytics' yolo package:
 
```plaintext
yolo train model=yolov8n.pt data=soup_can.yaml epochs=50 imgsz=640
```

Licensing
License: Apache 2.0
Attribution: If you use this dataset in research or commercial projects, please provide appropriate credit.