Datasets:
File size: 3,414 Bytes
514ed0a d28ef4a 514ed0a d28ef4a 514ed0a d28ef4a 4b4b6b7 d28ef4a 4b4b6b7 d28ef4a 4b4b6b7 d28ef4a 4b4b6b7 d28ef4a 4b4b6b7 d28ef4a 4b4b6b7 d28ef4a 4b4b6b7 d28ef4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: string
splits:
- name: train
num_bytes: 65880607.6
num_examples: 16
- name: test
num_bytes: 15634112.4
num_examples: 4
download_size: 81521051
dataset_size: 81514720
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- object-detection
language:
- en
tags:
- objectdetection d
- detection
- syntheticdata
- yolov8
- yolo
- labels
- labeled
- label
- indoor
- cpg
- can
size_categories:
- 1K<n<10K
---
# Soup Can Object Detection Dataset Sample
## [Duality.ai](https://www.duality.ai/edu) just released a 1000 image dataset used to train a YOLOv8 model for object detection -- and it's 100% free!
## Just [create an EDU account here](https://falcon.duality.ai/secure/documentation/ex2-dataset?sidebarMode=learn&highlight=dataset&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan).
This HuggingFace dataset is a 20 image and label sample, but you can get the rest at no cost by [creating a FalconCloud account](https://falcon.duality.ai/secure/documentation/ex2-dataset?sidebarMode=learn&highlight=dataset&utm_source=huggingface&utm_medium=dataset&utm_campaign=soupCan). Once you verify your email, the link will redirect you to the dataset page.
# Dataset Overview
This dataset consists of high-quality images of soup cans captured in various poses and lighting conditions .This dataset is structured to train and test object detection models, specifically YOLO-based and other object detection frameworks.
## Why Use This Dataset?
- Single Object Detection: Specifically curated for detecting soup cans, making it ideal for fine-tuning models for retail, inventory management, or robotics applications.
- Varied Environments: The dataset contains images with different lighting conditions, poses, and occlusions to help solve traditional recall problems in real world object detection.
- Accurate Annotations: Bounding box annotations are precise and automatically labeled in YOLO format as the data is created.
Create your own specialized data!
You can create a dataset like this but with your own digital twin! [Create an account and follow this tutorial to learn how](link).
# Dataset Structure
The dataset is organized as follows:
```plaintext
Multiclass Object Detection Dataset/
|-- images/
| |-- 000000000.png
| |-- 000000001.png
| |-- ...
|-- labels/
| |-- 000000000.txt
| |-- 000000001.txt
| |-- ...
```
Components
Images: RGB images of the soup can in .png format.
Labels: .txt files containing bounding box annotations in the YOLO format.
0 = soup can
Example Annotation (YOLO Format):
0 0.475 0.554 0.050 0.050
Where:
0 represents the object class (soup can).
The next four values represent the bounding box coordinates (normalized x_center, y_center, width, height).
Usage
This dataset is designed to be used with popular deep learning frameworks:
from datasets import load_dataset
dataset = load_dataset("your-huggingface-username/Soup-Can-Object-Detection")
To train a YOLOv8 model, you can use Ultralytics' yolo package:
yolo train model=yolov8n.pt data=soup_can.yaml epochs=50 imgsz=640
Licensing
License: Apache 2.0
Attribution: If you use this dataset in research or commercial projects, please provide appropriate credit. |