""" This script performs DDIM inversion for video frames using a pre-trained model and generates a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to process video frames, apply the DDIM inverse scheduler, and produce an output video. **Please notice that this script is based on the CogVideoX 5B model, and would not generate a good result for 2B variants.** Usage: python cogvideox_ddim_inversion.py --model-path /path/to/model --prompt "a prompt" --video-path /path/to/video.mp4 --output-path /path/to/output For more details about the cli arguments, please run `python cogvideox_ddim_inversion.py --help`. Author: LittleNyima """ import argparse import math import os from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast import torch import torch.nn.functional as F import torchvision.transforms as T from transformers import T5EncoderModel, T5Tokenizer from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0 from diffusers.models.autoencoders import AutoencoderKLCogVideoX from diffusers.models.embeddings import apply_rotary_emb from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler from diffusers.utils import export_to_video # Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error. # Very few bug reports but it happens. Look in decord Github issues for more relevant information. import decord # isort: skip class DDIMInversionArguments(TypedDict): model_path: str prompt: str video_path: str output_path: str guidance_scale: float num_inference_steps: int skip_frames_start: int skip_frames_end: int frame_sample_step: Optional[int] max_num_frames: int width: int height: int fps: int dtype: torch.dtype seed: int device: torch.device def get_args() -> DDIMInversionArguments: parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, required=True, help="Path of the pretrained model") parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure") parser.add_argument("--video_path", type=str, required=True, help="Path of the video for inversion") parser.add_argument("--output_path", type=str, default="output", help="Path of the output videos") parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale") parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps") parser.add_argument("--skip_frames_start", type=int, default=0, help="Number of skipped frames from the start") parser.add_argument("--skip_frames_end", type=int, default=0, help="Number of skipped frames from the end") parser.add_argument("--frame_sample_step", type=int, default=None, help="Temporal stride of the sampled frames") parser.add_argument("--max_num_frames", type=int, default=81, help="Max number of sampled frames") parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames") parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames") parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos") parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model") parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator") parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference") args = parser.parse_args() args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16 args.device = torch.device(args.device) return DDIMInversionArguments(**vars(args)) class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0): def __init__(self): super().__init__() def calculate_attention( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn: Attention, batch_size: int, image_seq_length: int, text_seq_length: int, attention_mask: Optional[torch.Tensor], image_rotary_emb: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Core attention computation with inversion-guided RoPE integration. Args: query (`torch.Tensor`): `[batch_size, seq_len, dim]` query tensor key (`torch.Tensor`): `[batch_size, seq_len, dim]` key tensor value (`torch.Tensor`): `[batch_size, seq_len, dim]` value tensor attn (`Attention`): Parent attention module with projection layers batch_size (`int`): Effective batch size (after chunk splitting) image_seq_length (`int`): Length of image feature sequence text_seq_length (`int`): Length of text feature sequence attention_mask (`Optional[torch.Tensor]`): Attention mask tensor image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image positions Returns: `Tuple[torch.Tensor, torch.Tensor]`: (1) hidden_states: [batch_size, image_seq_length, dim] processed image features (2) encoder_hidden_states: [batch_size, text_seq_length, dim] processed text features """ inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: if key.size(2) == query.size(2): # Attention for reference hidden states key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) else: # RoPE should be applied to each group of image tokens key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb( key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb ) key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb( key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb ) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) return hidden_states, encoder_hidden_states def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Process the dual-path attention for the inversion-guided denoising procedure. Args: attn (`Attention`): Parent attention module hidden_states (`torch.Tensor`): `[batch_size, image_seq_len, dim]` Image tokens encoder_hidden_states (`torch.Tensor`): `[batch_size, text_seq_len, dim]` Text tokens attention_mask (`Optional[torch.Tensor]`): Optional attention mask image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image tokens Returns: `Tuple[torch.Tensor, torch.Tensor]`: (1) Final hidden states: `[batch_size, image_seq_length, dim]` Resulting image tokens (2) Final encoder states: `[batch_size, text_seq_length, dim]` Resulting text tokens """ image_seq_length = hidden_states.size(1) text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query, query_reference = query.chunk(2) key, key_reference = key.chunk(2) value, value_reference = value.chunk(2) batch_size = batch_size // 2 hidden_states, encoder_hidden_states = self.calculate_attention( query=query, key=torch.cat((key, key_reference), dim=1), value=torch.cat((value, value_reference), dim=1), attn=attn, batch_size=batch_size, image_seq_length=image_seq_length, text_seq_length=text_seq_length, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention( query=query_reference, key=key_reference, value=value_reference, attn=attn, batch_size=batch_size, image_seq_length=image_seq_length, text_seq_length=text_seq_length, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) return ( torch.cat((hidden_states, hidden_states_reference)), torch.cat((encoder_hidden_states, encoder_hidden_states_reference)), ) class OverrideAttnProcessors: r""" Context manager for temporarily overriding attention processors in CogVideo transformer blocks. Designed for DDIM inversion process, replaces original attention processors with `CogVideoXAttnProcessor2_0ForDDIMInversion` and restores them upon exit. Uses Python context manager pattern to safely manage processor replacement. Typical usage: ```python with OverrideAttnProcessors(transformer): # Perform DDIM inversion operations ``` Args: transformer (`CogVideoXTransformer3DModel`): The transformer model containing attention blocks to be modified. Should have `transformer_blocks` attribute containing `CogVideoXBlock` instances. """ def __init__(self, transformer: CogVideoXTransformer3DModel): self.transformer = transformer self.original_processors = {} def __enter__(self): for block in self.transformer.transformer_blocks: block = cast(CogVideoXBlock, block) self.original_processors[id(block)] = block.attn1.get_processor() block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion()) def __exit__(self, _0, _1, _2): for block in self.transformer.transformer_blocks: block = cast(CogVideoXBlock, block) block.attn1.set_processor(self.original_processors[id(block)]) def get_video_frames( video_path: str, width: int, height: int, skip_frames_start: int, skip_frames_end: int, max_num_frames: int, frame_sample_step: Optional[int], ) -> torch.FloatTensor: """ Extract and preprocess video frames from a video file for VAE processing. Args: video_path (`str`): Path to input video file width (`int`): Target frame width for decoding height (`int`): Target frame height for decoding skip_frames_start (`int`): Number of frames to skip at video start skip_frames_end (`int`): Number of frames to skip at video end max_num_frames (`int`): Maximum allowed number of output frames frame_sample_step (`Optional[int]`): Frame sampling step size. If None, automatically calculated as: (total_frames - skipped_frames) // max_num_frames Returns: `torch.FloatTensor`: Preprocessed frames in `[F, C, H, W]` format where: - `F`: Number of frames (adjusted to 4k + 1 for VAE compatibility) - `C`: Channels (3 for RGB) - `H`: Frame height - `W`: Frame width """ with decord.bridge.use_torch(): video_reader = decord.VideoReader(uri=video_path, width=width, height=height) video_num_frames = len(video_reader) start_frame = min(skip_frames_start, video_num_frames) end_frame = max(0, video_num_frames - skip_frames_end) if end_frame <= start_frame: indices = [start_frame] elif end_frame - start_frame <= max_num_frames: indices = list(range(start_frame, end_frame)) else: step = frame_sample_step or (end_frame - start_frame) // max_num_frames indices = list(range(start_frame, end_frame, step)) frames = video_reader.get_batch(indices=indices) frames = frames[:max_num_frames].float() # ensure that we don't go over the limit # Choose first (4k + 1) frames as this is how many is required by the VAE selected_num_frames = frames.size(0) remainder = (3 + selected_num_frames) % 4 if remainder != 0: frames = frames[:-remainder] assert frames.size(0) % 4 == 1 # Normalize the frames transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0) frames = torch.stack(tuple(map(transform, frames)), dim=0) return frames.permute(0, 3, 1, 2).contiguous() # [F, C, H, W] class CogVideoXDDIMInversionOutput: inverse_latents: torch.FloatTensor recon_latents: torch.FloatTensor def __init__(self, inverse_latents: torch.FloatTensor, recon_latents: torch.FloatTensor): self.inverse_latents = inverse_latents self.recon_latents = recon_latents class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline): def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: CogVideoXTransformer3DModel, scheduler: CogVideoXDDIMScheduler, ): super().__init__( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, ) self.inverse_scheduler = DDIMInverseScheduler(**scheduler.config) def encode_video_frames(self, video_frames: torch.FloatTensor) -> torch.FloatTensor: """ Encode video frames into latent space using Variational Autoencoder. Args: video_frames (`torch.FloatTensor`): Input frames tensor in `[F, C, H, W]` format from `get_video_frames()` Returns: `torch.FloatTensor`: Encoded latents in `[1, F, D, H_latent, W_latent]` format where: - `F`: Number of frames (same as input) - `D`: Latent channel dimension - `H_latent`: Latent space height (H // 2^vae.downscale_factor) - `W_latent`: Latent space width (W // 2^vae.downscale_factor) """ vae: AutoencoderKLCogVideoX = self.vae video_frames = video_frames.to(device=vae.device, dtype=vae.dtype) video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [B, C, F, H, W] latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2) return latent_dist * vae.config.scaling_factor @torch.no_grad() def export_latents_to_video(self, latents: torch.FloatTensor, video_path: str, fps: int): r""" Decode latent vectors into video and export as video file. Args: latents (`torch.FloatTensor`): Encoded latents in `[B, F, D, H_latent, W_latent]` format from `encode_video_frames()` video_path (`str`): Output path for video file fps (`int`): Target frames per second for output video """ video = self.decode_latents(latents) frames = self.video_processor.postprocess_video(video=video, output_type="pil") os.makedirs(os.path.dirname(video_path), exist_ok=True) export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps) # Modified from CogVideoXPipeline.__call__ @torch.no_grad() def sample( self, latents: torch.FloatTensor, scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler], prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, num_inference_steps: int = 50, guidance_scale: float = 6, use_dynamic_cfg: bool = False, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, reference_latents: torch.FloatTensor = None, ) -> torch.FloatTensor: r""" Execute the core sampling loop for video generation/inversion using CogVideoX. Implements the full denoising trajectory recording for both DDIM inversion and generation processes. Supports dynamic classifier-free guidance and reference latent conditioning. Args: latents (`torch.FloatTensor`): Initial noise tensor of shape `[B, F, C, H, W]`. scheduler (`Union[DDIMInverseScheduler, CogVideoXDDIMScheduler]`): Scheduling strategy for diffusion process. Use: (1) `DDIMInverseScheduler` for inversion (2) `CogVideoXDDIMScheduler` for generation prompt (`Optional[Union[str, List[str]]]`): Text prompt(s) for conditional generation. Defaults to unconditional. negative_prompt (`Optional[Union[str, List[str]]]`): Negative prompt(s) for guidance. Requires `guidance_scale > 1`. num_inference_steps (`int`): Number of denoising steps. Affects quality/compute trade-off. guidance_scale (`float`): Classifier-free guidance weight. 1.0 = no guidance. use_dynamic_cfg (`bool`): Enable time-varying guidance scale (cosine schedule) eta (`float`): DDIM variance parameter (0 = deterministic process) generator (`Optional[Union[torch.Generator, List[torch.Generator]]]`): Random number generator(s) for reproducibility attention_kwargs (`Optional[Dict[str, Any]]`): Custom parameters for attention modules reference_latents (`torch.FloatTensor`): Reference latent trajectory for conditional sampling. Shape should match `[T, B, F, C, H, W]` where `T` is number of timesteps Returns: `torch.FloatTensor`: Full denoising trajectory tensor of shape `[T, B, F, C, H, W]`. """ self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, negative_prompt, do_classifier_free_guidance, device=device, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) if reference_latents is not None: prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device) self._num_timesteps = len(timesteps) # 5. Prepare latents. latents = latents.to(device=device) * scheduler.init_noise_sigma # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) if isinstance(scheduler, DDIMInverseScheduler): # Inverse scheduler does not accept extra kwargs extra_step_kwargs = {} # 7. Create rotary embeds if required image_rotary_emb = ( self._prepare_rotary_positional_embeddings( height=latents.size(3) * self.vae_scale_factor_spatial, width=latents.size(4) * self.vae_scale_factor_spatial, num_frames=latents.size(1), device=device, ) if self.transformer.config.use_rotary_positional_embeddings else None ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0) trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents if reference_latents is not None: reference = reference_latents[i] reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference latent_model_input = torch.cat([latent_model_input, reference], dim=0) latent_model_input = scheduler.scale_model_input(latent_model_input, t) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, attention_kwargs=attention_kwargs, return_dict=False, )[0] noise_pred = noise_pred.float() if reference_latents is not None: # Recover the original batch size noise_pred, _ = noise_pred.chunk(2) # perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the noisy sample x_t-1 -> x_t latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] latents = latents.to(prompt_embeds.dtype) trajectory[i] = latents if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): progress_bar.update() # Offload all models self.maybe_free_model_hooks() return trajectory @torch.no_grad() def __call__( self, prompt: str, video_path: str, guidance_scale: float, num_inference_steps: int, skip_frames_start: int, skip_frames_end: int, frame_sample_step: Optional[int], max_num_frames: int, width: int, height: int, seed: int, ): """ Performs DDIM inversion on a video to reconstruct it with a new prompt. Args: prompt (`str`): The text prompt to guide the reconstruction. video_path (`str`): Path to the input video file. guidance_scale (`float`): Scale for classifier-free guidance. num_inference_steps (`int`): Number of denoising steps. skip_frames_start (`int`): Number of frames to skip from the beginning of the video. skip_frames_end (`int`): Number of frames to skip from the end of the video. frame_sample_step (`Optional[int]`): Step size for sampling frames. If None, all frames are used. max_num_frames (`int`): Maximum number of frames to process. width (`int`): Width of the output video frames. height (`int`): Height of the output video frames. seed (`int`): Random seed for reproducibility. Returns: `CogVideoXDDIMInversionOutput`: Contains the inverse latents and reconstructed latents. """ if not self.transformer.config.use_rotary_positional_embeddings: raise NotImplementedError("This script supports CogVideoX 5B model only.") video_frames = get_video_frames( video_path=video_path, width=width, height=height, skip_frames_start=skip_frames_start, skip_frames_end=skip_frames_end, max_num_frames=max_num_frames, frame_sample_step=frame_sample_step, ).to(device=self.device) video_latents = self.encode_video_frames(video_frames=video_frames) inverse_latents = self.sample( latents=video_latents, scheduler=self.inverse_scheduler, prompt="", num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator(device=self.device).manual_seed(seed), ) with OverrideAttnProcessors(transformer=self.transformer): recon_latents = self.sample( latents=torch.randn_like(video_latents), scheduler=self.scheduler, prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator(device=self.device).manual_seed(seed), reference_latents=reversed(inverse_latents), ) return CogVideoXDDIMInversionOutput( inverse_latents=inverse_latents, recon_latents=recon_latents, ) if __name__ == "__main__": arguments = get_args() pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained( arguments.pop("model_path"), torch_dtype=arguments.pop("dtype"), ).to(device=arguments.pop("device")) output_path = arguments.pop("output_path") fps = arguments.pop("fps") inverse_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_inversion.mp4") recon_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_reconstruction.mp4") # Run DDIM inversion output = pipeline(**arguments) pipeline.export_latents_to_video(output.inverse_latents[-1], inverse_video_path, fps) pipeline.export_latents_to_video(output.recon_latents[-1], recon_video_path, fps)