Diffusers Bot
commited on
Upload folder using huggingface_hub
Browse files
main/checkpoint_merger.py
CHANGED
@@ -71,7 +71,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
|
71 |
**kwargs:
|
72 |
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
|
73 |
|
74 |
-
cache_dir,
|
75 |
|
76 |
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
77 |
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
@@ -86,7 +86,6 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
|
86 |
"""
|
87 |
# Default kwargs from DiffusionPipeline
|
88 |
cache_dir = kwargs.pop("cache_dir", None)
|
89 |
-
resume_download = kwargs.pop("resume_download", False)
|
90 |
force_download = kwargs.pop("force_download", False)
|
91 |
proxies = kwargs.pop("proxies", None)
|
92 |
local_files_only = kwargs.pop("local_files_only", False)
|
@@ -124,7 +123,6 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
|
124 |
config_dict = DiffusionPipeline.load_config(
|
125 |
pretrained_model_name_or_path,
|
126 |
cache_dir=cache_dir,
|
127 |
-
resume_download=resume_download,
|
128 |
force_download=force_download,
|
129 |
proxies=proxies,
|
130 |
local_files_only=local_files_only,
|
@@ -160,7 +158,6 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
|
160 |
else snapshot_download(
|
161 |
pretrained_model_name_or_path,
|
162 |
cache_dir=cache_dir,
|
163 |
-
resume_download=resume_download,
|
164 |
proxies=proxies,
|
165 |
local_files_only=local_files_only,
|
166 |
token=token,
|
|
|
71 |
**kwargs:
|
72 |
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
|
73 |
|
74 |
+
cache_dir, force_download, proxies, local_files_only, token, revision, torch_dtype, device_map.
|
75 |
|
76 |
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
77 |
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
|
|
86 |
"""
|
87 |
# Default kwargs from DiffusionPipeline
|
88 |
cache_dir = kwargs.pop("cache_dir", None)
|
|
|
89 |
force_download = kwargs.pop("force_download", False)
|
90 |
proxies = kwargs.pop("proxies", None)
|
91 |
local_files_only = kwargs.pop("local_files_only", False)
|
|
|
123 |
config_dict = DiffusionPipeline.load_config(
|
124 |
pretrained_model_name_or_path,
|
125 |
cache_dir=cache_dir,
|
|
|
126 |
force_download=force_download,
|
127 |
proxies=proxies,
|
128 |
local_files_only=local_files_only,
|
|
|
158 |
else snapshot_download(
|
159 |
pretrained_model_name_or_path,
|
160 |
cache_dir=cache_dir,
|
|
|
161 |
proxies=proxies,
|
162 |
local_files_only=local_files_only,
|
163 |
token=token,
|
main/ip_adapter_face_id.py
CHANGED
@@ -267,7 +267,6 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
267 |
def load_ip_adapter_face_id(self, pretrained_model_name_or_path_or_dict, weight_name, **kwargs):
|
268 |
cache_dir = kwargs.pop("cache_dir", None)
|
269 |
force_download = kwargs.pop("force_download", False)
|
270 |
-
resume_download = kwargs.pop("resume_download", False)
|
271 |
proxies = kwargs.pop("proxies", None)
|
272 |
local_files_only = kwargs.pop("local_files_only", None)
|
273 |
token = kwargs.pop("token", None)
|
@@ -283,7 +282,6 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
283 |
weights_name=weight_name,
|
284 |
cache_dir=cache_dir,
|
285 |
force_download=force_download,
|
286 |
-
resume_download=resume_download,
|
287 |
proxies=proxies,
|
288 |
local_files_only=local_files_only,
|
289 |
token=token,
|
|
|
267 |
def load_ip_adapter_face_id(self, pretrained_model_name_or_path_or_dict, weight_name, **kwargs):
|
268 |
cache_dir = kwargs.pop("cache_dir", None)
|
269 |
force_download = kwargs.pop("force_download", False)
|
|
|
270 |
proxies = kwargs.pop("proxies", None)
|
271 |
local_files_only = kwargs.pop("local_files_only", None)
|
272 |
token = kwargs.pop("token", None)
|
|
|
282 |
weights_name=weight_name,
|
283 |
cache_dir=cache_dir,
|
284 |
force_download=force_download,
|
|
|
285 |
proxies=proxies,
|
286 |
local_files_only=local_files_only,
|
287 |
token=token,
|
main/stable_diffusion_tensorrt_img2img.py
CHANGED
@@ -783,7 +783,6 @@ class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
783 |
@validate_hf_hub_args
|
784 |
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
785 |
cache_dir = kwargs.pop("cache_dir", None)
|
786 |
-
resume_download = kwargs.pop("resume_download", False)
|
787 |
proxies = kwargs.pop("proxies", None)
|
788 |
local_files_only = kwargs.pop("local_files_only", False)
|
789 |
token = kwargs.pop("token", None)
|
@@ -795,7 +794,6 @@ class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
795 |
else snapshot_download(
|
796 |
pretrained_model_name_or_path,
|
797 |
cache_dir=cache_dir,
|
798 |
-
resume_download=resume_download,
|
799 |
proxies=proxies,
|
800 |
local_files_only=local_files_only,
|
801 |
token=token,
|
|
|
783 |
@validate_hf_hub_args
|
784 |
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
785 |
cache_dir = kwargs.pop("cache_dir", None)
|
|
|
786 |
proxies = kwargs.pop("proxies", None)
|
787 |
local_files_only = kwargs.pop("local_files_only", False)
|
788 |
token = kwargs.pop("token", None)
|
|
|
794 |
else snapshot_download(
|
795 |
pretrained_model_name_or_path,
|
796 |
cache_dir=cache_dir,
|
|
|
797 |
proxies=proxies,
|
798 |
local_files_only=local_files_only,
|
799 |
token=token,
|
main/stable_diffusion_tensorrt_inpaint.py
CHANGED
@@ -783,7 +783,6 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
|
|
783 |
@validate_hf_hub_args
|
784 |
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
785 |
cache_dir = kwargs.pop("cache_dir", None)
|
786 |
-
resume_download = kwargs.pop("resume_download", False)
|
787 |
proxies = kwargs.pop("proxies", None)
|
788 |
local_files_only = kwargs.pop("local_files_only", False)
|
789 |
token = kwargs.pop("token", None)
|
@@ -795,7 +794,6 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
|
|
795 |
else snapshot_download(
|
796 |
pretrained_model_name_or_path,
|
797 |
cache_dir=cache_dir,
|
798 |
-
resume_download=resume_download,
|
799 |
proxies=proxies,
|
800 |
local_files_only=local_files_only,
|
801 |
token=token,
|
|
|
783 |
@validate_hf_hub_args
|
784 |
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
785 |
cache_dir = kwargs.pop("cache_dir", None)
|
|
|
786 |
proxies = kwargs.pop("proxies", None)
|
787 |
local_files_only = kwargs.pop("local_files_only", False)
|
788 |
token = kwargs.pop("token", None)
|
|
|
794 |
else snapshot_download(
|
795 |
pretrained_model_name_or_path,
|
796 |
cache_dir=cache_dir,
|
|
|
797 |
proxies=proxies,
|
798 |
local_files_only=local_files_only,
|
799 |
token=token,
|
main/stable_diffusion_tensorrt_txt2img.py
CHANGED
@@ -695,7 +695,6 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
|
|
695 |
@validate_hf_hub_args
|
696 |
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
697 |
cache_dir = kwargs.pop("cache_dir", None)
|
698 |
-
resume_download = kwargs.pop("resume_download", False)
|
699 |
proxies = kwargs.pop("proxies", None)
|
700 |
local_files_only = kwargs.pop("local_files_only", False)
|
701 |
token = kwargs.pop("token", None)
|
@@ -707,7 +706,6 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
|
|
707 |
else snapshot_download(
|
708 |
pretrained_model_name_or_path,
|
709 |
cache_dir=cache_dir,
|
710 |
-
resume_download=resume_download,
|
711 |
proxies=proxies,
|
712 |
local_files_only=local_files_only,
|
713 |
token=token,
|
|
|
695 |
@validate_hf_hub_args
|
696 |
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
697 |
cache_dir = kwargs.pop("cache_dir", None)
|
|
|
698 |
proxies = kwargs.pop("proxies", None)
|
699 |
local_files_only = kwargs.pop("local_files_only", False)
|
700 |
token = kwargs.pop("token", None)
|
|
|
706 |
else snapshot_download(
|
707 |
pretrained_model_name_or_path,
|
708 |
cache_dir=cache_dir,
|
|
|
709 |
proxies=proxies,
|
710 |
local_files_only=local_files_only,
|
711 |
token=token,
|