Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- main/README.md +36 -36
- main/adaptive_mask_inpainting.py +3 -3
- main/bit_diffusion.py +7 -7
- main/clip_guided_images_mixing_stable_diffusion.py +3 -3
- main/clip_guided_stable_diffusion.py +3 -3
- main/clip_guided_stable_diffusion_img2img.py +3 -3
- main/cogvideox_ddim_inversion.py +1 -1
- main/composable_stable_diffusion.py +5 -5
- main/fresco_v2v.py +4 -4
- main/gluegen.py +6 -6
- main/iadb.py +1 -1
- main/imagic_stable_diffusion.py +9 -9
- main/img2img_inpainting.py +5 -5
- main/instaflow_one_step.py +5 -5
- main/interpolate_stable_diffusion.py +8 -8
- main/ip_adapter_face_id.py +6 -6
- main/latent_consistency_img2img.py +2 -2
- main/latent_consistency_interpolate.py +1 -1
- main/latent_consistency_txt2img.py +2 -2
- main/llm_grounded_diffusion.py +9 -9
- main/lpw_stable_diffusion.py +14 -14
- main/lpw_stable_diffusion_onnx.py +14 -14
- main/lpw_stable_diffusion_xl.py +9 -9
- main/masked_stable_diffusion_img2img.py +2 -2
- main/masked_stable_diffusion_xl_img2img.py +2 -2
- main/matryoshka.py +14 -14
- main/mixture_tiling.py +2 -2
- main/mixture_tiling_sdxl.py +6 -6
- main/mod_controlnet_tile_sr_sdxl.py +5 -5
- main/multilingual_stable_diffusion.py +5 -5
- main/pipeline_animatediff_controlnet.py +3 -3
- main/pipeline_animatediff_img2video.py +3 -3
- main/pipeline_animatediff_ipex.py +3 -3
- main/pipeline_controlnet_xl_kolors.py +5 -5
- main/pipeline_controlnet_xl_kolors_img2img.py +5 -5
- main/pipeline_controlnet_xl_kolors_inpaint.py +5 -5
- main/pipeline_demofusion_sdxl.py +11 -11
- main/pipeline_faithdiff_stable_diffusion_xl.py +9 -9
- main/pipeline_flux_differential_img2img.py +2 -2
- main/pipeline_flux_rf_inversion.py +7 -7
- main/pipeline_flux_semantic_guidance.py +2 -2
- main/pipeline_flux_with_cfg.py +2 -2
- main/pipeline_hunyuandit_differential_img2img.py +6 -6
- main/pipeline_kolors_differential_img2img.py +5 -5
- main/pipeline_kolors_inpainting.py +7 -7
- main/pipeline_prompt2prompt.py +8 -8
- main/pipeline_sdxl_style_aligned.py +12 -12
- main/pipeline_stable_diffusion_3_differential_img2img.py +3 -3
- main/pipeline_stable_diffusion_3_instruct_pix2pix.py +3 -3
- main/pipeline_stable_diffusion_boxdiff.py +7 -7
main/README.md
CHANGED
@@ -10,7 +10,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
|
|
10 |
|
11 |
| Example | Description | Code Example | Colab | Author |
|
12 |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
|
13 |
-
|Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://
|
14 |
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
|
15 |
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
|
16 |
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[](https://huggingface.co/spaces/exx8/differential-diffusion) [](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
|
@@ -39,17 +39,17 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
|
|
39 |
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb) | [Ray Wang](https://wrong.wang) |
|
40 |
| UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
|
41 |
| UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_image_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
|
42 |
-
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://
|
43 |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_img2img_stable_diffusion.ipynb) | [Nipun Jindal](https://github.com/nipunjindal/) |
|
44 |
| TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/tensorrt_text2image_stable_diffusion_pipeline.ipynb) | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|
45 |
| EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) | [Joqsan Azocar](https://github.com/Joqsan) |
|
46 |
-
| Stable Diffusion RePaint | Stable Diffusion pipeline using [RePaint](https://
|
47 |
| TensorRT Stable Diffusion Image to Image Pipeline | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|
48 |
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
|
49 |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_images_mixing_with_stable_diffusion.ipynb) | [Karachev Denis](https://github.com/TheDenk) |
|
50 |
| TensorRT Stable Diffusion Inpainting Pipeline | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|
51 |
-
| IADB Pipeline | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://
|
52 |
-
| Zero1to3 Pipeline | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://
|
53 |
| Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
|
54 |
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
55 |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
@@ -59,25 +59,25 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
|
|
59 |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
60 |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
61 |
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/prompt_2_prompt_pipeline.ipynb) | [Umer H. Adil](https://twitter.com/UmerHAdil) |
|
62 |
-
| Latent Consistency Pipeline | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://
|
63 |
| Latent Consistency Img2img Pipeline | Img2img pipeline for Latent Consistency Models | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline) | - | [Logan Zoellner](https://github.com/nagolinc) |
|
64 |
| Latent Consistency Interpolation Pipeline | Interpolate the latent space of Latent Consistency Models with multiple prompts | [Latent Consistency Interpolation Pipeline](#latent-consistency-interpolation-pipeline) | [](https://colab.research.google.com/drive/1pK3NrLWJSiJsBynLns1K1-IDTW9zbPvl?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|
65 |
| SDE Drag Pipeline | The pipeline supports drag editing of images using stochastic differential equations | [SDE Drag Pipeline](#sde-drag-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/sde_drag.ipynb) | [NieShen](https://github.com/NieShenRuc) [Fengqi Zhu](https://github.com/Monohydroxides) |
|
66 |
| Regional Prompting Pipeline | Assign multiple prompts for different regions | [Regional Prompting Pipeline](#regional-prompting-pipeline) | - | [hako-mikan](https://github.com/hako-mikan) |
|
67 |
| LDM3D-sr (LDM3D upscaler) | Upscale low resolution RGB and depth inputs to high resolution | [StableDiffusionUpscaleLDM3D Pipeline](https://github.com/estelleafl/diffusers/tree/ldm3d_upscaler_community/examples/community#stablediffusionupscaleldm3d-pipeline) | - | [Estelle Aflalo](https://github.com/estelleafl) |
|
68 |
| AnimateDiff ControlNet Pipeline | Combines AnimateDiff with precise motion control using ControlNets | [AnimateDiff ControlNet Pipeline](#animatediff-controlnet-pipeline) | [](https://colab.research.google.com/drive/1SKboYeGjEQmQPWoFC0aLYpBlYdHXkvAu?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) and [Edoardo Botta](https://github.com/EdoardoBotta) |
|
69 |
-
| DemoFusion Pipeline | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://
|
70 |
-
| Instaflow Pipeline | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://
|
71 |
-
| Null-Text Inversion Pipeline | Implement [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://
|
72 |
-
| Rerender A Video Pipeline | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://
|
73 |
-
| StyleAligned Pipeline | Implementation of [Style Aligned Image Generation via Shared Attention](https://
|
74 |
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|
75 |
| IP Adapter FaceID Stable Diffusion | Stable Diffusion Pipeline that supports IP Adapter Face ID | [IP Adapter Face ID](#ip-adapter-face-id) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_face_id.ipynb)| [Fabio Rigano](https://github.com/fabiorigano) |
|
76 |
| InstantID Pipeline | Stable Diffusion XL Pipeline that supports InstantID | [InstantID Pipeline](#instantid-pipeline) | [](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
|
77 |
| UFOGen Scheduler | Scheduler for UFOGen Model (compatible with Stable Diffusion pipelines) | [UFOGen Scheduler](#ufogen-scheduler) | - | [dg845](https://github.com/dg845) |
|
78 |
| Stable Diffusion XL IPEX Pipeline | Accelerate Stable Diffusion XL inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion XL on IPEX](#stable-diffusion-xl-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
79 |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
|
80 |
-
| FRESCO V2V Pipeline | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://
|
81 |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
82 |
PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
|
83 |
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
|
@@ -85,7 +85,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
|
|
85 |
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
|
86 |
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
|
87 |
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
|
88 |
-
| FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://
|
89 |
| Stable Diffusion 3 InstructPix2Pix Pipeline | Implementation of Stable Diffusion 3 InstructPix2Pix Pipeline | [Stable Diffusion 3 InstructPix2Pix Pipeline](#stable-diffusion-3-instructpix2pix-pipeline) | [](https://huggingface.co/BleachNick/SD3_UltraEdit_freeform) [](https://huggingface.co/CaptainZZZ/sd3-instructpix2pix) | [Jiayu Zhang](https://github.com/xduzhangjiayu) and [Haozhe Zhao](https://github.com/HaozheZhao)|
|
90 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
91 |
|
@@ -101,7 +101,7 @@ pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion
|
|
101 |
|
102 |
**KAIST AI, University of Washington**
|
103 |
|
104 |
-
[*Spatiotemporal Skip Guidance (STG) for Enhanced Video Diffusion Sampling*](https://
|
105 |
|
106 |
Following is the example video of STG applied to Mochi.
|
107 |
|
@@ -161,7 +161,7 @@ Here is the demonstration of Adaptive Mask Inpainting:
|
|
161 |

|
162 |
|
163 |
|
164 |
-
You can find additional information about Adaptive Mask Inpainting in the [paper](https://
|
165 |
|
166 |
#### Usage example
|
167 |
First, clone the diffusers github repository, and run the following command to set environment.
|
@@ -413,7 +413,7 @@ image.save("result.png")
|
|
413 |
|
414 |
### HD-Painter
|
415 |
|
416 |
-
Implementation of [HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models](https://
|
417 |
|
418 |

|
419 |
|
@@ -428,7 +428,7 @@ Moreover, HD-Painter allows extension to larger scales by introducing a speciali
|
|
428 |
Our experiments demonstrate that HD-Painter surpasses existing state-of-the-art approaches qualitatively and quantitatively, achieving an impressive generation accuracy improvement of **61.4** vs **51.9**.
|
429 |
We will make the codes publicly available.
|
430 |
|
431 |
-
You can find additional information about Text2Video-Zero in the [paper](https://
|
432 |
|
433 |
#### Usage example
|
434 |
|
@@ -1362,7 +1362,7 @@ print("Inpainting completed. Image saved as 'inpainting_output.png'.")
|
|
1362 |
|
1363 |
### Bit Diffusion
|
1364 |
|
1365 |
-
Based <https://
|
1366 |
|
1367 |
```python
|
1368 |
from diffusers import DiffusionPipeline
|
@@ -1523,7 +1523,7 @@ As a result, you can look at a grid of all 4 generated images being shown togeth
|
|
1523 |
|
1524 |
### Magic Mix
|
1525 |
|
1526 |
-
Implementation of the [MagicMix: Semantic Mixing with Diffusion Models](https://
|
1527 |
|
1528 |
There are 3 parameters for the method-
|
1529 |
|
@@ -1754,7 +1754,7 @@ The resulting images in order:-
|
|
1754 |
|
1755 |
#### **Research question: What visual concepts do the diffusion models learn from each noise level during training?**
|
1756 |
|
1757 |
-
The [P2 weighting (CVPR 2022)](https://
|
1758 |
The approach consists of the following steps:
|
1759 |
|
1760 |
1. The input is an image x0.
|
@@ -1896,7 +1896,7 @@ image.save('tensorrt_mt_fuji.png')
|
|
1896 |
|
1897 |
### EDICT Image Editing Pipeline
|
1898 |
|
1899 |
-
This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://
|
1900 |
|
1901 |
- (`PIL`) `image` you want to edit.
|
1902 |
- `base_prompt`: the text prompt describing the current image (before editing).
|
@@ -1981,7 +1981,7 @@ Output Image
|
|
1981 |
|
1982 |
### Stable Diffusion RePaint
|
1983 |
|
1984 |
-
This pipeline uses the [RePaint](https://
|
1985 |
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
|
1986 |
models that are not specifically created for inpainting.
|
1987 |
|
@@ -2576,7 +2576,7 @@ For more results, checkout [PR #6114](https://github.com/huggingface/diffusers/p
|
|
2576 |
|
2577 |
### Stable Diffusion Mixture Tiling Pipeline SD 1.5
|
2578 |
|
2579 |
-
This pipeline uses the Mixture. Refer to the [Mixture](https://
|
2580 |
|
2581 |
```python
|
2582 |
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
|
@@ -2607,7 +2607,7 @@ image = pipeline(
|
|
2607 |
|
2608 |
### Stable Diffusion Mixture Canvas Pipeline SD 1.5
|
2609 |
|
2610 |
-
This pipeline uses the Mixture. Refer to the [Mixture](https://
|
2611 |
|
2612 |
```python
|
2613 |
from PIL import Image
|
@@ -2642,7 +2642,7 @@ output = pipeline(
|
|
2642 |
|
2643 |
### Stable Diffusion Mixture Tiling Pipeline SDXL
|
2644 |
|
2645 |
-
This pipeline uses the Mixture. Refer to the [Mixture](https://
|
2646 |
|
2647 |
```python
|
2648 |
import torch
|
@@ -2696,7 +2696,7 @@ image = pipe(
|
|
2696 |
|
2697 |
### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL
|
2698 |
|
2699 |
-
This pipeline implements the [MoD (Mixture-of-Diffusers)](
|
2700 |
|
2701 |
This works better with 4x scales, but you can try adjusts parameters to higher scales.
|
2702 |
|
@@ -2835,7 +2835,7 @@ image.save('tensorrt_inpaint_mecha_robot.png')
|
|
2835 |
|
2836 |
### IADB pipeline
|
2837 |
|
2838 |
-
This pipeline is the implementation of the [α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://
|
2839 |
It is a simple and minimalist diffusion model.
|
2840 |
|
2841 |
The following code shows how to use the IADB pipeline to generate images using a pretrained celebahq-256 model.
|
@@ -2888,7 +2888,7 @@ while True:
|
|
2888 |
|
2889 |
### Zero1to3 pipeline
|
2890 |
|
2891 |
-
This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://
|
2892 |
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).
|
2893 |
|
2894 |
The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.
|
@@ -3356,7 +3356,7 @@ Side note: See [this GitHub gist](https://gist.github.com/UmerHA/b65bb5fb9626c9c
|
|
3356 |
|
3357 |
### Latent Consistency Pipeline
|
3358 |
|
3359 |
-
Latent Consistency Models was proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://
|
3360 |
|
3361 |
The abstract of the paper reads as follows:
|
3362 |
|
@@ -3468,7 +3468,7 @@ assert len(images) == (len(prompts) - 1) * num_interpolation_steps
|
|
3468 |
|
3469 |
### StableDiffusionUpscaleLDM3D Pipeline
|
3470 |
|
3471 |
-
[LDM3D-VR](https://
|
3472 |
|
3473 |
The abstract from the paper is:
|
3474 |
*Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods*
|
@@ -4165,7 +4165,7 @@ export_to_gif(result.frames[0], "result.gif")
|
|
4165 |
|
4166 |
### DemoFusion
|
4167 |
|
4168 |
-
This pipeline is the official implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://
|
4169 |
The original repo can be found at [repo](https://github.com/PRIS-CV/DemoFusion).
|
4170 |
|
4171 |
- `view_batch_size` (`int`, defaults to 16):
|
@@ -4259,7 +4259,7 @@ This pipeline provides drag-and-drop image editing using stochastic differential
|
|
4259 |
|
4260 |

|
4261 |
|
4262 |
-
See [paper](https://
|
4263 |
|
4264 |
```py
|
4265 |
import torch
|
@@ -4515,7 +4515,7 @@ export_to_video(
|
|
4515 |
|
4516 |
### StyleAligned Pipeline
|
4517 |
|
4518 |
-
This pipeline is the implementation of [Style Aligned Image Generation via Shared Attention](https://
|
4519 |
|
4520 |
> Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.
|
4521 |
|
@@ -4729,7 +4729,7 @@ image = pipe(
|
|
4729 |
|
4730 |
### UFOGen Scheduler
|
4731 |
|
4732 |
-
[UFOGen](https://
|
4733 |
|
4734 |
```py
|
4735 |
import torch
|
@@ -5047,7 +5047,7 @@ make_image_grid(image, rows=1, cols=len(image))
|
|
5047 |
### Stable Diffusion XL Attentive Eraser Pipeline
|
5048 |
<img src="https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/fenmian.png" width="600" />
|
5049 |
|
5050 |
-
**Stable Diffusion XL Attentive Eraser Pipeline** is an advanced object removal pipeline that leverages SDXL for precise content suppression and seamless region completion. This pipeline uses **self-attention redirection guidance** to modify the model’s self-attention mechanism, allowing for effective removal and inpainting across various levels of mask precision, including semantic segmentation masks, bounding boxes, and hand-drawn masks. If you are interested in more detailed information and have any questions, please refer to the [paper](https://
|
5051 |
|
5052 |
#### Key features
|
5053 |
|
@@ -5133,7 +5133,7 @@ print("Object removal completed")
|
|
5133 |
|
5134 |
# Perturbed-Attention Guidance
|
5135 |
|
5136 |
-
[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://
|
5137 |
|
5138 |
This implementation is based on [Diffusers](https://huggingface.co/docs/diffusers/index). `StableDiffusionPAGPipeline` is a modification of `StableDiffusionPipeline` to support Perturbed-Attention Guidance (PAG).
|
5139 |
|
|
|
10 |
|
11 |
| Example | Description | Code Example | Colab | Author |
|
12 |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
|
13 |
+
|Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://huggingface.co/papers/2411.18664) (CVPR 2025) enhances video diffusion models by generating a weaker model through layer skipping and using it as guidance, improving fidelity in models like HunyuanVideo, LTXVideo, and Mochi.|[Spatiotemporal Skip Guidance](#spatiotemporal-skip-guidance)|-|[Junha Hyung](https://junhahyung.github.io/), [Kinam Kim](https://kinam0252.github.io/), and [Ednaordinary](https://github.com/Ednaordinary)|
|
14 |
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
|
15 |
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
|
16 |
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[](https://huggingface.co/spaces/exx8/differential-diffusion) [](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
|
|
|
39 |
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb) | [Ray Wang](https://wrong.wang) |
|
40 |
| UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
|
41 |
| UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_image_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
|
42 |
+
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://huggingface.co/papers/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ddim_noise_comparative_analysis.ipynb)| [Aengus (Duc-Anh)](https://github.com/aengusng8) |
|
43 |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_img2img_stable_diffusion.ipynb) | [Nipun Jindal](https://github.com/nipunjindal/) |
|
44 |
| TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/tensorrt_text2image_stable_diffusion_pipeline.ipynb) | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|
45 |
| EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) | [Joqsan Azocar](https://github.com/Joqsan) |
|
46 |
+
| Stable Diffusion RePaint | Stable Diffusion pipeline using [RePaint](https://huggingface.co/papers/2201.09865) for inpainting. | [Stable Diffusion RePaint](#stable-diffusion-repaint )|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_repaint.ipynb)| [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
|
47 |
| TensorRT Stable Diffusion Image to Image Pipeline | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|
48 |
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
|
49 |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_images_mixing_with_stable_diffusion.ipynb) | [Karachev Denis](https://github.com/TheDenk) |
|
50 |
| TensorRT Stable Diffusion Inpainting Pipeline | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|
51 |
+
| IADB Pipeline | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://huggingface.co/papers/2305.03486) | [IADB Pipeline](#iadb-pipeline) | - | [Thomas Chambon](https://github.com/tchambon)
|
52 |
+
| Zero1to3 Pipeline | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://huggingface.co/papers/2303.11328) | [Zero1to3 Pipeline](#zero1to3-pipeline) | - | [Xin Kong](https://github.com/kxhit) |
|
53 |
| Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
|
54 |
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
55 |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
|
|
59 |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
60 |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
61 |
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/prompt_2_prompt_pipeline.ipynb) | [Umer H. Adil](https://twitter.com/UmerHAdil) |
|
62 |
+
| Latent Consistency Pipeline | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://huggingface.co/papers/2310.04378) | [Latent Consistency Pipeline](#latent-consistency-pipeline) | - | [Simian Luo](https://github.com/luosiallen) |
|
63 |
| Latent Consistency Img2img Pipeline | Img2img pipeline for Latent Consistency Models | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline) | - | [Logan Zoellner](https://github.com/nagolinc) |
|
64 |
| Latent Consistency Interpolation Pipeline | Interpolate the latent space of Latent Consistency Models with multiple prompts | [Latent Consistency Interpolation Pipeline](#latent-consistency-interpolation-pipeline) | [](https://colab.research.google.com/drive/1pK3NrLWJSiJsBynLns1K1-IDTW9zbPvl?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|
65 |
| SDE Drag Pipeline | The pipeline supports drag editing of images using stochastic differential equations | [SDE Drag Pipeline](#sde-drag-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/sde_drag.ipynb) | [NieShen](https://github.com/NieShenRuc) [Fengqi Zhu](https://github.com/Monohydroxides) |
|
66 |
| Regional Prompting Pipeline | Assign multiple prompts for different regions | [Regional Prompting Pipeline](#regional-prompting-pipeline) | - | [hako-mikan](https://github.com/hako-mikan) |
|
67 |
| LDM3D-sr (LDM3D upscaler) | Upscale low resolution RGB and depth inputs to high resolution | [StableDiffusionUpscaleLDM3D Pipeline](https://github.com/estelleafl/diffusers/tree/ldm3d_upscaler_community/examples/community#stablediffusionupscaleldm3d-pipeline) | - | [Estelle Aflalo](https://github.com/estelleafl) |
|
68 |
| AnimateDiff ControlNet Pipeline | Combines AnimateDiff with precise motion control using ControlNets | [AnimateDiff ControlNet Pipeline](#animatediff-controlnet-pipeline) | [](https://colab.research.google.com/drive/1SKboYeGjEQmQPWoFC0aLYpBlYdHXkvAu?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) and [Edoardo Botta](https://github.com/EdoardoBotta) |
|
69 |
+
| DemoFusion Pipeline | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://huggingface.co/papers/2311.16973) | [DemoFusion Pipeline](#demofusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/demo_fusion.ipynb) | [Ruoyi Du](https://github.com/RuoyiDu) |
|
70 |
+
| Instaflow Pipeline | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://huggingface.co/papers/2309.06380) | [Instaflow Pipeline](#instaflow-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/insta_flow.ipynb) | [Ayush Mangal](https://github.com/ayushtues) |
|
71 |
+
| Null-Text Inversion Pipeline | Implement [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://huggingface.co/papers/2211.09794) as a pipeline. | [Null-Text Inversion](https://github.com/google/prompt-to-prompt/) | - | [Junsheng Luan](https://github.com/Junsheng121) |
|
72 |
+
| Rerender A Video Pipeline | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://huggingface.co/papers/2306.07954) | [Rerender A Video Pipeline](#rerender-a-video) | - | [Yifan Zhou](https://github.com/SingleZombie) |
|
73 |
+
| StyleAligned Pipeline | Implementation of [Style Aligned Image Generation via Shared Attention](https://huggingface.co/papers/2312.02133) | [StyleAligned Pipeline](#stylealigned-pipeline) | [](https://drive.google.com/file/d/15X2E0jFPTajUIjS0FzX50OaHsCbP2lQ0/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|
74 |
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|
75 |
| IP Adapter FaceID Stable Diffusion | Stable Diffusion Pipeline that supports IP Adapter Face ID | [IP Adapter Face ID](#ip-adapter-face-id) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_face_id.ipynb)| [Fabio Rigano](https://github.com/fabiorigano) |
|
76 |
| InstantID Pipeline | Stable Diffusion XL Pipeline that supports InstantID | [InstantID Pipeline](#instantid-pipeline) | [](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
|
77 |
| UFOGen Scheduler | Scheduler for UFOGen Model (compatible with Stable Diffusion pipelines) | [UFOGen Scheduler](#ufogen-scheduler) | - | [dg845](https://github.com/dg845) |
|
78 |
| Stable Diffusion XL IPEX Pipeline | Accelerate Stable Diffusion XL inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion XL on IPEX](#stable-diffusion-xl-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
79 |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
|
80 |
+
| FRESCO V2V Pipeline | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://huggingface.co/papers/2403.12962) | [FRESCO V2V Pipeline](#fresco) | - | [Yifan Zhou](https://github.com/SingleZombie) |
|
81 |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
82 |
PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
|
83 |
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
|
|
|
85 |
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
|
86 |
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
|
87 |
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
|
88 |
+
| FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://huggingface.co/papers/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
|
89 |
| Stable Diffusion 3 InstructPix2Pix Pipeline | Implementation of Stable Diffusion 3 InstructPix2Pix Pipeline | [Stable Diffusion 3 InstructPix2Pix Pipeline](#stable-diffusion-3-instructpix2pix-pipeline) | [](https://huggingface.co/BleachNick/SD3_UltraEdit_freeform) [](https://huggingface.co/CaptainZZZ/sd3-instructpix2pix) | [Jiayu Zhang](https://github.com/xduzhangjiayu) and [Haozhe Zhao](https://github.com/HaozheZhao)|
|
90 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
91 |
|
|
|
101 |
|
102 |
**KAIST AI, University of Washington**
|
103 |
|
104 |
+
[*Spatiotemporal Skip Guidance (STG) for Enhanced Video Diffusion Sampling*](https://huggingface.co/papers/2411.18664) (CVPR 2025) is a simple training-free sampling guidance method for enhancing transformer-based video diffusion models. STG employs an implicit weak model via self-perturbation, avoiding the need for external models or additional training. By selectively skipping spatiotemporal layers, STG produces an aligned, degraded version of the original model to boost sample quality without compromising diversity or dynamic degree.
|
105 |
|
106 |
Following is the example video of STG applied to Mochi.
|
107 |
|
|
|
161 |

|
162 |
|
163 |
|
164 |
+
You can find additional information about Adaptive Mask Inpainting in the [paper](https://huggingface.co/papers/2401.12978) or in the [project website](https://snuvclab.github.io/coma).
|
165 |
|
166 |
#### Usage example
|
167 |
First, clone the diffusers github repository, and run the following command to set environment.
|
|
|
413 |
|
414 |
### HD-Painter
|
415 |
|
416 |
+
Implementation of [HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models](https://huggingface.co/papers/2312.14091).
|
417 |
|
418 |

|
419 |
|
|
|
428 |
Our experiments demonstrate that HD-Painter surpasses existing state-of-the-art approaches qualitatively and quantitatively, achieving an impressive generation accuracy improvement of **61.4** vs **51.9**.
|
429 |
We will make the codes publicly available.
|
430 |
|
431 |
+
You can find additional information about Text2Video-Zero in the [paper](https://huggingface.co/papers/2312.14091) or the [original codebase](https://github.com/Picsart-AI-Research/HD-Painter).
|
432 |
|
433 |
#### Usage example
|
434 |
|
|
|
1362 |
|
1363 |
### Bit Diffusion
|
1364 |
|
1365 |
+
Based <https://huggingface.co/papers/2208.04202>, this is used for diffusion on discrete data - eg, discrete image data, DNA sequence data. An unconditional discrete image can be generated like this:
|
1366 |
|
1367 |
```python
|
1368 |
from diffusers import DiffusionPipeline
|
|
|
1523 |
|
1524 |
### Magic Mix
|
1525 |
|
1526 |
+
Implementation of the [MagicMix: Semantic Mixing with Diffusion Models](https://huggingface.co/papers/2210.16056) paper. This is a Diffusion Pipeline for semantic mixing of an image and a text prompt to create a new concept while preserving the spatial layout and geometry of the subject in the image. The pipeline takes an image that provides the layout semantics and a prompt that provides the content semantics for the mixing process.
|
1527 |
|
1528 |
There are 3 parameters for the method-
|
1529 |
|
|
|
1754 |
|
1755 |
#### **Research question: What visual concepts do the diffusion models learn from each noise level during training?**
|
1756 |
|
1757 |
+
The [P2 weighting (CVPR 2022)](https://huggingface.co/papers/2204.00227) paper proposed an approach to answer the above question, which is their second contribution.
|
1758 |
The approach consists of the following steps:
|
1759 |
|
1760 |
1. The input is an image x0.
|
|
|
1896 |
|
1897 |
### EDICT Image Editing Pipeline
|
1898 |
|
1899 |
+
This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://huggingface.co/papers/2211.12446). You have to pass:
|
1900 |
|
1901 |
- (`PIL`) `image` you want to edit.
|
1902 |
- `base_prompt`: the text prompt describing the current image (before editing).
|
|
|
1981 |
|
1982 |
### Stable Diffusion RePaint
|
1983 |
|
1984 |
+
This pipeline uses the [RePaint](https://huggingface.co/papers/2201.09865) logic on the latent space of stable diffusion. It can
|
1985 |
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
|
1986 |
models that are not specifically created for inpainting.
|
1987 |
|
|
|
2576 |
|
2577 |
### Stable Diffusion Mixture Tiling Pipeline SD 1.5
|
2578 |
|
2579 |
+
This pipeline uses the Mixture. Refer to the [Mixture](https://huggingface.co/papers/2302.02412) paper for more details.
|
2580 |
|
2581 |
```python
|
2582 |
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
|
|
|
2607 |
|
2608 |
### Stable Diffusion Mixture Canvas Pipeline SD 1.5
|
2609 |
|
2610 |
+
This pipeline uses the Mixture. Refer to the [Mixture](https://huggingface.co/papers/2302.02412) paper for more details.
|
2611 |
|
2612 |
```python
|
2613 |
from PIL import Image
|
|
|
2642 |
|
2643 |
### Stable Diffusion Mixture Tiling Pipeline SDXL
|
2644 |
|
2645 |
+
This pipeline uses the Mixture. Refer to the [Mixture](https://huggingface.co/papers/2302.02412) paper for more details.
|
2646 |
|
2647 |
```python
|
2648 |
import torch
|
|
|
2696 |
|
2697 |
### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL
|
2698 |
|
2699 |
+
This pipeline implements the [MoD (Mixture-of-Diffusers)](https://huggingface.co/papers/2408.06072) tiled diffusion technique and combines it with SDXL's ControlNet Tile process to generate SR images.
|
2700 |
|
2701 |
This works better with 4x scales, but you can try adjusts parameters to higher scales.
|
2702 |
|
|
|
2835 |
|
2836 |
### IADB pipeline
|
2837 |
|
2838 |
+
This pipeline is the implementation of the [α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://huggingface.co/papers/2305.03486) paper.
|
2839 |
It is a simple and minimalist diffusion model.
|
2840 |
|
2841 |
The following code shows how to use the IADB pipeline to generate images using a pretrained celebahq-256 model.
|
|
|
2888 |
|
2889 |
### Zero1to3 pipeline
|
2890 |
|
2891 |
+
This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://huggingface.co/papers/2303.11328) paper.
|
2892 |
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).
|
2893 |
|
2894 |
The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.
|
|
|
3356 |
|
3357 |
### Latent Consistency Pipeline
|
3358 |
|
3359 |
+
Latent Consistency Models was proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://huggingface.co/papers/2310.04378) by _Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, Hang Zhao_ from Tsinghua University.
|
3360 |
|
3361 |
The abstract of the paper reads as follows:
|
3362 |
|
|
|
3468 |
|
3469 |
### StableDiffusionUpscaleLDM3D Pipeline
|
3470 |
|
3471 |
+
[LDM3D-VR](https://huggingface.co/papers/2311.03226) is an extended version of LDM3D.
|
3472 |
|
3473 |
The abstract from the paper is:
|
3474 |
*Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods*
|
|
|
4165 |
|
4166 |
### DemoFusion
|
4167 |
|
4168 |
+
This pipeline is the official implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://huggingface.co/papers/2311.16973).
|
4169 |
The original repo can be found at [repo](https://github.com/PRIS-CV/DemoFusion).
|
4170 |
|
4171 |
- `view_batch_size` (`int`, defaults to 16):
|
|
|
4259 |
|
4260 |

|
4261 |
|
4262 |
+
See [paper](https://huggingface.co/papers/2311.01410), [paper page](https://ml-gsai.github.io/SDE-Drag-demo/), [original repo](https://github.com/ML-GSAI/SDE-Drag) for more information.
|
4263 |
|
4264 |
```py
|
4265 |
import torch
|
|
|
4515 |
|
4516 |
### StyleAligned Pipeline
|
4517 |
|
4518 |
+
This pipeline is the implementation of [Style Aligned Image Generation via Shared Attention](https://huggingface.co/papers/2312.02133). You can find more results [here](https://github.com/huggingface/diffusers/pull/6489#issuecomment-1881209354).
|
4519 |
|
4520 |
> Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.
|
4521 |
|
|
|
4729 |
|
4730 |
### UFOGen Scheduler
|
4731 |
|
4732 |
+
[UFOGen](https://huggingface.co/papers/2311.09257) is a generative model designed for fast one-step text-to-image generation, trained via adversarial training starting from an initial pretrained diffusion model such as Stable Diffusion. `scheduling_ufogen.py` implements a onestep and multistep sampling algorithm for UFOGen models compatible with pipelines like `StableDiffusionPipeline`. A usage example is as follows:
|
4733 |
|
4734 |
```py
|
4735 |
import torch
|
|
|
5047 |
### Stable Diffusion XL Attentive Eraser Pipeline
|
5048 |
<img src="https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/fenmian.png" width="600" />
|
5049 |
|
5050 |
+
**Stable Diffusion XL Attentive Eraser Pipeline** is an advanced object removal pipeline that leverages SDXL for precise content suppression and seamless region completion. This pipeline uses **self-attention redirection guidance** to modify the model’s self-attention mechanism, allowing for effective removal and inpainting across various levels of mask precision, including semantic segmentation masks, bounding boxes, and hand-drawn masks. If you are interested in more detailed information and have any questions, please refer to the [paper](https://huggingface.co/papers/2412.12974) and [official implementation](https://github.com/Anonym0u3/AttentiveEraser).
|
5051 |
|
5052 |
#### Key features
|
5053 |
|
|
|
5133 |
|
5134 |
# Perturbed-Attention Guidance
|
5135 |
|
5136 |
+
[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://huggingface.co/papers/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
|
5137 |
|
5138 |
This implementation is based on [Diffusers](https://huggingface.co/docs/diffusers/index). `StableDiffusionPAGPipeline` is a modification of `StableDiffusionPipeline` to support Perturbed-Attention Guidance (PAG).
|
5139 |
|
main/adaptive_mask_inpainting.py
CHANGED
@@ -670,7 +670,7 @@ class AdaptiveMaskInpaintPipeline(
|
|
670 |
def prepare_extra_step_kwargs(self, generator, eta):
|
671 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
672 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
673 |
-
# eta corresponds to η in DDIM paper: https://
|
674 |
# and should be between [0, 1]
|
675 |
|
676 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -917,7 +917,7 @@ class AdaptiveMaskInpaintPipeline(
|
|
917 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
918 |
The number of images to generate per prompt.
|
919 |
eta (`float`, *optional*, defaults to 0.0):
|
920 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
921 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
922 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
923 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -1012,7 +1012,7 @@ class AdaptiveMaskInpaintPipeline(
|
|
1012 |
|
1013 |
device = self._execution_device
|
1014 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1015 |
-
# of the Imagen paper: https://
|
1016 |
# corresponds to doing no classifier free guidance.
|
1017 |
do_classifier_free_guidance = guidance_scale > 1.0
|
1018 |
|
|
|
670 |
def prepare_extra_step_kwargs(self, generator, eta):
|
671 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
672 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
673 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
674 |
# and should be between [0, 1]
|
675 |
|
676 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
917 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
918 |
The number of images to generate per prompt.
|
919 |
eta (`float`, *optional*, defaults to 0.0):
|
920 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
921 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
922 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
923 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
1012 |
|
1013 |
device = self._execution_device
|
1014 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1015 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1016 |
# corresponds to doing no classifier free guidance.
|
1017 |
do_classifier_free_guidance = guidance_scale > 1.0
|
1018 |
|
main/bit_diffusion.py
CHANGED
@@ -74,7 +74,7 @@ def ddim_bit_scheduler_step(
|
|
74 |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
75 |
)
|
76 |
|
77 |
-
# See formulas (12) and (16) of DDIM paper https://
|
78 |
# Ideally, read DDIM paper in-detail understanding
|
79 |
|
80 |
# Notation (<variable name> -> <name in paper>
|
@@ -95,7 +95,7 @@ def ddim_bit_scheduler_step(
|
|
95 |
beta_prod_t = 1 - alpha_prod_t
|
96 |
|
97 |
# 3. compute predicted original sample from predicted noise also called
|
98 |
-
# "predicted x_0" of formula (12) from https://
|
99 |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
100 |
|
101 |
# 4. Clip "predicted x_0"
|
@@ -112,10 +112,10 @@ def ddim_bit_scheduler_step(
|
|
112 |
# the model_output is always re-derived from the clipped x_0 in Glide
|
113 |
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
114 |
|
115 |
-
# 6. compute "direction pointing to x_t" of formula (12) from https://
|
116 |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
|
117 |
|
118 |
-
# 7. compute x_t without "random noise" of formula (12) from https://
|
119 |
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
120 |
|
121 |
if eta > 0:
|
@@ -172,7 +172,7 @@ def ddpm_bit_scheduler_step(
|
|
172 |
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
173 |
|
174 |
# 2. compute predicted original sample from predicted noise also called
|
175 |
-
# "predicted x_0" of formula (15) from https://
|
176 |
if prediction_type == "epsilon":
|
177 |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
178 |
elif prediction_type == "sample":
|
@@ -186,12 +186,12 @@ def ddpm_bit_scheduler_step(
|
|
186 |
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
|
187 |
|
188 |
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
189 |
-
# See formula (7) from https://
|
190 |
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
|
191 |
current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
|
192 |
|
193 |
# 5. Compute predicted previous sample µ_t
|
194 |
-
# See formula (7) from https://
|
195 |
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
196 |
|
197 |
# 6. Add noise
|
|
|
74 |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
75 |
)
|
76 |
|
77 |
+
# See formulas (12) and (16) of DDIM paper https://huggingface.co/papers/2010.02502
|
78 |
# Ideally, read DDIM paper in-detail understanding
|
79 |
|
80 |
# Notation (<variable name> -> <name in paper>
|
|
|
95 |
beta_prod_t = 1 - alpha_prod_t
|
96 |
|
97 |
# 3. compute predicted original sample from predicted noise also called
|
98 |
+
# "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
|
99 |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
100 |
|
101 |
# 4. Clip "predicted x_0"
|
|
|
112 |
# the model_output is always re-derived from the clipped x_0 in Glide
|
113 |
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
114 |
|
115 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502
|
116 |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
|
117 |
|
118 |
+
# 7. compute x_t without "random noise" of formula (12) from https://huggingface.co/papers/2010.02502
|
119 |
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
120 |
|
121 |
if eta > 0:
|
|
|
172 |
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
173 |
|
174 |
# 2. compute predicted original sample from predicted noise also called
|
175 |
+
# "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
|
176 |
if prediction_type == "epsilon":
|
177 |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
178 |
elif prediction_type == "sample":
|
|
|
186 |
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
|
187 |
|
188 |
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
189 |
+
# See formula (7) from https://huggingface.co/papers/2006.11239
|
190 |
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
|
191 |
current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
|
192 |
|
193 |
# 5. Compute predicted previous sample µ_t
|
194 |
+
# See formula (7) from https://huggingface.co/papers/2006.11239
|
195 |
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
196 |
|
197 |
# 6. Add noise
|
main/clip_guided_images_mixing_stable_diffusion.py
CHANGED
@@ -197,7 +197,7 @@ class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline, StableDiffusionMi
|
|
197 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
198 |
beta_prod_t = 1 - alpha_prod_t
|
199 |
# compute predicted original sample from predicted noise also called
|
200 |
-
# "predicted x_0" of formula (12) from https://
|
201 |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
202 |
|
203 |
fac = torch.sqrt(beta_prod_t)
|
@@ -343,7 +343,7 @@ class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline, StableDiffusionMi
|
|
343 |
)
|
344 |
|
345 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
346 |
-
# of the Imagen paper: https://
|
347 |
# corresponds to doing no classifier free guidance.
|
348 |
do_classifier_free_guidance = guidance_scale > 1.0
|
349 |
# get unconditional embeddings for classifier free guidance
|
@@ -384,7 +384,7 @@ class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline, StableDiffusionMi
|
|
384 |
|
385 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
386 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
387 |
-
# eta corresponds to η in DDIM paper: https://
|
388 |
# and should be between [0, 1]
|
389 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
390 |
extra_step_kwargs = {}
|
|
|
197 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
198 |
beta_prod_t = 1 - alpha_prod_t
|
199 |
# compute predicted original sample from predicted noise also called
|
200 |
+
# "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
|
201 |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
202 |
|
203 |
fac = torch.sqrt(beta_prod_t)
|
|
|
343 |
)
|
344 |
|
345 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
346 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
347 |
# corresponds to doing no classifier free guidance.
|
348 |
do_classifier_free_guidance = guidance_scale > 1.0
|
349 |
# get unconditional embeddings for classifier free guidance
|
|
|
384 |
|
385 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
386 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
387 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
388 |
# and should be between [0, 1]
|
389 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
390 |
extra_step_kwargs = {}
|
main/clip_guided_stable_diffusion.py
CHANGED
@@ -125,7 +125,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
125 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
126 |
beta_prod_t = 1 - alpha_prod_t
|
127 |
# compute predicted original sample from predicted noise also called
|
128 |
-
# "predicted x_0" of formula (12) from https://
|
129 |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
130 |
|
131 |
fac = torch.sqrt(beta_prod_t)
|
@@ -223,7 +223,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
223 |
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
224 |
|
225 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
226 |
-
# of the Imagen paper: https://
|
227 |
# corresponds to doing no classifier free guidance.
|
228 |
do_classifier_free_guidance = guidance_scale > 1.0
|
229 |
# get unconditional embeddings for classifier free guidance
|
@@ -276,7 +276,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
276 |
|
277 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
278 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
279 |
-
# eta corresponds to η in DDIM paper: https://
|
280 |
# and should be between [0, 1]
|
281 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
282 |
extra_step_kwargs = {}
|
|
|
125 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
126 |
beta_prod_t = 1 - alpha_prod_t
|
127 |
# compute predicted original sample from predicted noise also called
|
128 |
+
# "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
|
129 |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
130 |
|
131 |
fac = torch.sqrt(beta_prod_t)
|
|
|
223 |
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
224 |
|
225 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
226 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
227 |
# corresponds to doing no classifier free guidance.
|
228 |
do_classifier_free_guidance = guidance_scale > 1.0
|
229 |
# get unconditional embeddings for classifier free guidance
|
|
|
276 |
|
277 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
278 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
279 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
280 |
# and should be between [0, 1]
|
281 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
282 |
extra_step_kwargs = {}
|
main/clip_guided_stable_diffusion_img2img.py
CHANGED
@@ -260,7 +260,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
260 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
261 |
beta_prod_t = 1 - alpha_prod_t
|
262 |
# compute predicted original sample from predicted noise also called
|
263 |
-
# "predicted x_0" of formula (12) from https://
|
264 |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
265 |
|
266 |
fac = torch.sqrt(beta_prod_t)
|
@@ -387,7 +387,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
387 |
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
388 |
|
389 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
390 |
-
# of the Imagen paper: https://
|
391 |
# corresponds to doing no classifier free guidance.
|
392 |
do_classifier_free_guidance = guidance_scale > 1.0
|
393 |
# get unconditional embeddings for classifier free guidance
|
@@ -428,7 +428,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
428 |
|
429 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
430 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
431 |
-
# eta corresponds to η in DDIM paper: https://
|
432 |
# and should be between [0, 1]
|
433 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
434 |
extra_step_kwargs = {}
|
|
|
260 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
261 |
beta_prod_t = 1 - alpha_prod_t
|
262 |
# compute predicted original sample from predicted noise also called
|
263 |
+
# "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
|
264 |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
265 |
|
266 |
fac = torch.sqrt(beta_prod_t)
|
|
|
387 |
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
388 |
|
389 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
390 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
391 |
# corresponds to doing no classifier free guidance.
|
392 |
do_classifier_free_guidance = guidance_scale > 1.0
|
393 |
# get unconditional embeddings for classifier free guidance
|
|
|
428 |
|
429 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
430 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
431 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
432 |
# and should be between [0, 1]
|
433 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
434 |
extra_step_kwargs = {}
|
main/cogvideox_ddim_inversion.py
CHANGED
@@ -462,7 +462,7 @@ class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline):
|
|
462 |
device = self._execution_device
|
463 |
|
464 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
465 |
-
# of the Imagen paper: https://
|
466 |
# corresponds to doing no classifier free guidance.
|
467 |
do_classifier_free_guidance = guidance_scale > 1.0
|
468 |
|
|
|
462 |
device = self._execution_device
|
463 |
|
464 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
465 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
466 |
# corresponds to doing no classifier free guidance.
|
467 |
do_classifier_free_guidance = guidance_scale > 1.0
|
468 |
|
main/composable_stable_diffusion.py
CHANGED
@@ -295,7 +295,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
|
|
295 |
def prepare_extra_step_kwargs(self, generator, eta):
|
296 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
297 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
298 |
-
# eta corresponds to η in DDIM paper: https://
|
299 |
# and should be between [0, 1]
|
300 |
|
301 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -379,9 +379,9 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
|
|
379 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
380 |
expense of slower inference.
|
381 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
382 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
383 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
384 |
-
Paper](https://
|
385 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
386 |
usually at the expense of lower image quality.
|
387 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -390,7 +390,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
|
|
390 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
391 |
The number of images to generate per prompt.
|
392 |
eta (`float`, *optional*, defaults to 0.0):
|
393 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
394 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
395 |
generator (`torch.Generator`, *optional*):
|
396 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -430,7 +430,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
|
|
430 |
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
431 |
device = self._execution_device
|
432 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
433 |
-
# of the Imagen paper: https://
|
434 |
# corresponds to doing no classifier free guidance.
|
435 |
do_classifier_free_guidance = guidance_scale > 1.0
|
436 |
|
|
|
295 |
def prepare_extra_step_kwargs(self, generator, eta):
|
296 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
297 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
298 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
299 |
# and should be between [0, 1]
|
300 |
|
301 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
379 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
380 |
expense of slower inference.
|
381 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
382 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
383 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
384 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
385 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
386 |
usually at the expense of lower image quality.
|
387 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
390 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
391 |
The number of images to generate per prompt.
|
392 |
eta (`float`, *optional*, defaults to 0.0):
|
393 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
394 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
395 |
generator (`torch.Generator`, *optional*):
|
396 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
430 |
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
431 |
device = self._execution_device
|
432 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
433 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
434 |
# corresponds to doing no classifier free guidance.
|
435 |
do_classifier_free_guidance = guidance_scale > 1.0
|
436 |
|
main/fresco_v2v.py
CHANGED
@@ -124,7 +124,7 @@ def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"):
|
|
124 |
def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5):
|
125 |
# fwd_flow, bwd_flow: [B, 2, H, W]
|
126 |
# alpha and beta values are following UnFlow
|
127 |
-
# (https://
|
128 |
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
|
129 |
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
|
130 |
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W]
|
@@ -1703,7 +1703,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
|
|
1703 |
def prepare_extra_step_kwargs(self, generator, eta):
|
1704 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
1705 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
1706 |
-
# eta corresponds to η in DDIM paper: https://
|
1707 |
# and should be between [0, 1]
|
1708 |
|
1709 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -2030,7 +2030,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
|
|
2030 |
return self._clip_skip
|
2031 |
|
2032 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
2033 |
-
# of the Imagen paper: https://
|
2034 |
# corresponds to doing no classifier free guidance.
|
2035 |
@property
|
2036 |
def do_classifier_free_guidance(self):
|
@@ -2109,7 +2109,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
|
|
2109 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
2110 |
The number of images to generate per prompt.
|
2111 |
eta (`float`, *optional*, defaults to 0.0):
|
2112 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
2113 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
2114 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
2115 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
124 |
def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5):
|
125 |
# fwd_flow, bwd_flow: [B, 2, H, W]
|
126 |
# alpha and beta values are following UnFlow
|
127 |
+
# (https://huggingface.co/papers/1711.07837)
|
128 |
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
|
129 |
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
|
130 |
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W]
|
|
|
1703 |
def prepare_extra_step_kwargs(self, generator, eta):
|
1704 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
1705 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
1706 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
1707 |
# and should be between [0, 1]
|
1708 |
|
1709 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
2030 |
return self._clip_skip
|
2031 |
|
2032 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
2033 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
2034 |
# corresponds to doing no classifier free guidance.
|
2035 |
@property
|
2036 |
def do_classifier_free_guidance(self):
|
|
|
2109 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
2110 |
The number of images to generate per prompt.
|
2111 |
eta (`float`, *optional*, defaults to 0.0):
|
2112 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
2113 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
2114 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
2115 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
main/gluegen.py
CHANGED
@@ -139,7 +139,7 @@ class TranslatorNoLN(nn.Module):
|
|
139 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
140 |
"""
|
141 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
142 |
-
Sample Steps are Flawed](https://
|
143 |
"""
|
144 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
145 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -447,7 +447,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, St
|
|
447 |
def prepare_extra_step_kwargs(self, generator, eta):
|
448 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
449 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
450 |
-
# eta corresponds to η in DDIM paper: https://
|
451 |
# and should be between [0, 1]
|
452 |
|
453 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -563,7 +563,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, St
|
|
563 |
return self._clip_skip
|
564 |
|
565 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
566 |
-
# of the Imagen paper: https://
|
567 |
# corresponds to doing no classifier free guidance.
|
568 |
@property
|
569 |
def do_classifier_free_guidance(self):
|
@@ -630,7 +630,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, St
|
|
630 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
631 |
The number of images to generate per prompt.
|
632 |
eta (`float`, *optional*, defaults to 0.0):
|
633 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
634 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
635 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
636 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -656,7 +656,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, St
|
|
656 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
657 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
658 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
659 |
-
Flawed](https://
|
660 |
using zero terminal SNR.
|
661 |
clip_skip (`int`, *optional*):
|
662 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
@@ -781,7 +781,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, St
|
|
781 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
782 |
|
783 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
784 |
-
# Based on 3.4. in https://
|
785 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
786 |
|
787 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
139 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
140 |
"""
|
141 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
142 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
143 |
"""
|
144 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
145 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
447 |
def prepare_extra_step_kwargs(self, generator, eta):
|
448 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
449 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
450 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
451 |
# and should be between [0, 1]
|
452 |
|
453 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
563 |
return self._clip_skip
|
564 |
|
565 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
566 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
567 |
# corresponds to doing no classifier free guidance.
|
568 |
@property
|
569 |
def do_classifier_free_guidance(self):
|
|
|
630 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
631 |
The number of images to generate per prompt.
|
632 |
eta (`float`, *optional*, defaults to 0.0):
|
633 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
634 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
635 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
636 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
656 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
657 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
658 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
659 |
+
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
660 |
using zero terminal SNR.
|
661 |
clip_skip (`int`, *optional*):
|
662 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
|
781 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
782 |
|
783 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
784 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
785 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
786 |
|
787 |
# compute the previous noisy sample x_t -> x_t-1
|
main/iadb.py
CHANGED
@@ -12,7 +12,7 @@ class IADBScheduler(SchedulerMixin, ConfigMixin):
|
|
12 |
"""
|
13 |
IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist.
|
14 |
|
15 |
-
For more details, see the original paper: https://
|
16 |
"""
|
17 |
|
18 |
def step(
|
|
|
12 |
"""
|
13 |
IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist.
|
14 |
|
15 |
+
For more details, see the original paper: https://huggingface.co/papers/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html
|
16 |
"""
|
17 |
|
18 |
def step(
|
main/imagic_stable_diffusion.py
CHANGED
@@ -61,7 +61,7 @@ def preprocess(image):
|
|
61 |
class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
62 |
r"""
|
63 |
Pipeline for imagic image editing.
|
64 |
-
See paper here: https://
|
65 |
|
66 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
67 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
@@ -133,13 +133,13 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
133 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
134 |
expense of slower inference.
|
135 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
136 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
137 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
138 |
-
Paper](https://
|
139 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
140 |
usually at the expense of lower image quality.
|
141 |
eta (`float`, *optional*, defaults to 0.0):
|
142 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
143 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
144 |
generator (`torch.Generator`, *optional*):
|
145 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -334,9 +334,9 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
334 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
335 |
expense of slower inference.
|
336 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
337 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
338 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
339 |
-
Paper](https://
|
340 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
341 |
usually at the expense of lower image quality.
|
342 |
generator (`torch.Generator`, *optional*):
|
@@ -349,7 +349,7 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
349 |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
350 |
plain tuple.
|
351 |
eta (`float`, *optional*, defaults to 0.0):
|
352 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
353 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
354 |
Returns:
|
355 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
@@ -368,7 +368,7 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
368 |
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings
|
369 |
|
370 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
371 |
-
# of the Imagen paper: https://
|
372 |
# corresponds to doing no classifier free guidance.
|
373 |
do_classifier_free_guidance = guidance_scale > 1.0
|
374 |
# get unconditional embeddings for classifier free guidance
|
@@ -420,7 +420,7 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
420 |
|
421 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
422 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
423 |
-
# eta corresponds to η in DDIM paper: https://
|
424 |
# and should be between [0, 1]
|
425 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
426 |
extra_step_kwargs = {}
|
|
|
61 |
class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
62 |
r"""
|
63 |
Pipeline for imagic image editing.
|
64 |
+
See paper here: https://huggingface.co/papers/2210.09276
|
65 |
|
66 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
67 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
133 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
134 |
expense of slower inference.
|
135 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
136 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
137 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
138 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
139 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
140 |
usually at the expense of lower image quality.
|
141 |
eta (`float`, *optional*, defaults to 0.0):
|
142 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
143 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
144 |
generator (`torch.Generator`, *optional*):
|
145 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
334 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
335 |
expense of slower inference.
|
336 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
337 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
338 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
339 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
340 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
341 |
usually at the expense of lower image quality.
|
342 |
generator (`torch.Generator`, *optional*):
|
|
|
349 |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
350 |
plain tuple.
|
351 |
eta (`float`, *optional*, defaults to 0.0):
|
352 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
353 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
354 |
Returns:
|
355 |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
|
368 |
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings
|
369 |
|
370 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
371 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
372 |
# corresponds to doing no classifier free guidance.
|
373 |
do_classifier_free_guidance = guidance_scale > 1.0
|
374 |
# get unconditional embeddings for classifier free guidance
|
|
|
420 |
|
421 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
422 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
423 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
424 |
# and should be between [0, 1]
|
425 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
426 |
extra_step_kwargs = {}
|
main/img2img_inpainting.py
CHANGED
@@ -178,9 +178,9 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
|
|
178 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
179 |
expense of slower inference.
|
180 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
181 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
182 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
183 |
-
Paper](https://
|
184 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
185 |
usually at the expense of lower image quality.
|
186 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -189,7 +189,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
|
|
189 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
190 |
The number of images to generate per prompt.
|
191 |
eta (`float`, *optional*, defaults to 0.0):
|
192 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
193 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
194 |
generator (`torch.Generator`, *optional*):
|
195 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -266,7 +266,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
|
|
266 |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
267 |
|
268 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
269 |
-
# of the Imagen paper: https://
|
270 |
# corresponds to doing no classifier free guidance.
|
271 |
do_classifier_free_guidance = guidance_scale > 1.0
|
272 |
# get unconditional embeddings for classifier free guidance
|
@@ -378,7 +378,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
|
|
378 |
|
379 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
380 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
381 |
-
# eta corresponds to η in DDIM paper: https://
|
382 |
# and should be between [0, 1]
|
383 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
384 |
extra_step_kwargs = {}
|
|
|
178 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
179 |
expense of slower inference.
|
180 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
181 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
182 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
183 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
184 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
185 |
usually at the expense of lower image quality.
|
186 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
189 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
190 |
The number of images to generate per prompt.
|
191 |
eta (`float`, *optional*, defaults to 0.0):
|
192 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
193 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
194 |
generator (`torch.Generator`, *optional*):
|
195 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
266 |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
267 |
|
268 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
269 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
270 |
# corresponds to doing no classifier free guidance.
|
271 |
do_classifier_free_guidance = guidance_scale > 1.0
|
272 |
# get unconditional embeddings for classifier free guidance
|
|
|
378 |
|
379 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
380 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
381 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
382 |
# and should be between [0, 1]
|
383 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
384 |
extra_step_kwargs = {}
|
main/instaflow_one_step.py
CHANGED
@@ -41,7 +41,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
41 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
42 |
"""
|
43 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
44 |
-
Sample Steps are Flawed](https://
|
45 |
"""
|
46 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
47 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -414,7 +414,7 @@ class InstaFlowPipeline(
|
|
414 |
def prepare_extra_step_kwargs(self, generator, eta):
|
415 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
416 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
417 |
-
# eta corresponds to η in DDIM paper: https://
|
418 |
# and should be between [0, 1]
|
419 |
|
420 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -541,7 +541,7 @@ class InstaFlowPipeline(
|
|
541 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
542 |
The number of images to generate per prompt.
|
543 |
eta (`float`, *optional*, defaults to 0.0):
|
544 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
545 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
546 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
547 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -572,7 +572,7 @@ class InstaFlowPipeline(
|
|
572 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
573 |
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
574 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
575 |
-
Flawed](https://
|
576 |
using zero terminal SNR.
|
577 |
|
578 |
Examples:
|
@@ -603,7 +603,7 @@ class InstaFlowPipeline(
|
|
603 |
|
604 |
device = self._execution_device
|
605 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
606 |
-
# of the Imagen paper: https://
|
607 |
# corresponds to doing no classifier free guidance.
|
608 |
do_classifier_free_guidance = guidance_scale > 1.0
|
609 |
|
|
|
41 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
42 |
"""
|
43 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
44 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
45 |
"""
|
46 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
47 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
414 |
def prepare_extra_step_kwargs(self, generator, eta):
|
415 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
416 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
417 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
418 |
# and should be between [0, 1]
|
419 |
|
420 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
541 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
542 |
The number of images to generate per prompt.
|
543 |
eta (`float`, *optional*, defaults to 0.0):
|
544 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
545 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
546 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
547 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
572 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
573 |
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
574 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
575 |
+
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
576 |
using zero terminal SNR.
|
577 |
|
578 |
Examples:
|
|
|
603 |
|
604 |
device = self._execution_device
|
605 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
606 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
607 |
# corresponds to doing no classifier free guidance.
|
608 |
do_classifier_free_guidance = guidance_scale > 1.0
|
609 |
|
main/interpolate_stable_diffusion.py
CHANGED
@@ -154,9 +154,9 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
154 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
155 |
expense of slower inference.
|
156 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
157 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
158 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
159 |
-
Paper](https://
|
160 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
161 |
usually at the expense of lower image quality.
|
162 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -165,7 +165,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
165 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
166 |
The number of images to generate per prompt.
|
167 |
eta (`float`, *optional*, defaults to 0.0):
|
168 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
169 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
170 |
generator (`torch.Generator`, *optional*):
|
171 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -244,7 +244,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
244 |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
245 |
|
246 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
247 |
-
# of the Imagen paper: https://
|
248 |
# corresponds to doing no classifier free guidance.
|
249 |
do_classifier_free_guidance = guidance_scale > 1.0
|
250 |
# get unconditional embeddings for classifier free guidance
|
@@ -320,7 +320,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
320 |
|
321 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
322 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
323 |
-
# eta corresponds to η in DDIM paper: https://
|
324 |
# and should be between [0, 1]
|
325 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
326 |
extra_step_kwargs = {}
|
@@ -432,16 +432,16 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
432 |
width (`int`, *optional*, defaults to 512):
|
433 |
Width of the generated images.
|
434 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
435 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
436 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
437 |
-
Paper](https://
|
438 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
439 |
usually at the expense of lower image quality.
|
440 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
441 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
442 |
expense of slower inference.
|
443 |
eta (`float`, *optional*, defaults to 0.0):
|
444 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
445 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
446 |
|
447 |
Returns:
|
|
|
154 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
155 |
expense of slower inference.
|
156 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
157 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
158 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
159 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
160 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
161 |
usually at the expense of lower image quality.
|
162 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
165 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
166 |
The number of images to generate per prompt.
|
167 |
eta (`float`, *optional*, defaults to 0.0):
|
168 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
169 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
170 |
generator (`torch.Generator`, *optional*):
|
171 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
244 |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
245 |
|
246 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
247 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
248 |
# corresponds to doing no classifier free guidance.
|
249 |
do_classifier_free_guidance = guidance_scale > 1.0
|
250 |
# get unconditional embeddings for classifier free guidance
|
|
|
320 |
|
321 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
322 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
323 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
324 |
# and should be between [0, 1]
|
325 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
326 |
extra_step_kwargs = {}
|
|
|
432 |
width (`int`, *optional*, defaults to 512):
|
433 |
Width of the generated images.
|
434 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
435 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
436 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
437 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
438 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
439 |
usually at the expense of lower image quality.
|
440 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
441 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
442 |
expense of slower inference.
|
443 |
eta (`float`, *optional*, defaults to 0.0):
|
444 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
445 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
446 |
|
447 |
Returns:
|
main/ip_adapter_face_id.py
CHANGED
@@ -76,7 +76,7 @@ class IPAdapterFullImageProjection(nn.Module):
|
|
76 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
77 |
"""
|
78 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
79 |
-
Sample Steps are Flawed](https://
|
80 |
"""
|
81 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
82 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -693,7 +693,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
693 |
def prepare_extra_step_kwargs(self, generator, eta):
|
694 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
695 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
696 |
-
# eta corresponds to η in DDIM paper: https://
|
697 |
# and should be between [0, 1]
|
698 |
|
699 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -823,7 +823,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
823 |
return self._clip_skip
|
824 |
|
825 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
826 |
-
# of the Imagen paper: https://
|
827 |
# corresponds to doing no classifier free guidance.
|
828 |
@property
|
829 |
def do_classifier_free_guidance(self):
|
@@ -893,7 +893,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
893 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
894 |
The number of images to generate per prompt.
|
895 |
eta (`float`, *optional*, defaults to 0.0):
|
896 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
897 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
898 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
899 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -920,7 +920,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
920 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
921 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
922 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
923 |
-
Flawed](https://
|
924 |
using zero terminal SNR.
|
925 |
clip_skip (`int`, *optional*):
|
926 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
@@ -1084,7 +1084,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
|
|
1084 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1085 |
|
1086 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1087 |
-
# Based on 3.4. in https://
|
1088 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1089 |
|
1090 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
76 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
77 |
"""
|
78 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
79 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
80 |
"""
|
81 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
82 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
693 |
def prepare_extra_step_kwargs(self, generator, eta):
|
694 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
695 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
696 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
697 |
# and should be between [0, 1]
|
698 |
|
699 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
823 |
return self._clip_skip
|
824 |
|
825 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
826 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
827 |
# corresponds to doing no classifier free guidance.
|
828 |
@property
|
829 |
def do_classifier_free_guidance(self):
|
|
|
893 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
894 |
The number of images to generate per prompt.
|
895 |
eta (`float`, *optional*, defaults to 0.0):
|
896 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
897 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
898 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
899 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
920 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
921 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
922 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
923 |
+
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
924 |
using zero terminal SNR.
|
925 |
clip_skip (`int`, *optional*):
|
926 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
|
1084 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1085 |
|
1086 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1087 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1088 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1089 |
|
1090 |
# compute the previous noisy sample x_t -> x_t-1
|
main/latent_consistency_img2img.py
CHANGED
@@ -450,7 +450,7 @@ def betas_for_alpha_bar(
|
|
450 |
|
451 |
def rescale_zero_terminal_snr(betas):
|
452 |
"""
|
453 |
-
Rescales betas to have zero terminal SNR Based on https://
|
454 |
Args:
|
455 |
betas (`torch.Tensor`):
|
456 |
the betas that the scheduler is being initialized with.
|
@@ -620,7 +620,7 @@ class LCMSchedulerWithTimestamp(SchedulerMixin, ConfigMixin):
|
|
620 |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
621 |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
622 |
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
623 |
-
https://
|
624 |
"""
|
625 |
dtype = sample.dtype
|
626 |
batch_size, channels, height, width = sample.shape
|
|
|
450 |
|
451 |
def rescale_zero_terminal_snr(betas):
|
452 |
"""
|
453 |
+
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
454 |
Args:
|
455 |
betas (`torch.Tensor`):
|
456 |
the betas that the scheduler is being initialized with.
|
|
|
620 |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
621 |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
622 |
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
623 |
+
https://huggingface.co/papers/2205.11487
|
624 |
"""
|
625 |
dtype = sample.dtype
|
626 |
batch_size, channels, height, width = sample.shape
|
main/latent_consistency_interpolate.py
CHANGED
@@ -529,7 +529,7 @@ class LatentConsistencyModelWalkPipeline(
|
|
529 |
def prepare_extra_step_kwargs(self, generator, eta):
|
530 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
531 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
532 |
-
# eta corresponds to η in DDIM paper: https://
|
533 |
# and should be between [0, 1]
|
534 |
|
535 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
529 |
def prepare_extra_step_kwargs(self, generator, eta):
|
530 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
531 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
532 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
533 |
# and should be between [0, 1]
|
534 |
|
535 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
main/latent_consistency_txt2img.py
CHANGED
@@ -365,7 +365,7 @@ def betas_for_alpha_bar(
|
|
365 |
|
366 |
def rescale_zero_terminal_snr(betas):
|
367 |
"""
|
368 |
-
Rescales betas to have zero terminal SNR Based on https://
|
369 |
Args:
|
370 |
betas (`torch.Tensor`):
|
371 |
the betas that the scheduler is being initialized with.
|
@@ -532,7 +532,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
532 |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
533 |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
534 |
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
535 |
-
https://
|
536 |
"""
|
537 |
dtype = sample.dtype
|
538 |
batch_size, channels, height, width = sample.shape
|
|
|
365 |
|
366 |
def rescale_zero_terminal_snr(betas):
|
367 |
"""
|
368 |
+
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
369 |
Args:
|
370 |
betas (`torch.Tensor`):
|
371 |
the betas that the scheduler is being initialized with.
|
|
|
532 |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
533 |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
534 |
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
535 |
+
https://huggingface.co/papers/2205.11487
|
536 |
"""
|
537 |
dtype = sample.dtype
|
538 |
batch_size, channels, height, width = sample.shape
|
main/llm_grounded_diffusion.py
CHANGED
@@ -281,7 +281,7 @@ class LLMGroundedDiffusionPipeline(
|
|
281 |
FromSingleFileMixin,
|
282 |
):
|
283 |
r"""
|
284 |
-
Pipeline for layout-grounded text-to-image generation using LLM-grounded Diffusion (LMD+): https://
|
285 |
|
286 |
This model inherits from [`StableDiffusionPipeline`] and aims at implementing the pipeline with minimal modifications. Check the superclass documentation for the generic methods
|
287 |
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
@@ -803,7 +803,7 @@ class LLMGroundedDiffusionPipeline(
|
|
803 |
`List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1].
|
804 |
gligen_scheduled_sampling_beta (`float`, defaults to 0.3):
|
805 |
Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image
|
806 |
-
Generation](https://
|
807 |
scheduled sampling during inference for improved quality and controllability.
|
808 |
negative_prompt (`str` or `List[str]`, *optional*):
|
809 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
@@ -811,7 +811,7 @@ class LLMGroundedDiffusionPipeline(
|
|
811 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
812 |
The number of images to generate per prompt.
|
813 |
eta (`float`, *optional*, defaults to 0.0):
|
814 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
815 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
816 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
817 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -843,7 +843,7 @@ class LLMGroundedDiffusionPipeline(
|
|
843 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
844 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
845 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
846 |
-
Flawed](https://
|
847 |
using zero terminal SNR.
|
848 |
clip_skip (`int`, *optional*):
|
849 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
@@ -901,7 +901,7 @@ class LLMGroundedDiffusionPipeline(
|
|
901 |
|
902 |
device = self._execution_device
|
903 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
904 |
-
# of the Imagen paper: https://
|
905 |
# corresponds to doing no classifier free guidance.
|
906 |
do_classifier_free_guidance = guidance_scale > 1.0
|
907 |
|
@@ -1171,8 +1171,8 @@ class LLMGroundedDiffusionPipeline(
|
|
1171 |
|
1172 |
# Scaling with classifier guidance
|
1173 |
alpha_prod_t = scheduler.alphas_cumprod[t]
|
1174 |
-
# Classifier guidance: https://
|
1175 |
-
# DDIM: https://
|
1176 |
scale = (1 - alpha_prod_t) ** (0.5)
|
1177 |
latents = latents - scale * grad_cond
|
1178 |
|
@@ -1457,7 +1457,7 @@ class LLMGroundedDiffusionPipeline(
|
|
1457 |
def prepare_extra_step_kwargs(self, generator, eta):
|
1458 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
1459 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
1460 |
-
# eta corresponds to η in DDIM paper: https://
|
1461 |
# and should be between [0, 1]
|
1462 |
|
1463 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -1549,7 +1549,7 @@ class LLMGroundedDiffusionPipeline(
|
|
1549 |
return self._clip_skip
|
1550 |
|
1551 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1552 |
-
# of the Imagen paper: https://
|
1553 |
# corresponds to doing no classifier free guidance.
|
1554 |
@property
|
1555 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.do_classifier_free_guidance
|
|
|
281 |
FromSingleFileMixin,
|
282 |
):
|
283 |
r"""
|
284 |
+
Pipeline for layout-grounded text-to-image generation using LLM-grounded Diffusion (LMD+): https://huggingface.co/papers/2305.13655.
|
285 |
|
286 |
This model inherits from [`StableDiffusionPipeline`] and aims at implementing the pipeline with minimal modifications. Check the superclass documentation for the generic methods
|
287 |
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
803 |
`List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1].
|
804 |
gligen_scheduled_sampling_beta (`float`, defaults to 0.3):
|
805 |
Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image
|
806 |
+
Generation](https://huggingface.co/papers/2301.07093). Scheduled Sampling factor is only varied for
|
807 |
scheduled sampling during inference for improved quality and controllability.
|
808 |
negative_prompt (`str` or `List[str]`, *optional*):
|
809 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
|
|
811 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
812 |
The number of images to generate per prompt.
|
813 |
eta (`float`, *optional*, defaults to 0.0):
|
814 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
815 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
816 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
817 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
843 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
844 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
845 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
846 |
+
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
847 |
using zero terminal SNR.
|
848 |
clip_skip (`int`, *optional*):
|
849 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
|
901 |
|
902 |
device = self._execution_device
|
903 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
904 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
905 |
# corresponds to doing no classifier free guidance.
|
906 |
do_classifier_free_guidance = guidance_scale > 1.0
|
907 |
|
|
|
1171 |
|
1172 |
# Scaling with classifier guidance
|
1173 |
alpha_prod_t = scheduler.alphas_cumprod[t]
|
1174 |
+
# Classifier guidance: https://huggingface.co/papers/2105.05233
|
1175 |
+
# DDIM: https://huggingface.co/papers/2010.02502
|
1176 |
scale = (1 - alpha_prod_t) ** (0.5)
|
1177 |
latents = latents - scale * grad_cond
|
1178 |
|
|
|
1457 |
def prepare_extra_step_kwargs(self, generator, eta):
|
1458 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
1459 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
1460 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
1461 |
# and should be between [0, 1]
|
1462 |
|
1463 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
1549 |
return self._clip_skip
|
1550 |
|
1551 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1552 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1553 |
# corresponds to doing no classifier free guidance.
|
1554 |
@property
|
1555 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.do_classifier_free_guidance
|
main/lpw_stable_diffusion.py
CHANGED
@@ -744,7 +744,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
744 |
def prepare_extra_step_kwargs(self, generator, eta):
|
745 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
746 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
747 |
-
# eta corresponds to η in DDIM paper: https://
|
748 |
# and should be between [0, 1]
|
749 |
|
750 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -863,9 +863,9 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
863 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
864 |
expense of slower inference.
|
865 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
866 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
867 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
868 |
-
Paper](https://
|
869 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
870 |
usually at the expense of lower image quality.
|
871 |
strength (`float`, *optional*, defaults to 0.8):
|
@@ -880,7 +880,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
880 |
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
881 |
the reverse diffusion process
|
882 |
eta (`float`, *optional*, defaults to 0.0):
|
883 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
884 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
885 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
886 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -948,7 +948,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
948 |
|
949 |
device = self._execution_device
|
950 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
951 |
-
# of the Imagen paper: https://
|
952 |
# corresponds to doing no classifier free guidance.
|
953 |
do_classifier_free_guidance = guidance_scale > 1.0
|
954 |
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
@@ -1115,15 +1115,15 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
1115 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1116 |
expense of slower inference.
|
1117 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1118 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1119 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1120 |
-
Paper](https://
|
1121 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1122 |
usually at the expense of lower image quality.
|
1123 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1124 |
The number of images to generate per prompt.
|
1125 |
eta (`float`, *optional*, defaults to 0.0):
|
1126 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1127 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1128 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1129 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -1237,15 +1237,15 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
1237 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1238 |
expense of slower inference. This parameter will be modulated by `strength`.
|
1239 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1240 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1241 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1242 |
-
Paper](https://
|
1243 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1244 |
usually at the expense of lower image quality.
|
1245 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1246 |
The number of images to generate per prompt.
|
1247 |
eta (`float`, *optional*, defaults to 0.0):
|
1248 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1249 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1250 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1251 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -1355,9 +1355,9 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
1355 |
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
1356 |
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
1357 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1358 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1359 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1360 |
-
Paper](https://
|
1361 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1362 |
usually at the expense of lower image quality.
|
1363 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
@@ -1366,7 +1366,7 @@ class StableDiffusionLongPromptWeightingPipeline(
|
|
1366 |
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
1367 |
the reverse diffusion process
|
1368 |
eta (`float`, *optional*, defaults to 0.0):
|
1369 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1370 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1371 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1372 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
744 |
def prepare_extra_step_kwargs(self, generator, eta):
|
745 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
746 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
747 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
748 |
# and should be between [0, 1]
|
749 |
|
750 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
863 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
864 |
expense of slower inference.
|
865 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
866 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
867 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
868 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
869 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
870 |
usually at the expense of lower image quality.
|
871 |
strength (`float`, *optional*, defaults to 0.8):
|
|
|
880 |
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
881 |
the reverse diffusion process
|
882 |
eta (`float`, *optional*, defaults to 0.0):
|
883 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
884 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
885 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
886 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
948 |
|
949 |
device = self._execution_device
|
950 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
951 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
952 |
# corresponds to doing no classifier free guidance.
|
953 |
do_classifier_free_guidance = guidance_scale > 1.0
|
954 |
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
|
1115 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1116 |
expense of slower inference.
|
1117 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1118 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1119 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1120 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1121 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1122 |
usually at the expense of lower image quality.
|
1123 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1124 |
The number of images to generate per prompt.
|
1125 |
eta (`float`, *optional*, defaults to 0.0):
|
1126 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1127 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1128 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1129 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
1237 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1238 |
expense of slower inference. This parameter will be modulated by `strength`.
|
1239 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1240 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1241 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1242 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1243 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1244 |
usually at the expense of lower image quality.
|
1245 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1246 |
The number of images to generate per prompt.
|
1247 |
eta (`float`, *optional*, defaults to 0.0):
|
1248 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1249 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1250 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1251 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
1355 |
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
1356 |
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
1357 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1358 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1359 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1360 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1361 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1362 |
usually at the expense of lower image quality.
|
1363 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
1366 |
Use predicted noise instead of random noise when constructing noisy versions of the original image in
|
1367 |
the reverse diffusion process
|
1368 |
eta (`float`, *optional*, defaults to 0.0):
|
1369 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1370 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1371 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1372 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
main/lpw_stable_diffusion_onnx.py
CHANGED
@@ -604,7 +604,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
|
|
604 |
def prepare_extra_step_kwargs(self, generator, eta):
|
605 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
606 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
607 |
-
# eta corresponds to η in DDIM paper: https://
|
608 |
# and should be between [0, 1]
|
609 |
|
610 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -699,9 +699,9 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
|
|
699 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
700 |
expense of slower inference.
|
701 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
702 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
703 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
704 |
-
Paper](https://
|
705 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
706 |
usually at the expense of lower image quality.
|
707 |
strength (`float`, *optional*, defaults to 0.8):
|
@@ -713,7 +713,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
|
|
713 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
714 |
The number of images to generate per prompt.
|
715 |
eta (`float`, *optional*, defaults to 0.0):
|
716 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
717 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
718 |
generator (`torch.Generator`, *optional*):
|
719 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -758,7 +758,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
|
|
758 |
# 2. Define call parameters
|
759 |
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
760 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
761 |
-
# of the Imagen paper: https://
|
762 |
# corresponds to doing no classifier free guidance.
|
763 |
do_classifier_free_guidance = guidance_scale > 1.0
|
764 |
|
@@ -902,15 +902,15 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
|
|
902 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
903 |
expense of slower inference.
|
904 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
905 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
906 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
907 |
-
Paper](https://
|
908 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
909 |
usually at the expense of lower image quality.
|
910 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
911 |
The number of images to generate per prompt.
|
912 |
eta (`float`, *optional*, defaults to 0.0):
|
913 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
914 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
915 |
generator (`torch.Generator`, *optional*):
|
916 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -998,15 +998,15 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
|
|
998 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
999 |
expense of slower inference. This parameter will be modulated by `strength`.
|
1000 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1001 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1002 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1003 |
-
Paper](https://
|
1004 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1005 |
usually at the expense of lower image quality.
|
1006 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1007 |
The number of images to generate per prompt.
|
1008 |
eta (`float`, *optional*, defaults to 0.0):
|
1009 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1010 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1011 |
generator (`torch.Generator`, *optional*):
|
1012 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -1094,15 +1094,15 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
|
|
1094 |
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
1095 |
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
1096 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1097 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1098 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1099 |
-
Paper](https://
|
1100 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1101 |
usually at the expense of lower image quality.
|
1102 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1103 |
The number of images to generate per prompt.
|
1104 |
eta (`float`, *optional*, defaults to 0.0):
|
1105 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1106 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1107 |
generator (`torch.Generator`, *optional*):
|
1108 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
604 |
def prepare_extra_step_kwargs(self, generator, eta):
|
605 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
606 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
607 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
608 |
# and should be between [0, 1]
|
609 |
|
610 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
699 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
700 |
expense of slower inference.
|
701 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
702 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
703 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
704 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
705 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
706 |
usually at the expense of lower image quality.
|
707 |
strength (`float`, *optional*, defaults to 0.8):
|
|
|
713 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
714 |
The number of images to generate per prompt.
|
715 |
eta (`float`, *optional*, defaults to 0.0):
|
716 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
717 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
718 |
generator (`torch.Generator`, *optional*):
|
719 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
758 |
# 2. Define call parameters
|
759 |
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
760 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
761 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
762 |
# corresponds to doing no classifier free guidance.
|
763 |
do_classifier_free_guidance = guidance_scale > 1.0
|
764 |
|
|
|
902 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
903 |
expense of slower inference.
|
904 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
905 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
906 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
907 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
908 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
909 |
usually at the expense of lower image quality.
|
910 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
911 |
The number of images to generate per prompt.
|
912 |
eta (`float`, *optional*, defaults to 0.0):
|
913 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
914 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
915 |
generator (`torch.Generator`, *optional*):
|
916 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
998 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
999 |
expense of slower inference. This parameter will be modulated by `strength`.
|
1000 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1001 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1002 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1003 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1004 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1005 |
usually at the expense of lower image quality.
|
1006 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1007 |
The number of images to generate per prompt.
|
1008 |
eta (`float`, *optional*, defaults to 0.0):
|
1009 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1010 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1011 |
generator (`torch.Generator`, *optional*):
|
1012 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
1094 |
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
1095 |
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
1096 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1097 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1098 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1099 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1100 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1101 |
usually at the expense of lower image quality.
|
1102 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1103 |
The number of images to generate per prompt.
|
1104 |
eta (`float`, *optional*, defaults to 0.0):
|
1105 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1106 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1107 |
generator (`torch.Generator`, *optional*):
|
1108 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
main/lpw_stable_diffusion_xl.py
CHANGED
@@ -507,7 +507,7 @@ EXAMPLE_DOC_STRING = """
|
|
507 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
508 |
"""
|
509 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
510 |
-
Sample Steps are Flawed](https://
|
511 |
"""
|
512 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
513 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -945,7 +945,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
945 |
def prepare_extra_step_kwargs(self, generator, eta):
|
946 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
947 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
948 |
-
# eta corresponds to η in DDIM paper: https://
|
949 |
# and should be between [0, 1]
|
950 |
|
951 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -1383,7 +1383,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
1383 |
return self._clip_skip
|
1384 |
|
1385 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1386 |
-
# of the Imagen paper: https://
|
1387 |
# corresponds to doing no classifier free guidance.
|
1388 |
@property
|
1389 |
def do_classifier_free_guidance(self):
|
@@ -1496,9 +1496,9 @@ class SDXLLongPromptWeightingPipeline(
|
|
1496 |
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
|
1497 |
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
1498 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1499 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1500 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1501 |
-
Paper](https://
|
1502 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1503 |
usually at the expense of lower image quality.
|
1504 |
negative_prompt (`str`):
|
@@ -1511,7 +1511,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
1511 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1512 |
The number of images to generate per prompt.
|
1513 |
eta (`float`, *optional*, defaults to 0.0):
|
1514 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1515 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1516 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1517 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -1548,8 +1548,8 @@ class SDXLLongPromptWeightingPipeline(
|
|
1548 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1549 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1550 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1551 |
-
Flawed](https://
|
1552 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://
|
1553 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1554 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1555 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
@@ -1872,7 +1872,7 @@ class SDXLLongPromptWeightingPipeline(
|
|
1872 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1873 |
|
1874 |
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
1875 |
-
# Based on 3.4. in https://
|
1876 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1877 |
|
1878 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
507 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
508 |
"""
|
509 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
510 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
511 |
"""
|
512 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
513 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
945 |
def prepare_extra_step_kwargs(self, generator, eta):
|
946 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
947 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
948 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
949 |
# and should be between [0, 1]
|
950 |
|
951 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
1383 |
return self._clip_skip
|
1384 |
|
1385 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1386 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1387 |
# corresponds to doing no classifier free guidance.
|
1388 |
@property
|
1389 |
def do_classifier_free_guidance(self):
|
|
|
1496 |
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
|
1497 |
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
1498 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1499 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1500 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1501 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1502 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1503 |
usually at the expense of lower image quality.
|
1504 |
negative_prompt (`str`):
|
|
|
1511 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1512 |
The number of images to generate per prompt.
|
1513 |
eta (`float`, *optional*, defaults to 0.0):
|
1514 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1515 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1516 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1517 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
1548 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1549 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1550 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1551 |
+
Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of
|
1552 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891).
|
1553 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1554 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1555 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
|
1872 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1873 |
|
1874 |
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
1875 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1876 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1877 |
|
1878 |
# compute the previous noisy sample x_t -> x_t-1
|
main/masked_stable_diffusion_img2img.py
CHANGED
@@ -73,7 +73,7 @@ class MaskedStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
73 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
74 |
The number of images to generate per prompt.
|
75 |
eta (`float`, *optional*, defaults to 0.0):
|
76 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
77 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
78 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
79 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -123,7 +123,7 @@ class MaskedStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
|
123 |
batch_size = prompt_embeds.shape[0]
|
124 |
device = self._execution_device
|
125 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
126 |
-
# of the Imagen paper: https://
|
127 |
# corresponds to doing no classifier free guidance.
|
128 |
do_classifier_free_guidance = guidance_scale > 1.0
|
129 |
|
|
|
73 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
74 |
The number of images to generate per prompt.
|
75 |
eta (`float`, *optional*, defaults to 0.0):
|
76 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
77 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
78 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
79 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
123 |
batch_size = prompt_embeds.shape[0]
|
124 |
device = self._execution_device
|
125 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
126 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
127 |
# corresponds to doing no classifier free guidance.
|
128 |
do_classifier_free_guidance = guidance_scale > 1.0
|
129 |
|
main/masked_stable_diffusion_xl_img2img.py
CHANGED
@@ -115,7 +115,7 @@ class MaskedStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
115 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
116 |
The number of images to generate per prompt.
|
117 |
eta (`float`, *optional*, defaults to 0.0):
|
118 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
119 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
120 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
121 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -438,7 +438,7 @@ class MaskedStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
438 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
439 |
|
440 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
441 |
-
# Based on 3.4. in https://
|
442 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
443 |
|
444 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
115 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
116 |
The number of images to generate per prompt.
|
117 |
eta (`float`, *optional*, defaults to 0.0):
|
118 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
119 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
120 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
121 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
438 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
439 |
|
440 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
441 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
442 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
443 |
|
444 |
# compute the previous noisy sample x_t -> x_t-1
|
main/matryoshka.py
CHANGED
@@ -125,7 +125,7 @@ EXAMPLE_DOC_STRING = """
|
|
125 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
126 |
"""
|
127 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
128 |
-
Sample Steps are Flawed](https://
|
129 |
"""
|
130 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
131 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -278,7 +278,7 @@ def betas_for_alpha_bar(
|
|
278 |
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
279 |
def rescale_zero_terminal_snr(betas):
|
280 |
"""
|
281 |
-
Rescales betas to have zero terminal SNR Based on https://
|
282 |
|
283 |
|
284 |
Args:
|
@@ -458,7 +458,7 @@ class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
458 |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
459 |
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
460 |
|
461 |
-
https://
|
462 |
"""
|
463 |
dtype = sample.dtype
|
464 |
batch_size, channels, *remaining_dims = sample.shape
|
@@ -501,7 +501,7 @@ class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
501 |
|
502 |
self.num_inference_steps = num_inference_steps
|
503 |
|
504 |
-
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://
|
505 |
if self.config.timestep_spacing == "linspace":
|
506 |
timesteps = (
|
507 |
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
@@ -587,7 +587,7 @@ class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
587 |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
588 |
)
|
589 |
|
590 |
-
# See formulas (12) and (16) of DDIM paper https://
|
591 |
# Ideally, read DDIM paper in-detail understanding
|
592 |
|
593 |
# Notation (<variable name> -> <name in paper>
|
@@ -615,7 +615,7 @@ class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
615 |
beta_prod_t = 1 - alpha_prod_t
|
616 |
|
617 |
# 3. compute predicted original sample from predicted noise also called
|
618 |
-
# "predicted x_0" of formula (12) from https://
|
619 |
if self.config.prediction_type == "epsilon":
|
620 |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
621 |
pred_epsilon = model_output
|
@@ -669,7 +669,7 @@ class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
669 |
else:
|
670 |
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
671 |
|
672 |
-
# 6. compute "direction pointing to x_t" of formula (12) from https://
|
673 |
if len(model_output) > 1:
|
674 |
pred_sample_direction = []
|
675 |
for p_e, a_p_t_p in zip(pred_epsilon, alpha_prod_t_prev):
|
@@ -677,7 +677,7 @@ class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
677 |
else:
|
678 |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
|
679 |
|
680 |
-
# 7. compute x_t without "random noise" of formula (12) from https://
|
681 |
if len(model_output) > 1:
|
682 |
prev_sample = []
|
683 |
for p_o_s, p_s_d, a_p_t_p in zip(pred_original_sample, pred_sample_direction, alpha_prod_t_prev):
|
@@ -2660,7 +2660,7 @@ class MatryoshkaUNet2DConditionModel(
|
|
2660 |
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
2661 |
|
2662 |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
2663 |
-
r"""Enables the FreeU mechanism from https://
|
2664 |
|
2665 |
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
2666 |
|
@@ -4065,7 +4065,7 @@ class MatryoshkaPipeline(
|
|
4065 |
def prepare_extra_step_kwargs(self, generator, eta):
|
4066 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
4067 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
4068 |
-
# eta corresponds to η in DDIM paper: https://
|
4069 |
# and should be between [0, 1]
|
4070 |
|
4071 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -4230,7 +4230,7 @@ class MatryoshkaPipeline(
|
|
4230 |
return self._clip_skip
|
4231 |
|
4232 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
4233 |
-
# of the Imagen paper: https://
|
4234 |
# corresponds to doing no classifier free guidance.
|
4235 |
@property
|
4236 |
def do_classifier_free_guidance(self):
|
@@ -4309,7 +4309,7 @@ class MatryoshkaPipeline(
|
|
4309 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
4310 |
The number of images to generate per prompt.
|
4311 |
eta (`float`, *optional*, defaults to 0.0):
|
4312 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
4313 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
4314 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
4315 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -4340,7 +4340,7 @@ class MatryoshkaPipeline(
|
|
4340 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
4341 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
4342 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
4343 |
-
Flawed](https://
|
4344 |
using zero terminal SNR.
|
4345 |
clip_skip (`int`, *optional*):
|
4346 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
@@ -4538,7 +4538,7 @@ class MatryoshkaPipeline(
|
|
4538 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
4539 |
|
4540 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
4541 |
-
# Based on 3.4. in https://
|
4542 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
4543 |
|
4544 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
125 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
126 |
"""
|
127 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
128 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
129 |
"""
|
130 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
131 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
278 |
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
279 |
def rescale_zero_terminal_snr(betas):
|
280 |
"""
|
281 |
+
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
282 |
|
283 |
|
284 |
Args:
|
|
|
458 |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
459 |
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
460 |
|
461 |
+
https://huggingface.co/papers/2205.11487
|
462 |
"""
|
463 |
dtype = sample.dtype
|
464 |
batch_size, channels, *remaining_dims = sample.shape
|
|
|
501 |
|
502 |
self.num_inference_steps = num_inference_steps
|
503 |
|
504 |
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
505 |
if self.config.timestep_spacing == "linspace":
|
506 |
timesteps = (
|
507 |
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
|
|
587 |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
588 |
)
|
589 |
|
590 |
+
# See formulas (12) and (16) of DDIM paper https://huggingface.co/papers/2010.02502
|
591 |
# Ideally, read DDIM paper in-detail understanding
|
592 |
|
593 |
# Notation (<variable name> -> <name in paper>
|
|
|
615 |
beta_prod_t = 1 - alpha_prod_t
|
616 |
|
617 |
# 3. compute predicted original sample from predicted noise also called
|
618 |
+
# "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
|
619 |
if self.config.prediction_type == "epsilon":
|
620 |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
621 |
pred_epsilon = model_output
|
|
|
669 |
else:
|
670 |
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
671 |
|
672 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502
|
673 |
if len(model_output) > 1:
|
674 |
pred_sample_direction = []
|
675 |
for p_e, a_p_t_p in zip(pred_epsilon, alpha_prod_t_prev):
|
|
|
677 |
else:
|
678 |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
|
679 |
|
680 |
+
# 7. compute x_t without "random noise" of formula (12) from https://huggingface.co/papers/2010.02502
|
681 |
if len(model_output) > 1:
|
682 |
prev_sample = []
|
683 |
for p_o_s, p_s_d, a_p_t_p in zip(pred_original_sample, pred_sample_direction, alpha_prod_t_prev):
|
|
|
2660 |
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
2661 |
|
2662 |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
2663 |
+
r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
|
2664 |
|
2665 |
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
2666 |
|
|
|
4065 |
def prepare_extra_step_kwargs(self, generator, eta):
|
4066 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
4067 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
4068 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
4069 |
# and should be between [0, 1]
|
4070 |
|
4071 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
4230 |
return self._clip_skip
|
4231 |
|
4232 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
4233 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
4234 |
# corresponds to doing no classifier free guidance.
|
4235 |
@property
|
4236 |
def do_classifier_free_guidance(self):
|
|
|
4309 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
4310 |
The number of images to generate per prompt.
|
4311 |
eta (`float`, *optional*, defaults to 0.0):
|
4312 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
4313 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
4314 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
4315 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
4340 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
4341 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
4342 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
4343 |
+
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
4344 |
using zero terminal SNR.
|
4345 |
clip_skip (`int`, *optional*):
|
4346 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
|
4538 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
4539 |
|
4540 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
4541 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
4542 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
4543 |
|
4544 |
# compute the previous noisy sample x_t -> x_t-1
|
main/mixture_tiling.py
CHANGED
@@ -298,7 +298,7 @@ class StableDiffusionTilingPipeline(DiffusionPipeline, StableDiffusionExtrasMixi
|
|
298 |
text_embeddings = [[self.text_encoder(col.input_ids.to(self.device))[0] for col in row] for row in text_input]
|
299 |
|
300 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
301 |
-
# of the Imagen paper: https://
|
302 |
# corresponds to doing no classifier free guidance.
|
303 |
do_classifier_free_guidance = guidance_scale > 1.0 # TODO: also active if any tile has guidance scale
|
304 |
# get unconditional embeddings for classifier free guidance
|
@@ -318,7 +318,7 @@ class StableDiffusionTilingPipeline(DiffusionPipeline, StableDiffusionExtrasMixi
|
|
318 |
|
319 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
320 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
321 |
-
# eta corresponds to η in DDIM paper: https://
|
322 |
# and should be between [0, 1]
|
323 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
324 |
extra_step_kwargs = {}
|
|
|
298 |
text_embeddings = [[self.text_encoder(col.input_ids.to(self.device))[0] for col in row] for row in text_input]
|
299 |
|
300 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
301 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
302 |
# corresponds to doing no classifier free guidance.
|
303 |
do_classifier_free_guidance = guidance_scale > 1.0 # TODO: also active if any tile has guidance scale
|
304 |
# get unconditional embeddings for classifier free guidance
|
|
|
318 |
|
319 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
320 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
321 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
322 |
# and should be between [0, 1]
|
323 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
324 |
extra_step_kwargs = {}
|
main/mixture_tiling_sdxl.py
CHANGED
@@ -201,7 +201,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
201 |
r"""
|
202 |
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
203 |
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
204 |
-
Flawed](https://
|
205 |
|
206 |
Args:
|
207 |
noise_cfg (`torch.Tensor`):
|
@@ -631,7 +631,7 @@ class StableDiffusionXLTilingPipeline(
|
|
631 |
def prepare_extra_step_kwargs(self, generator, eta):
|
632 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
633 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
634 |
-
# eta corresponds to η in DDIM paper: https://
|
635 |
# and should be between [0, 1]
|
636 |
|
637 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -767,7 +767,7 @@ class StableDiffusionXLTilingPipeline(
|
|
767 |
return self._clip_skip
|
768 |
|
769 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
770 |
-
# of the Imagen paper: https://
|
771 |
# corresponds to doing no classifier free guidance.
|
772 |
@property
|
773 |
def do_classifier_free_guidance(self):
|
@@ -839,9 +839,9 @@ class StableDiffusionXLTilingPipeline(
|
|
839 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
840 |
expense of slower inference.
|
841 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
842 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
843 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
844 |
-
Paper](https://
|
845 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
846 |
usually at the expense of lower image quality.
|
847 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -851,7 +851,7 @@ class StableDiffusionXLTilingPipeline(
|
|
851 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
852 |
The number of images to generate per prompt.
|
853 |
eta (`float`, *optional*, defaults to 0.0):
|
854 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
855 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
856 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
857 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
201 |
r"""
|
202 |
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
203 |
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
204 |
+
Flawed](https://huggingface.co/papers/2305.08891).
|
205 |
|
206 |
Args:
|
207 |
noise_cfg (`torch.Tensor`):
|
|
|
631 |
def prepare_extra_step_kwargs(self, generator, eta):
|
632 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
633 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
634 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
635 |
# and should be between [0, 1]
|
636 |
|
637 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
767 |
return self._clip_skip
|
768 |
|
769 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
770 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
771 |
# corresponds to doing no classifier free guidance.
|
772 |
@property
|
773 |
def do_classifier_free_guidance(self):
|
|
|
839 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
840 |
expense of slower inference.
|
841 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
842 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
843 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
844 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
845 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
846 |
usually at the expense of lower image quality.
|
847 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
851 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
852 |
The number of images to generate per prompt.
|
853 |
eta (`float`, *optional*, defaults to 0.0):
|
854 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
855 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
856 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
857 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
main/mod_controlnet_tile_sr_sdxl.py
CHANGED
@@ -637,7 +637,7 @@ class StableDiffusionXLControlNetTileSRPipeline(
|
|
637 |
def prepare_extra_step_kwargs(self, generator, eta):
|
638 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
639 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
640 |
-
# eta corresponds to η in DDIM paper: https://
|
641 |
# and should be between [0, 1]
|
642 |
|
643 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -1247,7 +1247,7 @@ class StableDiffusionXLControlNetTileSRPipeline(
|
|
1247 |
return self._clip_skip
|
1248 |
|
1249 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1250 |
-
# of the Imagen paper: https://
|
1251 |
# corresponds to doing no classifier free guidance.
|
1252 |
@property
|
1253 |
def do_classifier_free_guidance(self):
|
@@ -1335,8 +1335,8 @@ class StableDiffusionXLControlNetTileSRPipeline(
|
|
1335 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1336 |
expense of slower inference.
|
1337 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1338 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1339 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://
|
1340 |
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages generating
|
1341 |
images closely linked to the text `prompt`, usually at the expense of lower image quality.
|
1342 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -1346,7 +1346,7 @@ class StableDiffusionXLControlNetTileSRPipeline(
|
|
1346 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1347 |
The number of images to generate per prompt.
|
1348 |
eta (`float`, *optional*, defaults to 0.0):
|
1349 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1350 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1351 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1352 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
637 |
def prepare_extra_step_kwargs(self, generator, eta):
|
638 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
639 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
640 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
641 |
# and should be between [0, 1]
|
642 |
|
643 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
1247 |
return self._clip_skip
|
1248 |
|
1249 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1250 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1251 |
# corresponds to doing no classifier free guidance.
|
1252 |
@property
|
1253 |
def do_classifier_free_guidance(self):
|
|
|
1335 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1336 |
expense of slower inference.
|
1337 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1338 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1339 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://huggingface.co/papers/2205.11487).
|
1340 |
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages generating
|
1341 |
images closely linked to the text `prompt`, usually at the expense of lower image quality.
|
1342 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
1346 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1347 |
The number of images to generate per prompt.
|
1348 |
eta (`float`, *optional*, defaults to 0.0):
|
1349 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1350 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1351 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1352 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
main/multilingual_stable_diffusion.py
CHANGED
@@ -168,9 +168,9 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
168 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
169 |
expense of slower inference.
|
170 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
171 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
172 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
173 |
-
Paper](https://
|
174 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
175 |
usually at the expense of lower image quality.
|
176 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -179,7 +179,7 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
179 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
180 |
The number of images to generate per prompt.
|
181 |
eta (`float`, *optional*, defaults to 0.0):
|
182 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
183 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
184 |
generator (`torch.Generator`, *optional*):
|
185 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
@@ -263,7 +263,7 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
263 |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
264 |
|
265 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
266 |
-
# of the Imagen paper: https://
|
267 |
# corresponds to doing no classifier free guidance.
|
268 |
do_classifier_free_guidance = guidance_scale > 1.0
|
269 |
# get unconditional embeddings for classifier free guidance
|
@@ -355,7 +355,7 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
355 |
|
356 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
357 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
358 |
-
# eta corresponds to η in DDIM paper: https://
|
359 |
# and should be between [0, 1]
|
360 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
361 |
extra_step_kwargs = {}
|
|
|
168 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
169 |
expense of slower inference.
|
170 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
171 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
172 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
173 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
174 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
175 |
usually at the expense of lower image quality.
|
176 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
179 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
180 |
The number of images to generate per prompt.
|
181 |
eta (`float`, *optional*, defaults to 0.0):
|
182 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
183 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
184 |
generator (`torch.Generator`, *optional*):
|
185 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
263 |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
264 |
|
265 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
266 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
267 |
# corresponds to doing no classifier free guidance.
|
268 |
do_classifier_free_guidance = guidance_scale > 1.0
|
269 |
# get unconditional embeddings for classifier free guidance
|
|
|
355 |
|
356 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
357 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
358 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
359 |
# and should be between [0, 1]
|
360 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
361 |
extra_step_kwargs = {}
|
main/pipeline_animatediff_controlnet.py
CHANGED
@@ -464,7 +464,7 @@ class AnimateDiffControlNetPipeline(
|
|
464 |
def prepare_extra_step_kwargs(self, generator, eta):
|
465 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
466 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
467 |
-
# eta corresponds to η in DDIM paper: https://
|
468 |
# and should be between [0, 1]
|
469 |
|
470 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -729,7 +729,7 @@ class AnimateDiffControlNetPipeline(
|
|
729 |
return self._clip_skip
|
730 |
|
731 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
732 |
-
# of the Imagen paper: https://
|
733 |
# corresponds to doing no classifier free guidance.
|
734 |
@property
|
735 |
def do_classifier_free_guidance(self):
|
@@ -797,7 +797,7 @@ class AnimateDiffControlNetPipeline(
|
|
797 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
798 |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
799 |
eta (`float`, *optional*, defaults to 0.0):
|
800 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
801 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
802 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
803 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
464 |
def prepare_extra_step_kwargs(self, generator, eta):
|
465 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
466 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
467 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
468 |
# and should be between [0, 1]
|
469 |
|
470 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
729 |
return self._clip_skip
|
730 |
|
731 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
732 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
733 |
# corresponds to doing no classifier free guidance.
|
734 |
@property
|
735 |
def do_classifier_free_guidance(self):
|
|
|
797 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
798 |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
799 |
eta (`float`, *optional*, defaults to 0.0):
|
800 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
801 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
802 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
803 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
main/pipeline_animatediff_img2video.py
CHANGED
@@ -581,7 +581,7 @@ class AnimateDiffImgToVideoPipeline(
|
|
581 |
def prepare_extra_step_kwargs(self, generator, eta):
|
582 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
583 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
584 |
-
# eta corresponds to η in DDIM paper: https://
|
585 |
# and should be between [0, 1]
|
586 |
|
587 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -790,7 +790,7 @@ class AnimateDiffImgToVideoPipeline(
|
|
790 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
791 |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
792 |
eta (`float`, *optional*, defaults to 0.0):
|
793 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
794 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
795 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
796 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -870,7 +870,7 @@ class AnimateDiffImgToVideoPipeline(
|
|
870 |
device = self._execution_device
|
871 |
|
872 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
873 |
-
# of the Imagen paper: https://
|
874 |
# corresponds to doing no classifier free guidance.
|
875 |
do_classifier_free_guidance = guidance_scale > 1.0
|
876 |
|
|
|
581 |
def prepare_extra_step_kwargs(self, generator, eta):
|
582 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
583 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
584 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
585 |
# and should be between [0, 1]
|
586 |
|
587 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
790 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
791 |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
792 |
eta (`float`, *optional*, defaults to 0.0):
|
793 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
794 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
795 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
796 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
870 |
device = self._execution_device
|
871 |
|
872 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
873 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
874 |
# corresponds to doing no classifier free guidance.
|
875 |
do_classifier_free_guidance = guidance_scale > 1.0
|
876 |
|
main/pipeline_animatediff_ipex.py
CHANGED
@@ -442,7 +442,7 @@ class AnimateDiffPipelineIpex(
|
|
442 |
def prepare_extra_step_kwargs(self, generator, eta):
|
443 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
444 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
445 |
-
# eta corresponds to η in DDIM paper: https://
|
446 |
# and should be between [0, 1]
|
447 |
|
448 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -555,7 +555,7 @@ class AnimateDiffPipelineIpex(
|
|
555 |
return self._clip_skip
|
556 |
|
557 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
558 |
-
# of the Imagen paper: https://
|
559 |
# corresponds to doing no classifier free guidance.
|
560 |
@property
|
561 |
def do_classifier_free_guidance(self):
|
@@ -618,7 +618,7 @@ class AnimateDiffPipelineIpex(
|
|
618 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
619 |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
620 |
eta (`float`, *optional*, defaults to 0.0):
|
621 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
622 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
623 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
624 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
442 |
def prepare_extra_step_kwargs(self, generator, eta):
|
443 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
444 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
445 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
446 |
# and should be between [0, 1]
|
447 |
|
448 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
555 |
return self._clip_skip
|
556 |
|
557 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
558 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
559 |
# corresponds to doing no classifier free guidance.
|
560 |
@property
|
561 |
def do_classifier_free_guidance(self):
|
|
|
618 |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
619 |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
620 |
eta (`float`, *optional*, defaults to 0.0):
|
621 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
622 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
623 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
624 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
main/pipeline_controlnet_xl_kolors.py
CHANGED
@@ -462,7 +462,7 @@ class KolorsControlNetPipeline(
|
|
462 |
def prepare_extra_step_kwargs(self, generator, eta):
|
463 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
464 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
465 |
-
# eta corresponds to η in DDIM paper: https://
|
466 |
# and should be between [0, 1]
|
467 |
|
468 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -781,7 +781,7 @@ class KolorsControlNetPipeline(
|
|
781 |
return self._guidance_scale
|
782 |
|
783 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
784 |
-
# of the Imagen paper: https://
|
785 |
# corresponds to doing no classifier free guidance.
|
786 |
@property
|
787 |
def do_classifier_free_guidance(self):
|
@@ -868,9 +868,9 @@ class KolorsControlNetPipeline(
|
|
868 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
869 |
expense of slower inference.
|
870 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
871 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
872 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
873 |
-
Paper](https://
|
874 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
875 |
usually at the expense of lower image quality.
|
876 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -880,7 +880,7 @@ class KolorsControlNetPipeline(
|
|
880 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
881 |
The number of images to generate per prompt.
|
882 |
eta (`float`, *optional*, defaults to 0.0):
|
883 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
884 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
885 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
886 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
462 |
def prepare_extra_step_kwargs(self, generator, eta):
|
463 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
464 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
465 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
466 |
# and should be between [0, 1]
|
467 |
|
468 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
781 |
return self._guidance_scale
|
782 |
|
783 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
784 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
785 |
# corresponds to doing no classifier free guidance.
|
786 |
@property
|
787 |
def do_classifier_free_guidance(self):
|
|
|
868 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
869 |
expense of slower inference.
|
870 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
871 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
872 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
873 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
874 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
875 |
usually at the expense of lower image quality.
|
876 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
880 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
881 |
The number of images to generate per prompt.
|
882 |
eta (`float`, *optional*, defaults to 0.0):
|
883 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
884 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
885 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
886 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
main/pipeline_controlnet_xl_kolors_img2img.py
CHANGED
@@ -505,7 +505,7 @@ class KolorsControlNetImg2ImgPipeline(
|
|
505 |
def prepare_extra_step_kwargs(self, generator, eta):
|
506 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
507 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for others.
|
508 |
-
# eta corresponds to η in DDIM paper: https://
|
509 |
# and should be between [0, 1]
|
510 |
|
511 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -951,7 +951,7 @@ class KolorsControlNetImg2ImgPipeline(
|
|
951 |
return self._guidance_scale
|
952 |
|
953 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
954 |
-
# of the Imagen paper: https://
|
955 |
# corresponds to doing no classifier free guidance.
|
956 |
@property
|
957 |
def do_classifier_free_guidance(self):
|
@@ -1046,9 +1046,9 @@ class KolorsControlNetImg2ImgPipeline(
|
|
1046 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1047 |
expense of slower inference.
|
1048 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1049 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1050 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1051 |
-
Paper](https://
|
1052 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1053 |
usually at the expense of lower image quality.
|
1054 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -1058,7 +1058,7 @@ class KolorsControlNetImg2ImgPipeline(
|
|
1058 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1059 |
The number of images to generate per prompt.
|
1060 |
eta (`float`, *optional*, defaults to 0.0):
|
1061 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1062 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1063 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1064 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
505 |
def prepare_extra_step_kwargs(self, generator, eta):
|
506 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
507 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for others.
|
508 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
509 |
# and should be between [0, 1]
|
510 |
|
511 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
951 |
return self._guidance_scale
|
952 |
|
953 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
954 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
955 |
# corresponds to doing no classifier free guidance.
|
956 |
@property
|
957 |
def do_classifier_free_guidance(self):
|
|
|
1046 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1047 |
expense of slower inference.
|
1048 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1049 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1050 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1051 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1052 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1053 |
usually at the expense of lower image quality.
|
1054 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
1058 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1059 |
The number of images to generate per prompt.
|
1060 |
eta (`float`, *optional*, defaults to 0.0):
|
1061 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1062 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1063 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1064 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
main/pipeline_controlnet_xl_kolors_inpaint.py
CHANGED
@@ -556,7 +556,7 @@ class KolorsControlNetInpaintPipeline(
|
|
556 |
def prepare_extra_step_kwargs(self, generator, eta):
|
557 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
558 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
559 |
-
# eta corresponds to η in DDIM paper: https://
|
560 |
# and should be between [0, 1]
|
561 |
|
562 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -1035,7 +1035,7 @@ class KolorsControlNetInpaintPipeline(
|
|
1035 |
return self._guidance_scale
|
1036 |
|
1037 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1038 |
-
# of the Imagen paper: https://
|
1039 |
# corresponds to doing no classifier free guidance.
|
1040 |
@property
|
1041 |
def do_classifier_free_guidance(self):
|
@@ -1255,9 +1255,9 @@ class KolorsControlNetInpaintPipeline(
|
|
1255 |
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1256 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1257 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1258 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1259 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1260 |
-
Paper](https://
|
1261 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1262 |
usually at the expense of lower image quality.
|
1263 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -1290,7 +1290,7 @@ class KolorsControlNetInpaintPipeline(
|
|
1290 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1291 |
The number of images to generate per prompt.
|
1292 |
eta (`float`, *optional*, defaults to 0.0):
|
1293 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1294 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1295 |
generator (`torch.Generator`, *optional*):
|
1296 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
556 |
def prepare_extra_step_kwargs(self, generator, eta):
|
557 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
558 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
559 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
560 |
# and should be between [0, 1]
|
561 |
|
562 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
1035 |
return self._guidance_scale
|
1036 |
|
1037 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1038 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1039 |
# corresponds to doing no classifier free guidance.
|
1040 |
@property
|
1041 |
def do_classifier_free_guidance(self):
|
|
|
1255 |
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1256 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1257 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1258 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1259 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1260 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1261 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1262 |
usually at the expense of lower image quality.
|
1263 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
1290 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1291 |
The number of images to generate per prompt.
|
1292 |
eta (`float`, *optional*, defaults to 0.0):
|
1293 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1294 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1295 |
generator (`torch.Generator`, *optional*):
|
1296 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
main/pipeline_demofusion_sdxl.py
CHANGED
@@ -77,7 +77,7 @@ def gaussian_filter(latents, kernel_size=3, sigma=1.0):
|
|
77 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
78 |
"""
|
79 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
80 |
-
Sample Steps are Flawed](https://
|
81 |
"""
|
82 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
83 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -383,7 +383,7 @@ class DemoFusionSDXLPipeline(
|
|
383 |
def prepare_extra_step_kwargs(self, generator, eta):
|
384 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
385 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
386 |
-
# eta corresponds to η in DDIM paper: https://
|
387 |
# and should be between [0, 1]
|
388 |
|
389 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -701,9 +701,9 @@ class DemoFusionSDXLPipeline(
|
|
701 |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
702 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
703 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
704 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
705 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
706 |
-
Paper](https://
|
707 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
708 |
usually at the expense of lower image quality.
|
709 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -716,7 +716,7 @@ class DemoFusionSDXLPipeline(
|
|
716 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
717 |
The number of images to generate per prompt.
|
718 |
eta (`float`, *optional*, defaults to 0.0):
|
719 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
720 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
721 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
722 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -757,8 +757,8 @@ class DemoFusionSDXLPipeline(
|
|
757 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
758 |
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
759 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
760 |
-
Flawed](https://
|
761 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://
|
762 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
763 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
764 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
@@ -860,7 +860,7 @@ class DemoFusionSDXLPipeline(
|
|
860 |
device = self._execution_device
|
861 |
|
862 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
863 |
-
# of the Imagen paper: https://
|
864 |
# corresponds to doing no classifier free guidance.
|
865 |
do_classifier_free_guidance = guidance_scale > 1.0
|
866 |
|
@@ -977,7 +977,7 @@ class DemoFusionSDXLPipeline(
|
|
977 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
978 |
|
979 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
980 |
-
# Based on 3.4. in https://
|
981 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
982 |
|
983 |
# compute the previous noisy sample x_t -> x_t-1
|
@@ -1119,7 +1119,7 @@ class DemoFusionSDXLPipeline(
|
|
1119 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1120 |
|
1121 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1122 |
-
# Based on 3.4. in https://
|
1123 |
noise_pred = rescale_noise_cfg(
|
1124 |
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
|
1125 |
)
|
@@ -1215,7 +1215,7 @@ class DemoFusionSDXLPipeline(
|
|
1215 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1216 |
|
1217 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1218 |
-
# Based on 3.4. in https://
|
1219 |
noise_pred = rescale_noise_cfg(
|
1220 |
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
|
1221 |
)
|
|
|
77 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
78 |
"""
|
79 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
80 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
81 |
"""
|
82 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
83 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
383 |
def prepare_extra_step_kwargs(self, generator, eta):
|
384 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
385 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
386 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
387 |
# and should be between [0, 1]
|
388 |
|
389 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
701 |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
702 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
703 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
704 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
705 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
706 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
707 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
708 |
usually at the expense of lower image quality.
|
709 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
716 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
717 |
The number of images to generate per prompt.
|
718 |
eta (`float`, *optional*, defaults to 0.0):
|
719 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
720 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
721 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
722 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
757 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
758 |
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
759 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
760 |
+
Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of
|
761 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891).
|
762 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
763 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
764 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
|
860 |
device = self._execution_device
|
861 |
|
862 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
863 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
864 |
# corresponds to doing no classifier free guidance.
|
865 |
do_classifier_free_guidance = guidance_scale > 1.0
|
866 |
|
|
|
977 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
978 |
|
979 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
980 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
981 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
982 |
|
983 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
1119 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1120 |
|
1121 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1122 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1123 |
noise_pred = rescale_noise_cfg(
|
1124 |
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
|
1125 |
)
|
|
|
1215 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1216 |
|
1217 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1218 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1219 |
noise_pred = rescale_noise_cfg(
|
1220 |
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
|
1221 |
)
|
main/pipeline_faithdiff_stable_diffusion_xl.py
CHANGED
@@ -1077,7 +1077,7 @@ class LocalAttention:
|
|
1077 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
1078 |
"""
|
1079 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
1080 |
-
Sample Steps are Flawed](https://
|
1081 |
|
1082 |
Args:
|
1083 |
noise_cfg (torch.Tensor): Noise configuration tensor.
|
@@ -1504,7 +1504,7 @@ class FaithDiffStableDiffusionXLPipeline(
|
|
1504 |
def prepare_extra_step_kwargs(self, generator, eta):
|
1505 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
1506 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
1507 |
-
# eta corresponds to η in DDIM paper: https://
|
1508 |
# and should be between [0, 1]
|
1509 |
|
1510 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -1729,7 +1729,7 @@ class FaithDiffStableDiffusionXLPipeline(
|
|
1729 |
return self._clip_skip
|
1730 |
|
1731 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1732 |
-
# of the Imagen paper: https://
|
1733 |
# corresponds to doing no classifier free guidance.
|
1734 |
@property
|
1735 |
def do_classifier_free_guidance(self):
|
@@ -1883,9 +1883,9 @@ class FaithDiffStableDiffusionXLPipeline(
|
|
1883 |
Overlap factor for local attention tiling (between 0.0 and 1.0). Controls the overlap between adjacent
|
1884 |
grid patches during processing. Defaults to 0.5.
|
1885 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1886 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1887 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1888 |
-
Paper](https://
|
1889 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1890 |
usually at the expense of lower image quality.
|
1891 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -1898,7 +1898,7 @@ class FaithDiffStableDiffusionXLPipeline(
|
|
1898 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1899 |
The number of images to generate per prompt.
|
1900 |
eta (`float`, *optional*, defaults to 0.0):
|
1901 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1902 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1903 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1904 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -1933,8 +1933,8 @@ class FaithDiffStableDiffusionXLPipeline(
|
|
1933 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1934 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1935 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1936 |
-
Flawed](https://
|
1937 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://
|
1938 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1939 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1940 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
@@ -2173,7 +2173,7 @@ class FaithDiffStableDiffusionXLPipeline(
|
|
2173 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
2174 |
|
2175 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
2176 |
-
# Based on 3.4. in https://
|
2177 |
noise_pred = rescale_noise_cfg(
|
2178 |
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
|
2179 |
)
|
|
|
1077 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
1078 |
"""
|
1079 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
1080 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
1081 |
|
1082 |
Args:
|
1083 |
noise_cfg (torch.Tensor): Noise configuration tensor.
|
|
|
1504 |
def prepare_extra_step_kwargs(self, generator, eta):
|
1505 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
1506 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
1507 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
1508 |
# and should be between [0, 1]
|
1509 |
|
1510 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
1729 |
return self._clip_skip
|
1730 |
|
1731 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1732 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1733 |
# corresponds to doing no classifier free guidance.
|
1734 |
@property
|
1735 |
def do_classifier_free_guidance(self):
|
|
|
1883 |
Overlap factor for local attention tiling (between 0.0 and 1.0). Controls the overlap between adjacent
|
1884 |
grid patches during processing. Defaults to 0.5.
|
1885 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1886 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1887 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1888 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1889 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1890 |
usually at the expense of lower image quality.
|
1891 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
1898 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1899 |
The number of images to generate per prompt.
|
1900 |
eta (`float`, *optional*, defaults to 0.0):
|
1901 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1902 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1903 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1904 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
1933 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1934 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1935 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1936 |
+
Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of
|
1937 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891).
|
1938 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1939 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1940 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
|
2173 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
2174 |
|
2175 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
2176 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
2177 |
noise_pred = rescale_noise_cfg(
|
2178 |
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
|
2179 |
)
|
main/pipeline_flux_differential_img2img.py
CHANGED
@@ -756,9 +756,9 @@ class FluxDifferentialImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
|
|
756 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
757 |
passed will be used. Must be in descending order.
|
758 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
759 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
760 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
761 |
-
Paper](https://
|
762 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
763 |
usually at the expense of lower image quality.
|
764 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
756 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
757 |
passed will be used. Must be in descending order.
|
758 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
759 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
760 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
761 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
762 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
763 |
usually at the expense of lower image quality.
|
764 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
main/pipeline_flux_rf_inversion.py
CHANGED
@@ -698,9 +698,9 @@ class RFInversionFluxPipeline(
|
|
698 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
699 |
passed will be used. Must be in descending order.
|
700 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
701 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
702 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
703 |
-
Paper](https://
|
704 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
705 |
usually at the expense of lower image quality.
|
706 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
@@ -849,7 +849,7 @@ class RFInversionFluxPipeline(
|
|
849 |
|
850 |
if do_rf_inversion:
|
851 |
y_0 = image_latents.clone()
|
852 |
-
# 6. Denoising loop / Controlled Reverse ODE, Algorithm 2 from: https://
|
853 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
854 |
for i, t in enumerate(timesteps):
|
855 |
if do_rf_inversion:
|
@@ -884,7 +884,7 @@ class RFInversionFluxPipeline(
|
|
884 |
eta_t = eta_t * (1 - i / num_inference_steps) ** eta_decay_power # Decay eta over the loop
|
885 |
v_hat_t = v_t + eta_t * (v_t_cond - v_t)
|
886 |
|
887 |
-
# SDE Eq: 17 from https://
|
888 |
latents = latents + v_hat_t * (sigmas[i] - sigmas[i + 1])
|
889 |
else:
|
890 |
# compute the previous noisy sample x_t -> x_t-1
|
@@ -944,7 +944,7 @@ class RFInversionFluxPipeline(
|
|
944 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
945 |
):
|
946 |
r"""
|
947 |
-
Performs Algorithm 1: Controlled Forward ODE from https://
|
948 |
Args:
|
949 |
image (`PipelineImageInput`):
|
950 |
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
|
@@ -953,9 +953,9 @@ class RFInversionFluxPipeline(
|
|
953 |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
954 |
instead.
|
955 |
source_guidance_scale (`float`, *optional*, defaults to 0.0):
|
956 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
957 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
958 |
-
Paper](https://
|
959 |
num_inversion_steps (`int`, *optional*, defaults to 28):
|
960 |
The number of discretization steps.
|
961 |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
698 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
699 |
passed will be used. Must be in descending order.
|
700 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
701 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
702 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
703 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
704 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
705 |
usually at the expense of lower image quality.
|
706 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
849 |
|
850 |
if do_rf_inversion:
|
851 |
y_0 = image_latents.clone()
|
852 |
+
# 6. Denoising loop / Controlled Reverse ODE, Algorithm 2 from: https://huggingface.co/papers/2410.10792
|
853 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
854 |
for i, t in enumerate(timesteps):
|
855 |
if do_rf_inversion:
|
|
|
884 |
eta_t = eta_t * (1 - i / num_inference_steps) ** eta_decay_power # Decay eta over the loop
|
885 |
v_hat_t = v_t + eta_t * (v_t_cond - v_t)
|
886 |
|
887 |
+
# SDE Eq: 17 from https://huggingface.co/papers/2410.10792
|
888 |
latents = latents + v_hat_t * (sigmas[i] - sigmas[i + 1])
|
889 |
else:
|
890 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
944 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
945 |
):
|
946 |
r"""
|
947 |
+
Performs Algorithm 1: Controlled Forward ODE from https://huggingface.co/papers/2410.10792
|
948 |
Args:
|
949 |
image (`PipelineImageInput`):
|
950 |
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
|
|
|
953 |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
954 |
instead.
|
955 |
source_guidance_scale (`float`, *optional*, defaults to 0.0):
|
956 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
957 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
958 |
+
Paper](https://huggingface.co/papers/2205.11487). For this algorithm, it's better to keep it 0.
|
959 |
num_inversion_steps (`int`, *optional*, defaults to 28):
|
960 |
The number of discretization steps.
|
961 |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
main/pipeline_flux_semantic_guidance.py
CHANGED
@@ -840,9 +840,9 @@ class FluxSemanticGuidancePipeline(
|
|
840 |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
841 |
will be used.
|
842 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
843 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
844 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
845 |
-
Paper](https://
|
846 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
847 |
usually at the expense of lower image quality.
|
848 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
840 |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
841 |
will be used.
|
842 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
843 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
844 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
845 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
846 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
847 |
usually at the expense of lower image quality.
|
848 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
main/pipeline_flux_with_cfg.py
CHANGED
@@ -626,9 +626,9 @@ class FluxCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixi
|
|
626 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
627 |
passed will be used. Must be in descending order.
|
628 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
629 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
630 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
631 |
-
Paper](https://
|
632 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
633 |
usually at the expense of lower image quality.
|
634 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
626 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
627 |
passed will be used. Must be in descending order.
|
628 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
629 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
630 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
631 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
632 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
633 |
usually at the expense of lower image quality.
|
634 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
main/pipeline_hunyuandit_differential_img2img.py
CHANGED
@@ -150,7 +150,7 @@ def get_resize_crop_region_for_grid(src, tgt_size):
|
|
150 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
151 |
"""
|
152 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
153 |
-
Sample Steps are Flawed](https://
|
154 |
"""
|
155 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
156 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -531,7 +531,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
|
531 |
def prepare_extra_step_kwargs(self, generator, eta):
|
532 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
533 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
534 |
-
# eta corresponds to η in DDIM paper: https://
|
535 |
# and should be between [0, 1]
|
536 |
|
537 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -709,7 +709,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
|
709 |
return self._guidance_rescale
|
710 |
|
711 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
712 |
-
# of the Imagen paper: https://
|
713 |
# corresponds to doing no classifier free guidance.
|
714 |
@property
|
715 |
def do_classifier_free_guidance(self):
|
@@ -809,7 +809,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
|
809 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
810 |
The number of images to generate per prompt.
|
811 |
eta (`float`, *optional*, defaults to 0.0):
|
812 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
813 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
814 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
815 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -846,7 +846,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
|
846 |
inputs will be passed.
|
847 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
848 |
Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
|
849 |
-
Schedules and Sample Steps are Flawed](https://
|
850 |
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
|
851 |
The original size of the image. Used to calculate the time ids.
|
852 |
target_size (`Tuple[int, int]`, *optional*):
|
@@ -1095,7 +1095,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
|
1095 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1096 |
|
1097 |
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
1098 |
-
# Based on 3.4. in https://
|
1099 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1100 |
|
1101 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
150 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
151 |
"""
|
152 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
153 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
154 |
"""
|
155 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
156 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
531 |
def prepare_extra_step_kwargs(self, generator, eta):
|
532 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
533 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
534 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
535 |
# and should be between [0, 1]
|
536 |
|
537 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
709 |
return self._guidance_rescale
|
710 |
|
711 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
712 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
713 |
# corresponds to doing no classifier free guidance.
|
714 |
@property
|
715 |
def do_classifier_free_guidance(self):
|
|
|
809 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
810 |
The number of images to generate per prompt.
|
811 |
eta (`float`, *optional*, defaults to 0.0):
|
812 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
813 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
814 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
815 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
846 |
inputs will be passed.
|
847 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
848 |
Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
|
849 |
+
Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
850 |
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
|
851 |
The original size of the image. Used to calculate the time ids.
|
852 |
target_size (`Tuple[int, int]`, *optional*):
|
|
|
1095 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1096 |
|
1097 |
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
1098 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1099 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1100 |
|
1101 |
# compute the previous noisy sample x_t -> x_t-1
|
main/pipeline_kolors_differential_img2img.py
CHANGED
@@ -462,7 +462,7 @@ class KolorsDifferentialImg2ImgPipeline(
|
|
462 |
def prepare_extra_step_kwargs(self, generator, eta):
|
463 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
464 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
465 |
-
# eta corresponds to η in DDIM paper: https://
|
466 |
# and should be between [0, 1]
|
467 |
|
468 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -764,7 +764,7 @@ class KolorsDifferentialImg2ImgPipeline(
|
|
764 |
return self._guidance_scale
|
765 |
|
766 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
767 |
-
# of the Imagen paper: https://
|
768 |
# corresponds to doing no classifier free guidance.
|
769 |
@property
|
770 |
def do_classifier_free_guidance(self):
|
@@ -884,9 +884,9 @@ class KolorsDifferentialImg2ImgPipeline(
|
|
884 |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
885 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
886 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
887 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
888 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
889 |
-
Paper](https://
|
890 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
891 |
usually at the expense of lower image quality.
|
892 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -896,7 +896,7 @@ class KolorsDifferentialImg2ImgPipeline(
|
|
896 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
897 |
The number of images to generate per prompt.
|
898 |
eta (`float`, *optional*, defaults to 0.0):
|
899 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
900 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
901 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
902 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
462 |
def prepare_extra_step_kwargs(self, generator, eta):
|
463 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
464 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
465 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
466 |
# and should be between [0, 1]
|
467 |
|
468 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
764 |
return self._guidance_scale
|
765 |
|
766 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
767 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
768 |
# corresponds to doing no classifier free guidance.
|
769 |
@property
|
770 |
def do_classifier_free_guidance(self):
|
|
|
884 |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
885 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
886 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
887 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
888 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
889 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
890 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
891 |
usually at the expense of lower image quality.
|
892 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
896 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
897 |
The number of images to generate per prompt.
|
898 |
eta (`float`, *optional*, defaults to 0.0):
|
899 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
900 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
901 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
902 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
main/pipeline_kolors_inpainting.py
CHANGED
@@ -98,7 +98,7 @@ EXAMPLE_DOC_STRING = """
|
|
98 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
99 |
"""
|
100 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
101 |
-
Sample Steps are Flawed](https://
|
102 |
"""
|
103 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
104 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -673,7 +673,7 @@ class KolorsInpaintPipeline(
|
|
673 |
def prepare_extra_step_kwargs(self, generator, eta):
|
674 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
675 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
676 |
-
# eta corresponds to η in DDIM paper: https://
|
677 |
# and should be between [0, 1]
|
678 |
|
679 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -1066,7 +1066,7 @@ class KolorsInpaintPipeline(
|
|
1066 |
return self._guidance_rescale
|
1067 |
|
1068 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1069 |
-
# of the Imagen paper: https://
|
1070 |
# corresponds to doing no classifier free guidance.
|
1071 |
@property
|
1072 |
def do_classifier_free_guidance(self):
|
@@ -1206,9 +1206,9 @@ class KolorsInpaintPipeline(
|
|
1206 |
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1207 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1208 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1209 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1210 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1211 |
-
Paper](https://
|
1212 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1213 |
usually at the expense of lower image quality.
|
1214 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -1238,7 +1238,7 @@ class KolorsInpaintPipeline(
|
|
1238 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1239 |
The number of images to generate per prompt.
|
1240 |
eta (`float`, *optional*, defaults to 0.0):
|
1241 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1242 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1243 |
generator (`torch.Generator`, *optional*):
|
1244 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -1621,7 +1621,7 @@ class KolorsInpaintPipeline(
|
|
1621 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1622 |
|
1623 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1624 |
-
# Based on 3.4. in https://
|
1625 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1626 |
|
1627 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
98 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
99 |
"""
|
100 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
101 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
102 |
"""
|
103 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
104 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
673 |
def prepare_extra_step_kwargs(self, generator, eta):
|
674 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
675 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
676 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
677 |
# and should be between [0, 1]
|
678 |
|
679 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
1066 |
return self._guidance_rescale
|
1067 |
|
1068 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1069 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1070 |
# corresponds to doing no classifier free guidance.
|
1071 |
@property
|
1072 |
def do_classifier_free_guidance(self):
|
|
|
1206 |
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1207 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1208 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1209 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1210 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1211 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1212 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1213 |
usually at the expense of lower image quality.
|
1214 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
1238 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1239 |
The number of images to generate per prompt.
|
1240 |
eta (`float`, *optional*, defaults to 0.0):
|
1241 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1242 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1243 |
generator (`torch.Generator`, *optional*):
|
1244 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
1621 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1622 |
|
1623 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1624 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1625 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1626 |
|
1627 |
# compute the previous noisy sample x_t -> x_t-1
|
main/pipeline_prompt2prompt.py
CHANGED
@@ -61,7 +61,7 @@ logger = logging.get_logger(__name__)
|
|
61 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
62 |
"""
|
63 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
64 |
-
Sample Steps are Flawed](https://
|
65 |
"""
|
66 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
67 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -449,7 +449,7 @@ class Prompt2PromptPipeline(
|
|
449 |
def prepare_extra_step_kwargs(self, generator, eta):
|
450 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
451 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
452 |
-
# eta corresponds to η in DDIM paper: https://
|
453 |
# and should be between [0, 1]
|
454 |
|
455 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -592,9 +592,9 @@ class Prompt2PromptPipeline(
|
|
592 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
593 |
expense of slower inference.
|
594 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
595 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
596 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
597 |
-
Paper](https://
|
598 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
599 |
usually at the expense of lower image quality.
|
600 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -603,7 +603,7 @@ class Prompt2PromptPipeline(
|
|
603 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
604 |
The number of images to generate per prompt.
|
605 |
eta (`float`, *optional*, defaults to 0.0):
|
606 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
607 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
608 |
generator (`torch.Generator`, *optional*):
|
609 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -641,7 +641,7 @@ class Prompt2PromptPipeline(
|
|
641 |
|
642 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
643 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
644 |
-
Flawed](https://
|
645 |
using zero terminal SNR.
|
646 |
|
647 |
Returns:
|
@@ -678,7 +678,7 @@ class Prompt2PromptPipeline(
|
|
678 |
|
679 |
device = self._execution_device
|
680 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
681 |
-
# of the Imagen paper: https://
|
682 |
# corresponds to doing no classifier free guidance.
|
683 |
do_classifier_free_guidance = guidance_scale > 1.0
|
684 |
|
@@ -734,7 +734,7 @@ class Prompt2PromptPipeline(
|
|
734 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
735 |
|
736 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
737 |
-
# Based on 3.4. in https://
|
738 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
739 |
|
740 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
61 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
62 |
"""
|
63 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
64 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
65 |
"""
|
66 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
67 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
449 |
def prepare_extra_step_kwargs(self, generator, eta):
|
450 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
451 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
452 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
453 |
# and should be between [0, 1]
|
454 |
|
455 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
592 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
593 |
expense of slower inference.
|
594 |
guidance_scale (`float`, *optional*, defaults to 7.5):
|
595 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
596 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
597 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
598 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
599 |
usually at the expense of lower image quality.
|
600 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
603 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
604 |
The number of images to generate per prompt.
|
605 |
eta (`float`, *optional*, defaults to 0.0):
|
606 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
607 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
608 |
generator (`torch.Generator`, *optional*):
|
609 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
641 |
|
642 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
643 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
644 |
+
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
645 |
using zero terminal SNR.
|
646 |
|
647 |
Returns:
|
|
|
678 |
|
679 |
device = self._execution_device
|
680 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
681 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
682 |
# corresponds to doing no classifier free guidance.
|
683 |
do_classifier_free_guidance = guidance_scale > 1.0
|
684 |
|
|
|
734 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
735 |
|
736 |
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
737 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
738 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
739 |
|
740 |
# compute the previous noisy sample x_t -> x_t-1
|
main/pipeline_sdxl_style_aligned.py
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
#
|
15 |
-
# Based on [Style Aligned Image Generation via Shared Attention](https://
|
16 |
# Authors: Amir Hertz, Andrey Voynov, Shlomi Fruchter, Daniel Cohen-Or
|
17 |
# Project Page: https://style-aligned-gen.github.io/
|
18 |
# Code: https://github.com/google/style-aligned
|
@@ -315,7 +315,7 @@ class SharedAttentionProcessor(AttnProcessor2_0):
|
|
315 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
316 |
"""
|
317 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
318 |
-
Sample Steps are Flawed](https://
|
319 |
"""
|
320 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
321 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -396,7 +396,7 @@ class StyleAlignedSDXLPipeline(
|
|
396 |
r"""
|
397 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
398 |
|
399 |
-
This pipeline also adds experimental support for [StyleAligned](https://
|
400 |
be enabled/disabled using `.enable_style_aligned()` or `.disable_style_aligned()` respectively.
|
401 |
|
402 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
@@ -773,7 +773,7 @@ class StyleAlignedSDXLPipeline(
|
|
773 |
def prepare_extra_step_kwargs(self, generator, eta):
|
774 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
775 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
776 |
-
# eta corresponds to η in DDIM paper: https://
|
777 |
# and should be between [0, 1]
|
778 |
|
779 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -1272,7 +1272,7 @@ class StyleAlignedSDXLPipeline(
|
|
1272 |
only_self_level: float = 0.0,
|
1273 |
):
|
1274 |
r"""
|
1275 |
-
Enables the StyleAligned mechanism as in https://
|
1276 |
|
1277 |
Args:
|
1278 |
share_group_norm (`bool`, defaults to `True`):
|
@@ -1356,7 +1356,7 @@ class StyleAlignedSDXLPipeline(
|
|
1356 |
return self._clip_skip
|
1357 |
|
1358 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1359 |
-
# of the Imagen paper: https://
|
1360 |
# corresponds to doing no classifier free guidance.
|
1361 |
@property
|
1362 |
def do_classifier_free_guidance(self):
|
@@ -1457,9 +1457,9 @@ class StyleAlignedSDXLPipeline(
|
|
1457 |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1458 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
1459 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1460 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
1461 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1462 |
-
Paper](https://
|
1463 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1464 |
usually at the expense of lower image quality.
|
1465 |
negative_prompt (`str` or `List[str]`, *optional*):
|
@@ -1472,7 +1472,7 @@ class StyleAlignedSDXLPipeline(
|
|
1472 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1473 |
The number of images to generate per prompt.
|
1474 |
eta (`float`, *optional*, defaults to 0.0):
|
1475 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://
|
1476 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1477 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1478 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
@@ -1509,8 +1509,8 @@ class StyleAlignedSDXLPipeline(
|
|
1509 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1510 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1511 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1512 |
-
Flawed](https://
|
1513 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://
|
1514 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1515 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1516 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
@@ -1840,7 +1840,7 @@ class StyleAlignedSDXLPipeline(
|
|
1840 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1841 |
|
1842 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1843 |
-
# Based on 3.4. in https://
|
1844 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1845 |
|
1846 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
#
|
15 |
+
# Based on [Style Aligned Image Generation via Shared Attention](https://huggingface.co/papers/2312.02133).
|
16 |
# Authors: Amir Hertz, Andrey Voynov, Shlomi Fruchter, Daniel Cohen-Or
|
17 |
# Project Page: https://style-aligned-gen.github.io/
|
18 |
# Code: https://github.com/google/style-aligned
|
|
|
315 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
316 |
"""
|
317 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
318 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
319 |
"""
|
320 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
321 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
396 |
r"""
|
397 |
Pipeline for text-to-image generation using Stable Diffusion XL.
|
398 |
|
399 |
+
This pipeline also adds experimental support for [StyleAligned](https://huggingface.co/papers/2312.02133). It can
|
400 |
be enabled/disabled using `.enable_style_aligned()` or `.disable_style_aligned()` respectively.
|
401 |
|
402 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
|
773 |
def prepare_extra_step_kwargs(self, generator, eta):
|
774 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
775 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
776 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
777 |
# and should be between [0, 1]
|
778 |
|
779 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
1272 |
only_self_level: float = 0.0,
|
1273 |
):
|
1274 |
r"""
|
1275 |
+
Enables the StyleAligned mechanism as in https://huggingface.co/papers/2312.02133.
|
1276 |
|
1277 |
Args:
|
1278 |
share_group_norm (`bool`, defaults to `True`):
|
|
|
1356 |
return self._clip_skip
|
1357 |
|
1358 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1359 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1360 |
# corresponds to doing no classifier free guidance.
|
1361 |
@property
|
1362 |
def do_classifier_free_guidance(self):
|
|
|
1457 |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1458 |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
1459 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1460 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
1461 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1462 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
1463 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1464 |
usually at the expense of lower image quality.
|
1465 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
1472 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1473 |
The number of images to generate per prompt.
|
1474 |
eta (`float`, *optional*, defaults to 0.0):
|
1475 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
1476 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1477 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1478 |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
1509 |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1510 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1511 |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1512 |
+
Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of
|
1513 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891).
|
1514 |
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1515 |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1516 |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
|
1840 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1841 |
|
1842 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1843 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1844 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1845 |
|
1846 |
# compute the previous noisy sample x_t -> x_t-1
|
main/pipeline_stable_diffusion_3_differential_img2img.py
CHANGED
@@ -654,7 +654,7 @@ class StableDiffusion3DifferentialImg2ImgPipeline(DiffusionPipeline):
|
|
654 |
return self._clip_skip
|
655 |
|
656 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
657 |
-
# of the Imagen paper: https://
|
658 |
# corresponds to doing no classifier free guidance.
|
659 |
@property
|
660 |
def do_classifier_free_guidance(self):
|
@@ -725,9 +725,9 @@ class StableDiffusion3DifferentialImg2ImgPipeline(DiffusionPipeline):
|
|
725 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
726 |
passed will be used. Must be in descending order.
|
727 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
728 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
729 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
730 |
-
Paper](https://
|
731 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
732 |
usually at the expense of lower image quality.
|
733 |
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
654 |
return self._clip_skip
|
655 |
|
656 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
657 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
658 |
# corresponds to doing no classifier free guidance.
|
659 |
@property
|
660 |
def do_classifier_free_guidance(self):
|
|
|
725 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
726 |
passed will be used. Must be in descending order.
|
727 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
728 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
729 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
730 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
731 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
732 |
usually at the expense of lower image quality.
|
733 |
negative_prompt (`str` or `List[str]`, *optional*):
|
main/pipeline_stable_diffusion_3_instruct_pix2pix.py
CHANGED
@@ -759,7 +759,7 @@ class StableDiffusion3InstructPix2PixPipeline(
|
|
759 |
return self._clip_skip
|
760 |
|
761 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
762 |
-
# of the Imagen paper: https://
|
763 |
# corresponds to doing no classifier free guidance.
|
764 |
@property
|
765 |
def do_classifier_free_guidance(self):
|
@@ -918,9 +918,9 @@ class StableDiffusion3InstructPix2PixPipeline(
|
|
918 |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
919 |
will be used.
|
920 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
921 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://
|
922 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
923 |
-
Paper](https://
|
924 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
925 |
usually at the expense of lower image quality.
|
926 |
image_guidance_scale (`float`, *optional*, defaults to 1.5):
|
|
|
759 |
return self._clip_skip
|
760 |
|
761 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
762 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
763 |
# corresponds to doing no classifier free guidance.
|
764 |
@property
|
765 |
def do_classifier_free_guidance(self):
|
|
|
918 |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
919 |
will be used.
|
920 |
guidance_scale (`float`, *optional*, defaults to 7.0):
|
921 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
922 |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
923 |
+
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
924 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
925 |
usually at the expense of lower image quality.
|
926 |
image_guidance_scale (`float`, *optional*, defaults to 1.5):
|
main/pipeline_stable_diffusion_boxdiff.py
CHANGED
@@ -307,7 +307,7 @@ def register_attention_control(model, controller):
|
|
307 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
308 |
"""
|
309 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
310 |
-
Sample Steps are Flawed](https://
|
311 |
"""
|
312 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
313 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -793,7 +793,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
793 |
def prepare_extra_step_kwargs(self, generator, eta):
|
794 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
795 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
796 |
-
# eta corresponds to η in DDIM paper: https://
|
797 |
# and should be between [0, 1]
|
798 |
|
799 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
@@ -893,7 +893,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
893 |
return latents
|
894 |
|
895 |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
896 |
-
r"""Enables the FreeU mechanism as in https://
|
897 |
|
898 |
The suffixes after the scaling factors represent the stages where they are being applied.
|
899 |
|
@@ -1021,7 +1021,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
1021 |
return self._clip_skip
|
1022 |
|
1023 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1024 |
-
# of the Imagen paper: https://
|
1025 |
# corresponds to doing no classifier free guidance.
|
1026 |
@property
|
1027 |
def do_classifier_free_guidance(self):
|
@@ -1365,7 +1365,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
1365 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1366 |
The number of images to generate per prompt.
|
1367 |
eta (`float`, *optional*, defaults to 0.0):
|
1368 |
-
Corresponds to parameter eta (η) from the [DDIM](https://
|
1369 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1370 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1371 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
@@ -1391,7 +1391,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
1391 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1392 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1393 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
1394 |
-
Flawed](https://
|
1395 |
using zero terminal SNR.
|
1396 |
clip_skip (`int`, *optional*):
|
1397 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
@@ -1661,7 +1661,7 @@ class StableDiffusionBoxDiffPipeline(
|
|
1661 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1662 |
|
1663 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1664 |
-
# Based on 3.4. in https://
|
1665 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1666 |
|
1667 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
307 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
308 |
"""
|
309 |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
310 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
311 |
"""
|
312 |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
313 |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
793 |
def prepare_extra_step_kwargs(self, generator, eta):
|
794 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
795 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
796 |
+
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
797 |
# and should be between [0, 1]
|
798 |
|
799 |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
893 |
return latents
|
894 |
|
895 |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
896 |
+
r"""Enables the FreeU mechanism as in https://huggingface.co/papers/2309.11497.
|
897 |
|
898 |
The suffixes after the scaling factors represent the stages where they are being applied.
|
899 |
|
|
|
1021 |
return self._clip_skip
|
1022 |
|
1023 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1024 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
1025 |
# corresponds to doing no classifier free guidance.
|
1026 |
@property
|
1027 |
def do_classifier_free_guidance(self):
|
|
|
1365 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1366 |
The number of images to generate per prompt.
|
1367 |
eta (`float`, *optional*, defaults to 0.0):
|
1368 |
+
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
1369 |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1370 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1371 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
1391 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1392 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1393 |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
1394 |
+
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
1395 |
using zero terminal SNR.
|
1396 |
clip_skip (`int`, *optional*):
|
1397 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
|
1661 |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1662 |
|
1663 |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1664 |
+
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
1665 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1666 |
|
1667 |
# compute the previous noisy sample x_t -> x_t-1
|