Datasets:

ArXiv:
Diffusers Bot commited on
Commit
c3d4498
·
verified ·
1 Parent(s): b6a68ec

Upload folder using huggingface_hub

Browse files
v0.4.0/README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Community Examples
2
+
3
+ **Community** examples consist of both inference and training examples that have been added by the community.
4
+
5
+ | Example | Description | Author | Colab |
6
+ |:----------|:----------------------|:-----------------|----------:|
7
+ | CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion| [Suraj Patil](https://github.com/patil-suraj/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |
v0.4.0/clip_guided_stable_diffusion.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from typing import List, Optional, Union
3
+
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from diffusers import AutoencoderKL, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
9
+ from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
10
+ from torchvision import transforms
11
+ from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
12
+
13
+
14
+ class MakeCutouts(nn.Module):
15
+ def __init__(self, cut_size, cut_power=1.0):
16
+ super().__init__()
17
+
18
+ self.cut_size = cut_size
19
+ self.cut_power = cut_power
20
+
21
+ def forward(self, pixel_values, num_cutouts):
22
+ sideY, sideX = pixel_values.shape[2:4]
23
+ max_size = min(sideX, sideY)
24
+ min_size = min(sideX, sideY, self.cut_size)
25
+ cutouts = []
26
+ for _ in range(num_cutouts):
27
+ size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
28
+ offsetx = torch.randint(0, sideX - size + 1, ())
29
+ offsety = torch.randint(0, sideY - size + 1, ())
30
+ cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
31
+ cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
32
+ return torch.cat(cutouts)
33
+
34
+
35
+ def spherical_dist_loss(x, y):
36
+ x = F.normalize(x, dim=-1)
37
+ y = F.normalize(y, dim=-1)
38
+ return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
39
+
40
+
41
+ def set_requires_grad(model, value):
42
+ for param in model.parameters():
43
+ param.requires_grad = value
44
+
45
+
46
+ class CLIPGuidedStableDiffusion(DiffusionPipeline):
47
+ """CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
48
+ - https://github.com/Jack000/glid-3-xl
49
+ - https://github.dev/crowsonkb/k-diffusion
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ vae: AutoencoderKL,
55
+ text_encoder: CLIPTextModel,
56
+ clip_model: CLIPModel,
57
+ tokenizer: CLIPTokenizer,
58
+ unet: UNet2DConditionModel,
59
+ scheduler: Union[PNDMScheduler, LMSDiscreteScheduler],
60
+ feature_extractor: CLIPFeatureExtractor,
61
+ ):
62
+ super().__init__()
63
+ self.register_modules(
64
+ vae=vae,
65
+ text_encoder=text_encoder,
66
+ clip_model=clip_model,
67
+ tokenizer=tokenizer,
68
+ unet=unet,
69
+ scheduler=scheduler,
70
+ feature_extractor=feature_extractor,
71
+ )
72
+
73
+ self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
74
+ self.make_cutouts = MakeCutouts(feature_extractor.size)
75
+
76
+ set_requires_grad(self.text_encoder, False)
77
+ set_requires_grad(self.clip_model, False)
78
+
79
+ def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
80
+ if slice_size == "auto":
81
+ # half the attention head size is usually a good trade-off between
82
+ # speed and memory
83
+ slice_size = self.unet.config.attention_head_dim // 2
84
+ self.unet.set_attention_slice(slice_size)
85
+
86
+ def disable_attention_slicing(self):
87
+ self.enable_attention_slicing(None)
88
+
89
+ def freeze_vae(self):
90
+ set_requires_grad(self.vae, False)
91
+
92
+ def unfreeze_vae(self):
93
+ set_requires_grad(self.vae, True)
94
+
95
+ def freeze_unet(self):
96
+ set_requires_grad(self.unet, False)
97
+
98
+ def unfreeze_unet(self):
99
+ set_requires_grad(self.unet, True)
100
+
101
+ @torch.enable_grad()
102
+ def cond_fn(
103
+ self,
104
+ latents,
105
+ timestep,
106
+ index,
107
+ text_embeddings,
108
+ noise_pred_original,
109
+ text_embeddings_clip,
110
+ clip_guidance_scale,
111
+ num_cutouts,
112
+ use_cutouts=True,
113
+ ):
114
+ latents = latents.detach().requires_grad_()
115
+
116
+ if isinstance(self.scheduler, LMSDiscreteScheduler):
117
+ sigma = self.scheduler.sigmas[index]
118
+ # the model input needs to be scaled to match the continuous ODE formulation in K-LMS
119
+ latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
120
+ else:
121
+ latent_model_input = latents
122
+
123
+ # predict the noise residual
124
+ noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
125
+
126
+ if isinstance(self.scheduler, PNDMScheduler):
127
+ alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
128
+ beta_prod_t = 1 - alpha_prod_t
129
+ # compute predicted original sample from predicted noise also called
130
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
131
+ pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
132
+
133
+ fac = torch.sqrt(beta_prod_t)
134
+ sample = pred_original_sample * (fac) + latents * (1 - fac)
135
+ elif isinstance(self.scheduler, LMSDiscreteScheduler):
136
+ sigma = self.scheduler.sigmas[index]
137
+ sample = latents - sigma * noise_pred
138
+ else:
139
+ raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
140
+
141
+ sample = 1 / 0.18215 * sample
142
+ image = self.vae.decode(sample).sample
143
+ image = (image / 2 + 0.5).clamp(0, 1)
144
+
145
+ if use_cutouts:
146
+ image = self.make_cutouts(image, num_cutouts)
147
+ else:
148
+ image = transforms.Resize(self.feature_extractor.size)(image)
149
+ image = self.normalize(image)
150
+
151
+ image_embeddings_clip = self.clip_model.get_image_features(image)
152
+ image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
153
+
154
+ if use_cutouts:
155
+ dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
156
+ dists = dists.view([num_cutouts, sample.shape[0], -1])
157
+ loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
158
+ else:
159
+ loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
160
+
161
+ grads = -torch.autograd.grad(loss, latents)[0]
162
+
163
+ if isinstance(self.scheduler, LMSDiscreteScheduler):
164
+ latents = latents.detach() + grads * (sigma**2)
165
+ noise_pred = noise_pred_original
166
+ else:
167
+ noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
168
+ return noise_pred, latents
169
+
170
+ @torch.no_grad()
171
+ def __call__(
172
+ self,
173
+ prompt: Union[str, List[str]],
174
+ height: Optional[int] = 512,
175
+ width: Optional[int] = 512,
176
+ num_inference_steps: Optional[int] = 50,
177
+ guidance_scale: Optional[float] = 7.5,
178
+ num_images_per_prompt: Optional[int] = 1,
179
+ clip_guidance_scale: Optional[float] = 100,
180
+ clip_prompt: Optional[Union[str, List[str]]] = None,
181
+ num_cutouts: Optional[int] = 4,
182
+ use_cutouts: Optional[bool] = True,
183
+ generator: Optional[torch.Generator] = None,
184
+ latents: Optional[torch.FloatTensor] = None,
185
+ output_type: Optional[str] = "pil",
186
+ return_dict: bool = True,
187
+ ):
188
+ if isinstance(prompt, str):
189
+ batch_size = 1
190
+ elif isinstance(prompt, list):
191
+ batch_size = len(prompt)
192
+ else:
193
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
194
+
195
+ if height % 8 != 0 or width % 8 != 0:
196
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
197
+
198
+ # get prompt text embeddings
199
+ text_input = self.tokenizer(
200
+ prompt,
201
+ padding="max_length",
202
+ max_length=self.tokenizer.model_max_length,
203
+ truncation=True,
204
+ return_tensors="pt",
205
+ )
206
+ text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
207
+ # duplicate text embeddings for each generation per prompt
208
+ text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
209
+
210
+ if clip_guidance_scale > 0:
211
+ if clip_prompt is not None:
212
+ clip_text_input = self.tokenizer(
213
+ clip_prompt,
214
+ padding="max_length",
215
+ max_length=self.tokenizer.model_max_length,
216
+ truncation=True,
217
+ return_tensors="pt",
218
+ ).input_ids.to(self.device)
219
+ else:
220
+ clip_text_input = text_input.input_ids.to(self.device)
221
+ text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
222
+ text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
223
+ # duplicate text embeddings clip for each generation per prompt
224
+ text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
225
+
226
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
227
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
228
+ # corresponds to doing no classifier free guidance.
229
+ do_classifier_free_guidance = guidance_scale > 1.0
230
+ # get unconditional embeddings for classifier free guidance
231
+ if do_classifier_free_guidance:
232
+ max_length = text_input.input_ids.shape[-1]
233
+ uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
234
+ uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
235
+ # duplicate unconditional embeddings for each generation per prompt
236
+ uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
237
+
238
+ # For classifier free guidance, we need to do two forward passes.
239
+ # Here we concatenate the unconditional and text embeddings into a single batch
240
+ # to avoid doing two forward passes
241
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
242
+
243
+ # get the initial random noise unless the user supplied it
244
+
245
+ # Unlike in other pipelines, latents need to be generated in the target device
246
+ # for 1-to-1 results reproducibility with the CompVis implementation.
247
+ # However this currently doesn't work in `mps`.
248
+ latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
249
+ latents_dtype = text_embeddings.dtype
250
+ if latents is None:
251
+ if self.device.type == "mps":
252
+ # randn does not exist on mps
253
+ latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
254
+ self.device
255
+ )
256
+ else:
257
+ latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
258
+ else:
259
+ if latents.shape != latents_shape:
260
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
261
+ latents = latents.to(self.device)
262
+
263
+ # set timesteps
264
+ accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
265
+ extra_set_kwargs = {}
266
+ if accepts_offset:
267
+ extra_set_kwargs["offset"] = 1
268
+
269
+ self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
270
+
271
+ # Some schedulers like PNDM have timesteps as arrays
272
+ # It's more optimized to move all timesteps to correct device beforehand
273
+ timesteps_tensor = self.scheduler.timesteps.to(self.device)
274
+
275
+ # scale the initial noise by the standard deviation required by the scheduler
276
+ latents = latents * self.scheduler.init_noise_sigma
277
+
278
+ for i, t in enumerate(self.progress_bar(timesteps_tensor)):
279
+ # expand the latents if we are doing classifier free guidance
280
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
281
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
282
+
283
+ # predict the noise residual
284
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
285
+
286
+ # perform classifier free guidance
287
+ if do_classifier_free_guidance:
288
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
289
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
290
+
291
+ # perform clip guidance
292
+ if clip_guidance_scale > 0:
293
+ text_embeddings_for_guidance = (
294
+ text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
295
+ )
296
+ noise_pred, latents = self.cond_fn(
297
+ latents,
298
+ t,
299
+ i,
300
+ text_embeddings_for_guidance,
301
+ noise_pred,
302
+ text_embeddings_clip,
303
+ clip_guidance_scale,
304
+ num_cutouts,
305
+ use_cutouts,
306
+ )
307
+
308
+ # compute the previous noisy sample x_t -> x_t-1
309
+ latents = self.scheduler.step(noise_pred, t, latents).prev_sample
310
+
311
+ # scale and decode the image latents with vae
312
+ latents = 1 / 0.18215 * latents
313
+ image = self.vae.decode(latents).sample
314
+
315
+ image = (image / 2 + 0.5).clamp(0, 1)
316
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
317
+
318
+ if output_type == "pil":
319
+ image = self.numpy_to_pil(image)
320
+
321
+ if not return_dict:
322
+ return (image, None)
323
+
324
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)