Upload folder using huggingface_hub
Browse files- main/README.md +82 -0
- main/stable_diffusion_xl_controlnet_reference.py +1362 -0
main/README.md
CHANGED
@@ -2684,6 +2684,88 @@ Output Image
|
|
2684 |
`reference_attn=True, reference_adain=True, num_inference_steps=20`
|
2685 |

|
2686 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2687 |
### Stable diffusion fabric pipeline
|
2688 |
|
2689 |
FABRIC approach applicable to a wide range of popular diffusion models, which exploits
|
|
|
2684 |
`reference_attn=True, reference_adain=True, num_inference_steps=20`
|
2685 |

|
2686 |
|
2687 |
+
### Stable Diffusion XL ControlNet Reference
|
2688 |
+
|
2689 |
+
This pipeline uses the Reference Control and with ControlNet. Refer to the [Stable Diffusion ControlNet Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-controlnet-reference) and [Stable Diffusion XL Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-xl-reference) sections for more information.
|
2690 |
+
|
2691 |
+
```py
|
2692 |
+
from diffusers import ControlNetModel, AutoencoderKL
|
2693 |
+
from diffusers.schedulers import UniPCMultistepScheduler
|
2694 |
+
from diffusers.utils import load_image
|
2695 |
+
import numpy as np
|
2696 |
+
import torch
|
2697 |
+
|
2698 |
+
import cv2
|
2699 |
+
from PIL import Image
|
2700 |
+
|
2701 |
+
from .stable_diffusion_xl_controlnet_reference import StableDiffusionXLControlNetReferencePipeline
|
2702 |
+
|
2703 |
+
# download an image
|
2704 |
+
canny_image = load_image(
|
2705 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
|
2706 |
+
)
|
2707 |
+
|
2708 |
+
ref_image = load_image(
|
2709 |
+
"https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
2710 |
+
)
|
2711 |
+
|
2712 |
+
# initialize the models and pipeline
|
2713 |
+
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
2714 |
+
controlnet = ControlNetModel.from_pretrained(
|
2715 |
+
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
2716 |
+
)
|
2717 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
2718 |
+
pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
|
2719 |
+
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
2720 |
+
).to("cuda:0")
|
2721 |
+
|
2722 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
2723 |
+
|
2724 |
+
# get canny image
|
2725 |
+
image = np.array(canny_image)
|
2726 |
+
image = cv2.Canny(image, 100, 200)
|
2727 |
+
image = image[:, :, None]
|
2728 |
+
image = np.concatenate([image, image, image], axis=2)
|
2729 |
+
canny_image = Image.fromarray(image)
|
2730 |
+
|
2731 |
+
# generate image
|
2732 |
+
image = pipe(
|
2733 |
+
prompt="a cat",
|
2734 |
+
num_inference_steps=20,
|
2735 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
2736 |
+
image=canny_image,
|
2737 |
+
ref_image=ref_image,
|
2738 |
+
reference_attn=False,
|
2739 |
+
reference_adain=True,
|
2740 |
+
style_fidelity=1.0,
|
2741 |
+
generator=torch.Generator("cuda").manual_seed(42)
|
2742 |
+
).images[0]
|
2743 |
+
```
|
2744 |
+
|
2745 |
+
Canny ControlNet Image
|
2746 |
+
|
2747 |
+

|
2748 |
+
|
2749 |
+
Reference Image
|
2750 |
+
|
2751 |
+

|
2752 |
+
|
2753 |
+
Output Image
|
2754 |
+
|
2755 |
+
`prompt: a cat`
|
2756 |
+
|
2757 |
+
`reference_attn=True, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
|
2758 |
+
|
2759 |
+

|
2760 |
+
|
2761 |
+
`reference_attn=False, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
|
2762 |
+
|
2763 |
+

|
2764 |
+
|
2765 |
+
`reference_attn=True, reference_adain=False, num_inference_steps=20, style_fidelity=1.0`
|
2766 |
+
|
2767 |
+

|
2768 |
+
|
2769 |
### Stable diffusion fabric pipeline
|
2770 |
|
2771 |
FABRIC approach applicable to a wide range of popular diffusion models, which exploits
|
main/stable_diffusion_xl_controlnet_reference.py
ADDED
@@ -0,0 +1,1362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Based on stable_diffusion_xl_reference.py and stable_diffusion_controlnet_reference.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from diffusers import StableDiffusionXLControlNetPipeline
|
11 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
12 |
+
from diffusers.image_processor import PipelineImageInput
|
13 |
+
from diffusers.models import ControlNetModel
|
14 |
+
from diffusers.models.attention import BasicTransformerBlock
|
15 |
+
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
|
16 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
17 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
18 |
+
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging, replace_example_docstring
|
19 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
EXAMPLE_DOC_STRING = """
|
26 |
+
Examples:
|
27 |
+
```py
|
28 |
+
>>> # !pip install opencv-python transformers accelerate
|
29 |
+
>>> from diffusers import ControlNetModel, AutoencoderKL
|
30 |
+
>>> from diffusers.schedulers import UniPCMultistepScheduler
|
31 |
+
>>> from diffusers.utils import load_image
|
32 |
+
>>> import numpy as np
|
33 |
+
>>> import torch
|
34 |
+
|
35 |
+
>>> import cv2
|
36 |
+
>>> from PIL import Image
|
37 |
+
|
38 |
+
>>> # download an image for the Canny controlnet
|
39 |
+
>>> canny_image = load_image(
|
40 |
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
|
41 |
+
... )
|
42 |
+
|
43 |
+
>>> # download an image for the Reference controlnet
|
44 |
+
>>> ref_image = load_image(
|
45 |
+
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
46 |
+
... )
|
47 |
+
|
48 |
+
>>> # initialize the models and pipeline
|
49 |
+
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
50 |
+
>>> controlnet = ControlNetModel.from_pretrained(
|
51 |
+
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
52 |
+
... )
|
53 |
+
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
54 |
+
>>> pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
|
55 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
56 |
+
... ).to("cuda:0")
|
57 |
+
|
58 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
59 |
+
|
60 |
+
>>> # get canny image
|
61 |
+
>>> image = np.array(canny_image)
|
62 |
+
>>> image = cv2.Canny(image, 100, 200)
|
63 |
+
>>> image = image[:, :, None]
|
64 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
65 |
+
>>> canny_image = Image.fromarray(image)
|
66 |
+
|
67 |
+
>>> # generate image
|
68 |
+
>>> image = pipe(
|
69 |
+
... prompt="a cat",
|
70 |
+
... num_inference_steps=20,
|
71 |
+
... controlnet_conditioning_scale=controlnet_conditioning_scale,
|
72 |
+
... image=canny_image,
|
73 |
+
... ref_image=ref_image,
|
74 |
+
... reference_attn=True,
|
75 |
+
... reference_adain=True
|
76 |
+
... style_fidelity=1.0,
|
77 |
+
... generator=torch.Generator("cuda").manual_seed(42)
|
78 |
+
... ).images[0]
|
79 |
+
```
|
80 |
+
"""
|
81 |
+
|
82 |
+
|
83 |
+
def torch_dfs(model: torch.nn.Module):
|
84 |
+
result = [model]
|
85 |
+
for child in model.children():
|
86 |
+
result += torch_dfs(child)
|
87 |
+
return result
|
88 |
+
|
89 |
+
|
90 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
91 |
+
def retrieve_timesteps(
|
92 |
+
scheduler,
|
93 |
+
num_inference_steps: Optional[int] = None,
|
94 |
+
device: Optional[Union[str, torch.device]] = None,
|
95 |
+
timesteps: Optional[List[int]] = None,
|
96 |
+
sigmas: Optional[List[float]] = None,
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
r"""
|
100 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
101 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
scheduler (`SchedulerMixin`):
|
105 |
+
The scheduler to get timesteps from.
|
106 |
+
num_inference_steps (`int`):
|
107 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
108 |
+
must be `None`.
|
109 |
+
device (`str` or `torch.device`, *optional*):
|
110 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
111 |
+
timesteps (`List[int]`, *optional*):
|
112 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
113 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
114 |
+
sigmas (`List[float]`, *optional*):
|
115 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
116 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
120 |
+
second element is the number of inference steps.
|
121 |
+
"""
|
122 |
+
if timesteps is not None and sigmas is not None:
|
123 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
124 |
+
if timesteps is not None:
|
125 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
126 |
+
if not accepts_timesteps:
|
127 |
+
raise ValueError(
|
128 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
129 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
130 |
+
)
|
131 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
132 |
+
timesteps = scheduler.timesteps
|
133 |
+
num_inference_steps = len(timesteps)
|
134 |
+
elif sigmas is not None:
|
135 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
136 |
+
if not accept_sigmas:
|
137 |
+
raise ValueError(
|
138 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
139 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
140 |
+
)
|
141 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
142 |
+
timesteps = scheduler.timesteps
|
143 |
+
num_inference_steps = len(timesteps)
|
144 |
+
else:
|
145 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
146 |
+
timesteps = scheduler.timesteps
|
147 |
+
return timesteps, num_inference_steps
|
148 |
+
|
149 |
+
|
150 |
+
class StableDiffusionXLControlNetReferencePipeline(StableDiffusionXLControlNetPipeline):
|
151 |
+
r"""
|
152 |
+
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
153 |
+
|
154 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
155 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
156 |
+
|
157 |
+
The pipeline also inherits the following loading methods:
|
158 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
159 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
160 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
161 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
162 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
163 |
+
|
164 |
+
Args:
|
165 |
+
vae ([`AutoencoderKL`]):
|
166 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
167 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
168 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
169 |
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
170 |
+
Second frozen text-encoder
|
171 |
+
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
172 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
173 |
+
A `CLIPTokenizer` to tokenize text.
|
174 |
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
175 |
+
A `CLIPTokenizer` to tokenize text.
|
176 |
+
unet ([`UNet2DConditionModel`]):
|
177 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
178 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
179 |
+
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
180 |
+
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
181 |
+
additional conditioning.
|
182 |
+
scheduler ([`SchedulerMixin`]):
|
183 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
184 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
185 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
186 |
+
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
187 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
188 |
+
add_watermarker (`bool`, *optional*):
|
189 |
+
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
190 |
+
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
191 |
+
watermarker is used.
|
192 |
+
"""
|
193 |
+
|
194 |
+
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
|
195 |
+
refimage = refimage.to(device=device)
|
196 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
197 |
+
self.upcast_vae()
|
198 |
+
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
199 |
+
if refimage.dtype != self.vae.dtype:
|
200 |
+
refimage = refimage.to(dtype=self.vae.dtype)
|
201 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
202 |
+
if isinstance(generator, list):
|
203 |
+
ref_image_latents = [
|
204 |
+
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
|
205 |
+
for i in range(batch_size)
|
206 |
+
]
|
207 |
+
ref_image_latents = torch.cat(ref_image_latents, dim=0)
|
208 |
+
else:
|
209 |
+
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
|
210 |
+
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
|
211 |
+
|
212 |
+
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
|
213 |
+
if ref_image_latents.shape[0] < batch_size:
|
214 |
+
if not batch_size % ref_image_latents.shape[0] == 0:
|
215 |
+
raise ValueError(
|
216 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
217 |
+
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
|
218 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
219 |
+
)
|
220 |
+
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
|
221 |
+
|
222 |
+
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
|
223 |
+
|
224 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
225 |
+
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
226 |
+
return ref_image_latents
|
227 |
+
|
228 |
+
def prepare_ref_image(
|
229 |
+
self,
|
230 |
+
image,
|
231 |
+
width,
|
232 |
+
height,
|
233 |
+
batch_size,
|
234 |
+
num_images_per_prompt,
|
235 |
+
device,
|
236 |
+
dtype,
|
237 |
+
do_classifier_free_guidance=False,
|
238 |
+
guess_mode=False,
|
239 |
+
):
|
240 |
+
if not isinstance(image, torch.Tensor):
|
241 |
+
if isinstance(image, PIL.Image.Image):
|
242 |
+
image = [image]
|
243 |
+
|
244 |
+
if isinstance(image[0], PIL.Image.Image):
|
245 |
+
images = []
|
246 |
+
|
247 |
+
for image_ in image:
|
248 |
+
image_ = image_.convert("RGB")
|
249 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
250 |
+
image_ = np.array(image_)
|
251 |
+
image_ = image_[None, :]
|
252 |
+
images.append(image_)
|
253 |
+
|
254 |
+
image = images
|
255 |
+
|
256 |
+
image = np.concatenate(image, axis=0)
|
257 |
+
image = np.array(image).astype(np.float32) / 255.0
|
258 |
+
image = (image - 0.5) / 0.5
|
259 |
+
image = image.transpose(0, 3, 1, 2)
|
260 |
+
image = torch.from_numpy(image)
|
261 |
+
|
262 |
+
elif isinstance(image[0], torch.Tensor):
|
263 |
+
image = torch.stack(image, dim=0)
|
264 |
+
|
265 |
+
image_batch_size = image.shape[0]
|
266 |
+
|
267 |
+
if image_batch_size == 1:
|
268 |
+
repeat_by = batch_size
|
269 |
+
else:
|
270 |
+
repeat_by = num_images_per_prompt
|
271 |
+
|
272 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
273 |
+
|
274 |
+
image = image.to(device=device, dtype=dtype)
|
275 |
+
|
276 |
+
if do_classifier_free_guidance and not guess_mode:
|
277 |
+
image = torch.cat([image] * 2)
|
278 |
+
|
279 |
+
return image
|
280 |
+
|
281 |
+
def check_ref_inputs(
|
282 |
+
self,
|
283 |
+
ref_image,
|
284 |
+
reference_guidance_start,
|
285 |
+
reference_guidance_end,
|
286 |
+
style_fidelity,
|
287 |
+
reference_attn,
|
288 |
+
reference_adain,
|
289 |
+
):
|
290 |
+
ref_image_is_pil = isinstance(ref_image, PIL.Image.Image)
|
291 |
+
ref_image_is_tensor = isinstance(ref_image, torch.Tensor)
|
292 |
+
|
293 |
+
if not ref_image_is_pil and not ref_image_is_tensor:
|
294 |
+
raise TypeError(
|
295 |
+
f"ref image must be passed and be one of PIL image or torch tensor, but is {type(ref_image)}"
|
296 |
+
)
|
297 |
+
|
298 |
+
if not reference_attn and not reference_adain:
|
299 |
+
raise ValueError("`reference_attn` or `reference_adain` must be True.")
|
300 |
+
|
301 |
+
if style_fidelity < 0.0:
|
302 |
+
raise ValueError(f"style fidelity: {style_fidelity} can't be smaller than 0.")
|
303 |
+
if style_fidelity > 1.0:
|
304 |
+
raise ValueError(f"style fidelity: {style_fidelity} can't be larger than 1.0.")
|
305 |
+
|
306 |
+
if reference_guidance_start >= reference_guidance_end:
|
307 |
+
raise ValueError(
|
308 |
+
f"reference guidance start: {reference_guidance_start} cannot be larger or equal to reference guidance end: {reference_guidance_end}."
|
309 |
+
)
|
310 |
+
if reference_guidance_start < 0.0:
|
311 |
+
raise ValueError(f"reference guidance start: {reference_guidance_start} can't be smaller than 0.")
|
312 |
+
if reference_guidance_end > 1.0:
|
313 |
+
raise ValueError(f"reference guidance end: {reference_guidance_end} can't be larger than 1.0.")
|
314 |
+
|
315 |
+
@torch.no_grad()
|
316 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
317 |
+
def __call__(
|
318 |
+
self,
|
319 |
+
prompt: Union[str, List[str]] = None,
|
320 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
321 |
+
image: PipelineImageInput = None,
|
322 |
+
ref_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
323 |
+
height: Optional[int] = None,
|
324 |
+
width: Optional[int] = None,
|
325 |
+
num_inference_steps: int = 50,
|
326 |
+
timesteps: List[int] = None,
|
327 |
+
sigmas: List[float] = None,
|
328 |
+
denoising_end: Optional[float] = None,
|
329 |
+
guidance_scale: float = 5.0,
|
330 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
331 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
332 |
+
num_images_per_prompt: Optional[int] = 1,
|
333 |
+
eta: float = 0.0,
|
334 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
335 |
+
latents: Optional[torch.Tensor] = None,
|
336 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
337 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
338 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
339 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
340 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
341 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
342 |
+
output_type: Optional[str] = "pil",
|
343 |
+
return_dict: bool = True,
|
344 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
345 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
346 |
+
guess_mode: bool = False,
|
347 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
348 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
349 |
+
original_size: Tuple[int, int] = None,
|
350 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
351 |
+
target_size: Tuple[int, int] = None,
|
352 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
353 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
354 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
355 |
+
clip_skip: Optional[int] = None,
|
356 |
+
callback_on_step_end: Optional[
|
357 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
358 |
+
] = None,
|
359 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
360 |
+
attention_auto_machine_weight: float = 1.0,
|
361 |
+
gn_auto_machine_weight: float = 1.0,
|
362 |
+
reference_guidance_start: float = 0.0,
|
363 |
+
reference_guidance_end: float = 1.0,
|
364 |
+
style_fidelity: float = 0.5,
|
365 |
+
reference_attn: bool = True,
|
366 |
+
reference_adain: bool = True,
|
367 |
+
**kwargs,
|
368 |
+
):
|
369 |
+
r"""
|
370 |
+
The call function to the pipeline for generation.
|
371 |
+
|
372 |
+
Args:
|
373 |
+
prompt (`str` or `List[str]`, *optional*):
|
374 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
375 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
376 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
377 |
+
used in both text-encoders.
|
378 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
379 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
380 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
381 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
382 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
383 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
384 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
385 |
+
to a single ControlNet.
|
386 |
+
ref_image (`torch.Tensor`, `PIL.Image.Image`):
|
387 |
+
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
|
388 |
+
the type is specified as `Torch.Tensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
|
389 |
+
also be accepted as an image.
|
390 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
391 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
392 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
393 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
394 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
395 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
396 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
397 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
398 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
399 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
400 |
+
expense of slower inference.
|
401 |
+
timesteps (`List[int]`, *optional*):
|
402 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
403 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
404 |
+
passed will be used. Must be in descending order.
|
405 |
+
sigmas (`List[float]`, *optional*):
|
406 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
407 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
408 |
+
will be used.
|
409 |
+
denoising_end (`float`, *optional*):
|
410 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
411 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
412 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
413 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
414 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
415 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
416 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
417 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
418 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
419 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
420 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
421 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
422 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
423 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
424 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
425 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
426 |
+
The number of images to generate per prompt.
|
427 |
+
eta (`float`, *optional*, defaults to 0.0):
|
428 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
429 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
430 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
431 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
432 |
+
generation deterministic.
|
433 |
+
latents (`torch.Tensor`, *optional*):
|
434 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
435 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
436 |
+
tensor is generated by sampling using the supplied random `generator`.
|
437 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
438 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
439 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
440 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
441 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
442 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
443 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
444 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
445 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
446 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
447 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
448 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
449 |
+
argument.
|
450 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
451 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
452 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
453 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
454 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
455 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
456 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
457 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
458 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
459 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
460 |
+
plain tuple.
|
461 |
+
cross_attention_kwargs (`dict`, *optional*):
|
462 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
463 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
464 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
465 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
466 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
467 |
+
the corresponding scale as a list.
|
468 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
469 |
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
470 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
471 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
472 |
+
The percentage of total steps at which the ControlNet starts applying.
|
473 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
474 |
+
The percentage of total steps at which the ControlNet stops applying.
|
475 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
476 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
477 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
478 |
+
explained in section 2.2 of
|
479 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
480 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
481 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
482 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
483 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
484 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
485 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
486 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
487 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
488 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
489 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
490 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
491 |
+
micro-conditioning as explained in section 2.2 of
|
492 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
493 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
494 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
495 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
496 |
+
micro-conditioning as explained in section 2.2 of
|
497 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
498 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
499 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
500 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
501 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
502 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
503 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
504 |
+
clip_skip (`int`, *optional*):
|
505 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
506 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
507 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
508 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
509 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
510 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
511 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
512 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
513 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
514 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
515 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
516 |
+
attention_auto_machine_weight (`float`):
|
517 |
+
Weight of using reference query for self attention's context.
|
518 |
+
If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
|
519 |
+
gn_auto_machine_weight (`float`):
|
520 |
+
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
|
521 |
+
reference_guidance_start (`float`, *optional*, defaults to 0.0):
|
522 |
+
The percentage of total steps at which the reference ControlNet starts applying.
|
523 |
+
reference_guidance_end (`float`, *optional*, defaults to 1.0):
|
524 |
+
The percentage of total steps at which the reference ControlNet stops applying.
|
525 |
+
style_fidelity (`float`):
|
526 |
+
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
|
527 |
+
elif style_fidelity=0.0, prompt more important, else balanced.
|
528 |
+
reference_attn (`bool`):
|
529 |
+
Whether to use reference query for self attention's context.
|
530 |
+
reference_adain (`bool`):
|
531 |
+
Whether to use reference adain.
|
532 |
+
|
533 |
+
Examples:
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
537 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
538 |
+
otherwise a `tuple` is returned containing the output images.
|
539 |
+
"""
|
540 |
+
|
541 |
+
callback = kwargs.pop("callback", None)
|
542 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
543 |
+
|
544 |
+
if callback is not None:
|
545 |
+
deprecate(
|
546 |
+
"callback",
|
547 |
+
"1.0.0",
|
548 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
549 |
+
)
|
550 |
+
if callback_steps is not None:
|
551 |
+
deprecate(
|
552 |
+
"callback_steps",
|
553 |
+
"1.0.0",
|
554 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
555 |
+
)
|
556 |
+
|
557 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
558 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
559 |
+
|
560 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
561 |
+
|
562 |
+
# align format for control guidance
|
563 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
564 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
565 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
566 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
567 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
568 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
569 |
+
control_guidance_start, control_guidance_end = (
|
570 |
+
mult * [control_guidance_start],
|
571 |
+
mult * [control_guidance_end],
|
572 |
+
)
|
573 |
+
|
574 |
+
# 1. Check inputs. Raise error if not correct
|
575 |
+
self.check_inputs(
|
576 |
+
prompt,
|
577 |
+
prompt_2,
|
578 |
+
image,
|
579 |
+
callback_steps,
|
580 |
+
negative_prompt,
|
581 |
+
negative_prompt_2,
|
582 |
+
prompt_embeds,
|
583 |
+
negative_prompt_embeds,
|
584 |
+
pooled_prompt_embeds,
|
585 |
+
ip_adapter_image,
|
586 |
+
ip_adapter_image_embeds,
|
587 |
+
negative_pooled_prompt_embeds,
|
588 |
+
controlnet_conditioning_scale,
|
589 |
+
control_guidance_start,
|
590 |
+
control_guidance_end,
|
591 |
+
callback_on_step_end_tensor_inputs,
|
592 |
+
)
|
593 |
+
|
594 |
+
self.check_ref_inputs(
|
595 |
+
ref_image,
|
596 |
+
reference_guidance_start,
|
597 |
+
reference_guidance_end,
|
598 |
+
style_fidelity,
|
599 |
+
reference_attn,
|
600 |
+
reference_adain,
|
601 |
+
)
|
602 |
+
|
603 |
+
self._guidance_scale = guidance_scale
|
604 |
+
self._clip_skip = clip_skip
|
605 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
606 |
+
self._denoising_end = denoising_end
|
607 |
+
self._interrupt = False
|
608 |
+
|
609 |
+
# 2. Define call parameters
|
610 |
+
if prompt is not None and isinstance(prompt, str):
|
611 |
+
batch_size = 1
|
612 |
+
elif prompt is not None and isinstance(prompt, list):
|
613 |
+
batch_size = len(prompt)
|
614 |
+
else:
|
615 |
+
batch_size = prompt_embeds.shape[0]
|
616 |
+
|
617 |
+
device = self._execution_device
|
618 |
+
|
619 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
620 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
621 |
+
|
622 |
+
global_pool_conditions = (
|
623 |
+
controlnet.config.global_pool_conditions
|
624 |
+
if isinstance(controlnet, ControlNetModel)
|
625 |
+
else controlnet.nets[0].config.global_pool_conditions
|
626 |
+
)
|
627 |
+
guess_mode = guess_mode or global_pool_conditions
|
628 |
+
|
629 |
+
# 3.1 Encode input prompt
|
630 |
+
text_encoder_lora_scale = (
|
631 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
632 |
+
)
|
633 |
+
(
|
634 |
+
prompt_embeds,
|
635 |
+
negative_prompt_embeds,
|
636 |
+
pooled_prompt_embeds,
|
637 |
+
negative_pooled_prompt_embeds,
|
638 |
+
) = self.encode_prompt(
|
639 |
+
prompt,
|
640 |
+
prompt_2,
|
641 |
+
device,
|
642 |
+
num_images_per_prompt,
|
643 |
+
self.do_classifier_free_guidance,
|
644 |
+
negative_prompt,
|
645 |
+
negative_prompt_2,
|
646 |
+
prompt_embeds=prompt_embeds,
|
647 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
648 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
649 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
650 |
+
lora_scale=text_encoder_lora_scale,
|
651 |
+
clip_skip=self.clip_skip,
|
652 |
+
)
|
653 |
+
|
654 |
+
# 3.2 Encode ip_adapter_image
|
655 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
656 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
657 |
+
ip_adapter_image,
|
658 |
+
ip_adapter_image_embeds,
|
659 |
+
device,
|
660 |
+
batch_size * num_images_per_prompt,
|
661 |
+
self.do_classifier_free_guidance,
|
662 |
+
)
|
663 |
+
|
664 |
+
# 4. Prepare image
|
665 |
+
if isinstance(controlnet, ControlNetModel):
|
666 |
+
image = self.prepare_image(
|
667 |
+
image=image,
|
668 |
+
width=width,
|
669 |
+
height=height,
|
670 |
+
batch_size=batch_size * num_images_per_prompt,
|
671 |
+
num_images_per_prompt=num_images_per_prompt,
|
672 |
+
device=device,
|
673 |
+
dtype=controlnet.dtype,
|
674 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
675 |
+
guess_mode=guess_mode,
|
676 |
+
)
|
677 |
+
height, width = image.shape[-2:]
|
678 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
679 |
+
images = []
|
680 |
+
|
681 |
+
for image_ in image:
|
682 |
+
image_ = self.prepare_image(
|
683 |
+
image=image_,
|
684 |
+
width=width,
|
685 |
+
height=height,
|
686 |
+
batch_size=batch_size * num_images_per_prompt,
|
687 |
+
num_images_per_prompt=num_images_per_prompt,
|
688 |
+
device=device,
|
689 |
+
dtype=controlnet.dtype,
|
690 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
691 |
+
guess_mode=guess_mode,
|
692 |
+
)
|
693 |
+
|
694 |
+
images.append(image_)
|
695 |
+
|
696 |
+
image = images
|
697 |
+
height, width = image[0].shape[-2:]
|
698 |
+
else:
|
699 |
+
assert False
|
700 |
+
|
701 |
+
# 5. Preprocess reference image
|
702 |
+
ref_image = self.prepare_ref_image(
|
703 |
+
image=ref_image,
|
704 |
+
width=width,
|
705 |
+
height=height,
|
706 |
+
batch_size=batch_size * num_images_per_prompt,
|
707 |
+
num_images_per_prompt=num_images_per_prompt,
|
708 |
+
device=device,
|
709 |
+
dtype=prompt_embeds.dtype,
|
710 |
+
)
|
711 |
+
|
712 |
+
# 6. Prepare timesteps
|
713 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
714 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
715 |
+
)
|
716 |
+
self._num_timesteps = len(timesteps)
|
717 |
+
|
718 |
+
# 7. Prepare latent variables
|
719 |
+
num_channels_latents = self.unet.config.in_channels
|
720 |
+
latents = self.prepare_latents(
|
721 |
+
batch_size * num_images_per_prompt,
|
722 |
+
num_channels_latents,
|
723 |
+
height,
|
724 |
+
width,
|
725 |
+
prompt_embeds.dtype,
|
726 |
+
device,
|
727 |
+
generator,
|
728 |
+
latents,
|
729 |
+
)
|
730 |
+
|
731 |
+
# 7.5 Optionally get Guidance Scale Embedding
|
732 |
+
timestep_cond = None
|
733 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
734 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
735 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
736 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
737 |
+
).to(device=device, dtype=latents.dtype)
|
738 |
+
|
739 |
+
# 8. Prepare reference latent variables
|
740 |
+
ref_image_latents = self.prepare_ref_latents(
|
741 |
+
ref_image,
|
742 |
+
batch_size * num_images_per_prompt,
|
743 |
+
prompt_embeds.dtype,
|
744 |
+
device,
|
745 |
+
generator,
|
746 |
+
self.do_classifier_free_guidance,
|
747 |
+
)
|
748 |
+
|
749 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
750 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
751 |
+
|
752 |
+
# 9.1 Create tensor stating which controlnets to keep
|
753 |
+
controlnet_keep = []
|
754 |
+
reference_keeps = []
|
755 |
+
for i in range(len(timesteps)):
|
756 |
+
keeps = [
|
757 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
758 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
759 |
+
]
|
760 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
761 |
+
reference_keep = 1.0 - float(
|
762 |
+
i / len(timesteps) < reference_guidance_start or (i + 1) / len(timesteps) > reference_guidance_end
|
763 |
+
)
|
764 |
+
reference_keeps.append(reference_keep)
|
765 |
+
|
766 |
+
# 9.2 Modify self attention and group norm
|
767 |
+
MODE = "write"
|
768 |
+
uc_mask = (
|
769 |
+
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
|
770 |
+
.type_as(ref_image_latents)
|
771 |
+
.bool()
|
772 |
+
)
|
773 |
+
|
774 |
+
do_classifier_free_guidance = self.do_classifier_free_guidance
|
775 |
+
|
776 |
+
def hacked_basic_transformer_inner_forward(
|
777 |
+
self,
|
778 |
+
hidden_states: torch.Tensor,
|
779 |
+
attention_mask: Optional[torch.Tensor] = None,
|
780 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
781 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
782 |
+
timestep: Optional[torch.LongTensor] = None,
|
783 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
784 |
+
class_labels: Optional[torch.LongTensor] = None,
|
785 |
+
):
|
786 |
+
if self.use_ada_layer_norm:
|
787 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
788 |
+
elif self.use_ada_layer_norm_zero:
|
789 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
790 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
791 |
+
)
|
792 |
+
else:
|
793 |
+
norm_hidden_states = self.norm1(hidden_states)
|
794 |
+
|
795 |
+
# 1. Self-Attention
|
796 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
797 |
+
if self.only_cross_attention:
|
798 |
+
attn_output = self.attn1(
|
799 |
+
norm_hidden_states,
|
800 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
801 |
+
attention_mask=attention_mask,
|
802 |
+
**cross_attention_kwargs,
|
803 |
+
)
|
804 |
+
else:
|
805 |
+
if MODE == "write":
|
806 |
+
self.bank.append(norm_hidden_states.detach().clone())
|
807 |
+
attn_output = self.attn1(
|
808 |
+
norm_hidden_states,
|
809 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
810 |
+
attention_mask=attention_mask,
|
811 |
+
**cross_attention_kwargs,
|
812 |
+
)
|
813 |
+
if MODE == "read":
|
814 |
+
if attention_auto_machine_weight > self.attn_weight:
|
815 |
+
attn_output_uc = self.attn1(
|
816 |
+
norm_hidden_states,
|
817 |
+
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
|
818 |
+
# attention_mask=attention_mask,
|
819 |
+
**cross_attention_kwargs,
|
820 |
+
)
|
821 |
+
attn_output_c = attn_output_uc.clone()
|
822 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
823 |
+
attn_output_c[uc_mask] = self.attn1(
|
824 |
+
norm_hidden_states[uc_mask],
|
825 |
+
encoder_hidden_states=norm_hidden_states[uc_mask],
|
826 |
+
**cross_attention_kwargs,
|
827 |
+
)
|
828 |
+
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
|
829 |
+
self.bank.clear()
|
830 |
+
else:
|
831 |
+
attn_output = self.attn1(
|
832 |
+
norm_hidden_states,
|
833 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
834 |
+
attention_mask=attention_mask,
|
835 |
+
**cross_attention_kwargs,
|
836 |
+
)
|
837 |
+
if self.use_ada_layer_norm_zero:
|
838 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
839 |
+
hidden_states = attn_output + hidden_states
|
840 |
+
|
841 |
+
if self.attn2 is not None:
|
842 |
+
norm_hidden_states = (
|
843 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
844 |
+
)
|
845 |
+
|
846 |
+
# 2. Cross-Attention
|
847 |
+
attn_output = self.attn2(
|
848 |
+
norm_hidden_states,
|
849 |
+
encoder_hidden_states=encoder_hidden_states,
|
850 |
+
attention_mask=encoder_attention_mask,
|
851 |
+
**cross_attention_kwargs,
|
852 |
+
)
|
853 |
+
hidden_states = attn_output + hidden_states
|
854 |
+
|
855 |
+
# 3. Feed-forward
|
856 |
+
norm_hidden_states = self.norm3(hidden_states)
|
857 |
+
|
858 |
+
if self.use_ada_layer_norm_zero:
|
859 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
860 |
+
|
861 |
+
ff_output = self.ff(norm_hidden_states)
|
862 |
+
|
863 |
+
if self.use_ada_layer_norm_zero:
|
864 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
865 |
+
|
866 |
+
hidden_states = ff_output + hidden_states
|
867 |
+
|
868 |
+
return hidden_states
|
869 |
+
|
870 |
+
def hacked_mid_forward(self, *args, **kwargs):
|
871 |
+
eps = 1e-6
|
872 |
+
x = self.original_forward(*args, **kwargs)
|
873 |
+
if MODE == "write":
|
874 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
875 |
+
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
876 |
+
self.mean_bank.append(mean)
|
877 |
+
self.var_bank.append(var)
|
878 |
+
if MODE == "read":
|
879 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
880 |
+
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
881 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
882 |
+
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
|
883 |
+
var_acc = sum(self.var_bank) / float(len(self.var_bank))
|
884 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
885 |
+
x_uc = (((x - mean) / std) * std_acc) + mean_acc
|
886 |
+
x_c = x_uc.clone()
|
887 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
888 |
+
x_c[uc_mask] = x[uc_mask]
|
889 |
+
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
|
890 |
+
self.mean_bank = []
|
891 |
+
self.var_bank = []
|
892 |
+
return x
|
893 |
+
|
894 |
+
def hack_CrossAttnDownBlock2D_forward(
|
895 |
+
self,
|
896 |
+
hidden_states: torch.Tensor,
|
897 |
+
temb: Optional[torch.Tensor] = None,
|
898 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
899 |
+
attention_mask: Optional[torch.Tensor] = None,
|
900 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
901 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
902 |
+
):
|
903 |
+
eps = 1e-6
|
904 |
+
|
905 |
+
# TODO(Patrick, William) - attention mask is not used
|
906 |
+
output_states = ()
|
907 |
+
|
908 |
+
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
909 |
+
hidden_states = resnet(hidden_states, temb)
|
910 |
+
hidden_states = attn(
|
911 |
+
hidden_states,
|
912 |
+
encoder_hidden_states=encoder_hidden_states,
|
913 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
914 |
+
attention_mask=attention_mask,
|
915 |
+
encoder_attention_mask=encoder_attention_mask,
|
916 |
+
return_dict=False,
|
917 |
+
)[0]
|
918 |
+
if MODE == "write":
|
919 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
920 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
921 |
+
self.mean_bank.append([mean])
|
922 |
+
self.var_bank.append([var])
|
923 |
+
if MODE == "read":
|
924 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
925 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
926 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
927 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
928 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
929 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
930 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
931 |
+
hidden_states_c = hidden_states_uc.clone()
|
932 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
933 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
934 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
935 |
+
|
936 |
+
output_states = output_states + (hidden_states,)
|
937 |
+
|
938 |
+
if MODE == "read":
|
939 |
+
self.mean_bank = []
|
940 |
+
self.var_bank = []
|
941 |
+
|
942 |
+
if self.downsamplers is not None:
|
943 |
+
for downsampler in self.downsamplers:
|
944 |
+
hidden_states = downsampler(hidden_states)
|
945 |
+
|
946 |
+
output_states = output_states + (hidden_states,)
|
947 |
+
|
948 |
+
return hidden_states, output_states
|
949 |
+
|
950 |
+
def hacked_DownBlock2D_forward(self, hidden_states, temb=None, *args, **kwargs):
|
951 |
+
eps = 1e-6
|
952 |
+
|
953 |
+
output_states = ()
|
954 |
+
|
955 |
+
for i, resnet in enumerate(self.resnets):
|
956 |
+
hidden_states = resnet(hidden_states, temb)
|
957 |
+
|
958 |
+
if MODE == "write":
|
959 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
960 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
961 |
+
self.mean_bank.append([mean])
|
962 |
+
self.var_bank.append([var])
|
963 |
+
if MODE == "read":
|
964 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
965 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
966 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
967 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
968 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
969 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
970 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
971 |
+
hidden_states_c = hidden_states_uc.clone()
|
972 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
973 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
974 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
975 |
+
|
976 |
+
output_states = output_states + (hidden_states,)
|
977 |
+
|
978 |
+
if MODE == "read":
|
979 |
+
self.mean_bank = []
|
980 |
+
self.var_bank = []
|
981 |
+
|
982 |
+
if self.downsamplers is not None:
|
983 |
+
for downsampler in self.downsamplers:
|
984 |
+
hidden_states = downsampler(hidden_states)
|
985 |
+
|
986 |
+
output_states = output_states + (hidden_states,)
|
987 |
+
|
988 |
+
return hidden_states, output_states
|
989 |
+
|
990 |
+
def hacked_CrossAttnUpBlock2D_forward(
|
991 |
+
self,
|
992 |
+
hidden_states: torch.Tensor,
|
993 |
+
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
994 |
+
temb: Optional[torch.Tensor] = None,
|
995 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
996 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
997 |
+
upsample_size: Optional[int] = None,
|
998 |
+
attention_mask: Optional[torch.Tensor] = None,
|
999 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1000 |
+
):
|
1001 |
+
eps = 1e-6
|
1002 |
+
# TODO(Patrick, William) - attention mask is not used
|
1003 |
+
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
1004 |
+
# pop res hidden states
|
1005 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1006 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1007 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1008 |
+
hidden_states = resnet(hidden_states, temb)
|
1009 |
+
hidden_states = attn(
|
1010 |
+
hidden_states,
|
1011 |
+
encoder_hidden_states=encoder_hidden_states,
|
1012 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1013 |
+
attention_mask=attention_mask,
|
1014 |
+
encoder_attention_mask=encoder_attention_mask,
|
1015 |
+
return_dict=False,
|
1016 |
+
)[0]
|
1017 |
+
|
1018 |
+
if MODE == "write":
|
1019 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
1020 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
1021 |
+
self.mean_bank.append([mean])
|
1022 |
+
self.var_bank.append([var])
|
1023 |
+
if MODE == "read":
|
1024 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
1025 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
1026 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
1027 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
1028 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
1029 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
1030 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
1031 |
+
hidden_states_c = hidden_states_uc.clone()
|
1032 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
1033 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
1034 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
1035 |
+
|
1036 |
+
if MODE == "read":
|
1037 |
+
self.mean_bank = []
|
1038 |
+
self.var_bank = []
|
1039 |
+
|
1040 |
+
if self.upsamplers is not None:
|
1041 |
+
for upsampler in self.upsamplers:
|
1042 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1043 |
+
|
1044 |
+
return hidden_states
|
1045 |
+
|
1046 |
+
def hacked_UpBlock2D_forward(
|
1047 |
+
self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, *args, **kwargs
|
1048 |
+
):
|
1049 |
+
eps = 1e-6
|
1050 |
+
for i, resnet in enumerate(self.resnets):
|
1051 |
+
# pop res hidden states
|
1052 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1053 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1054 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1055 |
+
hidden_states = resnet(hidden_states, temb)
|
1056 |
+
|
1057 |
+
if MODE == "write":
|
1058 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
1059 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
1060 |
+
self.mean_bank.append([mean])
|
1061 |
+
self.var_bank.append([var])
|
1062 |
+
if MODE == "read":
|
1063 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
1064 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
1065 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
1066 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
1067 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
1068 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
1069 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
1070 |
+
hidden_states_c = hidden_states_uc.clone()
|
1071 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
1072 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
1073 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
1074 |
+
|
1075 |
+
if MODE == "read":
|
1076 |
+
self.mean_bank = []
|
1077 |
+
self.var_bank = []
|
1078 |
+
|
1079 |
+
if self.upsamplers is not None:
|
1080 |
+
for upsampler in self.upsamplers:
|
1081 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1082 |
+
|
1083 |
+
return hidden_states
|
1084 |
+
|
1085 |
+
if reference_attn:
|
1086 |
+
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
|
1087 |
+
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
1088 |
+
|
1089 |
+
for i, module in enumerate(attn_modules):
|
1090 |
+
module._original_inner_forward = module.forward
|
1091 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
|
1092 |
+
module.bank = []
|
1093 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
1094 |
+
|
1095 |
+
if reference_adain:
|
1096 |
+
gn_modules = [self.unet.mid_block]
|
1097 |
+
self.unet.mid_block.gn_weight = 0
|
1098 |
+
|
1099 |
+
down_blocks = self.unet.down_blocks
|
1100 |
+
for w, module in enumerate(down_blocks):
|
1101 |
+
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
|
1102 |
+
gn_modules.append(module)
|
1103 |
+
|
1104 |
+
up_blocks = self.unet.up_blocks
|
1105 |
+
for w, module in enumerate(up_blocks):
|
1106 |
+
module.gn_weight = float(w) / float(len(up_blocks))
|
1107 |
+
gn_modules.append(module)
|
1108 |
+
|
1109 |
+
for i, module in enumerate(gn_modules):
|
1110 |
+
if getattr(module, "original_forward", None) is None:
|
1111 |
+
module.original_forward = module.forward
|
1112 |
+
if i == 0:
|
1113 |
+
# mid_block
|
1114 |
+
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
|
1115 |
+
elif isinstance(module, CrossAttnDownBlock2D):
|
1116 |
+
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
|
1117 |
+
elif isinstance(module, DownBlock2D):
|
1118 |
+
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
|
1119 |
+
elif isinstance(module, CrossAttnUpBlock2D):
|
1120 |
+
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
|
1121 |
+
elif isinstance(module, UpBlock2D):
|
1122 |
+
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
|
1123 |
+
module.mean_bank = []
|
1124 |
+
module.var_bank = []
|
1125 |
+
module.gn_weight *= 2
|
1126 |
+
|
1127 |
+
# 9.2 Prepare added time ids & embeddings
|
1128 |
+
if isinstance(image, list):
|
1129 |
+
original_size = original_size or image[0].shape[-2:]
|
1130 |
+
else:
|
1131 |
+
original_size = original_size or image.shape[-2:]
|
1132 |
+
target_size = target_size or (height, width)
|
1133 |
+
|
1134 |
+
add_text_embeds = pooled_prompt_embeds
|
1135 |
+
if self.text_encoder_2 is None:
|
1136 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1137 |
+
else:
|
1138 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1139 |
+
|
1140 |
+
add_time_ids = self._get_add_time_ids(
|
1141 |
+
original_size,
|
1142 |
+
crops_coords_top_left,
|
1143 |
+
target_size,
|
1144 |
+
dtype=prompt_embeds.dtype,
|
1145 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1149 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1150 |
+
negative_original_size,
|
1151 |
+
negative_crops_coords_top_left,
|
1152 |
+
negative_target_size,
|
1153 |
+
dtype=prompt_embeds.dtype,
|
1154 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1155 |
+
)
|
1156 |
+
else:
|
1157 |
+
negative_add_time_ids = add_time_ids
|
1158 |
+
|
1159 |
+
if self.do_classifier_free_guidance:
|
1160 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1161 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1162 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1163 |
+
|
1164 |
+
prompt_embeds = prompt_embeds.to(device)
|
1165 |
+
add_text_embeds = add_text_embeds.to(device)
|
1166 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1167 |
+
|
1168 |
+
# 10. Denoising loop
|
1169 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1170 |
+
|
1171 |
+
# 10.1 Apply denoising_end
|
1172 |
+
if (
|
1173 |
+
self.denoising_end is not None
|
1174 |
+
and isinstance(self.denoising_end, float)
|
1175 |
+
and self.denoising_end > 0
|
1176 |
+
and self.denoising_end < 1
|
1177 |
+
):
|
1178 |
+
discrete_timestep_cutoff = int(
|
1179 |
+
round(
|
1180 |
+
self.scheduler.config.num_train_timesteps
|
1181 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1182 |
+
)
|
1183 |
+
)
|
1184 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1185 |
+
timesteps = timesteps[:num_inference_steps]
|
1186 |
+
|
1187 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
1188 |
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
1189 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1190 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1191 |
+
for i, t in enumerate(timesteps):
|
1192 |
+
if self.interrupt:
|
1193 |
+
continue
|
1194 |
+
|
1195 |
+
# Relevant thread:
|
1196 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1197 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
1198 |
+
torch._inductor.cudagraph_mark_step_begin()
|
1199 |
+
# expand the latents if we are doing classifier free guidance
|
1200 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1201 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1202 |
+
|
1203 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1204 |
+
|
1205 |
+
# controlnet(s) inference
|
1206 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1207 |
+
# Infer ControlNet only for the conditional batch.
|
1208 |
+
control_model_input = latents
|
1209 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1210 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1211 |
+
controlnet_added_cond_kwargs = {
|
1212 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1213 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1214 |
+
}
|
1215 |
+
else:
|
1216 |
+
control_model_input = latent_model_input
|
1217 |
+
controlnet_prompt_embeds = prompt_embeds
|
1218 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1219 |
+
|
1220 |
+
if isinstance(controlnet_keep[i], list):
|
1221 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1222 |
+
else:
|
1223 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1224 |
+
if isinstance(controlnet_cond_scale, list):
|
1225 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1226 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1227 |
+
|
1228 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1229 |
+
control_model_input,
|
1230 |
+
t,
|
1231 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1232 |
+
controlnet_cond=image,
|
1233 |
+
conditioning_scale=cond_scale,
|
1234 |
+
guess_mode=guess_mode,
|
1235 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1236 |
+
return_dict=False,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1240 |
+
# Inferred ControlNet only for the conditional batch.
|
1241 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1242 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1243 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1244 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1245 |
+
|
1246 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1247 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1248 |
+
|
1249 |
+
# ref only part
|
1250 |
+
if reference_keeps[i] > 0:
|
1251 |
+
noise = randn_tensor(
|
1252 |
+
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
|
1253 |
+
)
|
1254 |
+
ref_xt = self.scheduler.add_noise(
|
1255 |
+
ref_image_latents,
|
1256 |
+
noise,
|
1257 |
+
t.reshape(
|
1258 |
+
1,
|
1259 |
+
),
|
1260 |
+
)
|
1261 |
+
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
|
1262 |
+
|
1263 |
+
MODE = "write"
|
1264 |
+
self.unet(
|
1265 |
+
ref_xt,
|
1266 |
+
t,
|
1267 |
+
encoder_hidden_states=prompt_embeds,
|
1268 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1269 |
+
added_cond_kwargs=added_cond_kwargs,
|
1270 |
+
return_dict=False,
|
1271 |
+
)
|
1272 |
+
|
1273 |
+
# predict the noise residual
|
1274 |
+
MODE = "read"
|
1275 |
+
noise_pred = self.unet(
|
1276 |
+
latent_model_input,
|
1277 |
+
t,
|
1278 |
+
encoder_hidden_states=prompt_embeds,
|
1279 |
+
timestep_cond=timestep_cond,
|
1280 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1281 |
+
down_block_additional_residuals=down_block_res_samples,
|
1282 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1283 |
+
added_cond_kwargs=added_cond_kwargs,
|
1284 |
+
return_dict=False,
|
1285 |
+
)[0]
|
1286 |
+
|
1287 |
+
# perform guidance
|
1288 |
+
if self.do_classifier_free_guidance:
|
1289 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1290 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1291 |
+
|
1292 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1293 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1294 |
+
|
1295 |
+
if callback_on_step_end is not None:
|
1296 |
+
callback_kwargs = {}
|
1297 |
+
for k in callback_on_step_end_tensor_inputs:
|
1298 |
+
callback_kwargs[k] = locals()[k]
|
1299 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1300 |
+
|
1301 |
+
latents = callback_outputs.pop("latents", latents)
|
1302 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1303 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1304 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1305 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1306 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1307 |
+
)
|
1308 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1309 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
1310 |
+
|
1311 |
+
# call the callback, if provided
|
1312 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1313 |
+
progress_bar.update()
|
1314 |
+
if callback is not None and i % callback_steps == 0:
|
1315 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1316 |
+
callback(step_idx, t, latents)
|
1317 |
+
|
1318 |
+
if not output_type == "latent":
|
1319 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1320 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1321 |
+
|
1322 |
+
if needs_upcasting:
|
1323 |
+
self.upcast_vae()
|
1324 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1325 |
+
|
1326 |
+
# unscale/denormalize the latents
|
1327 |
+
# denormalize with the mean and std if available and not None
|
1328 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1329 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1330 |
+
if has_latents_mean and has_latents_std:
|
1331 |
+
latents_mean = (
|
1332 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1333 |
+
)
|
1334 |
+
latents_std = (
|
1335 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1336 |
+
)
|
1337 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1338 |
+
else:
|
1339 |
+
latents = latents / self.vae.config.scaling_factor
|
1340 |
+
|
1341 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1342 |
+
|
1343 |
+
# cast back to fp16 if needed
|
1344 |
+
if needs_upcasting:
|
1345 |
+
self.vae.to(dtype=torch.float16)
|
1346 |
+
else:
|
1347 |
+
image = latents
|
1348 |
+
|
1349 |
+
if not output_type == "latent":
|
1350 |
+
# apply watermark if available
|
1351 |
+
if self.watermark is not None:
|
1352 |
+
image = self.watermark.apply_watermark(image)
|
1353 |
+
|
1354 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1355 |
+
|
1356 |
+
# Offload all models
|
1357 |
+
self.maybe_free_model_hooks()
|
1358 |
+
|
1359 |
+
if not return_dict:
|
1360 |
+
return (image,)
|
1361 |
+
|
1362 |
+
return StableDiffusionXLPipelineOutput(images=image)
|