Upload folder using huggingface_hub
Browse files- main/README.md +82 -0
- main/stable_diffusion_xl_controlnet_reference.py +1362 -0
main/README.md
CHANGED
|
@@ -2684,6 +2684,88 @@ Output Image
|
|
| 2684 |
`reference_attn=True, reference_adain=True, num_inference_steps=20`
|
| 2685 |

|
| 2686 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2687 |
### Stable diffusion fabric pipeline
|
| 2688 |
|
| 2689 |
FABRIC approach applicable to a wide range of popular diffusion models, which exploits
|
|
|
|
| 2684 |
`reference_attn=True, reference_adain=True, num_inference_steps=20`
|
| 2685 |

|
| 2686 |
|
| 2687 |
+
### Stable Diffusion XL ControlNet Reference
|
| 2688 |
+
|
| 2689 |
+
This pipeline uses the Reference Control and with ControlNet. Refer to the [Stable Diffusion ControlNet Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-controlnet-reference) and [Stable Diffusion XL Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-xl-reference) sections for more information.
|
| 2690 |
+
|
| 2691 |
+
```py
|
| 2692 |
+
from diffusers import ControlNetModel, AutoencoderKL
|
| 2693 |
+
from diffusers.schedulers import UniPCMultistepScheduler
|
| 2694 |
+
from diffusers.utils import load_image
|
| 2695 |
+
import numpy as np
|
| 2696 |
+
import torch
|
| 2697 |
+
|
| 2698 |
+
import cv2
|
| 2699 |
+
from PIL import Image
|
| 2700 |
+
|
| 2701 |
+
from .stable_diffusion_xl_controlnet_reference import StableDiffusionXLControlNetReferencePipeline
|
| 2702 |
+
|
| 2703 |
+
# download an image
|
| 2704 |
+
canny_image = load_image(
|
| 2705 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
|
| 2706 |
+
)
|
| 2707 |
+
|
| 2708 |
+
ref_image = load_image(
|
| 2709 |
+
"https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
| 2710 |
+
)
|
| 2711 |
+
|
| 2712 |
+
# initialize the models and pipeline
|
| 2713 |
+
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
| 2714 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 2715 |
+
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
| 2716 |
+
)
|
| 2717 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 2718 |
+
pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
|
| 2719 |
+
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
| 2720 |
+
).to("cuda:0")
|
| 2721 |
+
|
| 2722 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 2723 |
+
|
| 2724 |
+
# get canny image
|
| 2725 |
+
image = np.array(canny_image)
|
| 2726 |
+
image = cv2.Canny(image, 100, 200)
|
| 2727 |
+
image = image[:, :, None]
|
| 2728 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 2729 |
+
canny_image = Image.fromarray(image)
|
| 2730 |
+
|
| 2731 |
+
# generate image
|
| 2732 |
+
image = pipe(
|
| 2733 |
+
prompt="a cat",
|
| 2734 |
+
num_inference_steps=20,
|
| 2735 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 2736 |
+
image=canny_image,
|
| 2737 |
+
ref_image=ref_image,
|
| 2738 |
+
reference_attn=False,
|
| 2739 |
+
reference_adain=True,
|
| 2740 |
+
style_fidelity=1.0,
|
| 2741 |
+
generator=torch.Generator("cuda").manual_seed(42)
|
| 2742 |
+
).images[0]
|
| 2743 |
+
```
|
| 2744 |
+
|
| 2745 |
+
Canny ControlNet Image
|
| 2746 |
+
|
| 2747 |
+

|
| 2748 |
+
|
| 2749 |
+
Reference Image
|
| 2750 |
+
|
| 2751 |
+

|
| 2752 |
+
|
| 2753 |
+
Output Image
|
| 2754 |
+
|
| 2755 |
+
`prompt: a cat`
|
| 2756 |
+
|
| 2757 |
+
`reference_attn=True, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
|
| 2758 |
+
|
| 2759 |
+

|
| 2760 |
+
|
| 2761 |
+
`reference_attn=False, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
|
| 2762 |
+
|
| 2763 |
+

|
| 2764 |
+
|
| 2765 |
+
`reference_attn=True, reference_adain=False, num_inference_steps=20, style_fidelity=1.0`
|
| 2766 |
+
|
| 2767 |
+

|
| 2768 |
+
|
| 2769 |
### Stable diffusion fabric pipeline
|
| 2770 |
|
| 2771 |
FABRIC approach applicable to a wide range of popular diffusion models, which exploits
|
main/stable_diffusion_xl_controlnet_reference.py
ADDED
|
@@ -0,0 +1,1362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Based on stable_diffusion_xl_reference.py and stable_diffusion_controlnet_reference.py
|
| 2 |
+
|
| 3 |
+
import inspect
|
| 4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import PIL.Image
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from diffusers import StableDiffusionXLControlNetPipeline
|
| 11 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 12 |
+
from diffusers.image_processor import PipelineImageInput
|
| 13 |
+
from diffusers.models import ControlNetModel
|
| 14 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 15 |
+
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
|
| 16 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
| 17 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 18 |
+
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging, replace_example_docstring
|
| 19 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
EXAMPLE_DOC_STRING = """
|
| 26 |
+
Examples:
|
| 27 |
+
```py
|
| 28 |
+
>>> # !pip install opencv-python transformers accelerate
|
| 29 |
+
>>> from diffusers import ControlNetModel, AutoencoderKL
|
| 30 |
+
>>> from diffusers.schedulers import UniPCMultistepScheduler
|
| 31 |
+
>>> from diffusers.utils import load_image
|
| 32 |
+
>>> import numpy as np
|
| 33 |
+
>>> import torch
|
| 34 |
+
|
| 35 |
+
>>> import cv2
|
| 36 |
+
>>> from PIL import Image
|
| 37 |
+
|
| 38 |
+
>>> # download an image for the Canny controlnet
|
| 39 |
+
>>> canny_image = load_image(
|
| 40 |
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
|
| 41 |
+
... )
|
| 42 |
+
|
| 43 |
+
>>> # download an image for the Reference controlnet
|
| 44 |
+
>>> ref_image = load_image(
|
| 45 |
+
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
| 46 |
+
... )
|
| 47 |
+
|
| 48 |
+
>>> # initialize the models and pipeline
|
| 49 |
+
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
| 50 |
+
>>> controlnet = ControlNetModel.from_pretrained(
|
| 51 |
+
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
| 52 |
+
... )
|
| 53 |
+
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 54 |
+
>>> pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
|
| 55 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
| 56 |
+
... ).to("cuda:0")
|
| 57 |
+
|
| 58 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 59 |
+
|
| 60 |
+
>>> # get canny image
|
| 61 |
+
>>> image = np.array(canny_image)
|
| 62 |
+
>>> image = cv2.Canny(image, 100, 200)
|
| 63 |
+
>>> image = image[:, :, None]
|
| 64 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
| 65 |
+
>>> canny_image = Image.fromarray(image)
|
| 66 |
+
|
| 67 |
+
>>> # generate image
|
| 68 |
+
>>> image = pipe(
|
| 69 |
+
... prompt="a cat",
|
| 70 |
+
... num_inference_steps=20,
|
| 71 |
+
... controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 72 |
+
... image=canny_image,
|
| 73 |
+
... ref_image=ref_image,
|
| 74 |
+
... reference_attn=True,
|
| 75 |
+
... reference_adain=True
|
| 76 |
+
... style_fidelity=1.0,
|
| 77 |
+
... generator=torch.Generator("cuda").manual_seed(42)
|
| 78 |
+
... ).images[0]
|
| 79 |
+
```
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def torch_dfs(model: torch.nn.Module):
|
| 84 |
+
result = [model]
|
| 85 |
+
for child in model.children():
|
| 86 |
+
result += torch_dfs(child)
|
| 87 |
+
return result
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 91 |
+
def retrieve_timesteps(
|
| 92 |
+
scheduler,
|
| 93 |
+
num_inference_steps: Optional[int] = None,
|
| 94 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 95 |
+
timesteps: Optional[List[int]] = None,
|
| 96 |
+
sigmas: Optional[List[float]] = None,
|
| 97 |
+
**kwargs,
|
| 98 |
+
):
|
| 99 |
+
r"""
|
| 100 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 101 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
scheduler (`SchedulerMixin`):
|
| 105 |
+
The scheduler to get timesteps from.
|
| 106 |
+
num_inference_steps (`int`):
|
| 107 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 108 |
+
must be `None`.
|
| 109 |
+
device (`str` or `torch.device`, *optional*):
|
| 110 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 111 |
+
timesteps (`List[int]`, *optional*):
|
| 112 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 113 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 114 |
+
sigmas (`List[float]`, *optional*):
|
| 115 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 116 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 120 |
+
second element is the number of inference steps.
|
| 121 |
+
"""
|
| 122 |
+
if timesteps is not None and sigmas is not None:
|
| 123 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 124 |
+
if timesteps is not None:
|
| 125 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 126 |
+
if not accepts_timesteps:
|
| 127 |
+
raise ValueError(
|
| 128 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 129 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 130 |
+
)
|
| 131 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 132 |
+
timesteps = scheduler.timesteps
|
| 133 |
+
num_inference_steps = len(timesteps)
|
| 134 |
+
elif sigmas is not None:
|
| 135 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 136 |
+
if not accept_sigmas:
|
| 137 |
+
raise ValueError(
|
| 138 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 139 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 140 |
+
)
|
| 141 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 142 |
+
timesteps = scheduler.timesteps
|
| 143 |
+
num_inference_steps = len(timesteps)
|
| 144 |
+
else:
|
| 145 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 146 |
+
timesteps = scheduler.timesteps
|
| 147 |
+
return timesteps, num_inference_steps
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class StableDiffusionXLControlNetReferencePipeline(StableDiffusionXLControlNetPipeline):
|
| 151 |
+
r"""
|
| 152 |
+
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
| 153 |
+
|
| 154 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 155 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 156 |
+
|
| 157 |
+
The pipeline also inherits the following loading methods:
|
| 158 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 159 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 160 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 161 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 162 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 163 |
+
|
| 164 |
+
Args:
|
| 165 |
+
vae ([`AutoencoderKL`]):
|
| 166 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
| 167 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
| 168 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
| 169 |
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
| 170 |
+
Second frozen text-encoder
|
| 171 |
+
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
| 172 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
| 173 |
+
A `CLIPTokenizer` to tokenize text.
|
| 174 |
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
| 175 |
+
A `CLIPTokenizer` to tokenize text.
|
| 176 |
+
unet ([`UNet2DConditionModel`]):
|
| 177 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
| 178 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
| 179 |
+
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
| 180 |
+
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
| 181 |
+
additional conditioning.
|
| 182 |
+
scheduler ([`SchedulerMixin`]):
|
| 183 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 184 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 185 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
| 186 |
+
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
| 187 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
| 188 |
+
add_watermarker (`bool`, *optional*):
|
| 189 |
+
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
| 190 |
+
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
| 191 |
+
watermarker is used.
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
+
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
|
| 195 |
+
refimage = refimage.to(device=device)
|
| 196 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
| 197 |
+
self.upcast_vae()
|
| 198 |
+
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 199 |
+
if refimage.dtype != self.vae.dtype:
|
| 200 |
+
refimage = refimage.to(dtype=self.vae.dtype)
|
| 201 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
| 202 |
+
if isinstance(generator, list):
|
| 203 |
+
ref_image_latents = [
|
| 204 |
+
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
|
| 205 |
+
for i in range(batch_size)
|
| 206 |
+
]
|
| 207 |
+
ref_image_latents = torch.cat(ref_image_latents, dim=0)
|
| 208 |
+
else:
|
| 209 |
+
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
|
| 210 |
+
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
|
| 211 |
+
|
| 212 |
+
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
|
| 213 |
+
if ref_image_latents.shape[0] < batch_size:
|
| 214 |
+
if not batch_size % ref_image_latents.shape[0] == 0:
|
| 215 |
+
raise ValueError(
|
| 216 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 217 |
+
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
|
| 218 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 219 |
+
)
|
| 220 |
+
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
|
| 221 |
+
|
| 222 |
+
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
|
| 223 |
+
|
| 224 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
| 225 |
+
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
| 226 |
+
return ref_image_latents
|
| 227 |
+
|
| 228 |
+
def prepare_ref_image(
|
| 229 |
+
self,
|
| 230 |
+
image,
|
| 231 |
+
width,
|
| 232 |
+
height,
|
| 233 |
+
batch_size,
|
| 234 |
+
num_images_per_prompt,
|
| 235 |
+
device,
|
| 236 |
+
dtype,
|
| 237 |
+
do_classifier_free_guidance=False,
|
| 238 |
+
guess_mode=False,
|
| 239 |
+
):
|
| 240 |
+
if not isinstance(image, torch.Tensor):
|
| 241 |
+
if isinstance(image, PIL.Image.Image):
|
| 242 |
+
image = [image]
|
| 243 |
+
|
| 244 |
+
if isinstance(image[0], PIL.Image.Image):
|
| 245 |
+
images = []
|
| 246 |
+
|
| 247 |
+
for image_ in image:
|
| 248 |
+
image_ = image_.convert("RGB")
|
| 249 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
| 250 |
+
image_ = np.array(image_)
|
| 251 |
+
image_ = image_[None, :]
|
| 252 |
+
images.append(image_)
|
| 253 |
+
|
| 254 |
+
image = images
|
| 255 |
+
|
| 256 |
+
image = np.concatenate(image, axis=0)
|
| 257 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 258 |
+
image = (image - 0.5) / 0.5
|
| 259 |
+
image = image.transpose(0, 3, 1, 2)
|
| 260 |
+
image = torch.from_numpy(image)
|
| 261 |
+
|
| 262 |
+
elif isinstance(image[0], torch.Tensor):
|
| 263 |
+
image = torch.stack(image, dim=0)
|
| 264 |
+
|
| 265 |
+
image_batch_size = image.shape[0]
|
| 266 |
+
|
| 267 |
+
if image_batch_size == 1:
|
| 268 |
+
repeat_by = batch_size
|
| 269 |
+
else:
|
| 270 |
+
repeat_by = num_images_per_prompt
|
| 271 |
+
|
| 272 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
| 273 |
+
|
| 274 |
+
image = image.to(device=device, dtype=dtype)
|
| 275 |
+
|
| 276 |
+
if do_classifier_free_guidance and not guess_mode:
|
| 277 |
+
image = torch.cat([image] * 2)
|
| 278 |
+
|
| 279 |
+
return image
|
| 280 |
+
|
| 281 |
+
def check_ref_inputs(
|
| 282 |
+
self,
|
| 283 |
+
ref_image,
|
| 284 |
+
reference_guidance_start,
|
| 285 |
+
reference_guidance_end,
|
| 286 |
+
style_fidelity,
|
| 287 |
+
reference_attn,
|
| 288 |
+
reference_adain,
|
| 289 |
+
):
|
| 290 |
+
ref_image_is_pil = isinstance(ref_image, PIL.Image.Image)
|
| 291 |
+
ref_image_is_tensor = isinstance(ref_image, torch.Tensor)
|
| 292 |
+
|
| 293 |
+
if not ref_image_is_pil and not ref_image_is_tensor:
|
| 294 |
+
raise TypeError(
|
| 295 |
+
f"ref image must be passed and be one of PIL image or torch tensor, but is {type(ref_image)}"
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
if not reference_attn and not reference_adain:
|
| 299 |
+
raise ValueError("`reference_attn` or `reference_adain` must be True.")
|
| 300 |
+
|
| 301 |
+
if style_fidelity < 0.0:
|
| 302 |
+
raise ValueError(f"style fidelity: {style_fidelity} can't be smaller than 0.")
|
| 303 |
+
if style_fidelity > 1.0:
|
| 304 |
+
raise ValueError(f"style fidelity: {style_fidelity} can't be larger than 1.0.")
|
| 305 |
+
|
| 306 |
+
if reference_guidance_start >= reference_guidance_end:
|
| 307 |
+
raise ValueError(
|
| 308 |
+
f"reference guidance start: {reference_guidance_start} cannot be larger or equal to reference guidance end: {reference_guidance_end}."
|
| 309 |
+
)
|
| 310 |
+
if reference_guidance_start < 0.0:
|
| 311 |
+
raise ValueError(f"reference guidance start: {reference_guidance_start} can't be smaller than 0.")
|
| 312 |
+
if reference_guidance_end > 1.0:
|
| 313 |
+
raise ValueError(f"reference guidance end: {reference_guidance_end} can't be larger than 1.0.")
|
| 314 |
+
|
| 315 |
+
@torch.no_grad()
|
| 316 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 317 |
+
def __call__(
|
| 318 |
+
self,
|
| 319 |
+
prompt: Union[str, List[str]] = None,
|
| 320 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 321 |
+
image: PipelineImageInput = None,
|
| 322 |
+
ref_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
| 323 |
+
height: Optional[int] = None,
|
| 324 |
+
width: Optional[int] = None,
|
| 325 |
+
num_inference_steps: int = 50,
|
| 326 |
+
timesteps: List[int] = None,
|
| 327 |
+
sigmas: List[float] = None,
|
| 328 |
+
denoising_end: Optional[float] = None,
|
| 329 |
+
guidance_scale: float = 5.0,
|
| 330 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 331 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 332 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 333 |
+
eta: float = 0.0,
|
| 334 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 335 |
+
latents: Optional[torch.Tensor] = None,
|
| 336 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 337 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 338 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 339 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 340 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 341 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 342 |
+
output_type: Optional[str] = "pil",
|
| 343 |
+
return_dict: bool = True,
|
| 344 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 345 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
| 346 |
+
guess_mode: bool = False,
|
| 347 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
| 348 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
| 349 |
+
original_size: Tuple[int, int] = None,
|
| 350 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 351 |
+
target_size: Tuple[int, int] = None,
|
| 352 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
| 353 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 354 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
| 355 |
+
clip_skip: Optional[int] = None,
|
| 356 |
+
callback_on_step_end: Optional[
|
| 357 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 358 |
+
] = None,
|
| 359 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 360 |
+
attention_auto_machine_weight: float = 1.0,
|
| 361 |
+
gn_auto_machine_weight: float = 1.0,
|
| 362 |
+
reference_guidance_start: float = 0.0,
|
| 363 |
+
reference_guidance_end: float = 1.0,
|
| 364 |
+
style_fidelity: float = 0.5,
|
| 365 |
+
reference_attn: bool = True,
|
| 366 |
+
reference_adain: bool = True,
|
| 367 |
+
**kwargs,
|
| 368 |
+
):
|
| 369 |
+
r"""
|
| 370 |
+
The call function to the pipeline for generation.
|
| 371 |
+
|
| 372 |
+
Args:
|
| 373 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 374 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 375 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 376 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 377 |
+
used in both text-encoders.
|
| 378 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 379 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 380 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
| 381 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
| 382 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
| 383 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
| 384 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
| 385 |
+
to a single ControlNet.
|
| 386 |
+
ref_image (`torch.Tensor`, `PIL.Image.Image`):
|
| 387 |
+
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
|
| 388 |
+
the type is specified as `Torch.Tensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
|
| 389 |
+
also be accepted as an image.
|
| 390 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 391 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 392 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 393 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 394 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 395 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 396 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 397 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 398 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 399 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 400 |
+
expense of slower inference.
|
| 401 |
+
timesteps (`List[int]`, *optional*):
|
| 402 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 403 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 404 |
+
passed will be used. Must be in descending order.
|
| 405 |
+
sigmas (`List[float]`, *optional*):
|
| 406 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 407 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 408 |
+
will be used.
|
| 409 |
+
denoising_end (`float`, *optional*):
|
| 410 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 411 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
| 412 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
| 413 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
| 414 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
| 415 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
| 416 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
| 417 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 418 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 419 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 420 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 421 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 422 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 423 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
| 424 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
| 425 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 426 |
+
The number of images to generate per prompt.
|
| 427 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 428 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
| 429 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
| 430 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 431 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 432 |
+
generation deterministic.
|
| 433 |
+
latents (`torch.Tensor`, *optional*):
|
| 434 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 435 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 436 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 437 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 438 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 439 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 440 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 441 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 442 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 443 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 444 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 445 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
| 446 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 447 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
| 448 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
| 449 |
+
argument.
|
| 450 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 451 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 452 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 453 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
| 454 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
| 455 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 456 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 457 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 458 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 459 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 460 |
+
plain tuple.
|
| 461 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 462 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
| 463 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 464 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 465 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
| 466 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
| 467 |
+
the corresponding scale as a list.
|
| 468 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
| 469 |
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
| 470 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
| 471 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
| 472 |
+
The percentage of total steps at which the ControlNet starts applying.
|
| 473 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 474 |
+
The percentage of total steps at which the ControlNet stops applying.
|
| 475 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 476 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
| 477 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
| 478 |
+
explained in section 2.2 of
|
| 479 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 480 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 481 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
| 482 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
| 483 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 484 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 485 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 486 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
| 487 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
| 488 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 489 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 490 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
| 491 |
+
micro-conditioning as explained in section 2.2 of
|
| 492 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 493 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 494 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 495 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
| 496 |
+
micro-conditioning as explained in section 2.2 of
|
| 497 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 498 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 499 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 500 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
| 501 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 502 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 503 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 504 |
+
clip_skip (`int`, *optional*):
|
| 505 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 506 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 507 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 508 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 509 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 510 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 511 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 512 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 513 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 514 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 515 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 516 |
+
attention_auto_machine_weight (`float`):
|
| 517 |
+
Weight of using reference query for self attention's context.
|
| 518 |
+
If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
|
| 519 |
+
gn_auto_machine_weight (`float`):
|
| 520 |
+
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
|
| 521 |
+
reference_guidance_start (`float`, *optional*, defaults to 0.0):
|
| 522 |
+
The percentage of total steps at which the reference ControlNet starts applying.
|
| 523 |
+
reference_guidance_end (`float`, *optional*, defaults to 1.0):
|
| 524 |
+
The percentage of total steps at which the reference ControlNet stops applying.
|
| 525 |
+
style_fidelity (`float`):
|
| 526 |
+
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
|
| 527 |
+
elif style_fidelity=0.0, prompt more important, else balanced.
|
| 528 |
+
reference_attn (`bool`):
|
| 529 |
+
Whether to use reference query for self attention's context.
|
| 530 |
+
reference_adain (`bool`):
|
| 531 |
+
Whether to use reference adain.
|
| 532 |
+
|
| 533 |
+
Examples:
|
| 534 |
+
|
| 535 |
+
Returns:
|
| 536 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 537 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
| 538 |
+
otherwise a `tuple` is returned containing the output images.
|
| 539 |
+
"""
|
| 540 |
+
|
| 541 |
+
callback = kwargs.pop("callback", None)
|
| 542 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 543 |
+
|
| 544 |
+
if callback is not None:
|
| 545 |
+
deprecate(
|
| 546 |
+
"callback",
|
| 547 |
+
"1.0.0",
|
| 548 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 549 |
+
)
|
| 550 |
+
if callback_steps is not None:
|
| 551 |
+
deprecate(
|
| 552 |
+
"callback_steps",
|
| 553 |
+
"1.0.0",
|
| 554 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 558 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 559 |
+
|
| 560 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
| 561 |
+
|
| 562 |
+
# align format for control guidance
|
| 563 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
| 564 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
| 565 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
| 566 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
| 567 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
| 568 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
| 569 |
+
control_guidance_start, control_guidance_end = (
|
| 570 |
+
mult * [control_guidance_start],
|
| 571 |
+
mult * [control_guidance_end],
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# 1. Check inputs. Raise error if not correct
|
| 575 |
+
self.check_inputs(
|
| 576 |
+
prompt,
|
| 577 |
+
prompt_2,
|
| 578 |
+
image,
|
| 579 |
+
callback_steps,
|
| 580 |
+
negative_prompt,
|
| 581 |
+
negative_prompt_2,
|
| 582 |
+
prompt_embeds,
|
| 583 |
+
negative_prompt_embeds,
|
| 584 |
+
pooled_prompt_embeds,
|
| 585 |
+
ip_adapter_image,
|
| 586 |
+
ip_adapter_image_embeds,
|
| 587 |
+
negative_pooled_prompt_embeds,
|
| 588 |
+
controlnet_conditioning_scale,
|
| 589 |
+
control_guidance_start,
|
| 590 |
+
control_guidance_end,
|
| 591 |
+
callback_on_step_end_tensor_inputs,
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
self.check_ref_inputs(
|
| 595 |
+
ref_image,
|
| 596 |
+
reference_guidance_start,
|
| 597 |
+
reference_guidance_end,
|
| 598 |
+
style_fidelity,
|
| 599 |
+
reference_attn,
|
| 600 |
+
reference_adain,
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
self._guidance_scale = guidance_scale
|
| 604 |
+
self._clip_skip = clip_skip
|
| 605 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 606 |
+
self._denoising_end = denoising_end
|
| 607 |
+
self._interrupt = False
|
| 608 |
+
|
| 609 |
+
# 2. Define call parameters
|
| 610 |
+
if prompt is not None and isinstance(prompt, str):
|
| 611 |
+
batch_size = 1
|
| 612 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 613 |
+
batch_size = len(prompt)
|
| 614 |
+
else:
|
| 615 |
+
batch_size = prompt_embeds.shape[0]
|
| 616 |
+
|
| 617 |
+
device = self._execution_device
|
| 618 |
+
|
| 619 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
| 620 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
| 621 |
+
|
| 622 |
+
global_pool_conditions = (
|
| 623 |
+
controlnet.config.global_pool_conditions
|
| 624 |
+
if isinstance(controlnet, ControlNetModel)
|
| 625 |
+
else controlnet.nets[0].config.global_pool_conditions
|
| 626 |
+
)
|
| 627 |
+
guess_mode = guess_mode or global_pool_conditions
|
| 628 |
+
|
| 629 |
+
# 3.1 Encode input prompt
|
| 630 |
+
text_encoder_lora_scale = (
|
| 631 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 632 |
+
)
|
| 633 |
+
(
|
| 634 |
+
prompt_embeds,
|
| 635 |
+
negative_prompt_embeds,
|
| 636 |
+
pooled_prompt_embeds,
|
| 637 |
+
negative_pooled_prompt_embeds,
|
| 638 |
+
) = self.encode_prompt(
|
| 639 |
+
prompt,
|
| 640 |
+
prompt_2,
|
| 641 |
+
device,
|
| 642 |
+
num_images_per_prompt,
|
| 643 |
+
self.do_classifier_free_guidance,
|
| 644 |
+
negative_prompt,
|
| 645 |
+
negative_prompt_2,
|
| 646 |
+
prompt_embeds=prompt_embeds,
|
| 647 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 648 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 649 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 650 |
+
lora_scale=text_encoder_lora_scale,
|
| 651 |
+
clip_skip=self.clip_skip,
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
# 3.2 Encode ip_adapter_image
|
| 655 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 656 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 657 |
+
ip_adapter_image,
|
| 658 |
+
ip_adapter_image_embeds,
|
| 659 |
+
device,
|
| 660 |
+
batch_size * num_images_per_prompt,
|
| 661 |
+
self.do_classifier_free_guidance,
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
# 4. Prepare image
|
| 665 |
+
if isinstance(controlnet, ControlNetModel):
|
| 666 |
+
image = self.prepare_image(
|
| 667 |
+
image=image,
|
| 668 |
+
width=width,
|
| 669 |
+
height=height,
|
| 670 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 671 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 672 |
+
device=device,
|
| 673 |
+
dtype=controlnet.dtype,
|
| 674 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 675 |
+
guess_mode=guess_mode,
|
| 676 |
+
)
|
| 677 |
+
height, width = image.shape[-2:]
|
| 678 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
| 679 |
+
images = []
|
| 680 |
+
|
| 681 |
+
for image_ in image:
|
| 682 |
+
image_ = self.prepare_image(
|
| 683 |
+
image=image_,
|
| 684 |
+
width=width,
|
| 685 |
+
height=height,
|
| 686 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 687 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 688 |
+
device=device,
|
| 689 |
+
dtype=controlnet.dtype,
|
| 690 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 691 |
+
guess_mode=guess_mode,
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
images.append(image_)
|
| 695 |
+
|
| 696 |
+
image = images
|
| 697 |
+
height, width = image[0].shape[-2:]
|
| 698 |
+
else:
|
| 699 |
+
assert False
|
| 700 |
+
|
| 701 |
+
# 5. Preprocess reference image
|
| 702 |
+
ref_image = self.prepare_ref_image(
|
| 703 |
+
image=ref_image,
|
| 704 |
+
width=width,
|
| 705 |
+
height=height,
|
| 706 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 707 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 708 |
+
device=device,
|
| 709 |
+
dtype=prompt_embeds.dtype,
|
| 710 |
+
)
|
| 711 |
+
|
| 712 |
+
# 6. Prepare timesteps
|
| 713 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 714 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 715 |
+
)
|
| 716 |
+
self._num_timesteps = len(timesteps)
|
| 717 |
+
|
| 718 |
+
# 7. Prepare latent variables
|
| 719 |
+
num_channels_latents = self.unet.config.in_channels
|
| 720 |
+
latents = self.prepare_latents(
|
| 721 |
+
batch_size * num_images_per_prompt,
|
| 722 |
+
num_channels_latents,
|
| 723 |
+
height,
|
| 724 |
+
width,
|
| 725 |
+
prompt_embeds.dtype,
|
| 726 |
+
device,
|
| 727 |
+
generator,
|
| 728 |
+
latents,
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
# 7.5 Optionally get Guidance Scale Embedding
|
| 732 |
+
timestep_cond = None
|
| 733 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
| 734 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
| 735 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
| 736 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
| 737 |
+
).to(device=device, dtype=latents.dtype)
|
| 738 |
+
|
| 739 |
+
# 8. Prepare reference latent variables
|
| 740 |
+
ref_image_latents = self.prepare_ref_latents(
|
| 741 |
+
ref_image,
|
| 742 |
+
batch_size * num_images_per_prompt,
|
| 743 |
+
prompt_embeds.dtype,
|
| 744 |
+
device,
|
| 745 |
+
generator,
|
| 746 |
+
self.do_classifier_free_guidance,
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 750 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 751 |
+
|
| 752 |
+
# 9.1 Create tensor stating which controlnets to keep
|
| 753 |
+
controlnet_keep = []
|
| 754 |
+
reference_keeps = []
|
| 755 |
+
for i in range(len(timesteps)):
|
| 756 |
+
keeps = [
|
| 757 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
| 758 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
| 759 |
+
]
|
| 760 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
| 761 |
+
reference_keep = 1.0 - float(
|
| 762 |
+
i / len(timesteps) < reference_guidance_start or (i + 1) / len(timesteps) > reference_guidance_end
|
| 763 |
+
)
|
| 764 |
+
reference_keeps.append(reference_keep)
|
| 765 |
+
|
| 766 |
+
# 9.2 Modify self attention and group norm
|
| 767 |
+
MODE = "write"
|
| 768 |
+
uc_mask = (
|
| 769 |
+
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
|
| 770 |
+
.type_as(ref_image_latents)
|
| 771 |
+
.bool()
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
do_classifier_free_guidance = self.do_classifier_free_guidance
|
| 775 |
+
|
| 776 |
+
def hacked_basic_transformer_inner_forward(
|
| 777 |
+
self,
|
| 778 |
+
hidden_states: torch.Tensor,
|
| 779 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 780 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 781 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 782 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 783 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 784 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 785 |
+
):
|
| 786 |
+
if self.use_ada_layer_norm:
|
| 787 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 788 |
+
elif self.use_ada_layer_norm_zero:
|
| 789 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 790 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 791 |
+
)
|
| 792 |
+
else:
|
| 793 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 794 |
+
|
| 795 |
+
# 1. Self-Attention
|
| 796 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
| 797 |
+
if self.only_cross_attention:
|
| 798 |
+
attn_output = self.attn1(
|
| 799 |
+
norm_hidden_states,
|
| 800 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 801 |
+
attention_mask=attention_mask,
|
| 802 |
+
**cross_attention_kwargs,
|
| 803 |
+
)
|
| 804 |
+
else:
|
| 805 |
+
if MODE == "write":
|
| 806 |
+
self.bank.append(norm_hidden_states.detach().clone())
|
| 807 |
+
attn_output = self.attn1(
|
| 808 |
+
norm_hidden_states,
|
| 809 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 810 |
+
attention_mask=attention_mask,
|
| 811 |
+
**cross_attention_kwargs,
|
| 812 |
+
)
|
| 813 |
+
if MODE == "read":
|
| 814 |
+
if attention_auto_machine_weight > self.attn_weight:
|
| 815 |
+
attn_output_uc = self.attn1(
|
| 816 |
+
norm_hidden_states,
|
| 817 |
+
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
|
| 818 |
+
# attention_mask=attention_mask,
|
| 819 |
+
**cross_attention_kwargs,
|
| 820 |
+
)
|
| 821 |
+
attn_output_c = attn_output_uc.clone()
|
| 822 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 823 |
+
attn_output_c[uc_mask] = self.attn1(
|
| 824 |
+
norm_hidden_states[uc_mask],
|
| 825 |
+
encoder_hidden_states=norm_hidden_states[uc_mask],
|
| 826 |
+
**cross_attention_kwargs,
|
| 827 |
+
)
|
| 828 |
+
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
|
| 829 |
+
self.bank.clear()
|
| 830 |
+
else:
|
| 831 |
+
attn_output = self.attn1(
|
| 832 |
+
norm_hidden_states,
|
| 833 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 834 |
+
attention_mask=attention_mask,
|
| 835 |
+
**cross_attention_kwargs,
|
| 836 |
+
)
|
| 837 |
+
if self.use_ada_layer_norm_zero:
|
| 838 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 839 |
+
hidden_states = attn_output + hidden_states
|
| 840 |
+
|
| 841 |
+
if self.attn2 is not None:
|
| 842 |
+
norm_hidden_states = (
|
| 843 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
# 2. Cross-Attention
|
| 847 |
+
attn_output = self.attn2(
|
| 848 |
+
norm_hidden_states,
|
| 849 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 850 |
+
attention_mask=encoder_attention_mask,
|
| 851 |
+
**cross_attention_kwargs,
|
| 852 |
+
)
|
| 853 |
+
hidden_states = attn_output + hidden_states
|
| 854 |
+
|
| 855 |
+
# 3. Feed-forward
|
| 856 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 857 |
+
|
| 858 |
+
if self.use_ada_layer_norm_zero:
|
| 859 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 860 |
+
|
| 861 |
+
ff_output = self.ff(norm_hidden_states)
|
| 862 |
+
|
| 863 |
+
if self.use_ada_layer_norm_zero:
|
| 864 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 865 |
+
|
| 866 |
+
hidden_states = ff_output + hidden_states
|
| 867 |
+
|
| 868 |
+
return hidden_states
|
| 869 |
+
|
| 870 |
+
def hacked_mid_forward(self, *args, **kwargs):
|
| 871 |
+
eps = 1e-6
|
| 872 |
+
x = self.original_forward(*args, **kwargs)
|
| 873 |
+
if MODE == "write":
|
| 874 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 875 |
+
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
| 876 |
+
self.mean_bank.append(mean)
|
| 877 |
+
self.var_bank.append(var)
|
| 878 |
+
if MODE == "read":
|
| 879 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 880 |
+
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
| 881 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 882 |
+
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
|
| 883 |
+
var_acc = sum(self.var_bank) / float(len(self.var_bank))
|
| 884 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 885 |
+
x_uc = (((x - mean) / std) * std_acc) + mean_acc
|
| 886 |
+
x_c = x_uc.clone()
|
| 887 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 888 |
+
x_c[uc_mask] = x[uc_mask]
|
| 889 |
+
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
|
| 890 |
+
self.mean_bank = []
|
| 891 |
+
self.var_bank = []
|
| 892 |
+
return x
|
| 893 |
+
|
| 894 |
+
def hack_CrossAttnDownBlock2D_forward(
|
| 895 |
+
self,
|
| 896 |
+
hidden_states: torch.Tensor,
|
| 897 |
+
temb: Optional[torch.Tensor] = None,
|
| 898 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 899 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 900 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 901 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 902 |
+
):
|
| 903 |
+
eps = 1e-6
|
| 904 |
+
|
| 905 |
+
# TODO(Patrick, William) - attention mask is not used
|
| 906 |
+
output_states = ()
|
| 907 |
+
|
| 908 |
+
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
| 909 |
+
hidden_states = resnet(hidden_states, temb)
|
| 910 |
+
hidden_states = attn(
|
| 911 |
+
hidden_states,
|
| 912 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 913 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 914 |
+
attention_mask=attention_mask,
|
| 915 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 916 |
+
return_dict=False,
|
| 917 |
+
)[0]
|
| 918 |
+
if MODE == "write":
|
| 919 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 920 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 921 |
+
self.mean_bank.append([mean])
|
| 922 |
+
self.var_bank.append([var])
|
| 923 |
+
if MODE == "read":
|
| 924 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 925 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 926 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 927 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 928 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 929 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 930 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 931 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 932 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 933 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
| 934 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 935 |
+
|
| 936 |
+
output_states = output_states + (hidden_states,)
|
| 937 |
+
|
| 938 |
+
if MODE == "read":
|
| 939 |
+
self.mean_bank = []
|
| 940 |
+
self.var_bank = []
|
| 941 |
+
|
| 942 |
+
if self.downsamplers is not None:
|
| 943 |
+
for downsampler in self.downsamplers:
|
| 944 |
+
hidden_states = downsampler(hidden_states)
|
| 945 |
+
|
| 946 |
+
output_states = output_states + (hidden_states,)
|
| 947 |
+
|
| 948 |
+
return hidden_states, output_states
|
| 949 |
+
|
| 950 |
+
def hacked_DownBlock2D_forward(self, hidden_states, temb=None, *args, **kwargs):
|
| 951 |
+
eps = 1e-6
|
| 952 |
+
|
| 953 |
+
output_states = ()
|
| 954 |
+
|
| 955 |
+
for i, resnet in enumerate(self.resnets):
|
| 956 |
+
hidden_states = resnet(hidden_states, temb)
|
| 957 |
+
|
| 958 |
+
if MODE == "write":
|
| 959 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 960 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 961 |
+
self.mean_bank.append([mean])
|
| 962 |
+
self.var_bank.append([var])
|
| 963 |
+
if MODE == "read":
|
| 964 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 965 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 966 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 967 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 968 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 969 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 970 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 971 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 972 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 973 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
| 974 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 975 |
+
|
| 976 |
+
output_states = output_states + (hidden_states,)
|
| 977 |
+
|
| 978 |
+
if MODE == "read":
|
| 979 |
+
self.mean_bank = []
|
| 980 |
+
self.var_bank = []
|
| 981 |
+
|
| 982 |
+
if self.downsamplers is not None:
|
| 983 |
+
for downsampler in self.downsamplers:
|
| 984 |
+
hidden_states = downsampler(hidden_states)
|
| 985 |
+
|
| 986 |
+
output_states = output_states + (hidden_states,)
|
| 987 |
+
|
| 988 |
+
return hidden_states, output_states
|
| 989 |
+
|
| 990 |
+
def hacked_CrossAttnUpBlock2D_forward(
|
| 991 |
+
self,
|
| 992 |
+
hidden_states: torch.Tensor,
|
| 993 |
+
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
| 994 |
+
temb: Optional[torch.Tensor] = None,
|
| 995 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 996 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 997 |
+
upsample_size: Optional[int] = None,
|
| 998 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 999 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 1000 |
+
):
|
| 1001 |
+
eps = 1e-6
|
| 1002 |
+
# TODO(Patrick, William) - attention mask is not used
|
| 1003 |
+
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
| 1004 |
+
# pop res hidden states
|
| 1005 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1006 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1007 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1008 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1009 |
+
hidden_states = attn(
|
| 1010 |
+
hidden_states,
|
| 1011 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1012 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1013 |
+
attention_mask=attention_mask,
|
| 1014 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1015 |
+
return_dict=False,
|
| 1016 |
+
)[0]
|
| 1017 |
+
|
| 1018 |
+
if MODE == "write":
|
| 1019 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 1020 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 1021 |
+
self.mean_bank.append([mean])
|
| 1022 |
+
self.var_bank.append([var])
|
| 1023 |
+
if MODE == "read":
|
| 1024 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 1025 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 1026 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 1027 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 1028 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 1029 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 1030 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 1031 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 1032 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 1033 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
| 1034 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 1035 |
+
|
| 1036 |
+
if MODE == "read":
|
| 1037 |
+
self.mean_bank = []
|
| 1038 |
+
self.var_bank = []
|
| 1039 |
+
|
| 1040 |
+
if self.upsamplers is not None:
|
| 1041 |
+
for upsampler in self.upsamplers:
|
| 1042 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 1043 |
+
|
| 1044 |
+
return hidden_states
|
| 1045 |
+
|
| 1046 |
+
def hacked_UpBlock2D_forward(
|
| 1047 |
+
self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, *args, **kwargs
|
| 1048 |
+
):
|
| 1049 |
+
eps = 1e-6
|
| 1050 |
+
for i, resnet in enumerate(self.resnets):
|
| 1051 |
+
# pop res hidden states
|
| 1052 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1053 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1054 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1055 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1056 |
+
|
| 1057 |
+
if MODE == "write":
|
| 1058 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 1059 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 1060 |
+
self.mean_bank.append([mean])
|
| 1061 |
+
self.var_bank.append([var])
|
| 1062 |
+
if MODE == "read":
|
| 1063 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 1064 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 1065 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 1066 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 1067 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 1068 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 1069 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 1070 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 1071 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 1072 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
| 1073 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 1074 |
+
|
| 1075 |
+
if MODE == "read":
|
| 1076 |
+
self.mean_bank = []
|
| 1077 |
+
self.var_bank = []
|
| 1078 |
+
|
| 1079 |
+
if self.upsamplers is not None:
|
| 1080 |
+
for upsampler in self.upsamplers:
|
| 1081 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 1082 |
+
|
| 1083 |
+
return hidden_states
|
| 1084 |
+
|
| 1085 |
+
if reference_attn:
|
| 1086 |
+
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
|
| 1087 |
+
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
| 1088 |
+
|
| 1089 |
+
for i, module in enumerate(attn_modules):
|
| 1090 |
+
module._original_inner_forward = module.forward
|
| 1091 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
|
| 1092 |
+
module.bank = []
|
| 1093 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
| 1094 |
+
|
| 1095 |
+
if reference_adain:
|
| 1096 |
+
gn_modules = [self.unet.mid_block]
|
| 1097 |
+
self.unet.mid_block.gn_weight = 0
|
| 1098 |
+
|
| 1099 |
+
down_blocks = self.unet.down_blocks
|
| 1100 |
+
for w, module in enumerate(down_blocks):
|
| 1101 |
+
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
|
| 1102 |
+
gn_modules.append(module)
|
| 1103 |
+
|
| 1104 |
+
up_blocks = self.unet.up_blocks
|
| 1105 |
+
for w, module in enumerate(up_blocks):
|
| 1106 |
+
module.gn_weight = float(w) / float(len(up_blocks))
|
| 1107 |
+
gn_modules.append(module)
|
| 1108 |
+
|
| 1109 |
+
for i, module in enumerate(gn_modules):
|
| 1110 |
+
if getattr(module, "original_forward", None) is None:
|
| 1111 |
+
module.original_forward = module.forward
|
| 1112 |
+
if i == 0:
|
| 1113 |
+
# mid_block
|
| 1114 |
+
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
|
| 1115 |
+
elif isinstance(module, CrossAttnDownBlock2D):
|
| 1116 |
+
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
|
| 1117 |
+
elif isinstance(module, DownBlock2D):
|
| 1118 |
+
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
|
| 1119 |
+
elif isinstance(module, CrossAttnUpBlock2D):
|
| 1120 |
+
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
|
| 1121 |
+
elif isinstance(module, UpBlock2D):
|
| 1122 |
+
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
|
| 1123 |
+
module.mean_bank = []
|
| 1124 |
+
module.var_bank = []
|
| 1125 |
+
module.gn_weight *= 2
|
| 1126 |
+
|
| 1127 |
+
# 9.2 Prepare added time ids & embeddings
|
| 1128 |
+
if isinstance(image, list):
|
| 1129 |
+
original_size = original_size or image[0].shape[-2:]
|
| 1130 |
+
else:
|
| 1131 |
+
original_size = original_size or image.shape[-2:]
|
| 1132 |
+
target_size = target_size or (height, width)
|
| 1133 |
+
|
| 1134 |
+
add_text_embeds = pooled_prompt_embeds
|
| 1135 |
+
if self.text_encoder_2 is None:
|
| 1136 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
| 1137 |
+
else:
|
| 1138 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
| 1139 |
+
|
| 1140 |
+
add_time_ids = self._get_add_time_ids(
|
| 1141 |
+
original_size,
|
| 1142 |
+
crops_coords_top_left,
|
| 1143 |
+
target_size,
|
| 1144 |
+
dtype=prompt_embeds.dtype,
|
| 1145 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1146 |
+
)
|
| 1147 |
+
|
| 1148 |
+
if negative_original_size is not None and negative_target_size is not None:
|
| 1149 |
+
negative_add_time_ids = self._get_add_time_ids(
|
| 1150 |
+
negative_original_size,
|
| 1151 |
+
negative_crops_coords_top_left,
|
| 1152 |
+
negative_target_size,
|
| 1153 |
+
dtype=prompt_embeds.dtype,
|
| 1154 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1155 |
+
)
|
| 1156 |
+
else:
|
| 1157 |
+
negative_add_time_ids = add_time_ids
|
| 1158 |
+
|
| 1159 |
+
if self.do_classifier_free_guidance:
|
| 1160 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1161 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 1162 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
| 1163 |
+
|
| 1164 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 1165 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 1166 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
| 1167 |
+
|
| 1168 |
+
# 10. Denoising loop
|
| 1169 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1170 |
+
|
| 1171 |
+
# 10.1 Apply denoising_end
|
| 1172 |
+
if (
|
| 1173 |
+
self.denoising_end is not None
|
| 1174 |
+
and isinstance(self.denoising_end, float)
|
| 1175 |
+
and self.denoising_end > 0
|
| 1176 |
+
and self.denoising_end < 1
|
| 1177 |
+
):
|
| 1178 |
+
discrete_timestep_cutoff = int(
|
| 1179 |
+
round(
|
| 1180 |
+
self.scheduler.config.num_train_timesteps
|
| 1181 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
| 1182 |
+
)
|
| 1183 |
+
)
|
| 1184 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
| 1185 |
+
timesteps = timesteps[:num_inference_steps]
|
| 1186 |
+
|
| 1187 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
| 1188 |
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
| 1189 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
| 1190 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1191 |
+
for i, t in enumerate(timesteps):
|
| 1192 |
+
if self.interrupt:
|
| 1193 |
+
continue
|
| 1194 |
+
|
| 1195 |
+
# Relevant thread:
|
| 1196 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
| 1197 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
| 1198 |
+
torch._inductor.cudagraph_mark_step_begin()
|
| 1199 |
+
# expand the latents if we are doing classifier free guidance
|
| 1200 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 1201 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1202 |
+
|
| 1203 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 1204 |
+
|
| 1205 |
+
# controlnet(s) inference
|
| 1206 |
+
if guess_mode and self.do_classifier_free_guidance:
|
| 1207 |
+
# Infer ControlNet only for the conditional batch.
|
| 1208 |
+
control_model_input = latents
|
| 1209 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
| 1210 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
| 1211 |
+
controlnet_added_cond_kwargs = {
|
| 1212 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
| 1213 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
| 1214 |
+
}
|
| 1215 |
+
else:
|
| 1216 |
+
control_model_input = latent_model_input
|
| 1217 |
+
controlnet_prompt_embeds = prompt_embeds
|
| 1218 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
| 1219 |
+
|
| 1220 |
+
if isinstance(controlnet_keep[i], list):
|
| 1221 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
| 1222 |
+
else:
|
| 1223 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
| 1224 |
+
if isinstance(controlnet_cond_scale, list):
|
| 1225 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
| 1226 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
| 1227 |
+
|
| 1228 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 1229 |
+
control_model_input,
|
| 1230 |
+
t,
|
| 1231 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
| 1232 |
+
controlnet_cond=image,
|
| 1233 |
+
conditioning_scale=cond_scale,
|
| 1234 |
+
guess_mode=guess_mode,
|
| 1235 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
| 1236 |
+
return_dict=False,
|
| 1237 |
+
)
|
| 1238 |
+
|
| 1239 |
+
if guess_mode and self.do_classifier_free_guidance:
|
| 1240 |
+
# Inferred ControlNet only for the conditional batch.
|
| 1241 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
| 1242 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
| 1243 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
| 1244 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
| 1245 |
+
|
| 1246 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1247 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
| 1248 |
+
|
| 1249 |
+
# ref only part
|
| 1250 |
+
if reference_keeps[i] > 0:
|
| 1251 |
+
noise = randn_tensor(
|
| 1252 |
+
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
|
| 1253 |
+
)
|
| 1254 |
+
ref_xt = self.scheduler.add_noise(
|
| 1255 |
+
ref_image_latents,
|
| 1256 |
+
noise,
|
| 1257 |
+
t.reshape(
|
| 1258 |
+
1,
|
| 1259 |
+
),
|
| 1260 |
+
)
|
| 1261 |
+
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
|
| 1262 |
+
|
| 1263 |
+
MODE = "write"
|
| 1264 |
+
self.unet(
|
| 1265 |
+
ref_xt,
|
| 1266 |
+
t,
|
| 1267 |
+
encoder_hidden_states=prompt_embeds,
|
| 1268 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1269 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1270 |
+
return_dict=False,
|
| 1271 |
+
)
|
| 1272 |
+
|
| 1273 |
+
# predict the noise residual
|
| 1274 |
+
MODE = "read"
|
| 1275 |
+
noise_pred = self.unet(
|
| 1276 |
+
latent_model_input,
|
| 1277 |
+
t,
|
| 1278 |
+
encoder_hidden_states=prompt_embeds,
|
| 1279 |
+
timestep_cond=timestep_cond,
|
| 1280 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 1281 |
+
down_block_additional_residuals=down_block_res_samples,
|
| 1282 |
+
mid_block_additional_residual=mid_block_res_sample,
|
| 1283 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1284 |
+
return_dict=False,
|
| 1285 |
+
)[0]
|
| 1286 |
+
|
| 1287 |
+
# perform guidance
|
| 1288 |
+
if self.do_classifier_free_guidance:
|
| 1289 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1290 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1291 |
+
|
| 1292 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1293 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1294 |
+
|
| 1295 |
+
if callback_on_step_end is not None:
|
| 1296 |
+
callback_kwargs = {}
|
| 1297 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1298 |
+
callback_kwargs[k] = locals()[k]
|
| 1299 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1300 |
+
|
| 1301 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1302 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1303 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1304 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
| 1305 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
| 1306 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
| 1307 |
+
)
|
| 1308 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
| 1309 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
| 1310 |
+
|
| 1311 |
+
# call the callback, if provided
|
| 1312 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1313 |
+
progress_bar.update()
|
| 1314 |
+
if callback is not None and i % callback_steps == 0:
|
| 1315 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1316 |
+
callback(step_idx, t, latents)
|
| 1317 |
+
|
| 1318 |
+
if not output_type == "latent":
|
| 1319 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 1320 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 1321 |
+
|
| 1322 |
+
if needs_upcasting:
|
| 1323 |
+
self.upcast_vae()
|
| 1324 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1325 |
+
|
| 1326 |
+
# unscale/denormalize the latents
|
| 1327 |
+
# denormalize with the mean and std if available and not None
|
| 1328 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
| 1329 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
| 1330 |
+
if has_latents_mean and has_latents_std:
|
| 1331 |
+
latents_mean = (
|
| 1332 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
| 1333 |
+
)
|
| 1334 |
+
latents_std = (
|
| 1335 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
| 1336 |
+
)
|
| 1337 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
| 1338 |
+
else:
|
| 1339 |
+
latents = latents / self.vae.config.scaling_factor
|
| 1340 |
+
|
| 1341 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1342 |
+
|
| 1343 |
+
# cast back to fp16 if needed
|
| 1344 |
+
if needs_upcasting:
|
| 1345 |
+
self.vae.to(dtype=torch.float16)
|
| 1346 |
+
else:
|
| 1347 |
+
image = latents
|
| 1348 |
+
|
| 1349 |
+
if not output_type == "latent":
|
| 1350 |
+
# apply watermark if available
|
| 1351 |
+
if self.watermark is not None:
|
| 1352 |
+
image = self.watermark.apply_watermark(image)
|
| 1353 |
+
|
| 1354 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1355 |
+
|
| 1356 |
+
# Offload all models
|
| 1357 |
+
self.maybe_free_model_hooks()
|
| 1358 |
+
|
| 1359 |
+
if not return_dict:
|
| 1360 |
+
return (image,)
|
| 1361 |
+
|
| 1362 |
+
return StableDiffusionXLPipelineOutput(images=image)
|