Diffusers Bot
commited on
Upload folder using huggingface_hub
Browse files- v0.7.0/README.md +503 -0
- v0.7.0/clip_guided_stable_diffusion.py +324 -0
- v0.7.0/composable_stable_diffusion.py +329 -0
- v0.7.0/imagic_stable_diffusion.py +476 -0
- v0.7.0/interpolate_stable_diffusion.py +524 -0
- v0.7.0/lpw_stable_diffusion.py +1076 -0
- v0.7.0/lpw_stable_diffusion_onnx.py +992 -0
- v0.7.0/one_step_unet.py +22 -0
- v0.7.0/seed_resize_stable_diffusion.py +366 -0
- v0.7.0/speech_to_image_diffusion.py +261 -0
- v0.7.0/stable_diffusion_mega.py +224 -0
- v0.7.0/wildcard_stable_diffusion.py +418 -0
v0.7.0/README.md
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Community Examples
|
2 |
+
|
3 |
+
> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**
|
4 |
+
|
5 |
+
**Community** examples consist of both inference and training examples that have been added by the community.
|
6 |
+
Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
|
7 |
+
If a community doesn't work as expected, please open an issue and ping the author on it.
|
8 |
+
|
9 |
+
| Example | Description | Code Example | Colab | Author |
|
10 |
+
|:---------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------:|
|
11 |
+
| CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion) | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) | [Suraj Patil](https://github.com/patil-suraj/) |
|
12 |
+
| One Step U-Net (Dummy) | Example showcasing of how to use Community Pipelines (see https://github.com/huggingface/diffusers/issues/841) | [One Step U-Net](#one-step-unet) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
|
13 |
+
| Stable Diffusion Interpolation | Interpolate the latent space of Stable Diffusion between different prompts/seeds | [Stable Diffusion Interpolation](#stable-diffusion-interpolation) | - | [Nate Raw](https://github.com/nateraw/) |
|
14 |
+
| Stable Diffusion Mega | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
|
15 |
+
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | - | [SkyTNT](https://github.com/SkyTNT) |
|
16 |
+
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) | - | [Mikail Duzenli](https://github.com/MikailINTech)
|
17 |
+
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | - | [Shyam Sudhakaran](https://github.com/shyamsn97) |
|
18 |
+
| Composable Stable Diffusion| Stable Diffusion Pipeline that supports prompts that contain "|" in prompts (as an AND condition) and weights (separated by "|" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
|
19 |
+
| Seed Resizing Stable Diffusion| Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation. | [Seed Resizing](#seed-resizing) | - | [Mark Rich](https://github.com/MarkRich) |
|
20 |
+
|
21 |
+
| Imagic Stable Diffusion | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image| [Imagic Stable Diffusion](#imagic-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
|
22 |
+
|
23 |
+
|
24 |
+
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
25 |
+
```py
|
26 |
+
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="filename_in_the_community_folder")
|
27 |
+
```
|
28 |
+
|
29 |
+
## Example usages
|
30 |
+
|
31 |
+
### CLIP Guided Stable Diffusion
|
32 |
+
|
33 |
+
CLIP guided stable diffusion can help to generate more realistic images
|
34 |
+
by guiding stable diffusion at every denoising step with an additional CLIP model.
|
35 |
+
|
36 |
+
The following code requires roughly 12GB of GPU RAM.
|
37 |
+
|
38 |
+
```python
|
39 |
+
from diffusers import DiffusionPipeline
|
40 |
+
from transformers import CLIPFeatureExtractor, CLIPModel
|
41 |
+
import torch
|
42 |
+
|
43 |
+
|
44 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
|
45 |
+
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)
|
46 |
+
|
47 |
+
|
48 |
+
guided_pipeline = DiffusionPipeline.from_pretrained(
|
49 |
+
"runwayml/stable-diffusion-v1-5",
|
50 |
+
custom_pipeline="clip_guided_stable_diffusion",
|
51 |
+
clip_model=clip_model,
|
52 |
+
feature_extractor=feature_extractor,
|
53 |
+
revision="fp16",
|
54 |
+
torch_dtype=torch.float16,
|
55 |
+
)
|
56 |
+
guided_pipeline.enable_attention_slicing()
|
57 |
+
guided_pipeline = guided_pipeline.to("cuda")
|
58 |
+
|
59 |
+
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
|
60 |
+
|
61 |
+
generator = torch.Generator(device="cuda").manual_seed(0)
|
62 |
+
images = []
|
63 |
+
for i in range(4):
|
64 |
+
image = guided_pipeline(
|
65 |
+
prompt,
|
66 |
+
num_inference_steps=50,
|
67 |
+
guidance_scale=7.5,
|
68 |
+
clip_guidance_scale=100,
|
69 |
+
num_cutouts=4,
|
70 |
+
use_cutouts=False,
|
71 |
+
generator=generator,
|
72 |
+
).images[0]
|
73 |
+
images.append(image)
|
74 |
+
|
75 |
+
# save images locally
|
76 |
+
for i, img in enumerate(images):
|
77 |
+
img.save(f"./clip_guided_sd/image_{i}.png")
|
78 |
+
```
|
79 |
+
|
80 |
+
The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
|
81 |
+
Generated images tend to be of higher qualtiy than natively using stable diffusion. E.g. the above script generates the following images:
|
82 |
+
|
83 |
+
.
|
84 |
+
|
85 |
+
### One Step Unet
|
86 |
+
|
87 |
+
The dummy "one-step-unet" can be run as follows:
|
88 |
+
|
89 |
+
```python
|
90 |
+
from diffusers import DiffusionPipeline
|
91 |
+
|
92 |
+
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
|
93 |
+
pipe()
|
94 |
+
```
|
95 |
+
|
96 |
+
**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see https://github.com/huggingface/diffusers/issues/841).
|
97 |
+
|
98 |
+
### Stable Diffusion Interpolation
|
99 |
+
|
100 |
+
The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.
|
101 |
+
|
102 |
+
```python
|
103 |
+
from diffusers import DiffusionPipeline
|
104 |
+
import torch
|
105 |
+
|
106 |
+
pipe = DiffusionPipeline.from_pretrained(
|
107 |
+
"CompVis/stable-diffusion-v1-4",
|
108 |
+
revision='fp16',
|
109 |
+
torch_dtype=torch.float16,
|
110 |
+
safety_checker=None, # Very important for videos...lots of false positives while interpolating
|
111 |
+
custom_pipeline="interpolate_stable_diffusion",
|
112 |
+
).to('cuda')
|
113 |
+
pipe.enable_attention_slicing()
|
114 |
+
|
115 |
+
frame_filepaths = pipe.walk(
|
116 |
+
prompts=['a dog', 'a cat', 'a horse'],
|
117 |
+
seeds=[42, 1337, 1234],
|
118 |
+
num_interpolation_steps=16,
|
119 |
+
output_dir='./dreams',
|
120 |
+
batch_size=4,
|
121 |
+
height=512,
|
122 |
+
width=512,
|
123 |
+
guidance_scale=8.5,
|
124 |
+
num_inference_steps=50,
|
125 |
+
)
|
126 |
+
```
|
127 |
+
|
128 |
+
The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion.
|
129 |
+
|
130 |
+
> **Please have a look at https://github.com/nateraw/stable-diffusion-videos for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**
|
131 |
+
|
132 |
+
### Stable Diffusion Mega
|
133 |
+
|
134 |
+
The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.
|
135 |
+
|
136 |
+
```python
|
137 |
+
#!/usr/bin/env python3
|
138 |
+
from diffusers import DiffusionPipeline
|
139 |
+
import PIL
|
140 |
+
import requests
|
141 |
+
from io import BytesIO
|
142 |
+
import torch
|
143 |
+
|
144 |
+
|
145 |
+
def download_image(url):
|
146 |
+
response = requests.get(url)
|
147 |
+
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
148 |
+
|
149 |
+
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16")
|
150 |
+
pipe.to("cuda")
|
151 |
+
pipe.enable_attention_slicing()
|
152 |
+
|
153 |
+
|
154 |
+
### Text-to-Image
|
155 |
+
|
156 |
+
images = pipe.text2img("An astronaut riding a horse").images
|
157 |
+
|
158 |
+
### Image-to-Image
|
159 |
+
|
160 |
+
init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")
|
161 |
+
|
162 |
+
prompt = "A fantasy landscape, trending on artstation"
|
163 |
+
|
164 |
+
images = pipe.img2img(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images
|
165 |
+
|
166 |
+
### Inpainting
|
167 |
+
|
168 |
+
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
169 |
+
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
170 |
+
init_image = download_image(img_url).resize((512, 512))
|
171 |
+
mask_image = download_image(mask_url).resize((512, 512))
|
172 |
+
|
173 |
+
prompt = "a cat sitting on a bench"
|
174 |
+
images = pipe.inpaint(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
|
175 |
+
```
|
176 |
+
|
177 |
+
As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.
|
178 |
+
|
179 |
+
### Long Prompt Weighting Stable Diffusion
|
180 |
+
|
181 |
+
The Pipeline lets you input prompt without 77 token length limit. And you can increase words weighting by using "()" or decrease words weighting by using "[]"
|
182 |
+
The Pipeline also lets you use the main use cases of the stable diffusion pipeline in a single class.
|
183 |
+
|
184 |
+
#### pytorch
|
185 |
+
|
186 |
+
```python
|
187 |
+
from diffusers import DiffusionPipeline
|
188 |
+
import torch
|
189 |
+
|
190 |
+
pipe = DiffusionPipeline.from_pretrained(
|
191 |
+
'hakurei/waifu-diffusion',
|
192 |
+
custom_pipeline="lpw_stable_diffusion",
|
193 |
+
revision="fp16",
|
194 |
+
torch_dtype=torch.float16
|
195 |
+
)
|
196 |
+
pipe=pipe.to("cuda")
|
197 |
+
|
198 |
+
prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
|
199 |
+
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"
|
200 |
+
|
201 |
+
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512,height=512,max_embeddings_multiples=3).images[0]
|
202 |
+
|
203 |
+
```
|
204 |
+
|
205 |
+
#### onnxruntime
|
206 |
+
|
207 |
+
```python
|
208 |
+
from diffusers import DiffusionPipeline
|
209 |
+
import torch
|
210 |
+
|
211 |
+
pipe = DiffusionPipeline.from_pretrained(
|
212 |
+
'CompVis/stable-diffusion-v1-4',
|
213 |
+
custom_pipeline="lpw_stable_diffusion_onnx",
|
214 |
+
revision="onnx",
|
215 |
+
provider="CUDAExecutionProvider"
|
216 |
+
)
|
217 |
+
|
218 |
+
prompt = "a photo of an astronaut riding a horse on mars, best quality"
|
219 |
+
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
|
220 |
+
|
221 |
+
pipe.text2img(prompt,negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
|
222 |
+
|
223 |
+
```
|
224 |
+
|
225 |
+
if you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.
|
226 |
+
|
227 |
+
### Speech to Image
|
228 |
+
|
229 |
+
The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.
|
230 |
+
|
231 |
+
```Python
|
232 |
+
import torch
|
233 |
+
|
234 |
+
import matplotlib.pyplot as plt
|
235 |
+
from datasets import load_dataset
|
236 |
+
from diffusers import DiffusionPipeline
|
237 |
+
from transformers import (
|
238 |
+
WhisperForConditionalGeneration,
|
239 |
+
WhisperProcessor,
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
244 |
+
|
245 |
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
246 |
+
|
247 |
+
audio_sample = ds[3]
|
248 |
+
|
249 |
+
text = audio_sample["text"].lower()
|
250 |
+
speech_data = audio_sample["audio"]["array"]
|
251 |
+
|
252 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
253 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
254 |
+
|
255 |
+
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
256 |
+
"CompVis/stable-diffusion-v1-4",
|
257 |
+
custom_pipeline="speech_to_image_diffusion",
|
258 |
+
speech_model=model,
|
259 |
+
speech_processor=processor,
|
260 |
+
revision="fp16",
|
261 |
+
torch_dtype=torch.float16,
|
262 |
+
)
|
263 |
+
|
264 |
+
diffuser_pipeline.enable_attention_slicing()
|
265 |
+
diffuser_pipeline = diffuser_pipeline.to(device)
|
266 |
+
|
267 |
+
output = diffuser_pipeline(speech_data)
|
268 |
+
plt.imshow(output.images[0])
|
269 |
+
```
|
270 |
+
This example produces the following image:
|
271 |
+
|
272 |
+

|
273 |
+
|
274 |
+
### Wildcard Stable Diffusion
|
275 |
+
Following the great examples from https://github.com/jtkelm2/stable-diffusion-webui-1/blob/master/scripts/wildcards.py and https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts#wildcards, here's a minimal implementation that allows for users to add "wildcards", denoted by `__wildcard__` to prompts that are used as placeholders for randomly sampled values given by either a dictionary or a `.txt` file. For example:
|
276 |
+
|
277 |
+
Say we have a prompt:
|
278 |
+
|
279 |
+
```
|
280 |
+
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
|
281 |
+
```
|
282 |
+
|
283 |
+
We can then define possible values to be sampled for `animal`, `object`, and `clothing`. These can either be from a `.txt` with the same name as the category.
|
284 |
+
|
285 |
+
The possible values can also be defined / combined by using a dictionary like: `{"animal":["dog", "cat", mouse"]}`.
|
286 |
+
|
287 |
+
The actual pipeline works just like `StableDiffusionPipeline`, except the `__call__` method takes in:
|
288 |
+
|
289 |
+
`wildcard_files`: list of file paths for wild card replacement
|
290 |
+
`wildcard_option_dict`: dict with key as `wildcard` and values as a list of possible replacements
|
291 |
+
`num_prompt_samples`: number of prompts to sample, uniformly sampling wildcards
|
292 |
+
|
293 |
+
A full example:
|
294 |
+
|
295 |
+
create `animal.txt`, with contents like:
|
296 |
+
|
297 |
+
```
|
298 |
+
dog
|
299 |
+
cat
|
300 |
+
mouse
|
301 |
+
```
|
302 |
+
|
303 |
+
create `object.txt`, with contents like:
|
304 |
+
|
305 |
+
```
|
306 |
+
chair
|
307 |
+
sofa
|
308 |
+
bench
|
309 |
+
```
|
310 |
+
|
311 |
+
```python
|
312 |
+
from diffusers import DiffusionPipeline
|
313 |
+
import torch
|
314 |
+
|
315 |
+
pipe = DiffusionPipeline.from_pretrained(
|
316 |
+
"CompVis/stable-diffusion-v1-4",
|
317 |
+
custom_pipeline="wildcard_stable_diffusion",
|
318 |
+
revision="fp16",
|
319 |
+
torch_dtype=torch.float16,
|
320 |
+
)
|
321 |
+
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
|
322 |
+
out = pipe(
|
323 |
+
prompt,
|
324 |
+
wildcard_option_dict={
|
325 |
+
"clothing":["hat", "shirt", "scarf", "beret"]
|
326 |
+
},
|
327 |
+
wildcard_files=["object.txt", "animal.txt"],
|
328 |
+
num_prompt_samples=1
|
329 |
+
)
|
330 |
+
```
|
331 |
+
|
332 |
+
|
333 |
+
### Composable Stable diffusion
|
334 |
+
|
335 |
+
```python
|
336 |
+
import torch as th
|
337 |
+
import numpy as np
|
338 |
+
import torchvision.utils as tvu
|
339 |
+
from diffusers import DiffusionPipeline
|
340 |
+
|
341 |
+
has_cuda = th.cuda.is_available()
|
342 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
343 |
+
|
344 |
+
pipe = DiffusionPipeline.from_pretrained(
|
345 |
+
"CompVis/stable-diffusion-v1-4",
|
346 |
+
use_auth_token=True,
|
347 |
+
custom_pipeline="composable_stable_diffusion",
|
348 |
+
).to(device)
|
349 |
+
|
350 |
+
|
351 |
+
def dummy(images, **kwargs):
|
352 |
+
return images, False
|
353 |
+
|
354 |
+
pipe.safety_checker = dummy
|
355 |
+
|
356 |
+
images = []
|
357 |
+
generator = th.Generator("cuda").manual_seed(0)
|
358 |
+
|
359 |
+
seed = 0
|
360 |
+
prompt = "a forest | a camel"
|
361 |
+
weights = " 1 | 1" # Equal weight to each prompt. Can be negative
|
362 |
+
|
363 |
+
images = []
|
364 |
+
for i in range(4):
|
365 |
+
res = pipe(
|
366 |
+
prompt,
|
367 |
+
guidance_scale=7.5,
|
368 |
+
num_inference_steps=50,
|
369 |
+
weights=weights,
|
370 |
+
generator=generator)
|
371 |
+
image = res.images[0]
|
372 |
+
images.append(image)
|
373 |
+
|
374 |
+
for i, img in enumerate(images):
|
375 |
+
img.save(f"./composable_diffusion/image_{i}.png")
|
376 |
+
```
|
377 |
+
|
378 |
+
### Imagic Stable Diffusion
|
379 |
+
Allows you to edit an image using stable diffusion.
|
380 |
+
|
381 |
+
```python
|
382 |
+
import requests
|
383 |
+
from PIL import Image
|
384 |
+
from io import BytesIO
|
385 |
+
import torch
|
386 |
+
from diffusers import DiffusionPipeline, DDIMScheduler
|
387 |
+
has_cuda = torch.cuda.is_available()
|
388 |
+
device = torch.device('cpu' if not has_cuda else 'cuda')
|
389 |
+
pipe = DiffusionPipeline.from_pretrained(
|
390 |
+
"CompVis/stable-diffusion-v1-4",
|
391 |
+
safety_checker=None,
|
392 |
+
use_auth_token=True,
|
393 |
+
custom_pipeline="imagic_stable_diffusion",
|
394 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
395 |
+
).to(device)
|
396 |
+
generator = th.Generator("cuda").manual_seed(0)
|
397 |
+
seed = 0
|
398 |
+
prompt = "A photo of Barack Obama smiling with a big grin"
|
399 |
+
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
|
400 |
+
response = requests.get(url)
|
401 |
+
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
402 |
+
init_image = init_image.resize((512, 512))
|
403 |
+
res = pipe.train(
|
404 |
+
prompt,
|
405 |
+
init_image,
|
406 |
+
guidance_scale=7.5,
|
407 |
+
num_inference_steps=50,
|
408 |
+
generator=generator)
|
409 |
+
res = pipe(alpha=1)
|
410 |
+
image = res.images[0]
|
411 |
+
image.save('./imagic/imagic_image_alpha_1.png')
|
412 |
+
res = pipe(alpha=1.5)
|
413 |
+
image = res.images[0]
|
414 |
+
image.save('./imagic/imagic_image_alpha_1_5.png')
|
415 |
+
res = pipe(alpha=2)
|
416 |
+
image = res.images[0]
|
417 |
+
image.save('./imagic/imagic_image_alpha_2.png')
|
418 |
+
```
|
419 |
+
|
420 |
+
### Seed Resizing
|
421 |
+
Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.
|
422 |
+
|
423 |
+
```python
|
424 |
+
import torch as th
|
425 |
+
import numpy as np
|
426 |
+
from diffusers import DiffusionPipeline
|
427 |
+
|
428 |
+
has_cuda = th.cuda.is_available()
|
429 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
430 |
+
|
431 |
+
pipe = DiffusionPipeline.from_pretrained(
|
432 |
+
"CompVis/stable-diffusion-v1-4",
|
433 |
+
use_auth_token=True,
|
434 |
+
custom_pipeline="seed_resize_stable_diffusion"
|
435 |
+
).to(device)
|
436 |
+
|
437 |
+
def dummy(images, **kwargs):
|
438 |
+
return images, False
|
439 |
+
|
440 |
+
pipe.safety_checker = dummy
|
441 |
+
|
442 |
+
|
443 |
+
images = []
|
444 |
+
th.manual_seed(0)
|
445 |
+
generator = th.Generator("cuda").manual_seed(0)
|
446 |
+
|
447 |
+
seed = 0
|
448 |
+
prompt = "A painting of a futuristic cop"
|
449 |
+
|
450 |
+
width = 512
|
451 |
+
height = 512
|
452 |
+
|
453 |
+
res = pipe(
|
454 |
+
prompt,
|
455 |
+
guidance_scale=7.5,
|
456 |
+
num_inference_steps=50,
|
457 |
+
height=height,
|
458 |
+
width=width,
|
459 |
+
generator=generator)
|
460 |
+
image = res.images[0]
|
461 |
+
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))
|
462 |
+
|
463 |
+
|
464 |
+
th.manual_seed(0)
|
465 |
+
generator = th.Generator("cuda").manual_seed(0)
|
466 |
+
|
467 |
+
pipe = DiffusionPipeline.from_pretrained(
|
468 |
+
"CompVis/stable-diffusion-v1-4",
|
469 |
+
use_auth_token=True,
|
470 |
+
custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
|
471 |
+
).to(device)
|
472 |
+
|
473 |
+
width = 512
|
474 |
+
height = 592
|
475 |
+
|
476 |
+
res = pipe(
|
477 |
+
prompt,
|
478 |
+
guidance_scale=7.5,
|
479 |
+
num_inference_steps=50,
|
480 |
+
height=height,
|
481 |
+
width=width,
|
482 |
+
generator=generator)
|
483 |
+
image = res.images[0]
|
484 |
+
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))
|
485 |
+
|
486 |
+
pipe_compare = DiffusionPipeline.from_pretrained(
|
487 |
+
"CompVis/stable-diffusion-v1-4",
|
488 |
+
use_auth_token=True,
|
489 |
+
custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
|
490 |
+
).to(device)
|
491 |
+
|
492 |
+
res = pipe_compare(
|
493 |
+
prompt,
|
494 |
+
guidance_scale=7.5,
|
495 |
+
num_inference_steps=50,
|
496 |
+
height=height,
|
497 |
+
width=width,
|
498 |
+
generator=generator
|
499 |
+
)
|
500 |
+
|
501 |
+
image = res.images[0]
|
502 |
+
image.save('./seed_resize/seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height))
|
503 |
+
```
|
v0.7.0/clip_guided_stable_diffusion.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from diffusers import AutoencoderKL, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
|
9 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
10 |
+
from torchvision import transforms
|
11 |
+
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
12 |
+
|
13 |
+
|
14 |
+
class MakeCutouts(nn.Module):
|
15 |
+
def __init__(self, cut_size, cut_power=1.0):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
self.cut_size = cut_size
|
19 |
+
self.cut_power = cut_power
|
20 |
+
|
21 |
+
def forward(self, pixel_values, num_cutouts):
|
22 |
+
sideY, sideX = pixel_values.shape[2:4]
|
23 |
+
max_size = min(sideX, sideY)
|
24 |
+
min_size = min(sideX, sideY, self.cut_size)
|
25 |
+
cutouts = []
|
26 |
+
for _ in range(num_cutouts):
|
27 |
+
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
|
28 |
+
offsetx = torch.randint(0, sideX - size + 1, ())
|
29 |
+
offsety = torch.randint(0, sideY - size + 1, ())
|
30 |
+
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
|
31 |
+
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
|
32 |
+
return torch.cat(cutouts)
|
33 |
+
|
34 |
+
|
35 |
+
def spherical_dist_loss(x, y):
|
36 |
+
x = F.normalize(x, dim=-1)
|
37 |
+
y = F.normalize(y, dim=-1)
|
38 |
+
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
39 |
+
|
40 |
+
|
41 |
+
def set_requires_grad(model, value):
|
42 |
+
for param in model.parameters():
|
43 |
+
param.requires_grad = value
|
44 |
+
|
45 |
+
|
46 |
+
class CLIPGuidedStableDiffusion(DiffusionPipeline):
|
47 |
+
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
|
48 |
+
- https://github.com/Jack000/glid-3-xl
|
49 |
+
- https://github.dev/crowsonkb/k-diffusion
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
vae: AutoencoderKL,
|
55 |
+
text_encoder: CLIPTextModel,
|
56 |
+
clip_model: CLIPModel,
|
57 |
+
tokenizer: CLIPTokenizer,
|
58 |
+
unet: UNet2DConditionModel,
|
59 |
+
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler],
|
60 |
+
feature_extractor: CLIPFeatureExtractor,
|
61 |
+
):
|
62 |
+
super().__init__()
|
63 |
+
self.register_modules(
|
64 |
+
vae=vae,
|
65 |
+
text_encoder=text_encoder,
|
66 |
+
clip_model=clip_model,
|
67 |
+
tokenizer=tokenizer,
|
68 |
+
unet=unet,
|
69 |
+
scheduler=scheduler,
|
70 |
+
feature_extractor=feature_extractor,
|
71 |
+
)
|
72 |
+
|
73 |
+
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
74 |
+
self.make_cutouts = MakeCutouts(feature_extractor.size)
|
75 |
+
|
76 |
+
set_requires_grad(self.text_encoder, False)
|
77 |
+
set_requires_grad(self.clip_model, False)
|
78 |
+
|
79 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
80 |
+
if slice_size == "auto":
|
81 |
+
# half the attention head size is usually a good trade-off between
|
82 |
+
# speed and memory
|
83 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
84 |
+
self.unet.set_attention_slice(slice_size)
|
85 |
+
|
86 |
+
def disable_attention_slicing(self):
|
87 |
+
self.enable_attention_slicing(None)
|
88 |
+
|
89 |
+
def freeze_vae(self):
|
90 |
+
set_requires_grad(self.vae, False)
|
91 |
+
|
92 |
+
def unfreeze_vae(self):
|
93 |
+
set_requires_grad(self.vae, True)
|
94 |
+
|
95 |
+
def freeze_unet(self):
|
96 |
+
set_requires_grad(self.unet, False)
|
97 |
+
|
98 |
+
def unfreeze_unet(self):
|
99 |
+
set_requires_grad(self.unet, True)
|
100 |
+
|
101 |
+
@torch.enable_grad()
|
102 |
+
def cond_fn(
|
103 |
+
self,
|
104 |
+
latents,
|
105 |
+
timestep,
|
106 |
+
index,
|
107 |
+
text_embeddings,
|
108 |
+
noise_pred_original,
|
109 |
+
text_embeddings_clip,
|
110 |
+
clip_guidance_scale,
|
111 |
+
num_cutouts,
|
112 |
+
use_cutouts=True,
|
113 |
+
):
|
114 |
+
latents = latents.detach().requires_grad_()
|
115 |
+
|
116 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
117 |
+
sigma = self.scheduler.sigmas[index]
|
118 |
+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
119 |
+
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
|
120 |
+
else:
|
121 |
+
latent_model_input = latents
|
122 |
+
|
123 |
+
# predict the noise residual
|
124 |
+
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
|
125 |
+
|
126 |
+
if isinstance(self.scheduler, PNDMScheduler):
|
127 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
128 |
+
beta_prod_t = 1 - alpha_prod_t
|
129 |
+
# compute predicted original sample from predicted noise also called
|
130 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
131 |
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
132 |
+
|
133 |
+
fac = torch.sqrt(beta_prod_t)
|
134 |
+
sample = pred_original_sample * (fac) + latents * (1 - fac)
|
135 |
+
elif isinstance(self.scheduler, LMSDiscreteScheduler):
|
136 |
+
sigma = self.scheduler.sigmas[index]
|
137 |
+
sample = latents - sigma * noise_pred
|
138 |
+
else:
|
139 |
+
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
|
140 |
+
|
141 |
+
sample = 1 / 0.18215 * sample
|
142 |
+
image = self.vae.decode(sample).sample
|
143 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
144 |
+
|
145 |
+
if use_cutouts:
|
146 |
+
image = self.make_cutouts(image, num_cutouts)
|
147 |
+
else:
|
148 |
+
image = transforms.Resize(self.feature_extractor.size)(image)
|
149 |
+
image = self.normalize(image).to(latents.dtype)
|
150 |
+
|
151 |
+
image_embeddings_clip = self.clip_model.get_image_features(image)
|
152 |
+
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
153 |
+
|
154 |
+
if use_cutouts:
|
155 |
+
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
|
156 |
+
dists = dists.view([num_cutouts, sample.shape[0], -1])
|
157 |
+
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
|
158 |
+
else:
|
159 |
+
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
|
160 |
+
|
161 |
+
grads = -torch.autograd.grad(loss, latents)[0]
|
162 |
+
|
163 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
164 |
+
latents = latents.detach() + grads * (sigma**2)
|
165 |
+
noise_pred = noise_pred_original
|
166 |
+
else:
|
167 |
+
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
|
168 |
+
return noise_pred, latents
|
169 |
+
|
170 |
+
@torch.no_grad()
|
171 |
+
def __call__(
|
172 |
+
self,
|
173 |
+
prompt: Union[str, List[str]],
|
174 |
+
height: Optional[int] = 512,
|
175 |
+
width: Optional[int] = 512,
|
176 |
+
num_inference_steps: Optional[int] = 50,
|
177 |
+
guidance_scale: Optional[float] = 7.5,
|
178 |
+
num_images_per_prompt: Optional[int] = 1,
|
179 |
+
clip_guidance_scale: Optional[float] = 100,
|
180 |
+
clip_prompt: Optional[Union[str, List[str]]] = None,
|
181 |
+
num_cutouts: Optional[int] = 4,
|
182 |
+
use_cutouts: Optional[bool] = True,
|
183 |
+
generator: Optional[torch.Generator] = None,
|
184 |
+
latents: Optional[torch.FloatTensor] = None,
|
185 |
+
output_type: Optional[str] = "pil",
|
186 |
+
return_dict: bool = True,
|
187 |
+
):
|
188 |
+
if isinstance(prompt, str):
|
189 |
+
batch_size = 1
|
190 |
+
elif isinstance(prompt, list):
|
191 |
+
batch_size = len(prompt)
|
192 |
+
else:
|
193 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
194 |
+
|
195 |
+
if height % 8 != 0 or width % 8 != 0:
|
196 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
197 |
+
|
198 |
+
# get prompt text embeddings
|
199 |
+
text_input = self.tokenizer(
|
200 |
+
prompt,
|
201 |
+
padding="max_length",
|
202 |
+
max_length=self.tokenizer.model_max_length,
|
203 |
+
truncation=True,
|
204 |
+
return_tensors="pt",
|
205 |
+
)
|
206 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
207 |
+
# duplicate text embeddings for each generation per prompt
|
208 |
+
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
209 |
+
|
210 |
+
if clip_guidance_scale > 0:
|
211 |
+
if clip_prompt is not None:
|
212 |
+
clip_text_input = self.tokenizer(
|
213 |
+
clip_prompt,
|
214 |
+
padding="max_length",
|
215 |
+
max_length=self.tokenizer.model_max_length,
|
216 |
+
truncation=True,
|
217 |
+
return_tensors="pt",
|
218 |
+
).input_ids.to(self.device)
|
219 |
+
else:
|
220 |
+
clip_text_input = text_input.input_ids.to(self.device)
|
221 |
+
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
|
222 |
+
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
223 |
+
# duplicate text embeddings clip for each generation per prompt
|
224 |
+
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
225 |
+
|
226 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
227 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
228 |
+
# corresponds to doing no classifier free guidance.
|
229 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
230 |
+
# get unconditional embeddings for classifier free guidance
|
231 |
+
if do_classifier_free_guidance:
|
232 |
+
max_length = text_input.input_ids.shape[-1]
|
233 |
+
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
|
234 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
235 |
+
# duplicate unconditional embeddings for each generation per prompt
|
236 |
+
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
237 |
+
|
238 |
+
# For classifier free guidance, we need to do two forward passes.
|
239 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
240 |
+
# to avoid doing two forward passes
|
241 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
242 |
+
|
243 |
+
# get the initial random noise unless the user supplied it
|
244 |
+
|
245 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
246 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
247 |
+
# However this currently doesn't work in `mps`.
|
248 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
249 |
+
latents_dtype = text_embeddings.dtype
|
250 |
+
if latents is None:
|
251 |
+
if self.device.type == "mps":
|
252 |
+
# randn does not work reproducibly on mps
|
253 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
254 |
+
self.device
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
258 |
+
else:
|
259 |
+
if latents.shape != latents_shape:
|
260 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
261 |
+
latents = latents.to(self.device)
|
262 |
+
|
263 |
+
# set timesteps
|
264 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
265 |
+
extra_set_kwargs = {}
|
266 |
+
if accepts_offset:
|
267 |
+
extra_set_kwargs["offset"] = 1
|
268 |
+
|
269 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
270 |
+
|
271 |
+
# Some schedulers like PNDM have timesteps as arrays
|
272 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
273 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
274 |
+
|
275 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
276 |
+
latents = latents * self.scheduler.init_noise_sigma
|
277 |
+
|
278 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
279 |
+
# expand the latents if we are doing classifier free guidance
|
280 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
281 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
282 |
+
|
283 |
+
# predict the noise residual
|
284 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
285 |
+
|
286 |
+
# perform classifier free guidance
|
287 |
+
if do_classifier_free_guidance:
|
288 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
289 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
290 |
+
|
291 |
+
# perform clip guidance
|
292 |
+
if clip_guidance_scale > 0:
|
293 |
+
text_embeddings_for_guidance = (
|
294 |
+
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
|
295 |
+
)
|
296 |
+
noise_pred, latents = self.cond_fn(
|
297 |
+
latents,
|
298 |
+
t,
|
299 |
+
i,
|
300 |
+
text_embeddings_for_guidance,
|
301 |
+
noise_pred,
|
302 |
+
text_embeddings_clip,
|
303 |
+
clip_guidance_scale,
|
304 |
+
num_cutouts,
|
305 |
+
use_cutouts,
|
306 |
+
)
|
307 |
+
|
308 |
+
# compute the previous noisy sample x_t -> x_t-1
|
309 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
310 |
+
|
311 |
+
# scale and decode the image latents with vae
|
312 |
+
latents = 1 / 0.18215 * latents
|
313 |
+
image = self.vae.decode(latents).sample
|
314 |
+
|
315 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
316 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
317 |
+
|
318 |
+
if output_type == "pil":
|
319 |
+
image = self.numpy_to_pil(image)
|
320 |
+
|
321 |
+
if not return_dict:
|
322 |
+
return (image, None)
|
323 |
+
|
324 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
v0.7.0/composable_stable_diffusion.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
3 |
+
"""
|
4 |
+
import inspect
|
5 |
+
import warnings
|
6 |
+
from typing import List, Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
13 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
14 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
15 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
19 |
+
r"""
|
20 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
21 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
22 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
23 |
+
Args:
|
24 |
+
vae ([`AutoencoderKL`]):
|
25 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
26 |
+
text_encoder ([`CLIPTextModel`]):
|
27 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
28 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
29 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
30 |
+
tokenizer (`CLIPTokenizer`):
|
31 |
+
Tokenizer of class
|
32 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
33 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
34 |
+
scheduler ([`SchedulerMixin`]):
|
35 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
36 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
37 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
38 |
+
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
39 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
40 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
41 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
vae: AutoencoderKL,
|
47 |
+
text_encoder: CLIPTextModel,
|
48 |
+
tokenizer: CLIPTokenizer,
|
49 |
+
unet: UNet2DConditionModel,
|
50 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
51 |
+
safety_checker: StableDiffusionSafetyChecker,
|
52 |
+
feature_extractor: CLIPFeatureExtractor,
|
53 |
+
):
|
54 |
+
super().__init__()
|
55 |
+
self.register_modules(
|
56 |
+
vae=vae,
|
57 |
+
text_encoder=text_encoder,
|
58 |
+
tokenizer=tokenizer,
|
59 |
+
unet=unet,
|
60 |
+
scheduler=scheduler,
|
61 |
+
safety_checker=safety_checker,
|
62 |
+
feature_extractor=feature_extractor,
|
63 |
+
)
|
64 |
+
|
65 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
66 |
+
r"""
|
67 |
+
Enable sliced attention computation.
|
68 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
69 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
70 |
+
Args:
|
71 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
72 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
73 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
74 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
75 |
+
"""
|
76 |
+
if slice_size == "auto":
|
77 |
+
# half the attention head size is usually a good trade-off between
|
78 |
+
# speed and memory
|
79 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
80 |
+
self.unet.set_attention_slice(slice_size)
|
81 |
+
|
82 |
+
def disable_attention_slicing(self):
|
83 |
+
r"""
|
84 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
85 |
+
back to computing attention in one step.
|
86 |
+
"""
|
87 |
+
# set slice_size = `None` to disable `attention slicing`
|
88 |
+
self.enable_attention_slicing(None)
|
89 |
+
|
90 |
+
@torch.no_grad()
|
91 |
+
def __call__(
|
92 |
+
self,
|
93 |
+
prompt: Union[str, List[str]],
|
94 |
+
height: Optional[int] = 512,
|
95 |
+
width: Optional[int] = 512,
|
96 |
+
num_inference_steps: Optional[int] = 50,
|
97 |
+
guidance_scale: Optional[float] = 7.5,
|
98 |
+
eta: Optional[float] = 0.0,
|
99 |
+
generator: Optional[torch.Generator] = None,
|
100 |
+
latents: Optional[torch.FloatTensor] = None,
|
101 |
+
output_type: Optional[str] = "pil",
|
102 |
+
return_dict: bool = True,
|
103 |
+
weights: Optional[str] = "",
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
r"""
|
107 |
+
Function invoked when calling the pipeline for generation.
|
108 |
+
Args:
|
109 |
+
prompt (`str` or `List[str]`):
|
110 |
+
The prompt or prompts to guide the image generation.
|
111 |
+
height (`int`, *optional*, defaults to 512):
|
112 |
+
The height in pixels of the generated image.
|
113 |
+
width (`int`, *optional*, defaults to 512):
|
114 |
+
The width in pixels of the generated image.
|
115 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
116 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
117 |
+
expense of slower inference.
|
118 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
119 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
120 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
121 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
122 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
123 |
+
usually at the expense of lower image quality.
|
124 |
+
eta (`float`, *optional*, defaults to 0.0):
|
125 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
126 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
127 |
+
generator (`torch.Generator`, *optional*):
|
128 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
129 |
+
deterministic.
|
130 |
+
latents (`torch.FloatTensor`, *optional*):
|
131 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
132 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
133 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
134 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
135 |
+
The output format of the generate image. Choose between
|
136 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
137 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
138 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
139 |
+
plain tuple.
|
140 |
+
Returns:
|
141 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
142 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
143 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
144 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
145 |
+
(nsfw) content, according to the `safety_checker`.
|
146 |
+
"""
|
147 |
+
|
148 |
+
if "torch_device" in kwargs:
|
149 |
+
device = kwargs.pop("torch_device")
|
150 |
+
warnings.warn(
|
151 |
+
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
152 |
+
" Consider using `pipe.to(torch_device)` instead."
|
153 |
+
)
|
154 |
+
|
155 |
+
# Set device as before (to be removed in 0.3.0)
|
156 |
+
if device is None:
|
157 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
158 |
+
self.to(device)
|
159 |
+
|
160 |
+
if isinstance(prompt, str):
|
161 |
+
batch_size = 1
|
162 |
+
elif isinstance(prompt, list):
|
163 |
+
batch_size = len(prompt)
|
164 |
+
else:
|
165 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
166 |
+
|
167 |
+
if height % 8 != 0 or width % 8 != 0:
|
168 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
169 |
+
|
170 |
+
if "|" in prompt:
|
171 |
+
prompt = [x.strip() for x in prompt.split("|")]
|
172 |
+
print(f"composing {prompt}...")
|
173 |
+
|
174 |
+
# get prompt text embeddings
|
175 |
+
text_input = self.tokenizer(
|
176 |
+
prompt,
|
177 |
+
padding="max_length",
|
178 |
+
max_length=self.tokenizer.model_max_length,
|
179 |
+
truncation=True,
|
180 |
+
return_tensors="pt",
|
181 |
+
)
|
182 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
183 |
+
|
184 |
+
if not weights:
|
185 |
+
# specify weights for prompts (excluding the unconditional score)
|
186 |
+
print("using equal weights for all prompts...")
|
187 |
+
pos_weights = torch.tensor(
|
188 |
+
[1 / (text_embeddings.shape[0] - 1)] * (text_embeddings.shape[0] - 1), device=self.device
|
189 |
+
).reshape(-1, 1, 1, 1)
|
190 |
+
neg_weights = torch.tensor([1.0], device=self.device).reshape(-1, 1, 1, 1)
|
191 |
+
mask = torch.tensor([False] + [True] * pos_weights.shape[0], dtype=torch.bool)
|
192 |
+
else:
|
193 |
+
# set prompt weight for each
|
194 |
+
num_prompts = len(prompt) if isinstance(prompt, list) else 1
|
195 |
+
weights = [float(w.strip()) for w in weights.split("|")]
|
196 |
+
if len(weights) < num_prompts:
|
197 |
+
weights.append(1.0)
|
198 |
+
weights = torch.tensor(weights, device=self.device)
|
199 |
+
assert len(weights) == text_embeddings.shape[0], "weights specified are not equal to the number of prompts"
|
200 |
+
pos_weights = []
|
201 |
+
neg_weights = []
|
202 |
+
mask = [] # first one is unconditional score
|
203 |
+
for w in weights:
|
204 |
+
if w > 0:
|
205 |
+
pos_weights.append(w)
|
206 |
+
mask.append(True)
|
207 |
+
else:
|
208 |
+
neg_weights.append(abs(w))
|
209 |
+
mask.append(False)
|
210 |
+
# normalize the weights
|
211 |
+
pos_weights = torch.tensor(pos_weights, device=self.device).reshape(-1, 1, 1, 1)
|
212 |
+
pos_weights = pos_weights / pos_weights.sum()
|
213 |
+
neg_weights = torch.tensor(neg_weights, device=self.device).reshape(-1, 1, 1, 1)
|
214 |
+
neg_weights = neg_weights / neg_weights.sum()
|
215 |
+
mask = torch.tensor(mask, device=self.device, dtype=torch.bool)
|
216 |
+
|
217 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
218 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
219 |
+
# corresponds to doing no classifier free guidance.
|
220 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
221 |
+
# get unconditional embeddings for classifier free guidance
|
222 |
+
if do_classifier_free_guidance:
|
223 |
+
max_length = text_input.input_ids.shape[-1]
|
224 |
+
|
225 |
+
if torch.all(mask):
|
226 |
+
# no negative prompts, so we use empty string as the negative prompt
|
227 |
+
uncond_input = self.tokenizer(
|
228 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
229 |
+
)
|
230 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
231 |
+
|
232 |
+
# For classifier free guidance, we need to do two forward passes.
|
233 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
234 |
+
# to avoid doing two forward passes
|
235 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
236 |
+
|
237 |
+
# update negative weights
|
238 |
+
neg_weights = torch.tensor([1.0], device=self.device)
|
239 |
+
mask = torch.tensor([False] + mask.detach().tolist(), device=self.device, dtype=torch.bool)
|
240 |
+
|
241 |
+
# get the initial random noise unless the user supplied it
|
242 |
+
|
243 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
244 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
245 |
+
# However this currently doesn't work in `mps`.
|
246 |
+
latents_device = "cpu" if self.device.type == "mps" else self.device
|
247 |
+
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
248 |
+
if latents is None:
|
249 |
+
latents = torch.randn(
|
250 |
+
latents_shape,
|
251 |
+
generator=generator,
|
252 |
+
device=latents_device,
|
253 |
+
)
|
254 |
+
else:
|
255 |
+
if latents.shape != latents_shape:
|
256 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
257 |
+
latents = latents.to(self.device)
|
258 |
+
|
259 |
+
# set timesteps
|
260 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
261 |
+
extra_set_kwargs = {}
|
262 |
+
if accepts_offset:
|
263 |
+
extra_set_kwargs["offset"] = 1
|
264 |
+
|
265 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
266 |
+
|
267 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
|
268 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
269 |
+
latents = latents * self.scheduler.sigmas[0]
|
270 |
+
|
271 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
272 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
273 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
274 |
+
# and should be between [0, 1]
|
275 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
276 |
+
extra_step_kwargs = {}
|
277 |
+
if accepts_eta:
|
278 |
+
extra_step_kwargs["eta"] = eta
|
279 |
+
|
280 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
281 |
+
# expand the latents if we are doing classifier free guidance
|
282 |
+
latent_model_input = (
|
283 |
+
torch.cat([latents] * text_embeddings.shape[0]) if do_classifier_free_guidance else latents
|
284 |
+
)
|
285 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
286 |
+
sigma = self.scheduler.sigmas[i]
|
287 |
+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
288 |
+
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
289 |
+
|
290 |
+
# reduce memory by predicting each score sequentially
|
291 |
+
noise_preds = []
|
292 |
+
# predict the noise residual
|
293 |
+
for latent_in, text_embedding_in in zip(
|
294 |
+
torch.chunk(latent_model_input, chunks=latent_model_input.shape[0], dim=0),
|
295 |
+
torch.chunk(text_embeddings, chunks=text_embeddings.shape[0], dim=0),
|
296 |
+
):
|
297 |
+
noise_preds.append(self.unet(latent_in, t, encoder_hidden_states=text_embedding_in).sample)
|
298 |
+
noise_preds = torch.cat(noise_preds, dim=0)
|
299 |
+
|
300 |
+
# perform guidance
|
301 |
+
if do_classifier_free_guidance:
|
302 |
+
noise_pred_uncond = (noise_preds[~mask] * neg_weights).sum(dim=0, keepdims=True)
|
303 |
+
noise_pred_text = (noise_preds[mask] * pos_weights).sum(dim=0, keepdims=True)
|
304 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
305 |
+
|
306 |
+
# compute the previous noisy sample x_t -> x_t-1
|
307 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
308 |
+
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
|
309 |
+
else:
|
310 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
311 |
+
|
312 |
+
# scale and decode the image latents with vae
|
313 |
+
latents = 1 / 0.18215 * latents
|
314 |
+
image = self.vae.decode(latents).sample
|
315 |
+
|
316 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
317 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
318 |
+
|
319 |
+
# run safety checker
|
320 |
+
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
321 |
+
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
322 |
+
|
323 |
+
if output_type == "pil":
|
324 |
+
image = self.numpy_to_pil(image)
|
325 |
+
|
326 |
+
if not return_dict:
|
327 |
+
return (image, has_nsfw_concept)
|
328 |
+
|
329 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.7.0/imagic_stable_diffusion.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modeled after the textual_inversion.py / train_dreambooth.py and the work
|
3 |
+
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb
|
4 |
+
"""
|
5 |
+
import inspect
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
import PIL
|
14 |
+
from accelerate import Accelerator
|
15 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
16 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
17 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
18 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
19 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
20 |
+
from diffusers.utils import logging
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
26 |
+
|
27 |
+
|
28 |
+
def preprocess(image):
|
29 |
+
w, h = image.size
|
30 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
31 |
+
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
32 |
+
image = np.array(image).astype(np.float32) / 255.0
|
33 |
+
image = image[None].transpose(0, 3, 1, 2)
|
34 |
+
image = torch.from_numpy(image)
|
35 |
+
return 2.0 * image - 1.0
|
36 |
+
|
37 |
+
|
38 |
+
class ImagicStableDiffusionPipeline(DiffusionPipeline):
|
39 |
+
r"""
|
40 |
+
Pipeline for imagic image editing.
|
41 |
+
See paper here: https://arxiv.org/pdf/2210.09276.pdf
|
42 |
+
|
43 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
44 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
45 |
+
Args:
|
46 |
+
vae ([`AutoencoderKL`]):
|
47 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
48 |
+
text_encoder ([`CLIPTextModel`]):
|
49 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
50 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
51 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
52 |
+
tokenizer (`CLIPTokenizer`):
|
53 |
+
Tokenizer of class
|
54 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
55 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
56 |
+
scheduler ([`SchedulerMixin`]):
|
57 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
58 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
59 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
60 |
+
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
61 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
62 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
63 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
vae: AutoencoderKL,
|
69 |
+
text_encoder: CLIPTextModel,
|
70 |
+
tokenizer: CLIPTokenizer,
|
71 |
+
unet: UNet2DConditionModel,
|
72 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
73 |
+
safety_checker: StableDiffusionSafetyChecker,
|
74 |
+
feature_extractor: CLIPFeatureExtractor,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
self.register_modules(
|
78 |
+
vae=vae,
|
79 |
+
text_encoder=text_encoder,
|
80 |
+
tokenizer=tokenizer,
|
81 |
+
unet=unet,
|
82 |
+
scheduler=scheduler,
|
83 |
+
safety_checker=safety_checker,
|
84 |
+
feature_extractor=feature_extractor,
|
85 |
+
)
|
86 |
+
|
87 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
88 |
+
r"""
|
89 |
+
Enable sliced attention computation.
|
90 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
91 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
92 |
+
Args:
|
93 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
94 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
95 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
96 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
97 |
+
"""
|
98 |
+
if slice_size == "auto":
|
99 |
+
# half the attention head size is usually a good trade-off between
|
100 |
+
# speed and memory
|
101 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
102 |
+
self.unet.set_attention_slice(slice_size)
|
103 |
+
|
104 |
+
def disable_attention_slicing(self):
|
105 |
+
r"""
|
106 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
107 |
+
back to computing attention in one step.
|
108 |
+
"""
|
109 |
+
# set slice_size = `None` to disable `attention slicing`
|
110 |
+
self.enable_attention_slicing(None)
|
111 |
+
|
112 |
+
def train(
|
113 |
+
self,
|
114 |
+
prompt: Union[str, List[str]],
|
115 |
+
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
116 |
+
height: Optional[int] = 512,
|
117 |
+
width: Optional[int] = 512,
|
118 |
+
generator: Optional[torch.Generator] = None,
|
119 |
+
embedding_learning_rate: float = 0.001,
|
120 |
+
diffusion_model_learning_rate: float = 2e-6,
|
121 |
+
text_embedding_optimization_steps: int = 500,
|
122 |
+
model_fine_tuning_optimization_steps: int = 1000,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
r"""
|
126 |
+
Function invoked when calling the pipeline for generation.
|
127 |
+
Args:
|
128 |
+
prompt (`str` or `List[str]`):
|
129 |
+
The prompt or prompts to guide the image generation.
|
130 |
+
height (`int`, *optional*, defaults to 512):
|
131 |
+
The height in pixels of the generated image.
|
132 |
+
width (`int`, *optional*, defaults to 512):
|
133 |
+
The width in pixels of the generated image.
|
134 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
135 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
136 |
+
expense of slower inference.
|
137 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
138 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
139 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
140 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
141 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
142 |
+
usually at the expense of lower image quality.
|
143 |
+
eta (`float`, *optional*, defaults to 0.0):
|
144 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
145 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
146 |
+
generator (`torch.Generator`, *optional*):
|
147 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
148 |
+
deterministic.
|
149 |
+
latents (`torch.FloatTensor`, *optional*):
|
150 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
151 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
152 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
153 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
154 |
+
The output format of the generate image. Choose between
|
155 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
156 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
157 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
158 |
+
plain tuple.
|
159 |
+
Returns:
|
160 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
161 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
162 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
163 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
164 |
+
(nsfw) content, according to the `safety_checker`.
|
165 |
+
"""
|
166 |
+
accelerator = Accelerator(
|
167 |
+
gradient_accumulation_steps=1,
|
168 |
+
mixed_precision="fp16",
|
169 |
+
)
|
170 |
+
|
171 |
+
if "torch_device" in kwargs:
|
172 |
+
device = kwargs.pop("torch_device")
|
173 |
+
warnings.warn(
|
174 |
+
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
175 |
+
" Consider using `pipe.to(torch_device)` instead."
|
176 |
+
)
|
177 |
+
|
178 |
+
if device is None:
|
179 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
180 |
+
self.to(device)
|
181 |
+
|
182 |
+
if height % 8 != 0 or width % 8 != 0:
|
183 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
184 |
+
|
185 |
+
# Freeze vae and unet
|
186 |
+
self.vae.requires_grad_(False)
|
187 |
+
self.unet.requires_grad_(False)
|
188 |
+
self.text_encoder.requires_grad_(False)
|
189 |
+
self.unet.eval()
|
190 |
+
self.vae.eval()
|
191 |
+
self.text_encoder.eval()
|
192 |
+
|
193 |
+
if accelerator.is_main_process:
|
194 |
+
accelerator.init_trackers(
|
195 |
+
"imagic",
|
196 |
+
config={
|
197 |
+
"embedding_learning_rate": embedding_learning_rate,
|
198 |
+
"text_embedding_optimization_steps": text_embedding_optimization_steps,
|
199 |
+
},
|
200 |
+
)
|
201 |
+
|
202 |
+
# get text embeddings for prompt
|
203 |
+
text_input = self.tokenizer(
|
204 |
+
prompt,
|
205 |
+
padding="max_length",
|
206 |
+
max_length=self.tokenizer.model_max_length,
|
207 |
+
truncaton=True,
|
208 |
+
return_tensors="pt",
|
209 |
+
)
|
210 |
+
text_embeddings = torch.nn.Parameter(
|
211 |
+
self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True
|
212 |
+
)
|
213 |
+
text_embeddings = text_embeddings.detach()
|
214 |
+
text_embeddings.requires_grad_()
|
215 |
+
text_embeddings_orig = text_embeddings.clone()
|
216 |
+
|
217 |
+
# Initialize the optimizer
|
218 |
+
optimizer = torch.optim.Adam(
|
219 |
+
[text_embeddings], # only optimize the embeddings
|
220 |
+
lr=embedding_learning_rate,
|
221 |
+
)
|
222 |
+
|
223 |
+
if isinstance(init_image, PIL.Image.Image):
|
224 |
+
init_image = preprocess(init_image)
|
225 |
+
|
226 |
+
latents_dtype = text_embeddings.dtype
|
227 |
+
init_image = init_image.to(device=self.device, dtype=latents_dtype)
|
228 |
+
init_latent_image_dist = self.vae.encode(init_image).latent_dist
|
229 |
+
init_image_latents = init_latent_image_dist.sample(generator=generator)
|
230 |
+
init_image_latents = 0.18215 * init_image_latents
|
231 |
+
|
232 |
+
progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process)
|
233 |
+
progress_bar.set_description("Steps")
|
234 |
+
|
235 |
+
global_step = 0
|
236 |
+
|
237 |
+
logger.info("First optimizing the text embedding to better reconstruct the init image")
|
238 |
+
for _ in range(text_embedding_optimization_steps):
|
239 |
+
with accelerator.accumulate(text_embeddings):
|
240 |
+
# Sample noise that we'll add to the latents
|
241 |
+
noise = torch.randn(init_image_latents.shape).to(init_image_latents.device)
|
242 |
+
timesteps = torch.randint(1000, (1,), device=init_image_latents.device)
|
243 |
+
|
244 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
245 |
+
# (this is the forward diffusion process)
|
246 |
+
noisy_latents = self.scheduler.add_noise(init_image_latents, noise, timesteps)
|
247 |
+
|
248 |
+
# Predict the noise residual
|
249 |
+
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
|
250 |
+
|
251 |
+
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
|
252 |
+
accelerator.backward(loss)
|
253 |
+
|
254 |
+
optimizer.step()
|
255 |
+
optimizer.zero_grad()
|
256 |
+
|
257 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
258 |
+
if accelerator.sync_gradients:
|
259 |
+
progress_bar.update(1)
|
260 |
+
global_step += 1
|
261 |
+
|
262 |
+
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
|
263 |
+
progress_bar.set_postfix(**logs)
|
264 |
+
accelerator.log(logs, step=global_step)
|
265 |
+
|
266 |
+
accelerator.wait_for_everyone()
|
267 |
+
|
268 |
+
text_embeddings.requires_grad_(False)
|
269 |
+
|
270 |
+
# Now we fine tune the unet to better reconstruct the image
|
271 |
+
self.unet.requires_grad_(True)
|
272 |
+
self.unet.train()
|
273 |
+
optimizer = torch.optim.Adam(
|
274 |
+
self.unet.parameters(), # only optimize unet
|
275 |
+
lr=diffusion_model_learning_rate,
|
276 |
+
)
|
277 |
+
progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process)
|
278 |
+
|
279 |
+
logger.info("Next fine tuning the entire model to better reconstruct the init image")
|
280 |
+
for _ in range(model_fine_tuning_optimization_steps):
|
281 |
+
with accelerator.accumulate(self.unet.parameters()):
|
282 |
+
# Sample noise that we'll add to the latents
|
283 |
+
noise = torch.randn(init_image_latents.shape).to(init_image_latents.device)
|
284 |
+
timesteps = torch.randint(1000, (1,), device=init_image_latents.device)
|
285 |
+
|
286 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
287 |
+
# (this is the forward diffusion process)
|
288 |
+
noisy_latents = self.scheduler.add_noise(init_image_latents, noise, timesteps)
|
289 |
+
|
290 |
+
# Predict the noise residual
|
291 |
+
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
|
292 |
+
|
293 |
+
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
|
294 |
+
accelerator.backward(loss)
|
295 |
+
|
296 |
+
optimizer.step()
|
297 |
+
optimizer.zero_grad()
|
298 |
+
|
299 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
300 |
+
if accelerator.sync_gradients:
|
301 |
+
progress_bar.update(1)
|
302 |
+
global_step += 1
|
303 |
+
|
304 |
+
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
|
305 |
+
progress_bar.set_postfix(**logs)
|
306 |
+
accelerator.log(logs, step=global_step)
|
307 |
+
|
308 |
+
accelerator.wait_for_everyone()
|
309 |
+
self.text_embeddings_orig = text_embeddings_orig
|
310 |
+
self.text_embeddings = text_embeddings
|
311 |
+
|
312 |
+
@torch.no_grad()
|
313 |
+
def __call__(
|
314 |
+
self,
|
315 |
+
alpha: float = 1.2,
|
316 |
+
height: Optional[int] = 512,
|
317 |
+
width: Optional[int] = 512,
|
318 |
+
num_inference_steps: Optional[int] = 50,
|
319 |
+
generator: Optional[torch.Generator] = None,
|
320 |
+
output_type: Optional[str] = "pil",
|
321 |
+
return_dict: bool = True,
|
322 |
+
guidance_scale: float = 7.5,
|
323 |
+
eta: float = 0.0,
|
324 |
+
**kwargs,
|
325 |
+
):
|
326 |
+
r"""
|
327 |
+
Function invoked when calling the pipeline for generation.
|
328 |
+
Args:
|
329 |
+
prompt (`str` or `List[str]`):
|
330 |
+
The prompt or prompts to guide the image generation.
|
331 |
+
height (`int`, *optional*, defaults to 512):
|
332 |
+
The height in pixels of the generated image.
|
333 |
+
width (`int`, *optional*, defaults to 512):
|
334 |
+
The width in pixels of the generated image.
|
335 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
336 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
337 |
+
expense of slower inference.
|
338 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
339 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
340 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
341 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
342 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
343 |
+
usually at the expense of lower image quality.
|
344 |
+
eta (`float`, *optional*, defaults to 0.0):
|
345 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
346 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
347 |
+
generator (`torch.Generator`, *optional*):
|
348 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
349 |
+
deterministic.
|
350 |
+
latents (`torch.FloatTensor`, *optional*):
|
351 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
352 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
353 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
354 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
355 |
+
The output format of the generate image. Choose between
|
356 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
357 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
358 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
359 |
+
plain tuple.
|
360 |
+
Returns:
|
361 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
362 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
363 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
364 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
365 |
+
(nsfw) content, according to the `safety_checker`.
|
366 |
+
"""
|
367 |
+
if height % 8 != 0 or width % 8 != 0:
|
368 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
369 |
+
if self.text_embeddings is None:
|
370 |
+
raise ValueError("Please run the pipe.train() before trying to generate an image.")
|
371 |
+
if self.text_embeddings_orig is None:
|
372 |
+
raise ValueError("Please run the pipe.train() before trying to generate an image.")
|
373 |
+
|
374 |
+
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings
|
375 |
+
|
376 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
377 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
378 |
+
# corresponds to doing no classifier free guidance.
|
379 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
380 |
+
# get unconditional embeddings for classifier free guidance
|
381 |
+
if do_classifier_free_guidance:
|
382 |
+
uncond_tokens = [""]
|
383 |
+
max_length = self.tokenizer.model_max_length
|
384 |
+
uncond_input = self.tokenizer(
|
385 |
+
uncond_tokens,
|
386 |
+
padding="max_length",
|
387 |
+
max_length=max_length,
|
388 |
+
truncation=True,
|
389 |
+
return_tensors="pt",
|
390 |
+
)
|
391 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
392 |
+
|
393 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
394 |
+
seq_len = uncond_embeddings.shape[1]
|
395 |
+
uncond_embeddings = uncond_embeddings.view(1, seq_len, -1)
|
396 |
+
|
397 |
+
# For classifier free guidance, we need to do two forward passes.
|
398 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
399 |
+
# to avoid doing two forward passes
|
400 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
401 |
+
|
402 |
+
# get the initial random noise unless the user supplied it
|
403 |
+
|
404 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
405 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
406 |
+
# However this currently doesn't work in `mps`.
|
407 |
+
latents_shape = (1, self.unet.in_channels, height // 8, width // 8)
|
408 |
+
latents_dtype = text_embeddings.dtype
|
409 |
+
if self.device.type == "mps":
|
410 |
+
# randn does not exist on mps
|
411 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
412 |
+
self.device
|
413 |
+
)
|
414 |
+
else:
|
415 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
416 |
+
|
417 |
+
# set timesteps
|
418 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
419 |
+
|
420 |
+
# Some schedulers like PNDM have timesteps as arrays
|
421 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
422 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
423 |
+
|
424 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
425 |
+
latents = latents * self.scheduler.init_noise_sigma
|
426 |
+
|
427 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
428 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
429 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
430 |
+
# and should be between [0, 1]
|
431 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
432 |
+
extra_step_kwargs = {}
|
433 |
+
if accepts_eta:
|
434 |
+
extra_step_kwargs["eta"] = eta
|
435 |
+
|
436 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
437 |
+
# expand the latents if we are doing classifier free guidance
|
438 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
439 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
440 |
+
|
441 |
+
# predict the noise residual
|
442 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
443 |
+
|
444 |
+
# perform guidance
|
445 |
+
if do_classifier_free_guidance:
|
446 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
447 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
448 |
+
|
449 |
+
# compute the previous noisy sample x_t -> x_t-1
|
450 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
451 |
+
|
452 |
+
latents = 1 / 0.18215 * latents
|
453 |
+
image = self.vae.decode(latents).sample
|
454 |
+
|
455 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
456 |
+
|
457 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
458 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
459 |
+
|
460 |
+
if self.safety_checker is not None:
|
461 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
462 |
+
self.device
|
463 |
+
)
|
464 |
+
image, has_nsfw_concept = self.safety_checker(
|
465 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
has_nsfw_concept = None
|
469 |
+
|
470 |
+
if output_type == "pil":
|
471 |
+
image = self.numpy_to_pil(image)
|
472 |
+
|
473 |
+
if not return_dict:
|
474 |
+
return (image, has_nsfw_concept)
|
475 |
+
|
476 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.7.0/interpolate_stable_diffusion.py
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from diffusers.configuration_utils import FrozenDict
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
13 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
14 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
15 |
+
from diffusers.utils import deprecate, logging
|
16 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
|
22 |
+
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
23 |
+
"""helper function to spherically interpolate two arrays v1 v2"""
|
24 |
+
|
25 |
+
if not isinstance(v0, np.ndarray):
|
26 |
+
inputs_are_torch = True
|
27 |
+
input_device = v0.device
|
28 |
+
v0 = v0.cpu().numpy()
|
29 |
+
v1 = v1.cpu().numpy()
|
30 |
+
|
31 |
+
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
32 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
33 |
+
v2 = (1 - t) * v0 + t * v1
|
34 |
+
else:
|
35 |
+
theta_0 = np.arccos(dot)
|
36 |
+
sin_theta_0 = np.sin(theta_0)
|
37 |
+
theta_t = theta_0 * t
|
38 |
+
sin_theta_t = np.sin(theta_t)
|
39 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
40 |
+
s1 = sin_theta_t / sin_theta_0
|
41 |
+
v2 = s0 * v0 + s1 * v1
|
42 |
+
|
43 |
+
if inputs_are_torch:
|
44 |
+
v2 = torch.from_numpy(v2).to(input_device)
|
45 |
+
|
46 |
+
return v2
|
47 |
+
|
48 |
+
|
49 |
+
class StableDiffusionWalkPipeline(DiffusionPipeline):
|
50 |
+
r"""
|
51 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
52 |
+
|
53 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
54 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
55 |
+
|
56 |
+
Args:
|
57 |
+
vae ([`AutoencoderKL`]):
|
58 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
59 |
+
text_encoder ([`CLIPTextModel`]):
|
60 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
61 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
62 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
63 |
+
tokenizer (`CLIPTokenizer`):
|
64 |
+
Tokenizer of class
|
65 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
66 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
67 |
+
scheduler ([`SchedulerMixin`]):
|
68 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
69 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
70 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
71 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
72 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
73 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
74 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
vae: AutoencoderKL,
|
80 |
+
text_encoder: CLIPTextModel,
|
81 |
+
tokenizer: CLIPTokenizer,
|
82 |
+
unet: UNet2DConditionModel,
|
83 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
84 |
+
safety_checker: StableDiffusionSafetyChecker,
|
85 |
+
feature_extractor: CLIPFeatureExtractor,
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
90 |
+
deprecation_message = (
|
91 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
92 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
93 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
94 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
95 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
96 |
+
" file"
|
97 |
+
)
|
98 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
99 |
+
new_config = dict(scheduler.config)
|
100 |
+
new_config["steps_offset"] = 1
|
101 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
102 |
+
|
103 |
+
if safety_checker is None:
|
104 |
+
logger.warn(
|
105 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
106 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
107 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
108 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
109 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
110 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
111 |
+
)
|
112 |
+
|
113 |
+
self.register_modules(
|
114 |
+
vae=vae,
|
115 |
+
text_encoder=text_encoder,
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
unet=unet,
|
118 |
+
scheduler=scheduler,
|
119 |
+
safety_checker=safety_checker,
|
120 |
+
feature_extractor=feature_extractor,
|
121 |
+
)
|
122 |
+
|
123 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
124 |
+
r"""
|
125 |
+
Enable sliced attention computation.
|
126 |
+
|
127 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
128 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
132 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
133 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
134 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
135 |
+
"""
|
136 |
+
if slice_size == "auto":
|
137 |
+
# half the attention head size is usually a good trade-off between
|
138 |
+
# speed and memory
|
139 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
140 |
+
self.unet.set_attention_slice(slice_size)
|
141 |
+
|
142 |
+
def disable_attention_slicing(self):
|
143 |
+
r"""
|
144 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
145 |
+
back to computing attention in one step.
|
146 |
+
"""
|
147 |
+
# set slice_size = `None` to disable `attention slicing`
|
148 |
+
self.enable_attention_slicing(None)
|
149 |
+
|
150 |
+
@torch.no_grad()
|
151 |
+
def __call__(
|
152 |
+
self,
|
153 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
154 |
+
height: int = 512,
|
155 |
+
width: int = 512,
|
156 |
+
num_inference_steps: int = 50,
|
157 |
+
guidance_scale: float = 7.5,
|
158 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
159 |
+
num_images_per_prompt: Optional[int] = 1,
|
160 |
+
eta: float = 0.0,
|
161 |
+
generator: Optional[torch.Generator] = None,
|
162 |
+
latents: Optional[torch.FloatTensor] = None,
|
163 |
+
output_type: Optional[str] = "pil",
|
164 |
+
return_dict: bool = True,
|
165 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
166 |
+
callback_steps: Optional[int] = 1,
|
167 |
+
text_embeddings: Optional[torch.FloatTensor] = None,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
r"""
|
171 |
+
Function invoked when calling the pipeline for generation.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
prompt (`str` or `List[str]`, *optional*, defaults to `None`):
|
175 |
+
The prompt or prompts to guide the image generation. If not provided, `text_embeddings` is required.
|
176 |
+
height (`int`, *optional*, defaults to 512):
|
177 |
+
The height in pixels of the generated image.
|
178 |
+
width (`int`, *optional*, defaults to 512):
|
179 |
+
The width in pixels of the generated image.
|
180 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
181 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
182 |
+
expense of slower inference.
|
183 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
184 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
185 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
186 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
187 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
188 |
+
usually at the expense of lower image quality.
|
189 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
190 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
191 |
+
if `guidance_scale` is less than `1`).
|
192 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
193 |
+
The number of images to generate per prompt.
|
194 |
+
eta (`float`, *optional*, defaults to 0.0):
|
195 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
196 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
197 |
+
generator (`torch.Generator`, *optional*):
|
198 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
199 |
+
deterministic.
|
200 |
+
latents (`torch.FloatTensor`, *optional*):
|
201 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
202 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
203 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
204 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
205 |
+
The output format of the generate image. Choose between
|
206 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
207 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
208 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
209 |
+
plain tuple.
|
210 |
+
callback (`Callable`, *optional*):
|
211 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
212 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
213 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
214 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
215 |
+
called at every step.
|
216 |
+
text_embeddings (`torch.FloatTensor`, *optional*, defaults to `None`):
|
217 |
+
Pre-generated text embeddings to be used as inputs for image generation. Can be used in place of
|
218 |
+
`prompt` to avoid re-computing the embeddings. If not provided, the embeddings will be generated from
|
219 |
+
the supplied `prompt`.
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
223 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
224 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
225 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
226 |
+
(nsfw) content, according to the `safety_checker`.
|
227 |
+
"""
|
228 |
+
|
229 |
+
if height % 8 != 0 or width % 8 != 0:
|
230 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
231 |
+
|
232 |
+
if (callback_steps is None) or (
|
233 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
234 |
+
):
|
235 |
+
raise ValueError(
|
236 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
237 |
+
f" {type(callback_steps)}."
|
238 |
+
)
|
239 |
+
|
240 |
+
if text_embeddings is None:
|
241 |
+
if isinstance(prompt, str):
|
242 |
+
batch_size = 1
|
243 |
+
elif isinstance(prompt, list):
|
244 |
+
batch_size = len(prompt)
|
245 |
+
else:
|
246 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
247 |
+
|
248 |
+
# get prompt text embeddings
|
249 |
+
text_inputs = self.tokenizer(
|
250 |
+
prompt,
|
251 |
+
padding="max_length",
|
252 |
+
max_length=self.tokenizer.model_max_length,
|
253 |
+
return_tensors="pt",
|
254 |
+
)
|
255 |
+
text_input_ids = text_inputs.input_ids
|
256 |
+
|
257 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
258 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
259 |
+
print(
|
260 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
261 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
262 |
+
)
|
263 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
264 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
265 |
+
else:
|
266 |
+
batch_size = text_embeddings.shape[0]
|
267 |
+
|
268 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
269 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
270 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
271 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
272 |
+
|
273 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
274 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
275 |
+
# corresponds to doing no classifier free guidance.
|
276 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
277 |
+
# get unconditional embeddings for classifier free guidance
|
278 |
+
if do_classifier_free_guidance:
|
279 |
+
uncond_tokens: List[str]
|
280 |
+
if negative_prompt is None:
|
281 |
+
uncond_tokens = [""] * batch_size
|
282 |
+
elif type(prompt) is not type(negative_prompt):
|
283 |
+
raise TypeError(
|
284 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
285 |
+
f" {type(prompt)}."
|
286 |
+
)
|
287 |
+
elif isinstance(negative_prompt, str):
|
288 |
+
uncond_tokens = [negative_prompt]
|
289 |
+
elif batch_size != len(negative_prompt):
|
290 |
+
raise ValueError(
|
291 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
292 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
293 |
+
" the batch size of `prompt`."
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
uncond_tokens = negative_prompt
|
297 |
+
|
298 |
+
max_length = self.tokenizer.model_max_length
|
299 |
+
uncond_input = self.tokenizer(
|
300 |
+
uncond_tokens,
|
301 |
+
padding="max_length",
|
302 |
+
max_length=max_length,
|
303 |
+
truncation=True,
|
304 |
+
return_tensors="pt",
|
305 |
+
)
|
306 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
307 |
+
|
308 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
309 |
+
seq_len = uncond_embeddings.shape[1]
|
310 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
311 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
312 |
+
|
313 |
+
# For classifier free guidance, we need to do two forward passes.
|
314 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
315 |
+
# to avoid doing two forward passes
|
316 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
317 |
+
|
318 |
+
# get the initial random noise unless the user supplied it
|
319 |
+
|
320 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
321 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
322 |
+
# However this currently doesn't work in `mps`.
|
323 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
324 |
+
latents_dtype = text_embeddings.dtype
|
325 |
+
if latents is None:
|
326 |
+
if self.device.type == "mps":
|
327 |
+
# randn does not work reproducibly on mps
|
328 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
329 |
+
self.device
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
333 |
+
else:
|
334 |
+
if latents.shape != latents_shape:
|
335 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
336 |
+
latents = latents.to(self.device)
|
337 |
+
|
338 |
+
# set timesteps
|
339 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
340 |
+
|
341 |
+
# Some schedulers like PNDM have timesteps as arrays
|
342 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
343 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
344 |
+
|
345 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
346 |
+
latents = latents * self.scheduler.init_noise_sigma
|
347 |
+
|
348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
349 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
350 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
351 |
+
# and should be between [0, 1]
|
352 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
353 |
+
extra_step_kwargs = {}
|
354 |
+
if accepts_eta:
|
355 |
+
extra_step_kwargs["eta"] = eta
|
356 |
+
|
357 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
358 |
+
# expand the latents if we are doing classifier free guidance
|
359 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
360 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
361 |
+
|
362 |
+
# predict the noise residual
|
363 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
364 |
+
|
365 |
+
# perform guidance
|
366 |
+
if do_classifier_free_guidance:
|
367 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
368 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
369 |
+
|
370 |
+
# compute the previous noisy sample x_t -> x_t-1
|
371 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
372 |
+
|
373 |
+
# call the callback, if provided
|
374 |
+
if callback is not None and i % callback_steps == 0:
|
375 |
+
callback(i, t, latents)
|
376 |
+
|
377 |
+
latents = 1 / 0.18215 * latents
|
378 |
+
image = self.vae.decode(latents).sample
|
379 |
+
|
380 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
381 |
+
|
382 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
383 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
384 |
+
|
385 |
+
if self.safety_checker is not None:
|
386 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
387 |
+
self.device
|
388 |
+
)
|
389 |
+
image, has_nsfw_concept = self.safety_checker(
|
390 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
has_nsfw_concept = None
|
394 |
+
|
395 |
+
if output_type == "pil":
|
396 |
+
image = self.numpy_to_pil(image)
|
397 |
+
|
398 |
+
if not return_dict:
|
399 |
+
return (image, has_nsfw_concept)
|
400 |
+
|
401 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
402 |
+
|
403 |
+
def embed_text(self, text):
|
404 |
+
"""takes in text and turns it into text embeddings"""
|
405 |
+
text_input = self.tokenizer(
|
406 |
+
text,
|
407 |
+
padding="max_length",
|
408 |
+
max_length=self.tokenizer.model_max_length,
|
409 |
+
truncation=True,
|
410 |
+
return_tensors="pt",
|
411 |
+
)
|
412 |
+
with torch.no_grad():
|
413 |
+
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
414 |
+
return embed
|
415 |
+
|
416 |
+
def get_noise(self, seed, dtype=torch.float32, height=512, width=512):
|
417 |
+
"""Takes in random seed and returns corresponding noise vector"""
|
418 |
+
return torch.randn(
|
419 |
+
(1, self.unet.in_channels, height // 8, width // 8),
|
420 |
+
generator=torch.Generator(device=self.device).manual_seed(seed),
|
421 |
+
device=self.device,
|
422 |
+
dtype=dtype,
|
423 |
+
)
|
424 |
+
|
425 |
+
def walk(
|
426 |
+
self,
|
427 |
+
prompts: List[str],
|
428 |
+
seeds: List[int],
|
429 |
+
num_interpolation_steps: Optional[int] = 6,
|
430 |
+
output_dir: Optional[str] = "./dreams",
|
431 |
+
name: Optional[str] = None,
|
432 |
+
batch_size: Optional[int] = 1,
|
433 |
+
height: Optional[int] = 512,
|
434 |
+
width: Optional[int] = 512,
|
435 |
+
guidance_scale: Optional[float] = 7.5,
|
436 |
+
num_inference_steps: Optional[int] = 50,
|
437 |
+
eta: Optional[float] = 0.0,
|
438 |
+
) -> List[str]:
|
439 |
+
"""
|
440 |
+
Walks through a series of prompts and seeds, interpolating between them and saving the results to disk.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
prompts (`List[str]`):
|
444 |
+
List of prompts to generate images for.
|
445 |
+
seeds (`List[int]`):
|
446 |
+
List of seeds corresponding to provided prompts. Must be the same length as prompts.
|
447 |
+
num_interpolation_steps (`int`, *optional*, defaults to 6):
|
448 |
+
Number of interpolation steps to take between prompts.
|
449 |
+
output_dir (`str`, *optional*, defaults to `./dreams`):
|
450 |
+
Directory to save the generated images to.
|
451 |
+
name (`str`, *optional*, defaults to `None`):
|
452 |
+
Subdirectory of `output_dir` to save the generated images to. If `None`, the name will
|
453 |
+
be the current time.
|
454 |
+
batch_size (`int`, *optional*, defaults to 1):
|
455 |
+
Number of images to generate at once.
|
456 |
+
height (`int`, *optional*, defaults to 512):
|
457 |
+
Height of the generated images.
|
458 |
+
width (`int`, *optional*, defaults to 512):
|
459 |
+
Width of the generated images.
|
460 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
461 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
462 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
463 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
464 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
465 |
+
usually at the expense of lower image quality.
|
466 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
467 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
468 |
+
expense of slower inference.
|
469 |
+
eta (`float`, *optional*, defaults to 0.0):
|
470 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
471 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
`List[str]`: List of paths to the generated images.
|
475 |
+
"""
|
476 |
+
if not len(prompts) == len(seeds):
|
477 |
+
raise ValueError(
|
478 |
+
f"Number of prompts and seeds must be equalGot {len(prompts)} prompts and {len(seeds)} seeds"
|
479 |
+
)
|
480 |
+
|
481 |
+
name = name or time.strftime("%Y%m%d-%H%M%S")
|
482 |
+
save_path = Path(output_dir) / name
|
483 |
+
save_path.mkdir(exist_ok=True, parents=True)
|
484 |
+
|
485 |
+
frame_idx = 0
|
486 |
+
frame_filepaths = []
|
487 |
+
for prompt_a, prompt_b, seed_a, seed_b in zip(prompts, prompts[1:], seeds, seeds[1:]):
|
488 |
+
# Embed Text
|
489 |
+
embed_a = self.embed_text(prompt_a)
|
490 |
+
embed_b = self.embed_text(prompt_b)
|
491 |
+
|
492 |
+
# Get Noise
|
493 |
+
noise_dtype = embed_a.dtype
|
494 |
+
noise_a = self.get_noise(seed_a, noise_dtype, height, width)
|
495 |
+
noise_b = self.get_noise(seed_b, noise_dtype, height, width)
|
496 |
+
|
497 |
+
noise_batch, embeds_batch = None, None
|
498 |
+
T = np.linspace(0.0, 1.0, num_interpolation_steps)
|
499 |
+
for i, t in enumerate(T):
|
500 |
+
noise = slerp(float(t), noise_a, noise_b)
|
501 |
+
embed = torch.lerp(embed_a, embed_b, t)
|
502 |
+
|
503 |
+
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise], dim=0)
|
504 |
+
embeds_batch = embed if embeds_batch is None else torch.cat([embeds_batch, embed], dim=0)
|
505 |
+
|
506 |
+
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == T.shape[0]
|
507 |
+
if batch_is_ready:
|
508 |
+
outputs = self(
|
509 |
+
latents=noise_batch,
|
510 |
+
text_embeddings=embeds_batch,
|
511 |
+
height=height,
|
512 |
+
width=width,
|
513 |
+
guidance_scale=guidance_scale,
|
514 |
+
eta=eta,
|
515 |
+
num_inference_steps=num_inference_steps,
|
516 |
+
)
|
517 |
+
noise_batch, embeds_batch = None, None
|
518 |
+
|
519 |
+
for image in outputs["images"]:
|
520 |
+
frame_filepath = str(save_path / f"frame_{frame_idx:06d}.png")
|
521 |
+
image.save(frame_filepath)
|
522 |
+
frame_filepaths.append(frame_filepath)
|
523 |
+
frame_idx += 1
|
524 |
+
return frame_filepaths
|
v0.7.0/lpw_stable_diffusion.py
ADDED
@@ -0,0 +1,1076 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import re
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import PIL
|
9 |
+
from diffusers.configuration_utils import FrozenDict
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
13 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
14 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
15 |
+
from diffusers.utils import deprecate, logging
|
16 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
re_attention = re.compile(
|
22 |
+
r"""
|
23 |
+
\\\(|
|
24 |
+
\\\)|
|
25 |
+
\\\[|
|
26 |
+
\\]|
|
27 |
+
\\\\|
|
28 |
+
\\|
|
29 |
+
\(|
|
30 |
+
\[|
|
31 |
+
:([+-]?[.\d]+)\)|
|
32 |
+
\)|
|
33 |
+
]|
|
34 |
+
[^\\()\[\]:]+|
|
35 |
+
:
|
36 |
+
""",
|
37 |
+
re.X,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def parse_prompt_attention(text):
|
42 |
+
"""
|
43 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
44 |
+
Accepted tokens are:
|
45 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
46 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
47 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
48 |
+
\( - literal character '('
|
49 |
+
\[ - literal character '['
|
50 |
+
\) - literal character ')'
|
51 |
+
\] - literal character ']'
|
52 |
+
\\ - literal character '\'
|
53 |
+
anything else - just text
|
54 |
+
>>> parse_prompt_attention('normal text')
|
55 |
+
[['normal text', 1.0]]
|
56 |
+
>>> parse_prompt_attention('an (important) word')
|
57 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
58 |
+
>>> parse_prompt_attention('(unbalanced')
|
59 |
+
[['unbalanced', 1.1]]
|
60 |
+
>>> parse_prompt_attention('\(literal\]')
|
61 |
+
[['(literal]', 1.0]]
|
62 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
63 |
+
[['unnecessaryparens', 1.1]]
|
64 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
65 |
+
[['a ', 1.0],
|
66 |
+
['house', 1.5730000000000004],
|
67 |
+
[' ', 1.1],
|
68 |
+
['on', 1.0],
|
69 |
+
[' a ', 1.1],
|
70 |
+
['hill', 0.55],
|
71 |
+
[', sun, ', 1.1],
|
72 |
+
['sky', 1.4641000000000006],
|
73 |
+
['.', 1.1]]
|
74 |
+
"""
|
75 |
+
|
76 |
+
res = []
|
77 |
+
round_brackets = []
|
78 |
+
square_brackets = []
|
79 |
+
|
80 |
+
round_bracket_multiplier = 1.1
|
81 |
+
square_bracket_multiplier = 1 / 1.1
|
82 |
+
|
83 |
+
def multiply_range(start_position, multiplier):
|
84 |
+
for p in range(start_position, len(res)):
|
85 |
+
res[p][1] *= multiplier
|
86 |
+
|
87 |
+
for m in re_attention.finditer(text):
|
88 |
+
text = m.group(0)
|
89 |
+
weight = m.group(1)
|
90 |
+
|
91 |
+
if text.startswith("\\"):
|
92 |
+
res.append([text[1:], 1.0])
|
93 |
+
elif text == "(":
|
94 |
+
round_brackets.append(len(res))
|
95 |
+
elif text == "[":
|
96 |
+
square_brackets.append(len(res))
|
97 |
+
elif weight is not None and len(round_brackets) > 0:
|
98 |
+
multiply_range(round_brackets.pop(), float(weight))
|
99 |
+
elif text == ")" and len(round_brackets) > 0:
|
100 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
101 |
+
elif text == "]" and len(square_brackets) > 0:
|
102 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
103 |
+
else:
|
104 |
+
res.append([text, 1.0])
|
105 |
+
|
106 |
+
for pos in round_brackets:
|
107 |
+
multiply_range(pos, round_bracket_multiplier)
|
108 |
+
|
109 |
+
for pos in square_brackets:
|
110 |
+
multiply_range(pos, square_bracket_multiplier)
|
111 |
+
|
112 |
+
if len(res) == 0:
|
113 |
+
res = [["", 1.0]]
|
114 |
+
|
115 |
+
# merge runs of identical weights
|
116 |
+
i = 0
|
117 |
+
while i + 1 < len(res):
|
118 |
+
if res[i][1] == res[i + 1][1]:
|
119 |
+
res[i][0] += res[i + 1][0]
|
120 |
+
res.pop(i + 1)
|
121 |
+
else:
|
122 |
+
i += 1
|
123 |
+
|
124 |
+
return res
|
125 |
+
|
126 |
+
|
127 |
+
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
|
128 |
+
r"""
|
129 |
+
Tokenize a list of prompts and return its tokens with weights of each token.
|
130 |
+
|
131 |
+
No padding, starting or ending token is included.
|
132 |
+
"""
|
133 |
+
tokens = []
|
134 |
+
weights = []
|
135 |
+
truncated = False
|
136 |
+
for text in prompt:
|
137 |
+
texts_and_weights = parse_prompt_attention(text)
|
138 |
+
text_token = []
|
139 |
+
text_weight = []
|
140 |
+
for word, weight in texts_and_weights:
|
141 |
+
# tokenize and discard the starting and the ending token
|
142 |
+
token = pipe.tokenizer(word).input_ids[1:-1]
|
143 |
+
text_token += token
|
144 |
+
# copy the weight by length of token
|
145 |
+
text_weight += [weight] * len(token)
|
146 |
+
# stop if the text is too long (longer than truncation limit)
|
147 |
+
if len(text_token) > max_length:
|
148 |
+
truncated = True
|
149 |
+
break
|
150 |
+
# truncate
|
151 |
+
if len(text_token) > max_length:
|
152 |
+
truncated = True
|
153 |
+
text_token = text_token[:max_length]
|
154 |
+
text_weight = text_weight[:max_length]
|
155 |
+
tokens.append(text_token)
|
156 |
+
weights.append(text_weight)
|
157 |
+
if truncated:
|
158 |
+
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
|
159 |
+
return tokens, weights
|
160 |
+
|
161 |
+
|
162 |
+
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
|
163 |
+
r"""
|
164 |
+
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
165 |
+
"""
|
166 |
+
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
167 |
+
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
168 |
+
for i in range(len(tokens)):
|
169 |
+
tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
|
170 |
+
if no_boseos_middle:
|
171 |
+
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
172 |
+
else:
|
173 |
+
w = []
|
174 |
+
if len(weights[i]) == 0:
|
175 |
+
w = [1.0] * weights_length
|
176 |
+
else:
|
177 |
+
for j in range(max_embeddings_multiples):
|
178 |
+
w.append(1.0) # weight for starting token in this chunk
|
179 |
+
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
|
180 |
+
w.append(1.0) # weight for ending token in this chunk
|
181 |
+
w += [1.0] * (weights_length - len(w))
|
182 |
+
weights[i] = w[:]
|
183 |
+
|
184 |
+
return tokens, weights
|
185 |
+
|
186 |
+
|
187 |
+
def get_unweighted_text_embeddings(
|
188 |
+
pipe: DiffusionPipeline,
|
189 |
+
text_input: torch.Tensor,
|
190 |
+
chunk_length: int,
|
191 |
+
no_boseos_middle: Optional[bool] = True,
|
192 |
+
):
|
193 |
+
"""
|
194 |
+
When the length of tokens is a multiple of the capacity of the text encoder,
|
195 |
+
it should be split into chunks and sent to the text encoder individually.
|
196 |
+
"""
|
197 |
+
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
|
198 |
+
if max_embeddings_multiples > 1:
|
199 |
+
text_embeddings = []
|
200 |
+
for i in range(max_embeddings_multiples):
|
201 |
+
# extract the i-th chunk
|
202 |
+
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
|
203 |
+
|
204 |
+
# cover the head and the tail by the starting and the ending tokens
|
205 |
+
text_input_chunk[:, 0] = text_input[0, 0]
|
206 |
+
text_input_chunk[:, -1] = text_input[0, -1]
|
207 |
+
text_embedding = pipe.text_encoder(text_input_chunk)[0]
|
208 |
+
|
209 |
+
if no_boseos_middle:
|
210 |
+
if i == 0:
|
211 |
+
# discard the ending token
|
212 |
+
text_embedding = text_embedding[:, :-1]
|
213 |
+
elif i == max_embeddings_multiples - 1:
|
214 |
+
# discard the starting token
|
215 |
+
text_embedding = text_embedding[:, 1:]
|
216 |
+
else:
|
217 |
+
# discard both starting and ending tokens
|
218 |
+
text_embedding = text_embedding[:, 1:-1]
|
219 |
+
|
220 |
+
text_embeddings.append(text_embedding)
|
221 |
+
text_embeddings = torch.concat(text_embeddings, axis=1)
|
222 |
+
else:
|
223 |
+
text_embeddings = pipe.text_encoder(text_input)[0]
|
224 |
+
return text_embeddings
|
225 |
+
|
226 |
+
|
227 |
+
def get_weighted_text_embeddings(
|
228 |
+
pipe: DiffusionPipeline,
|
229 |
+
prompt: Union[str, List[str]],
|
230 |
+
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
231 |
+
max_embeddings_multiples: Optional[int] = 1,
|
232 |
+
no_boseos_middle: Optional[bool] = False,
|
233 |
+
skip_parsing: Optional[bool] = False,
|
234 |
+
skip_weighting: Optional[bool] = False,
|
235 |
+
**kwargs,
|
236 |
+
):
|
237 |
+
r"""
|
238 |
+
Prompts can be assigned with local weights using brackets. For example,
|
239 |
+
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
|
240 |
+
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
|
241 |
+
|
242 |
+
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
pipe (`DiffusionPipeline`):
|
246 |
+
Pipe to provide access to the tokenizer and the text encoder.
|
247 |
+
prompt (`str` or `List[str]`):
|
248 |
+
The prompt or prompts to guide the image generation.
|
249 |
+
uncond_prompt (`str` or `List[str]`):
|
250 |
+
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
|
251 |
+
is provided, the embeddings of prompt and uncond_prompt are concatenated.
|
252 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `1`):
|
253 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
254 |
+
no_boseos_middle (`bool`, *optional*, defaults to `False`):
|
255 |
+
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
|
256 |
+
ending token in each of the chunk in the middle.
|
257 |
+
skip_parsing (`bool`, *optional*, defaults to `False`):
|
258 |
+
Skip the parsing of brackets.
|
259 |
+
skip_weighting (`bool`, *optional*, defaults to `False`):
|
260 |
+
Skip the weighting. When the parsing is skipped, it is forced True.
|
261 |
+
"""
|
262 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
263 |
+
if isinstance(prompt, str):
|
264 |
+
prompt = [prompt]
|
265 |
+
|
266 |
+
if not skip_parsing:
|
267 |
+
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
|
268 |
+
if uncond_prompt is not None:
|
269 |
+
if isinstance(uncond_prompt, str):
|
270 |
+
uncond_prompt = [uncond_prompt]
|
271 |
+
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
|
272 |
+
else:
|
273 |
+
prompt_tokens = [
|
274 |
+
token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
|
275 |
+
]
|
276 |
+
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
277 |
+
if uncond_prompt is not None:
|
278 |
+
if isinstance(uncond_prompt, str):
|
279 |
+
uncond_prompt = [uncond_prompt]
|
280 |
+
uncond_tokens = [
|
281 |
+
token[1:-1]
|
282 |
+
for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
|
283 |
+
]
|
284 |
+
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
|
285 |
+
|
286 |
+
# round up the longest length of tokens to a multiple of (model_max_length - 2)
|
287 |
+
max_length = max([len(token) for token in prompt_tokens])
|
288 |
+
if uncond_prompt is not None:
|
289 |
+
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
|
290 |
+
|
291 |
+
max_embeddings_multiples = min(
|
292 |
+
max_embeddings_multiples,
|
293 |
+
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
|
294 |
+
)
|
295 |
+
max_embeddings_multiples = max(1, max_embeddings_multiples)
|
296 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
297 |
+
|
298 |
+
# pad the length of tokens and weights
|
299 |
+
bos = pipe.tokenizer.bos_token_id
|
300 |
+
eos = pipe.tokenizer.eos_token_id
|
301 |
+
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
302 |
+
prompt_tokens,
|
303 |
+
prompt_weights,
|
304 |
+
max_length,
|
305 |
+
bos,
|
306 |
+
eos,
|
307 |
+
no_boseos_middle=no_boseos_middle,
|
308 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
309 |
+
)
|
310 |
+
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
|
311 |
+
if uncond_prompt is not None:
|
312 |
+
uncond_tokens, uncond_weights = pad_tokens_and_weights(
|
313 |
+
uncond_tokens,
|
314 |
+
uncond_weights,
|
315 |
+
max_length,
|
316 |
+
bos,
|
317 |
+
eos,
|
318 |
+
no_boseos_middle=no_boseos_middle,
|
319 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
320 |
+
)
|
321 |
+
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)
|
322 |
+
|
323 |
+
# get the embeddings
|
324 |
+
text_embeddings = get_unweighted_text_embeddings(
|
325 |
+
pipe,
|
326 |
+
prompt_tokens,
|
327 |
+
pipe.tokenizer.model_max_length,
|
328 |
+
no_boseos_middle=no_boseos_middle,
|
329 |
+
)
|
330 |
+
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
|
331 |
+
if uncond_prompt is not None:
|
332 |
+
uncond_embeddings = get_unweighted_text_embeddings(
|
333 |
+
pipe,
|
334 |
+
uncond_tokens,
|
335 |
+
pipe.tokenizer.model_max_length,
|
336 |
+
no_boseos_middle=no_boseos_middle,
|
337 |
+
)
|
338 |
+
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)
|
339 |
+
|
340 |
+
# assign weights to the prompts and normalize in the sense of mean
|
341 |
+
# TODO: should we normalize by chunk or in a whole (current implementation)?
|
342 |
+
if (not skip_parsing) and (not skip_weighting):
|
343 |
+
previous_mean = text_embeddings.mean(axis=[-2, -1])
|
344 |
+
text_embeddings *= prompt_weights.unsqueeze(-1)
|
345 |
+
text_embeddings *= (previous_mean / text_embeddings.mean(axis=[-2, -1])).unsqueeze(-1).unsqueeze(-1)
|
346 |
+
if uncond_prompt is not None:
|
347 |
+
previous_mean = uncond_embeddings.mean(axis=[-2, -1])
|
348 |
+
uncond_embeddings *= uncond_weights.unsqueeze(-1)
|
349 |
+
uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=[-2, -1])).unsqueeze(-1).unsqueeze(-1)
|
350 |
+
|
351 |
+
if uncond_prompt is not None:
|
352 |
+
return text_embeddings, uncond_embeddings
|
353 |
+
return text_embeddings, None
|
354 |
+
|
355 |
+
|
356 |
+
def preprocess_image(image):
|
357 |
+
w, h = image.size
|
358 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
359 |
+
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
360 |
+
image = np.array(image).astype(np.float32) / 255.0
|
361 |
+
image = image[None].transpose(0, 3, 1, 2)
|
362 |
+
image = torch.from_numpy(image)
|
363 |
+
return 2.0 * image - 1.0
|
364 |
+
|
365 |
+
|
366 |
+
def preprocess_mask(mask):
|
367 |
+
mask = mask.convert("L")
|
368 |
+
w, h = mask.size
|
369 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
370 |
+
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
|
371 |
+
mask = np.array(mask).astype(np.float32) / 255.0
|
372 |
+
mask = np.tile(mask, (4, 1, 1))
|
373 |
+
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
374 |
+
mask = 1 - mask # repaint white, keep black
|
375 |
+
mask = torch.from_numpy(mask)
|
376 |
+
return mask
|
377 |
+
|
378 |
+
|
379 |
+
class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
380 |
+
r"""
|
381 |
+
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
382 |
+
weighting in prompt.
|
383 |
+
|
384 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
385 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
386 |
+
|
387 |
+
Args:
|
388 |
+
vae ([`AutoencoderKL`]):
|
389 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
390 |
+
text_encoder ([`CLIPTextModel`]):
|
391 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
392 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
393 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
394 |
+
tokenizer (`CLIPTokenizer`):
|
395 |
+
Tokenizer of class
|
396 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
397 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
398 |
+
scheduler ([`SchedulerMixin`]):
|
399 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
400 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
401 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
402 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
403 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
404 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
405 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
406 |
+
"""
|
407 |
+
|
408 |
+
def __init__(
|
409 |
+
self,
|
410 |
+
vae: AutoencoderKL,
|
411 |
+
text_encoder: CLIPTextModel,
|
412 |
+
tokenizer: CLIPTokenizer,
|
413 |
+
unet: UNet2DConditionModel,
|
414 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
415 |
+
safety_checker: StableDiffusionSafetyChecker,
|
416 |
+
feature_extractor: CLIPFeatureExtractor,
|
417 |
+
):
|
418 |
+
super().__init__()
|
419 |
+
|
420 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
421 |
+
deprecation_message = (
|
422 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
423 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
424 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
425 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
426 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
427 |
+
" file"
|
428 |
+
)
|
429 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
430 |
+
new_config = dict(scheduler.config)
|
431 |
+
new_config["steps_offset"] = 1
|
432 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
433 |
+
|
434 |
+
if safety_checker is None:
|
435 |
+
logger.warn(
|
436 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
437 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
438 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
439 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
440 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
441 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
442 |
+
)
|
443 |
+
|
444 |
+
self.register_modules(
|
445 |
+
vae=vae,
|
446 |
+
text_encoder=text_encoder,
|
447 |
+
tokenizer=tokenizer,
|
448 |
+
unet=unet,
|
449 |
+
scheduler=scheduler,
|
450 |
+
safety_checker=safety_checker,
|
451 |
+
feature_extractor=feature_extractor,
|
452 |
+
)
|
453 |
+
|
454 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
455 |
+
r"""
|
456 |
+
Enable sliced attention computation.
|
457 |
+
|
458 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
459 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
463 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
464 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
465 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
466 |
+
"""
|
467 |
+
if slice_size == "auto":
|
468 |
+
# half the attention head size is usually a good trade-off between
|
469 |
+
# speed and memory
|
470 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
471 |
+
self.unet.set_attention_slice(slice_size)
|
472 |
+
|
473 |
+
def disable_attention_slicing(self):
|
474 |
+
r"""
|
475 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
476 |
+
back to computing attention in one step.
|
477 |
+
"""
|
478 |
+
# set slice_size = `None` to disable `attention slicing`
|
479 |
+
self.enable_attention_slicing(None)
|
480 |
+
|
481 |
+
@torch.no_grad()
|
482 |
+
def __call__(
|
483 |
+
self,
|
484 |
+
prompt: Union[str, List[str]],
|
485 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
486 |
+
init_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
487 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
488 |
+
height: int = 512,
|
489 |
+
width: int = 512,
|
490 |
+
num_inference_steps: int = 50,
|
491 |
+
guidance_scale: float = 7.5,
|
492 |
+
strength: float = 0.8,
|
493 |
+
num_images_per_prompt: Optional[int] = 1,
|
494 |
+
eta: float = 0.0,
|
495 |
+
generator: Optional[torch.Generator] = None,
|
496 |
+
latents: Optional[torch.FloatTensor] = None,
|
497 |
+
max_embeddings_multiples: Optional[int] = 3,
|
498 |
+
output_type: Optional[str] = "pil",
|
499 |
+
return_dict: bool = True,
|
500 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
501 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
502 |
+
callback_steps: Optional[int] = 1,
|
503 |
+
**kwargs,
|
504 |
+
):
|
505 |
+
r"""
|
506 |
+
Function invoked when calling the pipeline for generation.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
prompt (`str` or `List[str]`):
|
510 |
+
The prompt or prompts to guide the image generation.
|
511 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
512 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
513 |
+
if `guidance_scale` is less than `1`).
|
514 |
+
init_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
515 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
516 |
+
process.
|
517 |
+
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
518 |
+
`Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be
|
519 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
520 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
521 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
522 |
+
height (`int`, *optional*, defaults to 512):
|
523 |
+
The height in pixels of the generated image.
|
524 |
+
width (`int`, *optional*, defaults to 512):
|
525 |
+
The width in pixels of the generated image.
|
526 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
527 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
528 |
+
expense of slower inference.
|
529 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
530 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
531 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
532 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
533 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
534 |
+
usually at the expense of lower image quality.
|
535 |
+
strength (`float`, *optional*, defaults to 0.8):
|
536 |
+
Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1.
|
537 |
+
`init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
538 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
539 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
540 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`.
|
541 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
542 |
+
The number of images to generate per prompt.
|
543 |
+
eta (`float`, *optional*, defaults to 0.0):
|
544 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
545 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
546 |
+
generator (`torch.Generator`, *optional*):
|
547 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
548 |
+
deterministic.
|
549 |
+
latents (`torch.FloatTensor`, *optional*):
|
550 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
551 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
552 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
553 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
554 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
555 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
556 |
+
The output format of the generate image. Choose between
|
557 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
558 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
559 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
560 |
+
plain tuple.
|
561 |
+
callback (`Callable`, *optional*):
|
562 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
563 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
564 |
+
is_cancelled_callback (`Callable`, *optional*):
|
565 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
566 |
+
`True`, the inference will be cancelled.
|
567 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
568 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
569 |
+
called at every step.
|
570 |
+
|
571 |
+
Returns:
|
572 |
+
`None` if cancelled by `is_cancelled_callback`,
|
573 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
574 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
575 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
576 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
577 |
+
(nsfw) content, according to the `safety_checker`.
|
578 |
+
"""
|
579 |
+
|
580 |
+
if isinstance(prompt, str):
|
581 |
+
batch_size = 1
|
582 |
+
prompt = [prompt]
|
583 |
+
elif isinstance(prompt, list):
|
584 |
+
batch_size = len(prompt)
|
585 |
+
else:
|
586 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
587 |
+
|
588 |
+
if strength < 0 or strength > 1:
|
589 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
590 |
+
|
591 |
+
if height % 8 != 0 or width % 8 != 0:
|
592 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
593 |
+
|
594 |
+
if (callback_steps is None) or (
|
595 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
596 |
+
):
|
597 |
+
raise ValueError(
|
598 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
599 |
+
f" {type(callback_steps)}."
|
600 |
+
)
|
601 |
+
|
602 |
+
# get prompt text embeddings
|
603 |
+
|
604 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
605 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
606 |
+
# corresponds to doing no classifier free guidance.
|
607 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
608 |
+
# get unconditional embeddings for classifier free guidance
|
609 |
+
if negative_prompt is None:
|
610 |
+
negative_prompt = [""] * batch_size
|
611 |
+
elif isinstance(negative_prompt, str):
|
612 |
+
negative_prompt = [negative_prompt] * batch_size
|
613 |
+
if batch_size != len(negative_prompt):
|
614 |
+
raise ValueError(
|
615 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
616 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
617 |
+
" the batch size of `prompt`."
|
618 |
+
)
|
619 |
+
|
620 |
+
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
621 |
+
pipe=self,
|
622 |
+
prompt=prompt,
|
623 |
+
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
624 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
625 |
+
**kwargs,
|
626 |
+
)
|
627 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
628 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
629 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
630 |
+
|
631 |
+
if do_classifier_free_guidance:
|
632 |
+
bs_embed, seq_len, _ = uncond_embeddings.shape
|
633 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
634 |
+
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
635 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
636 |
+
|
637 |
+
# set timesteps
|
638 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
639 |
+
|
640 |
+
latents_dtype = text_embeddings.dtype
|
641 |
+
init_latents_orig = None
|
642 |
+
mask = None
|
643 |
+
noise = None
|
644 |
+
|
645 |
+
if init_image is None:
|
646 |
+
# get the initial random noise unless the user supplied it
|
647 |
+
|
648 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
649 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
650 |
+
# However this currently doesn't work in `mps`.
|
651 |
+
latents_shape = (
|
652 |
+
batch_size * num_images_per_prompt,
|
653 |
+
self.unet.in_channels,
|
654 |
+
height // 8,
|
655 |
+
width // 8,
|
656 |
+
)
|
657 |
+
|
658 |
+
if latents is None:
|
659 |
+
if self.device.type == "mps":
|
660 |
+
# randn does not exist on mps
|
661 |
+
latents = torch.randn(
|
662 |
+
latents_shape,
|
663 |
+
generator=generator,
|
664 |
+
device="cpu",
|
665 |
+
dtype=latents_dtype,
|
666 |
+
).to(self.device)
|
667 |
+
else:
|
668 |
+
latents = torch.randn(
|
669 |
+
latents_shape,
|
670 |
+
generator=generator,
|
671 |
+
device=self.device,
|
672 |
+
dtype=latents_dtype,
|
673 |
+
)
|
674 |
+
else:
|
675 |
+
if latents.shape != latents_shape:
|
676 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
677 |
+
latents = latents.to(self.device)
|
678 |
+
|
679 |
+
timesteps = self.scheduler.timesteps.to(self.device)
|
680 |
+
|
681 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
682 |
+
latents = latents * self.scheduler.init_noise_sigma
|
683 |
+
else:
|
684 |
+
if isinstance(init_image, PIL.Image.Image):
|
685 |
+
init_image = preprocess_image(init_image)
|
686 |
+
# encode the init image into latents and scale the latents
|
687 |
+
init_image = init_image.to(device=self.device, dtype=latents_dtype)
|
688 |
+
init_latent_dist = self.vae.encode(init_image).latent_dist
|
689 |
+
init_latents = init_latent_dist.sample(generator=generator)
|
690 |
+
init_latents = 0.18215 * init_latents
|
691 |
+
init_latents = torch.cat([init_latents] * batch_size * num_images_per_prompt, dim=0)
|
692 |
+
init_latents_orig = init_latents
|
693 |
+
|
694 |
+
# preprocess mask
|
695 |
+
if mask_image is not None:
|
696 |
+
if isinstance(mask_image, PIL.Image.Image):
|
697 |
+
mask_image = preprocess_mask(mask_image)
|
698 |
+
mask_image = mask_image.to(device=self.device, dtype=latents_dtype)
|
699 |
+
mask = torch.cat([mask_image] * batch_size * num_images_per_prompt)
|
700 |
+
|
701 |
+
# check sizes
|
702 |
+
if not mask.shape == init_latents.shape:
|
703 |
+
raise ValueError("The mask and init_image should be the same size!")
|
704 |
+
|
705 |
+
# get the original timestep using init_timestep
|
706 |
+
offset = self.scheduler.config.get("steps_offset", 0)
|
707 |
+
init_timestep = int(num_inference_steps * strength) + offset
|
708 |
+
init_timestep = min(init_timestep, num_inference_steps)
|
709 |
+
|
710 |
+
timesteps = self.scheduler.timesteps[-init_timestep]
|
711 |
+
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device)
|
712 |
+
|
713 |
+
# add noise to latents using the timesteps
|
714 |
+
if self.device.type == "mps":
|
715 |
+
# randn does not exist on mps
|
716 |
+
noise = torch.randn(
|
717 |
+
init_latents.shape,
|
718 |
+
generator=generator,
|
719 |
+
device="cpu",
|
720 |
+
dtype=latents_dtype,
|
721 |
+
).to(self.device)
|
722 |
+
else:
|
723 |
+
noise = torch.randn(
|
724 |
+
init_latents.shape,
|
725 |
+
generator=generator,
|
726 |
+
device=self.device,
|
727 |
+
dtype=latents_dtype,
|
728 |
+
)
|
729 |
+
latents = self.scheduler.add_noise(init_latents, noise, timesteps)
|
730 |
+
|
731 |
+
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
732 |
+
timesteps = self.scheduler.timesteps[t_start:].to(self.device)
|
733 |
+
|
734 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
735 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
736 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
737 |
+
# and should be between [0, 1]
|
738 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
739 |
+
extra_step_kwargs = {}
|
740 |
+
if accepts_eta:
|
741 |
+
extra_step_kwargs["eta"] = eta
|
742 |
+
|
743 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
744 |
+
# expand the latents if we are doing classifier free guidance
|
745 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
746 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
747 |
+
|
748 |
+
# predict the noise residual
|
749 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
750 |
+
|
751 |
+
# perform guidance
|
752 |
+
if do_classifier_free_guidance:
|
753 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
754 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
755 |
+
|
756 |
+
# compute the previous noisy sample x_t -> x_t-1
|
757 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
758 |
+
|
759 |
+
if mask is not None:
|
760 |
+
# masking
|
761 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
762 |
+
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
763 |
+
|
764 |
+
# call the callback, if provided
|
765 |
+
if i % callback_steps == 0:
|
766 |
+
if callback is not None:
|
767 |
+
callback(i, t, latents)
|
768 |
+
if is_cancelled_callback is not None and is_cancelled_callback():
|
769 |
+
return None
|
770 |
+
|
771 |
+
latents = 1 / 0.18215 * latents
|
772 |
+
image = self.vae.decode(latents).sample
|
773 |
+
|
774 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
775 |
+
|
776 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
777 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
778 |
+
|
779 |
+
if self.safety_checker is not None:
|
780 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
781 |
+
self.device
|
782 |
+
)
|
783 |
+
image, has_nsfw_concept = self.safety_checker(
|
784 |
+
images=image,
|
785 |
+
clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype),
|
786 |
+
)
|
787 |
+
else:
|
788 |
+
has_nsfw_concept = None
|
789 |
+
|
790 |
+
if output_type == "pil":
|
791 |
+
image = self.numpy_to_pil(image)
|
792 |
+
|
793 |
+
if not return_dict:
|
794 |
+
return (image, has_nsfw_concept)
|
795 |
+
|
796 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
797 |
+
|
798 |
+
def text2img(
|
799 |
+
self,
|
800 |
+
prompt: Union[str, List[str]],
|
801 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
802 |
+
height: int = 512,
|
803 |
+
width: int = 512,
|
804 |
+
num_inference_steps: int = 50,
|
805 |
+
guidance_scale: float = 7.5,
|
806 |
+
num_images_per_prompt: Optional[int] = 1,
|
807 |
+
eta: float = 0.0,
|
808 |
+
generator: Optional[torch.Generator] = None,
|
809 |
+
latents: Optional[torch.FloatTensor] = None,
|
810 |
+
max_embeddings_multiples: Optional[int] = 3,
|
811 |
+
output_type: Optional[str] = "pil",
|
812 |
+
return_dict: bool = True,
|
813 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
814 |
+
callback_steps: Optional[int] = 1,
|
815 |
+
**kwargs,
|
816 |
+
):
|
817 |
+
r"""
|
818 |
+
Function for text-to-image generation.
|
819 |
+
Args:
|
820 |
+
prompt (`str` or `List[str]`):
|
821 |
+
The prompt or prompts to guide the image generation.
|
822 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
823 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
824 |
+
if `guidance_scale` is less than `1`).
|
825 |
+
height (`int`, *optional*, defaults to 512):
|
826 |
+
The height in pixels of the generated image.
|
827 |
+
width (`int`, *optional*, defaults to 512):
|
828 |
+
The width in pixels of the generated image.
|
829 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
830 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
831 |
+
expense of slower inference.
|
832 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
833 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
834 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
835 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
836 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
837 |
+
usually at the expense of lower image quality.
|
838 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
839 |
+
The number of images to generate per prompt.
|
840 |
+
eta (`float`, *optional*, defaults to 0.0):
|
841 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
842 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
843 |
+
generator (`torch.Generator`, *optional*):
|
844 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
845 |
+
deterministic.
|
846 |
+
latents (`torch.FloatTensor`, *optional*):
|
847 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
848 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
849 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
850 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
851 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
852 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
853 |
+
The output format of the generate image. Choose between
|
854 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
855 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
856 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
857 |
+
plain tuple.
|
858 |
+
callback (`Callable`, *optional*):
|
859 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
860 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
861 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
862 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
863 |
+
called at every step.
|
864 |
+
Returns:
|
865 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
866 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
867 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
868 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
869 |
+
(nsfw) content, according to the `safety_checker`.
|
870 |
+
"""
|
871 |
+
return self.__call__(
|
872 |
+
prompt=prompt,
|
873 |
+
negative_prompt=negative_prompt,
|
874 |
+
height=height,
|
875 |
+
width=width,
|
876 |
+
num_inference_steps=num_inference_steps,
|
877 |
+
guidance_scale=guidance_scale,
|
878 |
+
num_images_per_prompt=num_images_per_prompt,
|
879 |
+
eta=eta,
|
880 |
+
generator=generator,
|
881 |
+
latents=latents,
|
882 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
883 |
+
output_type=output_type,
|
884 |
+
return_dict=return_dict,
|
885 |
+
callback=callback,
|
886 |
+
callback_steps=callback_steps,
|
887 |
+
**kwargs,
|
888 |
+
)
|
889 |
+
|
890 |
+
def img2img(
|
891 |
+
self,
|
892 |
+
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
893 |
+
prompt: Union[str, List[str]],
|
894 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
895 |
+
strength: float = 0.8,
|
896 |
+
num_inference_steps: Optional[int] = 50,
|
897 |
+
guidance_scale: Optional[float] = 7.5,
|
898 |
+
num_images_per_prompt: Optional[int] = 1,
|
899 |
+
eta: Optional[float] = 0.0,
|
900 |
+
generator: Optional[torch.Generator] = None,
|
901 |
+
max_embeddings_multiples: Optional[int] = 3,
|
902 |
+
output_type: Optional[str] = "pil",
|
903 |
+
return_dict: bool = True,
|
904 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
905 |
+
callback_steps: Optional[int] = 1,
|
906 |
+
**kwargs,
|
907 |
+
):
|
908 |
+
r"""
|
909 |
+
Function for image-to-image generation.
|
910 |
+
Args:
|
911 |
+
init_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
912 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
913 |
+
process.
|
914 |
+
prompt (`str` or `List[str]`):
|
915 |
+
The prompt or prompts to guide the image generation.
|
916 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
917 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
918 |
+
if `guidance_scale` is less than `1`).
|
919 |
+
strength (`float`, *optional*, defaults to 0.8):
|
920 |
+
Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1.
|
921 |
+
`init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
922 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
923 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
924 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`.
|
925 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
926 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
927 |
+
expense of slower inference. This parameter will be modulated by `strength`.
|
928 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
929 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
930 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
931 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
932 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
933 |
+
usually at the expense of lower image quality.
|
934 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
935 |
+
The number of images to generate per prompt.
|
936 |
+
eta (`float`, *optional*, defaults to 0.0):
|
937 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
938 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
939 |
+
generator (`torch.Generator`, *optional*):
|
940 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
941 |
+
deterministic.
|
942 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
943 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
944 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
945 |
+
The output format of the generate image. Choose between
|
946 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
947 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
948 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
949 |
+
plain tuple.
|
950 |
+
callback (`Callable`, *optional*):
|
951 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
952 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
953 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
954 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
955 |
+
called at every step.
|
956 |
+
Returns:
|
957 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
958 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
959 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
960 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
961 |
+
(nsfw) content, according to the `safety_checker`.
|
962 |
+
"""
|
963 |
+
return self.__call__(
|
964 |
+
prompt=prompt,
|
965 |
+
negative_prompt=negative_prompt,
|
966 |
+
init_image=init_image,
|
967 |
+
num_inference_steps=num_inference_steps,
|
968 |
+
guidance_scale=guidance_scale,
|
969 |
+
strength=strength,
|
970 |
+
num_images_per_prompt=num_images_per_prompt,
|
971 |
+
eta=eta,
|
972 |
+
generator=generator,
|
973 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
974 |
+
output_type=output_type,
|
975 |
+
return_dict=return_dict,
|
976 |
+
callback=callback,
|
977 |
+
callback_steps=callback_steps,
|
978 |
+
**kwargs,
|
979 |
+
)
|
980 |
+
|
981 |
+
def inpaint(
|
982 |
+
self,
|
983 |
+
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
984 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
|
985 |
+
prompt: Union[str, List[str]],
|
986 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
987 |
+
strength: float = 0.8,
|
988 |
+
num_inference_steps: Optional[int] = 50,
|
989 |
+
guidance_scale: Optional[float] = 7.5,
|
990 |
+
num_images_per_prompt: Optional[int] = 1,
|
991 |
+
eta: Optional[float] = 0.0,
|
992 |
+
generator: Optional[torch.Generator] = None,
|
993 |
+
max_embeddings_multiples: Optional[int] = 3,
|
994 |
+
output_type: Optional[str] = "pil",
|
995 |
+
return_dict: bool = True,
|
996 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
997 |
+
callback_steps: Optional[int] = 1,
|
998 |
+
**kwargs,
|
999 |
+
):
|
1000 |
+
r"""
|
1001 |
+
Function for inpaint.
|
1002 |
+
Args:
|
1003 |
+
init_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
1004 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
1005 |
+
process. This is the image whose masked region will be inpainted.
|
1006 |
+
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
1007 |
+
`Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be
|
1008 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
1009 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
1010 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
1011 |
+
prompt (`str` or `List[str]`):
|
1012 |
+
The prompt or prompts to guide the image generation.
|
1013 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1014 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
1015 |
+
if `guidance_scale` is less than `1`).
|
1016 |
+
strength (`float`, *optional*, defaults to 0.8):
|
1017 |
+
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
|
1018 |
+
is 1, the denoising process will be run on the masked area for the full number of iterations specified
|
1019 |
+
in `num_inference_steps`. `init_image` will be used as a reference for the masked area, adding more
|
1020 |
+
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
|
1021 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1022 |
+
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
1023 |
+
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
1024 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1025 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1026 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1027 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1028 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1029 |
+
usually at the expense of lower image quality.
|
1030 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1031 |
+
The number of images to generate per prompt.
|
1032 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1033 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1034 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1035 |
+
generator (`torch.Generator`, *optional*):
|
1036 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
1037 |
+
deterministic.
|
1038 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
1039 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
1040 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1041 |
+
The output format of the generate image. Choose between
|
1042 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1043 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1044 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1045 |
+
plain tuple.
|
1046 |
+
callback (`Callable`, *optional*):
|
1047 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1048 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1049 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1050 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1051 |
+
called at every step.
|
1052 |
+
Returns:
|
1053 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1054 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1055 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1056 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1057 |
+
(nsfw) content, according to the `safety_checker`.
|
1058 |
+
"""
|
1059 |
+
return self.__call__(
|
1060 |
+
prompt=prompt,
|
1061 |
+
negative_prompt=negative_prompt,
|
1062 |
+
init_image=init_image,
|
1063 |
+
mask_image=mask_image,
|
1064 |
+
num_inference_steps=num_inference_steps,
|
1065 |
+
guidance_scale=guidance_scale,
|
1066 |
+
strength=strength,
|
1067 |
+
num_images_per_prompt=num_images_per_prompt,
|
1068 |
+
eta=eta,
|
1069 |
+
generator=generator,
|
1070 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
1071 |
+
output_type=output_type,
|
1072 |
+
return_dict=return_dict,
|
1073 |
+
callback=callback,
|
1074 |
+
callback_steps=callback_steps,
|
1075 |
+
**kwargs,
|
1076 |
+
)
|
v0.7.0/lpw_stable_diffusion_onnx.py
ADDED
@@ -0,0 +1,992 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import re
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import PIL
|
9 |
+
from diffusers.onnx_utils import OnnxRuntimeModel
|
10 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
11 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
12 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
13 |
+
from diffusers.utils import logging
|
14 |
+
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
15 |
+
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
18 |
+
|
19 |
+
re_attention = re.compile(
|
20 |
+
r"""
|
21 |
+
\\\(|
|
22 |
+
\\\)|
|
23 |
+
\\\[|
|
24 |
+
\\]|
|
25 |
+
\\\\|
|
26 |
+
\\|
|
27 |
+
\(|
|
28 |
+
\[|
|
29 |
+
:([+-]?[.\d]+)\)|
|
30 |
+
\)|
|
31 |
+
]|
|
32 |
+
[^\\()\[\]:]+|
|
33 |
+
:
|
34 |
+
""",
|
35 |
+
re.X,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def parse_prompt_attention(text):
|
40 |
+
"""
|
41 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
42 |
+
Accepted tokens are:
|
43 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
44 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
45 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
46 |
+
\( - literal character '('
|
47 |
+
\[ - literal character '['
|
48 |
+
\) - literal character ')'
|
49 |
+
\] - literal character ']'
|
50 |
+
\\ - literal character '\'
|
51 |
+
anything else - just text
|
52 |
+
>>> parse_prompt_attention('normal text')
|
53 |
+
[['normal text', 1.0]]
|
54 |
+
>>> parse_prompt_attention('an (important) word')
|
55 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
56 |
+
>>> parse_prompt_attention('(unbalanced')
|
57 |
+
[['unbalanced', 1.1]]
|
58 |
+
>>> parse_prompt_attention('\(literal\]')
|
59 |
+
[['(literal]', 1.0]]
|
60 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
61 |
+
[['unnecessaryparens', 1.1]]
|
62 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
63 |
+
[['a ', 1.0],
|
64 |
+
['house', 1.5730000000000004],
|
65 |
+
[' ', 1.1],
|
66 |
+
['on', 1.0],
|
67 |
+
[' a ', 1.1],
|
68 |
+
['hill', 0.55],
|
69 |
+
[', sun, ', 1.1],
|
70 |
+
['sky', 1.4641000000000006],
|
71 |
+
['.', 1.1]]
|
72 |
+
"""
|
73 |
+
|
74 |
+
res = []
|
75 |
+
round_brackets = []
|
76 |
+
square_brackets = []
|
77 |
+
|
78 |
+
round_bracket_multiplier = 1.1
|
79 |
+
square_bracket_multiplier = 1 / 1.1
|
80 |
+
|
81 |
+
def multiply_range(start_position, multiplier):
|
82 |
+
for p in range(start_position, len(res)):
|
83 |
+
res[p][1] *= multiplier
|
84 |
+
|
85 |
+
for m in re_attention.finditer(text):
|
86 |
+
text = m.group(0)
|
87 |
+
weight = m.group(1)
|
88 |
+
|
89 |
+
if text.startswith("\\"):
|
90 |
+
res.append([text[1:], 1.0])
|
91 |
+
elif text == "(":
|
92 |
+
round_brackets.append(len(res))
|
93 |
+
elif text == "[":
|
94 |
+
square_brackets.append(len(res))
|
95 |
+
elif weight is not None and len(round_brackets) > 0:
|
96 |
+
multiply_range(round_brackets.pop(), float(weight))
|
97 |
+
elif text == ")" and len(round_brackets) > 0:
|
98 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
99 |
+
elif text == "]" and len(square_brackets) > 0:
|
100 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
101 |
+
else:
|
102 |
+
res.append([text, 1.0])
|
103 |
+
|
104 |
+
for pos in round_brackets:
|
105 |
+
multiply_range(pos, round_bracket_multiplier)
|
106 |
+
|
107 |
+
for pos in square_brackets:
|
108 |
+
multiply_range(pos, square_bracket_multiplier)
|
109 |
+
|
110 |
+
if len(res) == 0:
|
111 |
+
res = [["", 1.0]]
|
112 |
+
|
113 |
+
# merge runs of identical weights
|
114 |
+
i = 0
|
115 |
+
while i + 1 < len(res):
|
116 |
+
if res[i][1] == res[i + 1][1]:
|
117 |
+
res[i][0] += res[i + 1][0]
|
118 |
+
res.pop(i + 1)
|
119 |
+
else:
|
120 |
+
i += 1
|
121 |
+
|
122 |
+
return res
|
123 |
+
|
124 |
+
|
125 |
+
def get_prompts_with_weights(pipe, prompt: List[str], max_length: int):
|
126 |
+
r"""
|
127 |
+
Tokenize a list of prompts and return its tokens with weights of each token.
|
128 |
+
|
129 |
+
No padding, starting or ending token is included.
|
130 |
+
"""
|
131 |
+
tokens = []
|
132 |
+
weights = []
|
133 |
+
truncated = False
|
134 |
+
for text in prompt:
|
135 |
+
texts_and_weights = parse_prompt_attention(text)
|
136 |
+
text_token = []
|
137 |
+
text_weight = []
|
138 |
+
for word, weight in texts_and_weights:
|
139 |
+
# tokenize and discard the starting and the ending token
|
140 |
+
token = pipe.tokenizer(word, return_tensors="np").input_ids[0, 1:-1]
|
141 |
+
text_token += list(token)
|
142 |
+
# copy the weight by length of token
|
143 |
+
text_weight += [weight] * len(token)
|
144 |
+
# stop if the text is too long (longer than truncation limit)
|
145 |
+
if len(text_token) > max_length:
|
146 |
+
truncated = True
|
147 |
+
break
|
148 |
+
# truncate
|
149 |
+
if len(text_token) > max_length:
|
150 |
+
truncated = True
|
151 |
+
text_token = text_token[:max_length]
|
152 |
+
text_weight = text_weight[:max_length]
|
153 |
+
tokens.append(text_token)
|
154 |
+
weights.append(text_weight)
|
155 |
+
if truncated:
|
156 |
+
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
|
157 |
+
return tokens, weights
|
158 |
+
|
159 |
+
|
160 |
+
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
|
161 |
+
r"""
|
162 |
+
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
163 |
+
"""
|
164 |
+
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
165 |
+
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
166 |
+
for i in range(len(tokens)):
|
167 |
+
tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
|
168 |
+
if no_boseos_middle:
|
169 |
+
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
170 |
+
else:
|
171 |
+
w = []
|
172 |
+
if len(weights[i]) == 0:
|
173 |
+
w = [1.0] * weights_length
|
174 |
+
else:
|
175 |
+
for j in range(max_embeddings_multiples):
|
176 |
+
w.append(1.0) # weight for starting token in this chunk
|
177 |
+
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
|
178 |
+
w.append(1.0) # weight for ending token in this chunk
|
179 |
+
w += [1.0] * (weights_length - len(w))
|
180 |
+
weights[i] = w[:]
|
181 |
+
|
182 |
+
return tokens, weights
|
183 |
+
|
184 |
+
|
185 |
+
def get_unweighted_text_embeddings(
|
186 |
+
pipe,
|
187 |
+
text_input: np.array,
|
188 |
+
chunk_length: int,
|
189 |
+
no_boseos_middle: Optional[bool] = True,
|
190 |
+
):
|
191 |
+
"""
|
192 |
+
When the length of tokens is a multiple of the capacity of the text encoder,
|
193 |
+
it should be split into chunks and sent to the text encoder individually.
|
194 |
+
"""
|
195 |
+
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
|
196 |
+
if max_embeddings_multiples > 1:
|
197 |
+
text_embeddings = []
|
198 |
+
for i in range(max_embeddings_multiples):
|
199 |
+
# extract the i-th chunk
|
200 |
+
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].copy()
|
201 |
+
|
202 |
+
# cover the head and the tail by the starting and the ending tokens
|
203 |
+
text_input_chunk[:, 0] = text_input[0, 0]
|
204 |
+
text_input_chunk[:, -1] = text_input[0, -1]
|
205 |
+
|
206 |
+
text_embedding = pipe.text_encoder(input_ids=text_input_chunk)[0]
|
207 |
+
|
208 |
+
if no_boseos_middle:
|
209 |
+
if i == 0:
|
210 |
+
# discard the ending token
|
211 |
+
text_embedding = text_embedding[:, :-1]
|
212 |
+
elif i == max_embeddings_multiples - 1:
|
213 |
+
# discard the starting token
|
214 |
+
text_embedding = text_embedding[:, 1:]
|
215 |
+
else:
|
216 |
+
# discard both starting and ending tokens
|
217 |
+
text_embedding = text_embedding[:, 1:-1]
|
218 |
+
|
219 |
+
text_embeddings.append(text_embedding)
|
220 |
+
text_embeddings = np.concatenate(text_embeddings, axis=1)
|
221 |
+
else:
|
222 |
+
text_embeddings = pipe.text_encoder(input_ids=text_input)[0]
|
223 |
+
return text_embeddings
|
224 |
+
|
225 |
+
|
226 |
+
def get_weighted_text_embeddings(
|
227 |
+
pipe,
|
228 |
+
prompt: Union[str, List[str]],
|
229 |
+
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
230 |
+
max_embeddings_multiples: Optional[int] = 4,
|
231 |
+
no_boseos_middle: Optional[bool] = False,
|
232 |
+
skip_parsing: Optional[bool] = False,
|
233 |
+
skip_weighting: Optional[bool] = False,
|
234 |
+
**kwargs,
|
235 |
+
):
|
236 |
+
r"""
|
237 |
+
Prompts can be assigned with local weights using brackets. For example,
|
238 |
+
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
|
239 |
+
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
|
240 |
+
|
241 |
+
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
pipe (`DiffusionPipeline`):
|
245 |
+
Pipe to provide access to the tokenizer and the text encoder.
|
246 |
+
prompt (`str` or `List[str]`):
|
247 |
+
The prompt or prompts to guide the image generation.
|
248 |
+
uncond_prompt (`str` or `List[str]`):
|
249 |
+
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
|
250 |
+
is provided, the embeddings of prompt and uncond_prompt are concatenated.
|
251 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `1`):
|
252 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
253 |
+
no_boseos_middle (`bool`, *optional*, defaults to `False`):
|
254 |
+
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
|
255 |
+
ending token in each of the chunk in the middle.
|
256 |
+
skip_parsing (`bool`, *optional*, defaults to `False`):
|
257 |
+
Skip the parsing of brackets.
|
258 |
+
skip_weighting (`bool`, *optional*, defaults to `False`):
|
259 |
+
Skip the weighting. When the parsing is skipped, it is forced True.
|
260 |
+
"""
|
261 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
262 |
+
if isinstance(prompt, str):
|
263 |
+
prompt = [prompt]
|
264 |
+
|
265 |
+
if not skip_parsing:
|
266 |
+
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
|
267 |
+
if uncond_prompt is not None:
|
268 |
+
if isinstance(uncond_prompt, str):
|
269 |
+
uncond_prompt = [uncond_prompt]
|
270 |
+
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
|
271 |
+
else:
|
272 |
+
prompt_tokens = [
|
273 |
+
token[1:-1]
|
274 |
+
for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True, return_tensors="np").input_ids
|
275 |
+
]
|
276 |
+
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
277 |
+
if uncond_prompt is not None:
|
278 |
+
if isinstance(uncond_prompt, str):
|
279 |
+
uncond_prompt = [uncond_prompt]
|
280 |
+
uncond_tokens = [
|
281 |
+
token[1:-1]
|
282 |
+
for token in pipe.tokenizer(
|
283 |
+
uncond_prompt,
|
284 |
+
max_length=max_length,
|
285 |
+
truncation=True,
|
286 |
+
return_tensors="np",
|
287 |
+
).input_ids
|
288 |
+
]
|
289 |
+
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
|
290 |
+
|
291 |
+
# round up the longest length of tokens to a multiple of (model_max_length - 2)
|
292 |
+
max_length = max([len(token) for token in prompt_tokens])
|
293 |
+
if uncond_prompt is not None:
|
294 |
+
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
|
295 |
+
|
296 |
+
max_embeddings_multiples = min(
|
297 |
+
max_embeddings_multiples,
|
298 |
+
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
|
299 |
+
)
|
300 |
+
max_embeddings_multiples = max(1, max_embeddings_multiples)
|
301 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
302 |
+
|
303 |
+
# pad the length of tokens and weights
|
304 |
+
bos = pipe.tokenizer.bos_token_id
|
305 |
+
eos = pipe.tokenizer.eos_token_id
|
306 |
+
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
307 |
+
prompt_tokens,
|
308 |
+
prompt_weights,
|
309 |
+
max_length,
|
310 |
+
bos,
|
311 |
+
eos,
|
312 |
+
no_boseos_middle=no_boseos_middle,
|
313 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
314 |
+
)
|
315 |
+
prompt_tokens = np.array(prompt_tokens, dtype=np.int32)
|
316 |
+
if uncond_prompt is not None:
|
317 |
+
uncond_tokens, uncond_weights = pad_tokens_and_weights(
|
318 |
+
uncond_tokens,
|
319 |
+
uncond_weights,
|
320 |
+
max_length,
|
321 |
+
bos,
|
322 |
+
eos,
|
323 |
+
no_boseos_middle=no_boseos_middle,
|
324 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
325 |
+
)
|
326 |
+
uncond_tokens = np.array(uncond_tokens, dtype=np.int32)
|
327 |
+
|
328 |
+
# get the embeddings
|
329 |
+
text_embeddings = get_unweighted_text_embeddings(
|
330 |
+
pipe,
|
331 |
+
prompt_tokens,
|
332 |
+
pipe.tokenizer.model_max_length,
|
333 |
+
no_boseos_middle=no_boseos_middle,
|
334 |
+
)
|
335 |
+
prompt_weights = np.array(prompt_weights, dtype=text_embeddings.dtype)
|
336 |
+
if uncond_prompt is not None:
|
337 |
+
uncond_embeddings = get_unweighted_text_embeddings(
|
338 |
+
pipe,
|
339 |
+
uncond_tokens,
|
340 |
+
pipe.tokenizer.model_max_length,
|
341 |
+
no_boseos_middle=no_boseos_middle,
|
342 |
+
)
|
343 |
+
uncond_weights = np.array(uncond_weights, dtype=uncond_embeddings.dtype)
|
344 |
+
|
345 |
+
# assign weights to the prompts and normalize in the sense of mean
|
346 |
+
# TODO: should we normalize by chunk or in a whole (current implementation)?
|
347 |
+
if (not skip_parsing) and (not skip_weighting):
|
348 |
+
previous_mean = text_embeddings.mean(axis=(-2, -1))
|
349 |
+
text_embeddings *= prompt_weights[:, :, None]
|
350 |
+
text_embeddings *= (previous_mean / text_embeddings.mean(axis=(-2, -1)))[:, None, None]
|
351 |
+
if uncond_prompt is not None:
|
352 |
+
previous_mean = uncond_embeddings.mean(axis=(-2, -1))
|
353 |
+
uncond_embeddings *= uncond_weights[:, :, None]
|
354 |
+
uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=(-2, -1)))[:, None, None]
|
355 |
+
|
356 |
+
# For classifier free guidance, we need to do two forward passes.
|
357 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
358 |
+
# to avoid doing two forward passes
|
359 |
+
if uncond_prompt is not None:
|
360 |
+
return text_embeddings, uncond_embeddings
|
361 |
+
|
362 |
+
return text_embeddings
|
363 |
+
|
364 |
+
|
365 |
+
def preprocess_image(image):
|
366 |
+
w, h = image.size
|
367 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
368 |
+
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
369 |
+
image = np.array(image).astype(np.float32) / 255.0
|
370 |
+
image = image[None].transpose(0, 3, 1, 2)
|
371 |
+
return 2.0 * image - 1.0
|
372 |
+
|
373 |
+
|
374 |
+
def preprocess_mask(mask):
|
375 |
+
mask = mask.convert("L")
|
376 |
+
w, h = mask.size
|
377 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
378 |
+
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
|
379 |
+
mask = np.array(mask).astype(np.float32) / 255.0
|
380 |
+
mask = np.tile(mask, (4, 1, 1))
|
381 |
+
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
382 |
+
mask = 1 - mask # repaint white, keep black
|
383 |
+
return mask
|
384 |
+
|
385 |
+
|
386 |
+
class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
387 |
+
r"""
|
388 |
+
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
389 |
+
weighting in prompt.
|
390 |
+
|
391 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
392 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(
|
396 |
+
self,
|
397 |
+
vae_encoder: OnnxRuntimeModel,
|
398 |
+
vae_decoder: OnnxRuntimeModel,
|
399 |
+
text_encoder: OnnxRuntimeModel,
|
400 |
+
tokenizer: CLIPTokenizer,
|
401 |
+
unet: OnnxRuntimeModel,
|
402 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
403 |
+
safety_checker: OnnxRuntimeModel,
|
404 |
+
feature_extractor: CLIPFeatureExtractor,
|
405 |
+
):
|
406 |
+
super().__init__()
|
407 |
+
self.register_modules(
|
408 |
+
vae_encoder=vae_encoder,
|
409 |
+
vae_decoder=vae_decoder,
|
410 |
+
text_encoder=text_encoder,
|
411 |
+
tokenizer=tokenizer,
|
412 |
+
unet=unet,
|
413 |
+
scheduler=scheduler,
|
414 |
+
safety_checker=safety_checker,
|
415 |
+
feature_extractor=feature_extractor,
|
416 |
+
)
|
417 |
+
|
418 |
+
@torch.no_grad()
|
419 |
+
def __call__(
|
420 |
+
self,
|
421 |
+
prompt: Union[str, List[str]],
|
422 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
423 |
+
init_image: Union[np.ndarray, PIL.Image.Image] = None,
|
424 |
+
mask_image: Union[np.ndarray, PIL.Image.Image] = None,
|
425 |
+
height: int = 512,
|
426 |
+
width: int = 512,
|
427 |
+
num_inference_steps: int = 50,
|
428 |
+
guidance_scale: float = 7.5,
|
429 |
+
strength: float = 0.8,
|
430 |
+
num_images_per_prompt: Optional[int] = 1,
|
431 |
+
eta: float = 0.0,
|
432 |
+
generator: Optional[np.random.RandomState] = None,
|
433 |
+
latents: Optional[np.ndarray] = None,
|
434 |
+
max_embeddings_multiples: Optional[int] = 3,
|
435 |
+
output_type: Optional[str] = "pil",
|
436 |
+
return_dict: bool = True,
|
437 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
438 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
439 |
+
callback_steps: Optional[int] = 1,
|
440 |
+
**kwargs,
|
441 |
+
):
|
442 |
+
r"""
|
443 |
+
Function invoked when calling the pipeline for generation.
|
444 |
+
|
445 |
+
Args:
|
446 |
+
prompt (`str` or `List[str]`):
|
447 |
+
The prompt or prompts to guide the image generation.
|
448 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
449 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
450 |
+
if `guidance_scale` is less than `1`).
|
451 |
+
init_image (`np.ndarray` or `PIL.Image.Image`):
|
452 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
453 |
+
process.
|
454 |
+
mask_image (`np.ndarray` or `PIL.Image.Image`):
|
455 |
+
`Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be
|
456 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
457 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
458 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
459 |
+
height (`int`, *optional*, defaults to 512):
|
460 |
+
The height in pixels of the generated image.
|
461 |
+
width (`int`, *optional*, defaults to 512):
|
462 |
+
The width in pixels of the generated image.
|
463 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
464 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
465 |
+
expense of slower inference.
|
466 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
467 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
468 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
469 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
470 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
471 |
+
usually at the expense of lower image quality.
|
472 |
+
strength (`float`, *optional*, defaults to 0.8):
|
473 |
+
Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1.
|
474 |
+
`init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
475 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
476 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
477 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`.
|
478 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
479 |
+
The number of images to generate per prompt.
|
480 |
+
eta (`float`, *optional*, defaults to 0.0):
|
481 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
482 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
483 |
+
generator (`np.random.RandomState`, *optional*):
|
484 |
+
A np.random.RandomState to make generation deterministic.
|
485 |
+
latents (`np.ndarray`, *optional*):
|
486 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
487 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
488 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
489 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
490 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
491 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
492 |
+
The output format of the generate image. Choose between
|
493 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
494 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
495 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
496 |
+
plain tuple.
|
497 |
+
callback (`Callable`, *optional*):
|
498 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
499 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
500 |
+
is_cancelled_callback (`Callable`, *optional*):
|
501 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
502 |
+
`True`, the inference will be cancelled.
|
503 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
504 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
505 |
+
called at every step.
|
506 |
+
|
507 |
+
Returns:
|
508 |
+
`None` if cancelled by `is_cancelled_callback`,
|
509 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
510 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
511 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
512 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
513 |
+
(nsfw) content, according to the `safety_checker`.
|
514 |
+
"""
|
515 |
+
|
516 |
+
if isinstance(prompt, str):
|
517 |
+
batch_size = 1
|
518 |
+
prompt = [prompt]
|
519 |
+
elif isinstance(prompt, list):
|
520 |
+
batch_size = len(prompt)
|
521 |
+
else:
|
522 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
523 |
+
|
524 |
+
if strength < 0 or strength > 1:
|
525 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
526 |
+
|
527 |
+
if height % 8 != 0 or width % 8 != 0:
|
528 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
529 |
+
|
530 |
+
if (callback_steps is None) or (
|
531 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
532 |
+
):
|
533 |
+
raise ValueError(
|
534 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
535 |
+
f" {type(callback_steps)}."
|
536 |
+
)
|
537 |
+
|
538 |
+
# get prompt text embeddings
|
539 |
+
|
540 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
541 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
542 |
+
# corresponds to doing no classifier free guidance.
|
543 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
544 |
+
# get unconditional embeddings for classifier free guidance
|
545 |
+
if negative_prompt is None:
|
546 |
+
negative_prompt = [""] * batch_size
|
547 |
+
elif isinstance(negative_prompt, str):
|
548 |
+
negative_prompt = [negative_prompt] * batch_size
|
549 |
+
if batch_size != len(negative_prompt):
|
550 |
+
raise ValueError(
|
551 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
552 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
553 |
+
" the batch size of `prompt`."
|
554 |
+
)
|
555 |
+
|
556 |
+
if generator is None:
|
557 |
+
generator = np.random
|
558 |
+
|
559 |
+
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
560 |
+
pipe=self,
|
561 |
+
prompt=prompt,
|
562 |
+
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
563 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
564 |
+
**kwargs,
|
565 |
+
)
|
566 |
+
|
567 |
+
text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0)
|
568 |
+
if do_classifier_free_guidance:
|
569 |
+
uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0)
|
570 |
+
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
571 |
+
|
572 |
+
# set timesteps
|
573 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
574 |
+
|
575 |
+
latents_dtype = text_embeddings.dtype
|
576 |
+
init_latents_orig = None
|
577 |
+
mask = None
|
578 |
+
noise = None
|
579 |
+
|
580 |
+
if init_image is None:
|
581 |
+
latents_shape = (
|
582 |
+
batch_size * num_images_per_prompt,
|
583 |
+
4,
|
584 |
+
height // 8,
|
585 |
+
width // 8,
|
586 |
+
)
|
587 |
+
|
588 |
+
if latents is None:
|
589 |
+
latents = generator.randn(*latents_shape).astype(latents_dtype)
|
590 |
+
elif latents.shape != latents_shape:
|
591 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
592 |
+
|
593 |
+
timesteps = self.scheduler.timesteps.to(self.device)
|
594 |
+
|
595 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
596 |
+
latents = latents * self.scheduler.init_noise_sigma
|
597 |
+
else:
|
598 |
+
if isinstance(init_image, PIL.Image.Image):
|
599 |
+
init_image = preprocess_image(init_image)
|
600 |
+
# encode the init image into latents and scale the latents
|
601 |
+
init_image = init_image.astype(latents_dtype)
|
602 |
+
init_latents = self.vae_encoder(sample=init_image)[0]
|
603 |
+
init_latents = 0.18215 * init_latents
|
604 |
+
init_latents = np.concatenate([init_latents] * batch_size * num_images_per_prompt)
|
605 |
+
init_latents_orig = init_latents
|
606 |
+
|
607 |
+
# preprocess mask
|
608 |
+
if mask_image is not None:
|
609 |
+
if isinstance(mask_image, PIL.Image.Image):
|
610 |
+
mask_image = preprocess_mask(mask_image)
|
611 |
+
mask_image = mask_image.astype(latents_dtype)
|
612 |
+
mask = np.concatenate([mask_image] * batch_size * num_images_per_prompt)
|
613 |
+
|
614 |
+
# check sizes
|
615 |
+
if not mask.shape == init_latents.shape:
|
616 |
+
print(mask.shape, init_latents.shape)
|
617 |
+
raise ValueError("The mask and init_image should be the same size!")
|
618 |
+
|
619 |
+
# get the original timestep using init_timestep
|
620 |
+
offset = self.scheduler.config.get("steps_offset", 0)
|
621 |
+
init_timestep = int(num_inference_steps * strength) + offset
|
622 |
+
init_timestep = min(init_timestep, num_inference_steps)
|
623 |
+
|
624 |
+
timesteps = self.scheduler.timesteps[-init_timestep]
|
625 |
+
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt)
|
626 |
+
|
627 |
+
# add noise to latents using the timesteps
|
628 |
+
noise = generator.randn(*init_latents.shape).astype(latents_dtype)
|
629 |
+
latents = self.scheduler.add_noise(
|
630 |
+
torch.from_numpy(init_latents), torch.from_numpy(noise), timesteps
|
631 |
+
).numpy()
|
632 |
+
|
633 |
+
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
634 |
+
timesteps = self.scheduler.timesteps[t_start:]
|
635 |
+
|
636 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
637 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
638 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
639 |
+
# and should be between [0, 1]
|
640 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
641 |
+
extra_step_kwargs = {}
|
642 |
+
if accepts_eta:
|
643 |
+
extra_step_kwargs["eta"] = eta
|
644 |
+
|
645 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
646 |
+
# expand the latents if we are doing classifier free guidance
|
647 |
+
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
648 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
649 |
+
|
650 |
+
# predict the noise residual
|
651 |
+
noise_pred = self.unet(
|
652 |
+
sample=latent_model_input,
|
653 |
+
timestep=np.array([t]),
|
654 |
+
encoder_hidden_states=text_embeddings,
|
655 |
+
)
|
656 |
+
noise_pred = noise_pred[0]
|
657 |
+
|
658 |
+
# perform guidance
|
659 |
+
if do_classifier_free_guidance:
|
660 |
+
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
661 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
662 |
+
|
663 |
+
# compute the previous noisy sample x_t -> x_t-1
|
664 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample.numpy()
|
665 |
+
|
666 |
+
if mask is not None:
|
667 |
+
# masking
|
668 |
+
init_latents_proper = self.scheduler.add_noise(
|
669 |
+
torch.from_numpy(init_latents_orig),
|
670 |
+
torch.from_numpy(noise),
|
671 |
+
torch.tensor([t]),
|
672 |
+
).numpy()
|
673 |
+
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
674 |
+
|
675 |
+
# call the callback, if provided
|
676 |
+
if i % callback_steps == 0:
|
677 |
+
if callback is not None:
|
678 |
+
callback(i, t, latents)
|
679 |
+
if is_cancelled_callback is not None and is_cancelled_callback():
|
680 |
+
return None
|
681 |
+
|
682 |
+
latents = 1 / 0.18215 * latents
|
683 |
+
# image = self.vae_decoder(latent_sample=latents)[0]
|
684 |
+
# it seems likes there is a problem for using half-precision vae decoder if batchsize>1
|
685 |
+
image = []
|
686 |
+
for i in range(latents.shape[0]):
|
687 |
+
image.append(self.vae_decoder(latent_sample=latents[i : i + 1])[0])
|
688 |
+
image = np.concatenate(image)
|
689 |
+
|
690 |
+
image = np.clip(image / 2 + 0.5, 0, 1)
|
691 |
+
image = image.transpose((0, 2, 3, 1))
|
692 |
+
|
693 |
+
if self.safety_checker is not None:
|
694 |
+
safety_checker_input = self.feature_extractor(
|
695 |
+
self.numpy_to_pil(image), return_tensors="np"
|
696 |
+
).pixel_values.astype(image.dtype)
|
697 |
+
# There will throw an error if use safety_checker directly and batchsize>1
|
698 |
+
images, has_nsfw_concept = [], []
|
699 |
+
for i in range(image.shape[0]):
|
700 |
+
image_i, has_nsfw_concept_i = self.safety_checker(
|
701 |
+
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
|
702 |
+
)
|
703 |
+
images.append(image_i)
|
704 |
+
has_nsfw_concept.append(has_nsfw_concept_i)
|
705 |
+
image = np.concatenate(images)
|
706 |
+
else:
|
707 |
+
has_nsfw_concept = None
|
708 |
+
|
709 |
+
if output_type == "pil":
|
710 |
+
image = self.numpy_to_pil(image)
|
711 |
+
|
712 |
+
if not return_dict:
|
713 |
+
return (image, has_nsfw_concept)
|
714 |
+
|
715 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
716 |
+
|
717 |
+
def text2img(
|
718 |
+
self,
|
719 |
+
prompt: Union[str, List[str]],
|
720 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
721 |
+
height: int = 512,
|
722 |
+
width: int = 512,
|
723 |
+
num_inference_steps: int = 50,
|
724 |
+
guidance_scale: float = 7.5,
|
725 |
+
num_images_per_prompt: Optional[int] = 1,
|
726 |
+
eta: float = 0.0,
|
727 |
+
generator: Optional[np.random.RandomState] = None,
|
728 |
+
latents: Optional[np.ndarray] = None,
|
729 |
+
max_embeddings_multiples: Optional[int] = 3,
|
730 |
+
output_type: Optional[str] = "pil",
|
731 |
+
return_dict: bool = True,
|
732 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
733 |
+
callback_steps: Optional[int] = 1,
|
734 |
+
**kwargs,
|
735 |
+
):
|
736 |
+
r"""
|
737 |
+
Function for text-to-image generation.
|
738 |
+
Args:
|
739 |
+
prompt (`str` or `List[str]`):
|
740 |
+
The prompt or prompts to guide the image generation.
|
741 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
742 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
743 |
+
if `guidance_scale` is less than `1`).
|
744 |
+
height (`int`, *optional*, defaults to 512):
|
745 |
+
The height in pixels of the generated image.
|
746 |
+
width (`int`, *optional*, defaults to 512):
|
747 |
+
The width in pixels of the generated image.
|
748 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
749 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
750 |
+
expense of slower inference.
|
751 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
752 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
753 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
754 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
755 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
756 |
+
usually at the expense of lower image quality.
|
757 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
758 |
+
The number of images to generate per prompt.
|
759 |
+
eta (`float`, *optional*, defaults to 0.0):
|
760 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
761 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
762 |
+
generator (`np.random.RandomState`, *optional*):
|
763 |
+
A np.random.RandomState to make generation deterministic.
|
764 |
+
latents (`np.ndarray`, *optional*):
|
765 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
766 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
767 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
768 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
769 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
770 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
771 |
+
The output format of the generate image. Choose between
|
772 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
773 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
774 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
775 |
+
plain tuple.
|
776 |
+
callback (`Callable`, *optional*):
|
777 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
778 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
779 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
780 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
781 |
+
called at every step.
|
782 |
+
Returns:
|
783 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
784 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
785 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
786 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
787 |
+
(nsfw) content, according to the `safety_checker`.
|
788 |
+
"""
|
789 |
+
return self.__call__(
|
790 |
+
prompt=prompt,
|
791 |
+
negative_prompt=negative_prompt,
|
792 |
+
height=height,
|
793 |
+
width=width,
|
794 |
+
num_inference_steps=num_inference_steps,
|
795 |
+
guidance_scale=guidance_scale,
|
796 |
+
num_images_per_prompt=num_images_per_prompt,
|
797 |
+
eta=eta,
|
798 |
+
generator=generator,
|
799 |
+
latents=latents,
|
800 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
801 |
+
output_type=output_type,
|
802 |
+
return_dict=return_dict,
|
803 |
+
callback=callback,
|
804 |
+
callback_steps=callback_steps,
|
805 |
+
**kwargs,
|
806 |
+
)
|
807 |
+
|
808 |
+
def img2img(
|
809 |
+
self,
|
810 |
+
init_image: Union[np.ndarray, PIL.Image.Image],
|
811 |
+
prompt: Union[str, List[str]],
|
812 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
813 |
+
strength: float = 0.8,
|
814 |
+
num_inference_steps: Optional[int] = 50,
|
815 |
+
guidance_scale: Optional[float] = 7.5,
|
816 |
+
num_images_per_prompt: Optional[int] = 1,
|
817 |
+
eta: Optional[float] = 0.0,
|
818 |
+
generator: Optional[np.random.RandomState] = None,
|
819 |
+
max_embeddings_multiples: Optional[int] = 3,
|
820 |
+
output_type: Optional[str] = "pil",
|
821 |
+
return_dict: bool = True,
|
822 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
823 |
+
callback_steps: Optional[int] = 1,
|
824 |
+
**kwargs,
|
825 |
+
):
|
826 |
+
r"""
|
827 |
+
Function for image-to-image generation.
|
828 |
+
Args:
|
829 |
+
init_image (`np.ndarray` or `PIL.Image.Image`):
|
830 |
+
`Image`, or ndarray representing an image batch, that will be used as the starting point for the
|
831 |
+
process.
|
832 |
+
prompt (`str` or `List[str]`):
|
833 |
+
The prompt or prompts to guide the image generation.
|
834 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
835 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
836 |
+
if `guidance_scale` is less than `1`).
|
837 |
+
strength (`float`, *optional*, defaults to 0.8):
|
838 |
+
Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1.
|
839 |
+
`init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
840 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
841 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
842 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`.
|
843 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
844 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
845 |
+
expense of slower inference. This parameter will be modulated by `strength`.
|
846 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
847 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
848 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
849 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
850 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
851 |
+
usually at the expense of lower image quality.
|
852 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
853 |
+
The number of images to generate per prompt.
|
854 |
+
eta (`float`, *optional*, defaults to 0.0):
|
855 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
856 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
857 |
+
generator (`np.random.RandomState`, *optional*):
|
858 |
+
A np.random.RandomState to make generation deterministic.
|
859 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
860 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
861 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
862 |
+
The output format of the generate image. Choose between
|
863 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
864 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
865 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
866 |
+
plain tuple.
|
867 |
+
callback (`Callable`, *optional*):
|
868 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
869 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
870 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
871 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
872 |
+
called at every step.
|
873 |
+
Returns:
|
874 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
875 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
876 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
877 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
878 |
+
(nsfw) content, according to the `safety_checker`.
|
879 |
+
"""
|
880 |
+
return self.__call__(
|
881 |
+
prompt=prompt,
|
882 |
+
negative_prompt=negative_prompt,
|
883 |
+
init_image=init_image,
|
884 |
+
num_inference_steps=num_inference_steps,
|
885 |
+
guidance_scale=guidance_scale,
|
886 |
+
strength=strength,
|
887 |
+
num_images_per_prompt=num_images_per_prompt,
|
888 |
+
eta=eta,
|
889 |
+
generator=generator,
|
890 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
891 |
+
output_type=output_type,
|
892 |
+
return_dict=return_dict,
|
893 |
+
callback=callback,
|
894 |
+
callback_steps=callback_steps,
|
895 |
+
**kwargs,
|
896 |
+
)
|
897 |
+
|
898 |
+
def inpaint(
|
899 |
+
self,
|
900 |
+
init_image: Union[np.ndarray, PIL.Image.Image],
|
901 |
+
mask_image: Union[np.ndarray, PIL.Image.Image],
|
902 |
+
prompt: Union[str, List[str]],
|
903 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
904 |
+
strength: float = 0.8,
|
905 |
+
num_inference_steps: Optional[int] = 50,
|
906 |
+
guidance_scale: Optional[float] = 7.5,
|
907 |
+
num_images_per_prompt: Optional[int] = 1,
|
908 |
+
eta: Optional[float] = 0.0,
|
909 |
+
generator: Optional[np.random.RandomState] = None,
|
910 |
+
max_embeddings_multiples: Optional[int] = 3,
|
911 |
+
output_type: Optional[str] = "pil",
|
912 |
+
return_dict: bool = True,
|
913 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
914 |
+
callback_steps: Optional[int] = 1,
|
915 |
+
**kwargs,
|
916 |
+
):
|
917 |
+
r"""
|
918 |
+
Function for inpaint.
|
919 |
+
Args:
|
920 |
+
init_image (`np.ndarray` or `PIL.Image.Image`):
|
921 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
922 |
+
process. This is the image whose masked region will be inpainted.
|
923 |
+
mask_image (`np.ndarray` or `PIL.Image.Image`):
|
924 |
+
`Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be
|
925 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
926 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
927 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
928 |
+
prompt (`str` or `List[str]`):
|
929 |
+
The prompt or prompts to guide the image generation.
|
930 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
931 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
932 |
+
if `guidance_scale` is less than `1`).
|
933 |
+
strength (`float`, *optional*, defaults to 0.8):
|
934 |
+
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
|
935 |
+
is 1, the denoising process will be run on the masked area for the full number of iterations specified
|
936 |
+
in `num_inference_steps`. `init_image` will be used as a reference for the masked area, adding more
|
937 |
+
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
|
938 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
939 |
+
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
940 |
+
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
941 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
942 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
943 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
944 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
945 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
946 |
+
usually at the expense of lower image quality.
|
947 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
948 |
+
The number of images to generate per prompt.
|
949 |
+
eta (`float`, *optional*, defaults to 0.0):
|
950 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
951 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
952 |
+
generator (`np.random.RandomState`, *optional*):
|
953 |
+
A np.random.RandomState to make generation deterministic.
|
954 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
955 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
956 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
957 |
+
The output format of the generate image. Choose between
|
958 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
959 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
960 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
961 |
+
plain tuple.
|
962 |
+
callback (`Callable`, *optional*):
|
963 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
964 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
965 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
966 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
967 |
+
called at every step.
|
968 |
+
Returns:
|
969 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
970 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
971 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
972 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
973 |
+
(nsfw) content, according to the `safety_checker`.
|
974 |
+
"""
|
975 |
+
return self.__call__(
|
976 |
+
prompt=prompt,
|
977 |
+
negative_prompt=negative_prompt,
|
978 |
+
init_image=init_image,
|
979 |
+
mask_image=mask_image,
|
980 |
+
num_inference_steps=num_inference_steps,
|
981 |
+
guidance_scale=guidance_scale,
|
982 |
+
strength=strength,
|
983 |
+
num_images_per_prompt=num_images_per_prompt,
|
984 |
+
eta=eta,
|
985 |
+
generator=generator,
|
986 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
987 |
+
output_type=output_type,
|
988 |
+
return_dict=return_dict,
|
989 |
+
callback=callback,
|
990 |
+
callback_steps=callback_steps,
|
991 |
+
**kwargs,
|
992 |
+
)
|
v0.7.0/one_step_unet.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
|
6 |
+
|
7 |
+
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
|
8 |
+
def __init__(self, unet, scheduler):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
12 |
+
|
13 |
+
def __call__(self):
|
14 |
+
image = torch.randn(
|
15 |
+
(1, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
|
16 |
+
)
|
17 |
+
timestep = 1
|
18 |
+
|
19 |
+
model_output = self.unet(image, timestep).sample
|
20 |
+
scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
|
21 |
+
|
22 |
+
return scheduler_output
|
v0.7.0/seed_resize_stable_diffusion.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
3 |
+
"""
|
4 |
+
import inspect
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
10 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
11 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
12 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
13 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
14 |
+
from diffusers.utils import logging
|
15 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
19 |
+
|
20 |
+
|
21 |
+
class SeedResizeStableDiffusionPipeline(DiffusionPipeline):
|
22 |
+
r"""
|
23 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
24 |
+
|
25 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
26 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
27 |
+
|
28 |
+
Args:
|
29 |
+
vae ([`AutoencoderKL`]):
|
30 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
31 |
+
text_encoder ([`CLIPTextModel`]):
|
32 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
33 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
34 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
35 |
+
tokenizer (`CLIPTokenizer`):
|
36 |
+
Tokenizer of class
|
37 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
38 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
39 |
+
scheduler ([`SchedulerMixin`]):
|
40 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
41 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
42 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
43 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
44 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
45 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
46 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vae: AutoencoderKL,
|
52 |
+
text_encoder: CLIPTextModel,
|
53 |
+
tokenizer: CLIPTokenizer,
|
54 |
+
unet: UNet2DConditionModel,
|
55 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
56 |
+
safety_checker: StableDiffusionSafetyChecker,
|
57 |
+
feature_extractor: CLIPFeatureExtractor,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
self.register_modules(
|
61 |
+
vae=vae,
|
62 |
+
text_encoder=text_encoder,
|
63 |
+
tokenizer=tokenizer,
|
64 |
+
unet=unet,
|
65 |
+
scheduler=scheduler,
|
66 |
+
safety_checker=safety_checker,
|
67 |
+
feature_extractor=feature_extractor,
|
68 |
+
)
|
69 |
+
|
70 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
71 |
+
r"""
|
72 |
+
Enable sliced attention computation.
|
73 |
+
|
74 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
75 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
79 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
80 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
81 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
82 |
+
"""
|
83 |
+
if slice_size == "auto":
|
84 |
+
# half the attention head size is usually a good trade-off between
|
85 |
+
# speed and memory
|
86 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
87 |
+
self.unet.set_attention_slice(slice_size)
|
88 |
+
|
89 |
+
def disable_attention_slicing(self):
|
90 |
+
r"""
|
91 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
92 |
+
back to computing attention in one step.
|
93 |
+
"""
|
94 |
+
# set slice_size = `None` to disable `attention slicing`
|
95 |
+
self.enable_attention_slicing(None)
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
def __call__(
|
99 |
+
self,
|
100 |
+
prompt: Union[str, List[str]],
|
101 |
+
height: int = 512,
|
102 |
+
width: int = 512,
|
103 |
+
num_inference_steps: int = 50,
|
104 |
+
guidance_scale: float = 7.5,
|
105 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
106 |
+
num_images_per_prompt: Optional[int] = 1,
|
107 |
+
eta: float = 0.0,
|
108 |
+
generator: Optional[torch.Generator] = None,
|
109 |
+
latents: Optional[torch.FloatTensor] = None,
|
110 |
+
output_type: Optional[str] = "pil",
|
111 |
+
return_dict: bool = True,
|
112 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
113 |
+
callback_steps: Optional[int] = 1,
|
114 |
+
text_embeddings: Optional[torch.FloatTensor] = None,
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
r"""
|
118 |
+
Function invoked when calling the pipeline for generation.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
prompt (`str` or `List[str]`):
|
122 |
+
The prompt or prompts to guide the image generation.
|
123 |
+
height (`int`, *optional*, defaults to 512):
|
124 |
+
The height in pixels of the generated image.
|
125 |
+
width (`int`, *optional*, defaults to 512):
|
126 |
+
The width in pixels of the generated image.
|
127 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
128 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
129 |
+
expense of slower inference.
|
130 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
131 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
132 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
133 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
134 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
135 |
+
usually at the expense of lower image quality.
|
136 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
137 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
138 |
+
if `guidance_scale` is less than `1`).
|
139 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
140 |
+
The number of images to generate per prompt.
|
141 |
+
eta (`float`, *optional*, defaults to 0.0):
|
142 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
143 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
144 |
+
generator (`torch.Generator`, *optional*):
|
145 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
146 |
+
deterministic.
|
147 |
+
latents (`torch.FloatTensor`, *optional*):
|
148 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
149 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
150 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
151 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
152 |
+
The output format of the generate image. Choose between
|
153 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
154 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
155 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
156 |
+
plain tuple.
|
157 |
+
callback (`Callable`, *optional*):
|
158 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
159 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
160 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
161 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
162 |
+
called at every step.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
166 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
167 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
168 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
169 |
+
(nsfw) content, according to the `safety_checker`.
|
170 |
+
"""
|
171 |
+
|
172 |
+
if isinstance(prompt, str):
|
173 |
+
batch_size = 1
|
174 |
+
elif isinstance(prompt, list):
|
175 |
+
batch_size = len(prompt)
|
176 |
+
else:
|
177 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
178 |
+
|
179 |
+
if height % 8 != 0 or width % 8 != 0:
|
180 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
181 |
+
|
182 |
+
if (callback_steps is None) or (
|
183 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
184 |
+
):
|
185 |
+
raise ValueError(
|
186 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
187 |
+
f" {type(callback_steps)}."
|
188 |
+
)
|
189 |
+
|
190 |
+
# get prompt text embeddings
|
191 |
+
text_inputs = self.tokenizer(
|
192 |
+
prompt,
|
193 |
+
padding="max_length",
|
194 |
+
max_length=self.tokenizer.model_max_length,
|
195 |
+
return_tensors="pt",
|
196 |
+
)
|
197 |
+
text_input_ids = text_inputs.input_ids
|
198 |
+
|
199 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
200 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
201 |
+
logger.warning(
|
202 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
203 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
204 |
+
)
|
205 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
206 |
+
|
207 |
+
if text_embeddings is None:
|
208 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
209 |
+
|
210 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
211 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
212 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
213 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
214 |
+
|
215 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
216 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
217 |
+
# corresponds to doing no classifier free guidance.
|
218 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
219 |
+
# get unconditional embeddings for classifier free guidance
|
220 |
+
if do_classifier_free_guidance:
|
221 |
+
uncond_tokens: List[str]
|
222 |
+
if negative_prompt is None:
|
223 |
+
uncond_tokens = [""]
|
224 |
+
elif type(prompt) is not type(negative_prompt):
|
225 |
+
raise TypeError(
|
226 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
227 |
+
f" {type(prompt)}."
|
228 |
+
)
|
229 |
+
elif isinstance(negative_prompt, str):
|
230 |
+
uncond_tokens = [negative_prompt]
|
231 |
+
elif batch_size != len(negative_prompt):
|
232 |
+
raise ValueError(
|
233 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
234 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
235 |
+
" the batch size of `prompt`."
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
uncond_tokens = negative_prompt
|
239 |
+
|
240 |
+
max_length = text_input_ids.shape[-1]
|
241 |
+
uncond_input = self.tokenizer(
|
242 |
+
uncond_tokens,
|
243 |
+
padding="max_length",
|
244 |
+
max_length=max_length,
|
245 |
+
truncation=True,
|
246 |
+
return_tensors="pt",
|
247 |
+
)
|
248 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
249 |
+
|
250 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
251 |
+
seq_len = uncond_embeddings.shape[1]
|
252 |
+
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
253 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
254 |
+
|
255 |
+
# For classifier free guidance, we need to do two forward passes.
|
256 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
257 |
+
# to avoid doing two forward passes
|
258 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
259 |
+
|
260 |
+
# get the initial random noise unless the user supplied it
|
261 |
+
|
262 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
263 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
264 |
+
# However this currently doesn't work in `mps`.
|
265 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
266 |
+
latents_shape_reference = (batch_size * num_images_per_prompt, self.unet.in_channels, 64, 64)
|
267 |
+
latents_dtype = text_embeddings.dtype
|
268 |
+
if latents is None:
|
269 |
+
if self.device.type == "mps":
|
270 |
+
# randn does not exist on mps
|
271 |
+
latents_reference = torch.randn(
|
272 |
+
latents_shape_reference, generator=generator, device="cpu", dtype=latents_dtype
|
273 |
+
).to(self.device)
|
274 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
275 |
+
self.device
|
276 |
+
)
|
277 |
+
else:
|
278 |
+
latents_reference = torch.randn(
|
279 |
+
latents_shape_reference, generator=generator, device=self.device, dtype=latents_dtype
|
280 |
+
)
|
281 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
282 |
+
else:
|
283 |
+
if latents_reference.shape != latents_shape:
|
284 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
285 |
+
latents_reference = latents_reference.to(self.device)
|
286 |
+
latents = latents.to(self.device)
|
287 |
+
|
288 |
+
# This is the key part of the pipeline where we
|
289 |
+
# try to ensure that the generated images w/ the same seed
|
290 |
+
# but different sizes actually result in similar images
|
291 |
+
dx = (latents_shape[3] - latents_shape_reference[3]) // 2
|
292 |
+
dy = (latents_shape[2] - latents_shape_reference[2]) // 2
|
293 |
+
w = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
|
294 |
+
h = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
|
295 |
+
tx = 0 if dx < 0 else dx
|
296 |
+
ty = 0 if dy < 0 else dy
|
297 |
+
dx = max(-dx, 0)
|
298 |
+
dy = max(-dy, 0)
|
299 |
+
# import pdb
|
300 |
+
# pdb.set_trace()
|
301 |
+
latents[:, :, ty : ty + h, tx : tx + w] = latents_reference[:, :, dy : dy + h, dx : dx + w]
|
302 |
+
|
303 |
+
# set timesteps
|
304 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
305 |
+
|
306 |
+
# Some schedulers like PNDM have timesteps as arrays
|
307 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
308 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
309 |
+
|
310 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
311 |
+
latents = latents * self.scheduler.init_noise_sigma
|
312 |
+
|
313 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
314 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
315 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
316 |
+
# and should be between [0, 1]
|
317 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
318 |
+
extra_step_kwargs = {}
|
319 |
+
if accepts_eta:
|
320 |
+
extra_step_kwargs["eta"] = eta
|
321 |
+
|
322 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
323 |
+
# expand the latents if we are doing classifier free guidance
|
324 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
325 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
326 |
+
|
327 |
+
# predict the noise residual
|
328 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
329 |
+
|
330 |
+
# perform guidance
|
331 |
+
if do_classifier_free_guidance:
|
332 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
333 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
334 |
+
|
335 |
+
# compute the previous noisy sample x_t -> x_t-1
|
336 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
337 |
+
|
338 |
+
# call the callback, if provided
|
339 |
+
if callback is not None and i % callback_steps == 0:
|
340 |
+
callback(i, t, latents)
|
341 |
+
|
342 |
+
latents = 1 / 0.18215 * latents
|
343 |
+
image = self.vae.decode(latents).sample
|
344 |
+
|
345 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
346 |
+
|
347 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
348 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
349 |
+
|
350 |
+
if self.safety_checker is not None:
|
351 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
352 |
+
self.device
|
353 |
+
)
|
354 |
+
image, has_nsfw_concept = self.safety_checker(
|
355 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
has_nsfw_concept = None
|
359 |
+
|
360 |
+
if output_type == "pil":
|
361 |
+
image = self.numpy_to_pil(image)
|
362 |
+
|
363 |
+
if not return_dict:
|
364 |
+
return (image, has_nsfw_concept)
|
365 |
+
|
366 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.7.0/speech_to_image_diffusion.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Callable, List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKL,
|
8 |
+
DDIMScheduler,
|
9 |
+
DiffusionPipeline,
|
10 |
+
LMSDiscreteScheduler,
|
11 |
+
PNDMScheduler,
|
12 |
+
UNet2DConditionModel,
|
13 |
+
)
|
14 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
15 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
16 |
+
from diffusers.utils import logging
|
17 |
+
from transformers import (
|
18 |
+
CLIPFeatureExtractor,
|
19 |
+
CLIPTextModel,
|
20 |
+
CLIPTokenizer,
|
21 |
+
WhisperForConditionalGeneration,
|
22 |
+
WhisperProcessor,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
27 |
+
|
28 |
+
|
29 |
+
class SpeechToImagePipeline(DiffusionPipeline):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
speech_model: WhisperForConditionalGeneration,
|
33 |
+
speech_processor: WhisperProcessor,
|
34 |
+
vae: AutoencoderKL,
|
35 |
+
text_encoder: CLIPTextModel,
|
36 |
+
tokenizer: CLIPTokenizer,
|
37 |
+
unet: UNet2DConditionModel,
|
38 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
39 |
+
safety_checker: StableDiffusionSafetyChecker,
|
40 |
+
feature_extractor: CLIPFeatureExtractor,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
if safety_checker is None:
|
45 |
+
logger.warn(
|
46 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
47 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
48 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
49 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
50 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
51 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
52 |
+
)
|
53 |
+
|
54 |
+
self.register_modules(
|
55 |
+
speech_model=speech_model,
|
56 |
+
speech_processor=speech_processor,
|
57 |
+
vae=vae,
|
58 |
+
text_encoder=text_encoder,
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
unet=unet,
|
61 |
+
scheduler=scheduler,
|
62 |
+
feature_extractor=feature_extractor,
|
63 |
+
)
|
64 |
+
|
65 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
66 |
+
if slice_size == "auto":
|
67 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
68 |
+
self.unet.set_attention_slice(slice_size)
|
69 |
+
|
70 |
+
def disable_attention_slicing(self):
|
71 |
+
self.enable_attention_slicing(None)
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
def __call__(
|
75 |
+
self,
|
76 |
+
audio,
|
77 |
+
sampling_rate=16_000,
|
78 |
+
height: int = 512,
|
79 |
+
width: int = 512,
|
80 |
+
num_inference_steps: int = 50,
|
81 |
+
guidance_scale: float = 7.5,
|
82 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
83 |
+
num_images_per_prompt: Optional[int] = 1,
|
84 |
+
eta: float = 0.0,
|
85 |
+
generator: Optional[torch.Generator] = None,
|
86 |
+
latents: Optional[torch.FloatTensor] = None,
|
87 |
+
output_type: Optional[str] = "pil",
|
88 |
+
return_dict: bool = True,
|
89 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
90 |
+
callback_steps: Optional[int] = 1,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
inputs = self.speech_processor.feature_extractor(
|
94 |
+
audio, return_tensors="pt", sampling_rate=sampling_rate
|
95 |
+
).input_features.to(self.device)
|
96 |
+
predicted_ids = self.speech_model.generate(inputs, max_length=480_000)
|
97 |
+
|
98 |
+
prompt = self.speech_processor.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True, normalize=True)[
|
99 |
+
0
|
100 |
+
]
|
101 |
+
|
102 |
+
if isinstance(prompt, str):
|
103 |
+
batch_size = 1
|
104 |
+
elif isinstance(prompt, list):
|
105 |
+
batch_size = len(prompt)
|
106 |
+
else:
|
107 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
108 |
+
|
109 |
+
if height % 8 != 0 or width % 8 != 0:
|
110 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
111 |
+
|
112 |
+
if (callback_steps is None) or (
|
113 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
114 |
+
):
|
115 |
+
raise ValueError(
|
116 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
117 |
+
f" {type(callback_steps)}."
|
118 |
+
)
|
119 |
+
|
120 |
+
# get prompt text embeddings
|
121 |
+
text_inputs = self.tokenizer(
|
122 |
+
prompt,
|
123 |
+
padding="max_length",
|
124 |
+
max_length=self.tokenizer.model_max_length,
|
125 |
+
return_tensors="pt",
|
126 |
+
)
|
127 |
+
text_input_ids = text_inputs.input_ids
|
128 |
+
|
129 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
130 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
131 |
+
logger.warning(
|
132 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
133 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
134 |
+
)
|
135 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
136 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
137 |
+
|
138 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
139 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
140 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
141 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
142 |
+
|
143 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
144 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
145 |
+
# corresponds to doing no classifier free guidance.
|
146 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
147 |
+
# get unconditional embeddings for classifier free guidance
|
148 |
+
if do_classifier_free_guidance:
|
149 |
+
uncond_tokens: List[str]
|
150 |
+
if negative_prompt is None:
|
151 |
+
uncond_tokens = [""] * batch_size
|
152 |
+
elif type(prompt) is not type(negative_prompt):
|
153 |
+
raise TypeError(
|
154 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
155 |
+
f" {type(prompt)}."
|
156 |
+
)
|
157 |
+
elif isinstance(negative_prompt, str):
|
158 |
+
uncond_tokens = [negative_prompt]
|
159 |
+
elif batch_size != len(negative_prompt):
|
160 |
+
raise ValueError(
|
161 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
162 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
163 |
+
" the batch size of `prompt`."
|
164 |
+
)
|
165 |
+
else:
|
166 |
+
uncond_tokens = negative_prompt
|
167 |
+
|
168 |
+
max_length = text_input_ids.shape[-1]
|
169 |
+
uncond_input = self.tokenizer(
|
170 |
+
uncond_tokens,
|
171 |
+
padding="max_length",
|
172 |
+
max_length=max_length,
|
173 |
+
truncation=True,
|
174 |
+
return_tensors="pt",
|
175 |
+
)
|
176 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
177 |
+
|
178 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
179 |
+
seq_len = uncond_embeddings.shape[1]
|
180 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
181 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
182 |
+
|
183 |
+
# For classifier free guidance, we need to do two forward passes.
|
184 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
185 |
+
# to avoid doing two forward passes
|
186 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
187 |
+
|
188 |
+
# get the initial random noise unless the user supplied it
|
189 |
+
|
190 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
191 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
192 |
+
# However this currently doesn't work in `mps`.
|
193 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
194 |
+
latents_dtype = text_embeddings.dtype
|
195 |
+
if latents is None:
|
196 |
+
if self.device.type == "mps":
|
197 |
+
# randn does not exist on mps
|
198 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
199 |
+
self.device
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
203 |
+
else:
|
204 |
+
if latents.shape != latents_shape:
|
205 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
206 |
+
latents = latents.to(self.device)
|
207 |
+
|
208 |
+
# set timesteps
|
209 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
210 |
+
|
211 |
+
# Some schedulers like PNDM have timesteps as arrays
|
212 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
213 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
214 |
+
|
215 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
216 |
+
latents = latents * self.scheduler.init_noise_sigma
|
217 |
+
|
218 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
219 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
220 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
221 |
+
# and should be between [0, 1]
|
222 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
223 |
+
extra_step_kwargs = {}
|
224 |
+
if accepts_eta:
|
225 |
+
extra_step_kwargs["eta"] = eta
|
226 |
+
|
227 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
228 |
+
# expand the latents if we are doing classifier free guidance
|
229 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
230 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
231 |
+
|
232 |
+
# predict the noise residual
|
233 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
234 |
+
|
235 |
+
# perform guidance
|
236 |
+
if do_classifier_free_guidance:
|
237 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
238 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
239 |
+
|
240 |
+
# compute the previous noisy sample x_t -> x_t-1
|
241 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
242 |
+
|
243 |
+
# call the callback, if provided
|
244 |
+
if callback is not None and i % callback_steps == 0:
|
245 |
+
callback(i, t, latents)
|
246 |
+
|
247 |
+
latents = 1 / 0.18215 * latents
|
248 |
+
image = self.vae.decode(latents).sample
|
249 |
+
|
250 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
251 |
+
|
252 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
253 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
254 |
+
|
255 |
+
if output_type == "pil":
|
256 |
+
image = self.numpy_to_pil(image)
|
257 |
+
|
258 |
+
if not return_dict:
|
259 |
+
return image
|
260 |
+
|
261 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
v0.7.0/stable_diffusion_mega.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import PIL.Image
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKL,
|
8 |
+
DDIMScheduler,
|
9 |
+
DiffusionPipeline,
|
10 |
+
LMSDiscreteScheduler,
|
11 |
+
PNDMScheduler,
|
12 |
+
StableDiffusionImg2ImgPipeline,
|
13 |
+
StableDiffusionInpaintPipelineLegacy,
|
14 |
+
StableDiffusionPipeline,
|
15 |
+
UNet2DConditionModel,
|
16 |
+
)
|
17 |
+
from diffusers.configuration_utils import FrozenDict
|
18 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
19 |
+
from diffusers.utils import deprecate, logging
|
20 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
24 |
+
|
25 |
+
|
26 |
+
class StableDiffusionMegaPipeline(DiffusionPipeline):
|
27 |
+
r"""
|
28 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
29 |
+
|
30 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
31 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
32 |
+
|
33 |
+
Args:
|
34 |
+
vae ([`AutoencoderKL`]):
|
35 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
36 |
+
text_encoder ([`CLIPTextModel`]):
|
37 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
38 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
39 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
40 |
+
tokenizer (`CLIPTokenizer`):
|
41 |
+
Tokenizer of class
|
42 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
43 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
44 |
+
scheduler ([`SchedulerMixin`]):
|
45 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
46 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
47 |
+
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
|
48 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
49 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
50 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
51 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
vae: AutoencoderKL,
|
57 |
+
text_encoder: CLIPTextModel,
|
58 |
+
tokenizer: CLIPTokenizer,
|
59 |
+
unet: UNet2DConditionModel,
|
60 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
61 |
+
safety_checker: StableDiffusionSafetyChecker,
|
62 |
+
feature_extractor: CLIPFeatureExtractor,
|
63 |
+
):
|
64 |
+
super().__init__()
|
65 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
66 |
+
deprecation_message = (
|
67 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
68 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
69 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
70 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
71 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
72 |
+
" file"
|
73 |
+
)
|
74 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
75 |
+
new_config = dict(scheduler.config)
|
76 |
+
new_config["steps_offset"] = 1
|
77 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
78 |
+
|
79 |
+
self.register_modules(
|
80 |
+
vae=vae,
|
81 |
+
text_encoder=text_encoder,
|
82 |
+
tokenizer=tokenizer,
|
83 |
+
unet=unet,
|
84 |
+
scheduler=scheduler,
|
85 |
+
safety_checker=safety_checker,
|
86 |
+
feature_extractor=feature_extractor,
|
87 |
+
)
|
88 |
+
|
89 |
+
@property
|
90 |
+
def components(self) -> Dict[str, Any]:
|
91 |
+
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
|
92 |
+
|
93 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
94 |
+
r"""
|
95 |
+
Enable sliced attention computation.
|
96 |
+
|
97 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
98 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
102 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
103 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
104 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
105 |
+
"""
|
106 |
+
if slice_size == "auto":
|
107 |
+
# half the attention head size is usually a good trade-off between
|
108 |
+
# speed and memory
|
109 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
110 |
+
self.unet.set_attention_slice(slice_size)
|
111 |
+
|
112 |
+
def disable_attention_slicing(self):
|
113 |
+
r"""
|
114 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
115 |
+
back to computing attention in one step.
|
116 |
+
"""
|
117 |
+
# set slice_size = `None` to disable `attention slicing`
|
118 |
+
self.enable_attention_slicing(None)
|
119 |
+
|
120 |
+
@torch.no_grad()
|
121 |
+
def inpaint(
|
122 |
+
self,
|
123 |
+
prompt: Union[str, List[str]],
|
124 |
+
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
125 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
|
126 |
+
strength: float = 0.8,
|
127 |
+
num_inference_steps: Optional[int] = 50,
|
128 |
+
guidance_scale: Optional[float] = 7.5,
|
129 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
130 |
+
num_images_per_prompt: Optional[int] = 1,
|
131 |
+
eta: Optional[float] = 0.0,
|
132 |
+
generator: Optional[torch.Generator] = None,
|
133 |
+
output_type: Optional[str] = "pil",
|
134 |
+
return_dict: bool = True,
|
135 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
136 |
+
callback_steps: Optional[int] = 1,
|
137 |
+
):
|
138 |
+
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
|
139 |
+
return StableDiffusionInpaintPipelineLegacy(**self.components)(
|
140 |
+
prompt=prompt,
|
141 |
+
init_image=init_image,
|
142 |
+
mask_image=mask_image,
|
143 |
+
strength=strength,
|
144 |
+
num_inference_steps=num_inference_steps,
|
145 |
+
guidance_scale=guidance_scale,
|
146 |
+
negative_prompt=negative_prompt,
|
147 |
+
num_images_per_prompt=num_images_per_prompt,
|
148 |
+
eta=eta,
|
149 |
+
generator=generator,
|
150 |
+
output_type=output_type,
|
151 |
+
return_dict=return_dict,
|
152 |
+
callback=callback,
|
153 |
+
)
|
154 |
+
|
155 |
+
@torch.no_grad()
|
156 |
+
def img2img(
|
157 |
+
self,
|
158 |
+
prompt: Union[str, List[str]],
|
159 |
+
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
160 |
+
strength: float = 0.8,
|
161 |
+
num_inference_steps: Optional[int] = 50,
|
162 |
+
guidance_scale: Optional[float] = 7.5,
|
163 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
164 |
+
num_images_per_prompt: Optional[int] = 1,
|
165 |
+
eta: Optional[float] = 0.0,
|
166 |
+
generator: Optional[torch.Generator] = None,
|
167 |
+
output_type: Optional[str] = "pil",
|
168 |
+
return_dict: bool = True,
|
169 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
170 |
+
callback_steps: Optional[int] = 1,
|
171 |
+
**kwargs,
|
172 |
+
):
|
173 |
+
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
|
174 |
+
return StableDiffusionImg2ImgPipeline(**self.components)(
|
175 |
+
prompt=prompt,
|
176 |
+
init_image=init_image,
|
177 |
+
strength=strength,
|
178 |
+
num_inference_steps=num_inference_steps,
|
179 |
+
guidance_scale=guidance_scale,
|
180 |
+
negative_prompt=negative_prompt,
|
181 |
+
num_images_per_prompt=num_images_per_prompt,
|
182 |
+
eta=eta,
|
183 |
+
generator=generator,
|
184 |
+
output_type=output_type,
|
185 |
+
return_dict=return_dict,
|
186 |
+
callback=callback,
|
187 |
+
callback_steps=callback_steps,
|
188 |
+
)
|
189 |
+
|
190 |
+
@torch.no_grad()
|
191 |
+
def text2img(
|
192 |
+
self,
|
193 |
+
prompt: Union[str, List[str]],
|
194 |
+
height: int = 512,
|
195 |
+
width: int = 512,
|
196 |
+
num_inference_steps: int = 50,
|
197 |
+
guidance_scale: float = 7.5,
|
198 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
199 |
+
num_images_per_prompt: Optional[int] = 1,
|
200 |
+
eta: float = 0.0,
|
201 |
+
generator: Optional[torch.Generator] = None,
|
202 |
+
latents: Optional[torch.FloatTensor] = None,
|
203 |
+
output_type: Optional[str] = "pil",
|
204 |
+
return_dict: bool = True,
|
205 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
206 |
+
callback_steps: Optional[int] = 1,
|
207 |
+
):
|
208 |
+
# For more information on how this function https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionPipeline
|
209 |
+
return StableDiffusionPipeline(**self.components)(
|
210 |
+
prompt=prompt,
|
211 |
+
height=height,
|
212 |
+
width=width,
|
213 |
+
num_inference_steps=num_inference_steps,
|
214 |
+
guidance_scale=guidance_scale,
|
215 |
+
negative_prompt=negative_prompt,
|
216 |
+
num_images_per_prompt=num_images_per_prompt,
|
217 |
+
eta=eta,
|
218 |
+
generator=generator,
|
219 |
+
latents=latents,
|
220 |
+
output_type=output_type,
|
221 |
+
return_dict=return_dict,
|
222 |
+
callback=callback,
|
223 |
+
callback_steps=callback_steps,
|
224 |
+
)
|
v0.7.0/wildcard_stable_diffusion.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Callable, Dict, List, Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import FrozenDict
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
13 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
14 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
15 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
16 |
+
from diffusers.utils import deprecate, logging
|
17 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21 |
+
|
22 |
+
global_re_wildcard = re.compile(r"__([^_]*)__")
|
23 |
+
|
24 |
+
|
25 |
+
def get_filename(path: str):
|
26 |
+
# this doesn't work on Windows
|
27 |
+
return os.path.basename(path).split(".txt")[0]
|
28 |
+
|
29 |
+
|
30 |
+
def read_wildcard_values(path: str):
|
31 |
+
with open(path, encoding="utf8") as f:
|
32 |
+
return f.read().splitlines()
|
33 |
+
|
34 |
+
|
35 |
+
def grab_wildcard_values(wildcard_option_dict: Dict[str, List[str]] = {}, wildcard_files: List[str] = []):
|
36 |
+
for wildcard_file in wildcard_files:
|
37 |
+
filename = get_filename(wildcard_file)
|
38 |
+
read_values = read_wildcard_values(wildcard_file)
|
39 |
+
if filename not in wildcard_option_dict:
|
40 |
+
wildcard_option_dict[filename] = []
|
41 |
+
wildcard_option_dict[filename].extend(read_values)
|
42 |
+
return wildcard_option_dict
|
43 |
+
|
44 |
+
|
45 |
+
def replace_prompt_with_wildcards(
|
46 |
+
prompt: str, wildcard_option_dict: Dict[str, List[str]] = {}, wildcard_files: List[str] = []
|
47 |
+
):
|
48 |
+
new_prompt = prompt
|
49 |
+
|
50 |
+
# get wildcard options
|
51 |
+
wildcard_option_dict = grab_wildcard_values(wildcard_option_dict, wildcard_files)
|
52 |
+
|
53 |
+
for m in global_re_wildcard.finditer(new_prompt):
|
54 |
+
wildcard_value = m.group()
|
55 |
+
replace_value = random.choice(wildcard_option_dict[wildcard_value.strip("__")])
|
56 |
+
new_prompt = new_prompt.replace(wildcard_value, replace_value, 1)
|
57 |
+
|
58 |
+
return new_prompt
|
59 |
+
|
60 |
+
|
61 |
+
@dataclass
|
62 |
+
class WildcardStableDiffusionOutput(StableDiffusionPipelineOutput):
|
63 |
+
prompts: List[str]
|
64 |
+
|
65 |
+
|
66 |
+
class WildcardStableDiffusionPipeline(DiffusionPipeline):
|
67 |
+
r"""
|
68 |
+
Example Usage:
|
69 |
+
pipe = WildcardStableDiffusionPipeline.from_pretrained(
|
70 |
+
"CompVis/stable-diffusion-v1-4",
|
71 |
+
revision="fp16",
|
72 |
+
torch_dtype=torch.float16,
|
73 |
+
)
|
74 |
+
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
|
75 |
+
out = pipe(
|
76 |
+
prompt,
|
77 |
+
wildcard_option_dict={
|
78 |
+
"clothing":["hat", "shirt", "scarf", "beret"]
|
79 |
+
},
|
80 |
+
wildcard_files=["object.txt", "animal.txt"],
|
81 |
+
num_prompt_samples=1
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
Pipeline for text-to-image generation with wild cards using Stable Diffusion.
|
86 |
+
|
87 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
88 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
89 |
+
|
90 |
+
Args:
|
91 |
+
vae ([`AutoencoderKL`]):
|
92 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
93 |
+
text_encoder ([`CLIPTextModel`]):
|
94 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
95 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
96 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
97 |
+
tokenizer (`CLIPTokenizer`):
|
98 |
+
Tokenizer of class
|
99 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
100 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
101 |
+
scheduler ([`SchedulerMixin`]):
|
102 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
103 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
104 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
105 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
106 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
107 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
108 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vae: AutoencoderKL,
|
114 |
+
text_encoder: CLIPTextModel,
|
115 |
+
tokenizer: CLIPTokenizer,
|
116 |
+
unet: UNet2DConditionModel,
|
117 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
118 |
+
safety_checker: StableDiffusionSafetyChecker,
|
119 |
+
feature_extractor: CLIPFeatureExtractor,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
124 |
+
deprecation_message = (
|
125 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
126 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
127 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
128 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
129 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
130 |
+
" file"
|
131 |
+
)
|
132 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
133 |
+
new_config = dict(scheduler.config)
|
134 |
+
new_config["steps_offset"] = 1
|
135 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
136 |
+
|
137 |
+
if safety_checker is None:
|
138 |
+
logger.warn(
|
139 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
140 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
141 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
142 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
143 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
144 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
145 |
+
)
|
146 |
+
|
147 |
+
self.register_modules(
|
148 |
+
vae=vae,
|
149 |
+
text_encoder=text_encoder,
|
150 |
+
tokenizer=tokenizer,
|
151 |
+
unet=unet,
|
152 |
+
scheduler=scheduler,
|
153 |
+
safety_checker=safety_checker,
|
154 |
+
feature_extractor=feature_extractor,
|
155 |
+
)
|
156 |
+
|
157 |
+
@torch.no_grad()
|
158 |
+
def __call__(
|
159 |
+
self,
|
160 |
+
prompt: Union[str, List[str]],
|
161 |
+
height: int = 512,
|
162 |
+
width: int = 512,
|
163 |
+
num_inference_steps: int = 50,
|
164 |
+
guidance_scale: float = 7.5,
|
165 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
166 |
+
num_images_per_prompt: Optional[int] = 1,
|
167 |
+
eta: float = 0.0,
|
168 |
+
generator: Optional[torch.Generator] = None,
|
169 |
+
latents: Optional[torch.FloatTensor] = None,
|
170 |
+
output_type: Optional[str] = "pil",
|
171 |
+
return_dict: bool = True,
|
172 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
173 |
+
callback_steps: Optional[int] = 1,
|
174 |
+
wildcard_option_dict: Dict[str, List[str]] = {},
|
175 |
+
wildcard_files: List[str] = [],
|
176 |
+
num_prompt_samples: Optional[int] = 1,
|
177 |
+
**kwargs,
|
178 |
+
):
|
179 |
+
r"""
|
180 |
+
Function invoked when calling the pipeline for generation.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
prompt (`str` or `List[str]`):
|
184 |
+
The prompt or prompts to guide the image generation.
|
185 |
+
height (`int`, *optional*, defaults to 512):
|
186 |
+
The height in pixels of the generated image.
|
187 |
+
width (`int`, *optional*, defaults to 512):
|
188 |
+
The width in pixels of the generated image.
|
189 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
190 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
191 |
+
expense of slower inference.
|
192 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
193 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
194 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
195 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
196 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
197 |
+
usually at the expense of lower image quality.
|
198 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
199 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
200 |
+
if `guidance_scale` is less than `1`).
|
201 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
202 |
+
The number of images to generate per prompt.
|
203 |
+
eta (`float`, *optional*, defaults to 0.0):
|
204 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
205 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
206 |
+
generator (`torch.Generator`, *optional*):
|
207 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
208 |
+
deterministic.
|
209 |
+
latents (`torch.FloatTensor`, *optional*):
|
210 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
211 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
212 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
213 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
214 |
+
The output format of the generate image. Choose between
|
215 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
216 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
217 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
218 |
+
plain tuple.
|
219 |
+
callback (`Callable`, *optional*):
|
220 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
221 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
222 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
223 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
224 |
+
called at every step.
|
225 |
+
wildcard_option_dict (Dict[str, List[str]]):
|
226 |
+
dict with key as `wildcard` and values as a list of possible replacements. For example if a prompt, "A __animal__ sitting on a chair". A wildcard_option_dict can provide possible values for "animal" like this: {"animal":["dog", "cat", "fox"]}
|
227 |
+
wildcard_files: (List[str])
|
228 |
+
List of filenames of txt files for wildcard replacements. For example if a prompt, "A __animal__ sitting on a chair". A file can be provided ["animal.txt"]
|
229 |
+
num_prompt_samples: int
|
230 |
+
Number of times to sample wildcards for each prompt provided
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
234 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
235 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
236 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
237 |
+
(nsfw) content, according to the `safety_checker`.
|
238 |
+
"""
|
239 |
+
|
240 |
+
if isinstance(prompt, str):
|
241 |
+
prompt = [
|
242 |
+
replace_prompt_with_wildcards(prompt, wildcard_option_dict, wildcard_files)
|
243 |
+
for i in range(num_prompt_samples)
|
244 |
+
]
|
245 |
+
batch_size = len(prompt)
|
246 |
+
elif isinstance(prompt, list):
|
247 |
+
prompt_list = []
|
248 |
+
for p in prompt:
|
249 |
+
for i in range(num_prompt_samples):
|
250 |
+
prompt_list.append(replace_prompt_with_wildcards(p, wildcard_option_dict, wildcard_files))
|
251 |
+
prompt = prompt_list
|
252 |
+
batch_size = len(prompt)
|
253 |
+
else:
|
254 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
255 |
+
|
256 |
+
if height % 8 != 0 or width % 8 != 0:
|
257 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
258 |
+
|
259 |
+
if (callback_steps is None) or (
|
260 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
261 |
+
):
|
262 |
+
raise ValueError(
|
263 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
264 |
+
f" {type(callback_steps)}."
|
265 |
+
)
|
266 |
+
|
267 |
+
# get prompt text embeddings
|
268 |
+
text_inputs = self.tokenizer(
|
269 |
+
prompt,
|
270 |
+
padding="max_length",
|
271 |
+
max_length=self.tokenizer.model_max_length,
|
272 |
+
return_tensors="pt",
|
273 |
+
)
|
274 |
+
text_input_ids = text_inputs.input_ids
|
275 |
+
|
276 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
277 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
278 |
+
logger.warning(
|
279 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
280 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
281 |
+
)
|
282 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
283 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
284 |
+
|
285 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
286 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
287 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
288 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
289 |
+
|
290 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
291 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
292 |
+
# corresponds to doing no classifier free guidance.
|
293 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
294 |
+
# get unconditional embeddings for classifier free guidance
|
295 |
+
if do_classifier_free_guidance:
|
296 |
+
uncond_tokens: List[str]
|
297 |
+
if negative_prompt is None:
|
298 |
+
uncond_tokens = [""] * batch_size
|
299 |
+
elif type(prompt) is not type(negative_prompt):
|
300 |
+
raise TypeError(
|
301 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
302 |
+
f" {type(prompt)}."
|
303 |
+
)
|
304 |
+
elif isinstance(negative_prompt, str):
|
305 |
+
uncond_tokens = [negative_prompt]
|
306 |
+
elif batch_size != len(negative_prompt):
|
307 |
+
raise ValueError(
|
308 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
309 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
310 |
+
" the batch size of `prompt`."
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
uncond_tokens = negative_prompt
|
314 |
+
|
315 |
+
max_length = text_input_ids.shape[-1]
|
316 |
+
uncond_input = self.tokenizer(
|
317 |
+
uncond_tokens,
|
318 |
+
padding="max_length",
|
319 |
+
max_length=max_length,
|
320 |
+
truncation=True,
|
321 |
+
return_tensors="pt",
|
322 |
+
)
|
323 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
324 |
+
|
325 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
326 |
+
seq_len = uncond_embeddings.shape[1]
|
327 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
328 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
329 |
+
|
330 |
+
# For classifier free guidance, we need to do two forward passes.
|
331 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
332 |
+
# to avoid doing two forward passes
|
333 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
334 |
+
|
335 |
+
# get the initial random noise unless the user supplied it
|
336 |
+
|
337 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
338 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
339 |
+
# However this currently doesn't work in `mps`.
|
340 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
341 |
+
latents_dtype = text_embeddings.dtype
|
342 |
+
if latents is None:
|
343 |
+
if self.device.type == "mps":
|
344 |
+
# randn does not exist on mps
|
345 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
346 |
+
self.device
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
350 |
+
else:
|
351 |
+
if latents.shape != latents_shape:
|
352 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
353 |
+
latents = latents.to(self.device)
|
354 |
+
|
355 |
+
# set timesteps
|
356 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
357 |
+
|
358 |
+
# Some schedulers like PNDM have timesteps as arrays
|
359 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
360 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
361 |
+
|
362 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
363 |
+
latents = latents * self.scheduler.init_noise_sigma
|
364 |
+
|
365 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
366 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
367 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
368 |
+
# and should be between [0, 1]
|
369 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
370 |
+
extra_step_kwargs = {}
|
371 |
+
if accepts_eta:
|
372 |
+
extra_step_kwargs["eta"] = eta
|
373 |
+
|
374 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
375 |
+
# expand the latents if we are doing classifier free guidance
|
376 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
377 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
378 |
+
|
379 |
+
# predict the noise residual
|
380 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
381 |
+
|
382 |
+
# perform guidance
|
383 |
+
if do_classifier_free_guidance:
|
384 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
385 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
386 |
+
|
387 |
+
# compute the previous noisy sample x_t -> x_t-1
|
388 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
389 |
+
|
390 |
+
# call the callback, if provided
|
391 |
+
if callback is not None and i % callback_steps == 0:
|
392 |
+
callback(i, t, latents)
|
393 |
+
|
394 |
+
latents = 1 / 0.18215 * latents
|
395 |
+
image = self.vae.decode(latents).sample
|
396 |
+
|
397 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
398 |
+
|
399 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
400 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
401 |
+
|
402 |
+
if self.safety_checker is not None:
|
403 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
404 |
+
self.device
|
405 |
+
)
|
406 |
+
image, has_nsfw_concept = self.safety_checker(
|
407 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
has_nsfw_concept = None
|
411 |
+
|
412 |
+
if output_type == "pil":
|
413 |
+
image = self.numpy_to_pil(image)
|
414 |
+
|
415 |
+
if not return_dict:
|
416 |
+
return (image, has_nsfw_concept)
|
417 |
+
|
418 |
+
return WildcardStableDiffusionOutput(images=image, nsfw_content_detected=has_nsfw_concept, prompts=prompt)
|