|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
T5EncoderModel, |
|
T5TokenizerFast, |
|
) |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin |
|
from diffusers.models.autoencoders import AutoencoderKL |
|
from diffusers.models.transformers import FluxTransformer2DModel |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import DiffusionPipeline |
|
|
|
>>> pipe = DiffusionPipeline.from_pretrained( |
|
>>> "black-forest-labs/FLUX.1-dev", |
|
>>> custom_pipeline="pipeline_flux_semantic_guidance", |
|
>>> torch_dtype=torch.bfloat16 |
|
>>> ) |
|
>>> pipe.to("cuda") |
|
>>> prompt = "A cat holding a sign that says hello world" |
|
>>> image = pipe( |
|
>>> prompt=prompt, |
|
>>> num_inference_steps=28, |
|
>>> guidance_scale=3.5, |
|
>>> editing_prompt=["cat", "dog"], # changes from cat to dog. |
|
>>> reverse_editing_direction=[True, False], |
|
>>> edit_warmup_steps=[6, 8], |
|
>>> edit_guidance_scale=[6, 6.5], |
|
>>> edit_threshold=[0.89, 0.89], |
|
>>> edit_cooldown_steps = [25, 27], |
|
>>> edit_momentum_scale=0.3, |
|
>>> edit_mom_beta=0.6, |
|
>>> generator=torch.Generator(device="cuda").manual_seed(6543), |
|
>>> ).images[0] |
|
>>> image.save("semantic_flux.png") |
|
``` |
|
""" |
|
|
|
|
|
|
|
def calculate_shift( |
|
image_seq_len, |
|
base_seq_len: int = 256, |
|
max_seq_len: int = 4096, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.15, |
|
): |
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
b = base_shift - m * base_seq_len |
|
mu = image_seq_len * m + b |
|
return mu |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class FluxSemanticGuidancePipeline( |
|
DiffusionPipeline, |
|
FluxLoraLoaderMixin, |
|
FromSingleFileMixin, |
|
TextualInversionLoaderMixin, |
|
FluxIPAdapterMixin, |
|
): |
|
r""" |
|
The Flux pipeline for text-to-image generation with semantic guidance. |
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ |
|
|
|
Args: |
|
transformer ([`FluxTransformer2DModel`]): |
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. |
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([`T5EncoderModel`]): |
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically |
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`T5TokenizerFast`): |
|
Second Tokenizer of class |
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae" |
|
_optional_components = ["image_encoder", "feature_extractor"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder_2: T5EncoderModel, |
|
tokenizer_2: T5TokenizerFast, |
|
transformer: FluxTransformer2DModel, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
feature_extractor: CLIPImageProcessor = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 |
|
|
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
) |
|
self.default_sample_size = 128 |
|
|
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 512, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) |
|
|
|
text_inputs = self.tokenizer_2( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] |
|
|
|
dtype = self.text_encoder_2.dtype |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def _get_clip_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
): |
|
device = device or self._execution_device |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer_max_length, |
|
truncation=True, |
|
return_overflowing_tokens=False, |
|
return_length=False, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer_max_length} tokens: {removed_text}" |
|
) |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) |
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]], |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_sequence_length: int = 512, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in all text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
if self.text_encoder_2 is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
) |
|
prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt=prompt_2, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype |
|
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) |
|
|
|
return prompt_embeds, pooled_prompt_embeds, text_ids |
|
|
|
def encode_text_with_editing( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]], |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
editing_prompt: Optional[List[str]] = None, |
|
editing_prompt_2: Optional[List[str]] = None, |
|
editing_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_editing_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 512, |
|
lora_scale: Optional[float] = None, |
|
): |
|
""" |
|
Encode text prompts with editing prompts and negative prompts for semantic guidance. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide image generation. |
|
prompt_2 (`str` or `List[str]`): |
|
The prompt or prompts to guide image generation for second tokenizer. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
editing_prompt (`str` or `List[str]`, *optional*): |
|
The editing prompts for semantic guidance. |
|
editing_prompt_2 (`str` or `List[str]`, *optional*): |
|
The editing prompts for semantic guidance for second tokenizer. |
|
editing_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-computed embeddings for editing prompts. |
|
pooled_editing_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-computed pooled embeddings for editing prompts. |
|
device (`torch.device`, *optional*): |
|
The device to use for computation. |
|
num_images_per_prompt (`int`, defaults to 1): |
|
Number of images to generate per prompt. |
|
max_sequence_length (`int`, defaults to 512): |
|
Maximum sequence length for text encoding. |
|
lora_scale (`float`, *optional*): |
|
Scale factor for LoRA layers if used. |
|
|
|
Returns: |
|
tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, int]: |
|
A tuple containing the prompt embeddings, pooled prompt embeddings, |
|
text IDs, and number of enabled editing prompts. |
|
""" |
|
device = device or self._execution_device |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError("Prompt must be provided as string or list of strings") |
|
|
|
|
|
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
if editing_prompt_embeds is not None: |
|
enabled_editing_prompts = int(editing_prompt_embeds.shape[0]) |
|
edit_text_ids = [] |
|
elif editing_prompt is not None: |
|
editing_prompt_embeds = [] |
|
pooled_editing_prompt_embeds = [] |
|
edit_text_ids = [] |
|
|
|
editing_prompt_2 = editing_prompt if editing_prompt_2 is None else editing_prompt_2 |
|
for edit_1, edit_2 in zip(editing_prompt, editing_prompt_2): |
|
e_prompt_embeds, pooled_embeds, e_ids = self.encode_prompt( |
|
prompt=edit_1, |
|
prompt_2=edit_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
editing_prompt_embeds.append(e_prompt_embeds) |
|
pooled_editing_prompt_embeds.append(pooled_embeds) |
|
edit_text_ids.append(e_ids) |
|
|
|
enabled_editing_prompts = len(editing_prompt) |
|
|
|
else: |
|
edit_text_ids = [] |
|
enabled_editing_prompts = 0 |
|
|
|
if enabled_editing_prompts: |
|
for idx in range(enabled_editing_prompts): |
|
editing_prompt_embeds[idx] = torch.cat([editing_prompt_embeds[idx]] * batch_size, dim=0) |
|
pooled_editing_prompt_embeds[idx] = torch.cat([pooled_editing_prompt_embeds[idx]] * batch_size, dim=0) |
|
|
|
return ( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
editing_prompt_embeds, |
|
pooled_editing_prompt_embeds, |
|
text_ids, |
|
edit_text_ids, |
|
enabled_editing_prompts, |
|
) |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
return image_embeds |
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt |
|
): |
|
image_embeds = [] |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.transformer.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.transformer.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.transformer.encoder_hid_proj.image_projection_layers |
|
): |
|
single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) |
|
|
|
image_embeds.append(single_image_embeds[None, :]) |
|
else: |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
image_embeds.append(single_image_embeds) |
|
|
|
ip_adapter_image_embeds = [] |
|
for i, single_image_embeds in enumerate(image_embeds): |
|
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) |
|
single_image_embeds = single_image_embeds.to(device=device) |
|
ip_adapter_image_embeds.append(single_image_embeds) |
|
|
|
return ip_adapter_image_embeds |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
max_sequence_length=None, |
|
): |
|
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: |
|
logger.warning( |
|
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
@staticmethod |
|
|
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype): |
|
latent_image_ids = torch.zeros(height, width, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids.reshape( |
|
latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
@staticmethod |
|
|
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width): |
|
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) |
|
latents = latents.permute(0, 2, 4, 1, 3, 5) |
|
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) |
|
|
|
return latents |
|
|
|
@staticmethod |
|
|
|
def _unpack_latents(latents, height, width, vae_scale_factor): |
|
batch_size, num_patches, channels = latents.shape |
|
|
|
|
|
|
|
height = 2 * (int(height) // (vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (vae_scale_factor * 2)) |
|
|
|
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) |
|
latents = latents.permute(0, 3, 1, 4, 2, 5) |
|
|
|
latents = latents.reshape(batch_size, channels // (2 * 2), height, width) |
|
|
|
return latents |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
|
|
|
|
height = 2 * (int(height) // (self.vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (self.vae_scale_factor * 2)) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
|
|
if latents is not None: |
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) |
|
return latents.to(device=device, dtype=dtype), latent_image_ids |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) |
|
|
|
return latents, latent_image_ids |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def joint_attention_kwargs(self): |
|
return self._joint_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Union[str, List[str]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
true_cfg_scale: float = 1.0, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_ip_adapter_image: Optional[PipelineImageInput] = None, |
|
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
editing_prompt: Optional[Union[str, List[str]]] = None, |
|
editing_prompt_2: Optional[Union[str, List[str]]] = None, |
|
editing_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_editing_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, |
|
edit_guidance_scale: Optional[Union[float, List[float]]] = 5, |
|
edit_warmup_steps: Optional[Union[int, List[int]]] = 8, |
|
edit_cooldown_steps: Optional[Union[int, List[int]]] = None, |
|
edit_threshold: Optional[Union[float, List[float]]] = 0.9, |
|
edit_momentum_scale: Optional[float] = 0.1, |
|
edit_mom_beta: Optional[float] = 0.4, |
|
edit_weights: Optional[List[float]] = None, |
|
sem_guidance: Optional[List[torch.Tensor]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is |
|
not greater than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. |
|
true_cfg_scale (`float`, *optional*, defaults to 1.0): |
|
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
negative_ip_adapter_image: |
|
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
editing_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image editing. If not defined, no editing will be performed. |
|
editing_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image editing. If not defined, will use editing_prompt instead. |
|
editing_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings for editing. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, text embeddings will be generated from `editing_prompt` input argument. |
|
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): |
|
Whether to reverse the editing direction for each editing prompt. |
|
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): |
|
Guidance scale for the editing process. If provided as a list, each value corresponds to an editing prompt. |
|
edit_warmup_steps (`int` or `List[int]`, *optional*, defaults to 10): |
|
Number of warmup steps for editing guidance. If provided as a list, each value corresponds to an editing prompt. |
|
edit_cooldown_steps (`int` or `List[int]`, *optional*, defaults to None): |
|
Number of cooldown steps for editing guidance. If provided as a list, each value corresponds to an editing prompt. |
|
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): |
|
Threshold for editing guidance. If provided as a list, each value corresponds to an editing prompt. |
|
edit_momentum_scale (`float`, *optional*, defaults to 0.1): |
|
Scale of momentum to be added to the editing guidance at each diffusion step. |
|
edit_mom_beta (`float`, *optional*, defaults to 0.4): |
|
Beta value for momentum calculation in editing guidance. |
|
edit_weights (`List[float]`, *optional*): |
|
Weights for each editing prompt. |
|
sem_guidance (`List[torch.Tensor]`, *optional*): |
|
Pre-generated semantic guidance. If provided, it will be used instead of calculating guidance from editing prompts. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if editing_prompt: |
|
enable_edit_guidance = True |
|
if isinstance(editing_prompt, str): |
|
editing_prompt = [editing_prompt] |
|
enabled_editing_prompts = len(editing_prompt) |
|
elif editing_prompt_embeds is not None: |
|
enable_edit_guidance = True |
|
enabled_editing_prompts = editing_prompt_embeds.shape[0] |
|
else: |
|
enabled_editing_prompts = 0 |
|
enable_edit_guidance = False |
|
|
|
has_neg_prompt = negative_prompt is not None or ( |
|
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None |
|
) |
|
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
editing_prompts_embeds, |
|
pooled_editing_prompt_embeds, |
|
text_ids, |
|
edit_text_ids, |
|
enabled_editing_prompts, |
|
) = self.encode_text_with_editing( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
editing_prompt=editing_prompt, |
|
editing_prompt_2=editing_prompt_2, |
|
pooled_editing_prompt_embeds=pooled_editing_prompt_embeds, |
|
lora_scale=lora_scale, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
if do_true_cfg: |
|
( |
|
negative_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
_, |
|
) = self.encode_prompt( |
|
prompt=negative_prompt, |
|
prompt_2=negative_prompt_2, |
|
prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds] * batch_size, dim=0) |
|
negative_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds] * batch_size, dim=0) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.get("base_image_seq_len", 256), |
|
self.scheduler.config.get("max_image_seq_len", 4096), |
|
self.scheduler.config.get("base_shift", 0.5), |
|
self.scheduler.config.get("max_shift", 1.15), |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
edit_momentum = None |
|
if edit_warmup_steps: |
|
tmp_e_warmup_steps = edit_warmup_steps if isinstance(edit_warmup_steps, list) else [edit_warmup_steps] |
|
min_edit_warmup_steps = min(tmp_e_warmup_steps) |
|
else: |
|
min_edit_warmup_steps = 0 |
|
|
|
if edit_cooldown_steps: |
|
tmp_e_cooldown_steps = ( |
|
edit_cooldown_steps if isinstance(edit_cooldown_steps, list) else [edit_cooldown_steps] |
|
) |
|
max_edit_cooldown_steps = min(max(tmp_e_cooldown_steps), num_inference_steps) |
|
else: |
|
max_edit_cooldown_steps = num_inference_steps |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( |
|
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None |
|
): |
|
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( |
|
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None |
|
): |
|
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
|
|
if self.joint_attention_kwargs is None: |
|
self._joint_attention_kwargs = {} |
|
|
|
image_embeds = None |
|
negative_image_embeds = None |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: |
|
negative_image_embeds = self.prepare_ip_adapter_image_embeds( |
|
negative_ip_adapter_image, |
|
negative_ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
if image_embeds is not None: |
|
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.tensor([guidance_scale], device=device) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if enable_edit_guidance and max_edit_cooldown_steps >= i >= min_edit_warmup_steps: |
|
noise_pred_edit_concepts = [] |
|
for e_embed, pooled_e_embed, e_text_id in zip( |
|
editing_prompts_embeds, pooled_editing_prompt_embeds, edit_text_ids |
|
): |
|
noise_pred_edit = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_e_embed, |
|
encoder_hidden_states=e_embed, |
|
txt_ids=e_text_id, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred_edit_concepts.append(noise_pred_edit) |
|
|
|
if do_true_cfg: |
|
if negative_image_embeds is not None: |
|
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds |
|
noise_pred_uncond = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=negative_pooled_prompt_embeds, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_guidance = true_cfg_scale * (noise_pred - noise_pred_uncond) |
|
else: |
|
noise_pred_uncond = noise_pred |
|
noise_guidance = noise_pred |
|
|
|
if edit_momentum is None: |
|
edit_momentum = torch.zeros_like(noise_guidance) |
|
|
|
if enable_edit_guidance and max_edit_cooldown_steps >= i >= min_edit_warmup_steps: |
|
concept_weights = torch.zeros( |
|
(enabled_editing_prompts, noise_guidance.shape[0]), |
|
device=device, |
|
dtype=noise_guidance.dtype, |
|
) |
|
noise_guidance_edit = torch.zeros( |
|
(enabled_editing_prompts, *noise_guidance.shape), |
|
device=device, |
|
dtype=noise_guidance.dtype, |
|
) |
|
|
|
warmup_inds = [] |
|
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): |
|
if isinstance(edit_guidance_scale, list): |
|
edit_guidance_scale_c = edit_guidance_scale[c] |
|
else: |
|
edit_guidance_scale_c = edit_guidance_scale |
|
|
|
if isinstance(edit_threshold, list): |
|
edit_threshold_c = edit_threshold[c] |
|
else: |
|
edit_threshold_c = edit_threshold |
|
if isinstance(reverse_editing_direction, list): |
|
reverse_editing_direction_c = reverse_editing_direction[c] |
|
else: |
|
reverse_editing_direction_c = reverse_editing_direction |
|
if edit_weights: |
|
edit_weight_c = edit_weights[c] |
|
else: |
|
edit_weight_c = 1.0 |
|
if isinstance(edit_warmup_steps, list): |
|
edit_warmup_steps_c = edit_warmup_steps[c] |
|
else: |
|
edit_warmup_steps_c = edit_warmup_steps |
|
|
|
if isinstance(edit_cooldown_steps, list): |
|
edit_cooldown_steps_c = edit_cooldown_steps[c] |
|
elif edit_cooldown_steps is None: |
|
edit_cooldown_steps_c = i + 1 |
|
else: |
|
edit_cooldown_steps_c = edit_cooldown_steps |
|
if i >= edit_warmup_steps_c: |
|
warmup_inds.append(c) |
|
if i >= edit_cooldown_steps_c: |
|
noise_guidance_edit[c, :, :, :] = torch.zeros_like(noise_pred_edit_concept) |
|
continue |
|
|
|
if do_true_cfg: |
|
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond |
|
else: |
|
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred |
|
tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2)) |
|
|
|
tmp_weights = torch.full_like(tmp_weights, edit_weight_c) |
|
if reverse_editing_direction_c: |
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 |
|
concept_weights[c, :] = tmp_weights |
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c |
|
|
|
|
|
if noise_guidance_edit_tmp.dtype == torch.float32: |
|
tmp = torch.quantile( |
|
torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2), |
|
edit_threshold_c, |
|
dim=2, |
|
keepdim=False, |
|
) |
|
else: |
|
tmp = torch.quantile( |
|
torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2).to(torch.float32), |
|
edit_threshold_c, |
|
dim=2, |
|
keepdim=False, |
|
).to(noise_guidance_edit_tmp.dtype) |
|
|
|
noise_guidance_edit_tmp = torch.where( |
|
torch.abs(noise_guidance_edit_tmp) >= tmp[:, :, None], |
|
noise_guidance_edit_tmp, |
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
) |
|
|
|
noise_guidance_edit[c, :, :, :] = noise_guidance_edit_tmp |
|
|
|
warmup_inds = torch.tensor(warmup_inds).to(device) |
|
if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0: |
|
concept_weights = concept_weights.to("cpu") |
|
noise_guidance_edit = noise_guidance_edit.to("cpu") |
|
|
|
concept_weights_tmp = torch.index_select(concept_weights.to(device), 0, warmup_inds) |
|
concept_weights_tmp = torch.where( |
|
concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp |
|
) |
|
concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0) |
|
|
|
noise_guidance_edit_tmp = torch.index_select(noise_guidance_edit.to(device), 0, warmup_inds) |
|
noise_guidance_edit_tmp = torch.einsum( |
|
"cb,cbij->bij", concept_weights_tmp, noise_guidance_edit_tmp |
|
) |
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp |
|
noise_guidance = noise_guidance + noise_guidance_edit_tmp |
|
|
|
del noise_guidance_edit_tmp |
|
del concept_weights_tmp |
|
concept_weights = concept_weights.to(device) |
|
noise_guidance_edit = noise_guidance_edit.to(device) |
|
|
|
concept_weights = torch.where( |
|
concept_weights < 0, torch.zeros_like(concept_weights), concept_weights |
|
) |
|
|
|
concept_weights = torch.nan_to_num(concept_weights) |
|
|
|
noise_guidance_edit = torch.einsum("cb,cbij->bij", concept_weights, noise_guidance_edit) |
|
|
|
noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum |
|
|
|
edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit |
|
|
|
if warmup_inds.shape[0] == len(noise_pred_edit_concepts): |
|
noise_guidance = noise_guidance + noise_guidance_edit |
|
|
|
if sem_guidance is not None: |
|
edit_guidance = sem_guidance[i].to(device) |
|
noise_guidance = noise_guidance + edit_guidance |
|
|
|
if do_true_cfg: |
|
noise_pred = noise_guidance + noise_pred_uncond |
|
else: |
|
noise_pred = noise_guidance |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput( |
|
image, |
|
) |
|
|