|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import inspect |
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import UNet2DConditionModel as OriginalUNet2DConditionModel |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
IPAdapterMixin, |
|
PeftAdapterMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
UNet2DConditionLoadersMixin, |
|
) |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.models.attention_processor import ( |
|
AttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
from diffusers.schedulers import DDPMScheduler, KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
is_invisible_watermark_available, |
|
is_torch_version, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.outputs import BaseOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
if is_invisible_watermark_available(): |
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import random |
|
>>> import numpy as np |
|
>>> import torch |
|
>>> from diffusers import DiffusionPipeline, AutoencoderKL, UniPCMultistepScheduler |
|
>>> from huggingface_hub import hf_hub_download |
|
>>> from diffusers.utils import load_image |
|
>>> from PIL import Image |
|
>>> |
|
>>> device = "cuda" |
|
>>> dtype = torch.float16 |
|
>>> MAX_SEED = np.iinfo(np.int32).max |
|
>>> |
|
>>> # Download weights for additional unet layers |
|
>>> model_file = hf_hub_download( |
|
... "jychen9811/FaithDiff", |
|
... filename="FaithDiff.bin", local_dir="./proc_data/faithdiff", local_dir_use_symlinks=False |
|
... ) |
|
>>> |
|
>>> # Initialize the models and pipeline |
|
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype) |
|
>>> |
|
>>> model_id = "SG161222/RealVisXL_V4.0" |
|
>>> pipe = DiffusionPipeline.from_pretrained( |
|
... model_id, |
|
... torch_dtype=dtype, |
|
... vae=vae, |
|
... unet=None, #<- Do not load with original model. |
|
... custom_pipeline="mixture_tiling_sdxl", |
|
... use_safetensors=True, |
|
... variant="fp16", |
|
... ).to(device) |
|
>>> |
|
>>> # Here we need use pipeline internal unet model |
|
>>> pipe.unet = pipe.unet_model.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True) |
|
>>> |
|
>>> # Load aditional layers to the model |
|
>>> pipe.unet.load_additional_layers(weight_path="proc_data/faithdiff/FaithDiff.bin", dtype=dtype) |
|
>>> |
|
>>> # Enable vae tiling |
|
>>> pipe.set_encoder_tile_settings() |
|
>>> pipe.enable_vae_tiling() |
|
>>> |
|
>>> # Optimization |
|
>>> pipe.enable_model_cpu_offload() |
|
>>> |
|
>>> # Set selected scheduler |
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
>>> |
|
>>> #input params |
|
>>> prompt = "The image features a woman in her 55s with blonde hair and a white shirt, smiling at the camera. She appears to be in a good mood and is wearing a white scarf around her neck. " |
|
>>> upscale = 2 # scale here |
|
>>> start_point = "lr" # or "noise" |
|
>>> latent_tiled_overlap = 0.5 |
|
>>> latent_tiled_size = 1024 |
|
>>> |
|
>>> # Load image |
|
>>> lq_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/woman.png") |
|
>>> original_height = lq_image.height |
|
>>> original_width = lq_image.width |
|
>>> print(f"Current resolution: H:{original_height} x W:{original_width}") |
|
>>> |
|
>>> width = original_width * int(upscale) |
|
>>> height = original_height * int(upscale) |
|
>>> print(f"Final resolution: H:{height} x W:{width}") |
|
>>> |
|
>>> # Restoration |
|
>>> image = lq_image.resize((width, height), Image.LANCZOS) |
|
>>> input_image, width_init, height_init, width_now, height_now = pipe.check_image_size(image) |
|
>>> |
|
>>> generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED)) |
|
>>> gen_image = pipe(lr_img=input_image, |
|
... prompt = prompt, |
|
... num_inference_steps=20, |
|
... guidance_scale=5, |
|
... generator=generator, |
|
... start_point=start_point, |
|
... height = height_now, |
|
... width=width_now, |
|
... overlap=latent_tiled_overlap, |
|
... target_size=(latent_tiled_size, latent_tiled_size) |
|
... ).images[0] |
|
>>> |
|
>>> cropped_image = gen_image.crop((0, 0, width_init, height_init)) |
|
>>> cropped_image.save("data/result.png") |
|
``` |
|
""" |
|
|
|
|
|
def zero_module(module): |
|
"""Zero out the parameters of a module and return it.""" |
|
for p in module.parameters(): |
|
nn.init.zeros_(p) |
|
return module |
|
|
|
|
|
class Encoder(nn.Module): |
|
"""Encoder layer of a variational autoencoder that encodes input into a latent representation.""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 4, |
|
down_block_types: Tuple[str, ...] = ( |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
), |
|
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
double_z: bool = True, |
|
mid_block_add_attention: bool = True, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.mid_block = None |
|
self.down_blocks = nn.ModuleList([]) |
|
self.use_rgb = False |
|
self.down_block_type = down_block_types |
|
self.block_out_channels = block_out_channels |
|
|
|
self.tile_sample_min_size = 1024 |
|
self.tile_latent_min_size = int(self.tile_sample_min_size / 8) |
|
self.tile_overlap_factor = 0.25 |
|
self.use_tiling = False |
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=self.layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=None, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
add_attention=mid_block_add_attention, |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def to_rgb_init(self): |
|
"""Initialize layers to convert features to RGB.""" |
|
self.to_rgbs = nn.ModuleList([]) |
|
self.use_rgb = True |
|
for i, down_block_type in enumerate(self.down_block_type): |
|
output_channel = self.block_out_channels[i] |
|
self.to_rgbs.append(nn.Conv2d(output_channel, 3, kernel_size=3, padding=1)) |
|
|
|
def enable_tiling(self): |
|
"""Enable tiling for large inputs.""" |
|
self.use_tiling = True |
|
|
|
def encode(self, sample: torch.FloatTensor) -> torch.FloatTensor: |
|
"""Encode the input tensor into a latent representation.""" |
|
sample = self.conv_in(sample) |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
for down_block in self.down_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(down_block), sample, use_reentrant=False |
|
) |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), sample, use_reentrant=False |
|
) |
|
else: |
|
for down_block in self.down_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) |
|
return sample |
|
else: |
|
for down_block in self.down_blocks: |
|
sample = down_block(sample) |
|
sample = self.mid_block(sample) |
|
return sample |
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
"""Blend two tensors vertically with a smooth transition.""" |
|
blend_extent = min(a.shape[2], b.shape[2], blend_extent) |
|
for y in range(blend_extent): |
|
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) |
|
return b |
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
"""Blend two tensors horizontally with a smooth transition.""" |
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) |
|
return b |
|
|
|
def tiled_encode(self, x: torch.FloatTensor) -> torch.FloatTensor: |
|
"""Encode the input tensor using tiling for large inputs.""" |
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_latent_min_size - blend_extent |
|
|
|
rows = [] |
|
for i in range(0, x.shape[2], overlap_size): |
|
row = [] |
|
for j in range(0, x.shape[3], overlap_size): |
|
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] |
|
tile = self.encode(tile) |
|
row.append(tile) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=3)) |
|
|
|
moments = torch.cat(result_rows, dim=2) |
|
return moments |
|
|
|
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: |
|
"""Forward pass of the encoder, using tiling if enabled for large inputs.""" |
|
if self.use_tiling and ( |
|
sample.shape[-1] > self.tile_latent_min_size or sample.shape[-2] > self.tile_latent_min_size |
|
): |
|
return self.tiled_encode(sample) |
|
return self.encode(sample) |
|
|
|
|
|
class ControlNetConditioningEmbedding(nn.Module): |
|
"""A small network to preprocess conditioning inputs, inspired by ControlNet.""" |
|
|
|
def __init__(self, conditioning_embedding_channels: int, conditioning_channels: int = 4): |
|
super().__init__() |
|
self.conv_in = nn.Conv2d(conditioning_channels, conditioning_channels, kernel_size=3, padding=1) |
|
self.norm_in = nn.GroupNorm(num_channels=conditioning_channels, num_groups=32, eps=1e-6) |
|
self.conv_out = zero_module( |
|
nn.Conv2d(conditioning_channels, conditioning_embedding_channels, kernel_size=3, padding=1) |
|
) |
|
|
|
def forward(self, conditioning): |
|
"""Process the conditioning input through the network.""" |
|
conditioning = self.norm_in(conditioning) |
|
embedding = self.conv_in(conditioning) |
|
embedding = F.silu(embedding) |
|
embedding = self.conv_out(embedding) |
|
return embedding |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
"""A fast approximation of the GELU activation function.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
"""Apply the QuickGELU activation to the input tensor.""" |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
"""Apply LayerNorm and preserve the input dtype.""" |
|
orig_type = x.dtype |
|
ret = super().forward(x) |
|
return ret.type(orig_type) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
"""A transformer-style block with self-attention and an MLP.""" |
|
|
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): |
|
super().__init__() |
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("c_fc", nn.Linear(d_model, d_model * 2)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 2, d_model)), |
|
] |
|
) |
|
) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x: torch.Tensor): |
|
"""Apply self-attention to the input tensor.""" |
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor): |
|
"""Forward pass through the residual attention block.""" |
|
x = x + self.attention(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
@dataclass |
|
class UNet2DConditionOutput(BaseOutput): |
|
"""The output of UnifiedUNet2DConditionModel.""" |
|
|
|
sample: torch.FloatTensor = None |
|
|
|
|
|
class UNet2DConditionModel(OriginalUNet2DConditionModel, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): |
|
"""A unified 2D UNet model extending OriginalUNet2DConditionModel with custom functionality.""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
center_input_sample: bool = False, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
dropout: float = 0.0, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
addition_time_embed_dim: Optional[int] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
time_embedding_type: str = "positional", |
|
time_embedding_dim: Optional[int] = None, |
|
time_embedding_act_fn: Optional[str] = None, |
|
timestep_post_act: Optional[str] = None, |
|
time_cond_proj_dim: Optional[int] = None, |
|
conv_in_kernel: int = 3, |
|
conv_out_kernel: int = 3, |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
attention_type: str = "default", |
|
class_embeddings_concat: bool = False, |
|
mid_block_only_cross_attention: Optional[bool] = None, |
|
cross_attention_norm: Optional[str] = None, |
|
addition_embed_type_num_heads: int = 64, |
|
): |
|
"""Initialize the UnifiedUNet2DConditionModel.""" |
|
super().__init__( |
|
sample_size=sample_size, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
center_input_sample=center_input_sample, |
|
flip_sin_to_cos=flip_sin_to_cos, |
|
freq_shift=freq_shift, |
|
down_block_types=down_block_types, |
|
mid_block_type=mid_block_type, |
|
up_block_types=up_block_types, |
|
only_cross_attention=only_cross_attention, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
downsample_padding=downsample_padding, |
|
mid_block_scale_factor=mid_block_scale_factor, |
|
dropout=dropout, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
norm_eps=norm_eps, |
|
cross_attention_dim=cross_attention_dim, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, |
|
encoder_hid_dim=encoder_hid_dim, |
|
encoder_hid_dim_type=encoder_hid_dim_type, |
|
attention_head_dim=attention_head_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
class_embed_type=class_embed_type, |
|
addition_embed_type=addition_embed_type, |
|
addition_time_embed_dim=addition_time_embed_dim, |
|
num_class_embeds=num_class_embeds, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
resnet_skip_time_act=resnet_skip_time_act, |
|
resnet_out_scale_factor=resnet_out_scale_factor, |
|
time_embedding_type=time_embedding_type, |
|
time_embedding_dim=time_embedding_dim, |
|
time_embedding_act_fn=time_embedding_act_fn, |
|
timestep_post_act=timestep_post_act, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
conv_in_kernel=conv_in_kernel, |
|
conv_out_kernel=conv_out_kernel, |
|
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, |
|
attention_type=attention_type, |
|
class_embeddings_concat=class_embeddings_concat, |
|
mid_block_only_cross_attention=mid_block_only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
addition_embed_type_num_heads=addition_embed_type_num_heads, |
|
) |
|
|
|
|
|
self.denoise_encoder = None |
|
self.information_transformer_layes = None |
|
self.condition_embedding = None |
|
self.agg_net = None |
|
self.spatial_ch_projs = None |
|
|
|
def init_vae_encoder(self, dtype): |
|
self.denoise_encoder = Encoder() |
|
if dtype is not None: |
|
self.denoise_encoder.dtype = dtype |
|
|
|
def init_information_transformer_layes(self): |
|
num_trans_channel = 640 |
|
num_trans_head = 8 |
|
num_trans_layer = 2 |
|
num_proj_channel = 320 |
|
self.information_transformer_layes = nn.Sequential( |
|
*[ResidualAttentionBlock(num_trans_channel, num_trans_head) for _ in range(num_trans_layer)] |
|
) |
|
self.spatial_ch_projs = zero_module(nn.Linear(num_trans_channel, num_proj_channel)) |
|
|
|
def init_ControlNetConditioningEmbedding(self, channel=512): |
|
self.condition_embedding = ControlNetConditioningEmbedding(320, channel) |
|
|
|
def init_extra_weights(self): |
|
self.agg_net = nn.ModuleList() |
|
|
|
def load_additional_layers( |
|
self, dtype: Optional[torch.dtype] = torch.float16, channel: int = 512, weight_path: Optional[str] = None |
|
): |
|
"""Load additional layers and weights from a file. |
|
|
|
Args: |
|
weight_path (str): Path to the weight file. |
|
dtype (torch.dtype, optional): Data type for the loaded weights. Defaults to torch.float16. |
|
channel (int): Conditioning embedding channel out size. Defaults 512. |
|
""" |
|
if self.denoise_encoder is None: |
|
self.init_vae_encoder(dtype) |
|
|
|
if self.information_transformer_layes is None: |
|
self.init_information_transformer_layes() |
|
|
|
if self.condition_embedding is None: |
|
self.init_ControlNetConditioningEmbedding(channel) |
|
|
|
if self.agg_net is None: |
|
self.init_extra_weights() |
|
|
|
|
|
if weight_path is not None: |
|
state_dict = torch.load(weight_path, weights_only=False) |
|
self.load_state_dict(state_dict, strict=True) |
|
|
|
|
|
device = next(self.parameters()).device |
|
if dtype is not None or device is not None: |
|
self.to(device=device, dtype=dtype or next(self.parameters()).dtype) |
|
|
|
def to(self, *args, **kwargs): |
|
"""Override to() to move all additional modules to the same device and dtype.""" |
|
super().to(*args, **kwargs) |
|
for module in [ |
|
self.denoise_encoder, |
|
self.information_transformer_layes, |
|
self.condition_embedding, |
|
self.agg_net, |
|
self.spatial_ch_projs, |
|
]: |
|
if module is not None: |
|
module.to(*args, **kwargs) |
|
return self |
|
|
|
def load_state_dict(self, state_dict, strict=True): |
|
"""Load state dictionary into the model. |
|
|
|
Args: |
|
state_dict (dict): State dictionary to load. |
|
strict (bool, optional): Whether to strictly enforce that all keys match. Defaults to True. |
|
""" |
|
core_dict = {} |
|
additional_dicts = { |
|
"denoise_encoder": {}, |
|
"information_transformer_layes": {}, |
|
"condition_embedding": {}, |
|
"agg_net": {}, |
|
"spatial_ch_projs": {}, |
|
} |
|
|
|
for key, value in state_dict.items(): |
|
if key.startswith("denoise_encoder."): |
|
additional_dicts["denoise_encoder"][key[len("denoise_encoder.") :]] = value |
|
elif key.startswith("information_transformer_layes."): |
|
additional_dicts["information_transformer_layes"][key[len("information_transformer_layes.") :]] = value |
|
elif key.startswith("condition_embedding."): |
|
additional_dicts["condition_embedding"][key[len("condition_embedding.") :]] = value |
|
elif key.startswith("agg_net."): |
|
additional_dicts["agg_net"][key[len("agg_net.") :]] = value |
|
elif key.startswith("spatial_ch_projs."): |
|
additional_dicts["spatial_ch_projs"][key[len("spatial_ch_projs.") :]] = value |
|
else: |
|
core_dict[key] = value |
|
|
|
super().load_state_dict(core_dict, strict=False) |
|
for module_name, module_dict in additional_dicts.items(): |
|
module = getattr(self, module_name, None) |
|
if module is not None and module_dict: |
|
module.load_state_dict(module_dict, strict=strict) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
input_embedding: Optional[torch.Tensor] = None, |
|
add_sample: bool = True, |
|
return_dict: bool = True, |
|
use_condition_embedding: bool = True, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
"""Forward pass prioritizing the original modified implementation. |
|
|
|
Args: |
|
sample (torch.FloatTensor): The noisy input tensor with shape `(batch, channel, height, width)`. |
|
timestep (Union[torch.Tensor, float, int]): The number of timesteps to denoise an input. |
|
encoder_hidden_states (torch.Tensor): The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. |
|
class_labels (torch.Tensor, optional): Optional class labels for conditioning. |
|
timestep_cond (torch.Tensor, optional): Conditional embeddings for timestep. |
|
attention_mask (torch.Tensor, optional): An attention mask of shape `(batch, key_tokens)`. |
|
cross_attention_kwargs (Dict[str, Any], optional): A kwargs dictionary for the AttentionProcessor. |
|
added_cond_kwargs (Dict[str, torch.Tensor], optional): Additional embeddings to add to the UNet blocks. |
|
down_block_additional_residuals (Tuple[torch.Tensor], optional): Residuals for down UNet blocks. |
|
mid_block_additional_residual (torch.Tensor, optional): Residual for the middle UNet block. |
|
down_intrablock_additional_residuals (Tuple[torch.Tensor], optional): Additional residuals within down blocks. |
|
encoder_attention_mask (torch.Tensor, optional): A cross-attention mask of shape `(batch, sequence_length)`. |
|
input_embedding (torch.Tensor, optional): Additional input embedding for preprocessing. |
|
add_sample (bool): Whether to add the sample to the processed embedding. Defaults to True. |
|
return_dict (bool): Whether to return a UNet2DConditionOutput. Defaults to True. |
|
use_condition_embedding (bool): Whether to use the condition embedding. Defaults to True. |
|
|
|
Returns: |
|
Union[UNet2DConditionOutput, Tuple]: The processed sample tensor, either as a UNet2DConditionOutput or tuple. |
|
""" |
|
default_overall_up_factor = 2**self.num_upsamplers |
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
for dim in sample.shape[-2:]: |
|
if dim % default_overall_up_factor != 0: |
|
forward_upsample_size = True |
|
break |
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
t_emb = self.get_time_embed(sample=sample, timestep=timestep) |
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) |
|
if class_emb is not None: |
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
aug_emb = self.get_aug_embed( |
|
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs |
|
) |
|
if self.config.addition_embed_type == "image_hint": |
|
aug_emb, hint = aug_emb |
|
sample = torch.cat([sample, hint], dim=1) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
encoder_hidden_states = self.process_encoder_hidden_states( |
|
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs |
|
) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
if ( |
|
input_embedding is not None |
|
and self.condition_embedding is not None |
|
and self.information_transformer_layes is not None |
|
): |
|
if use_condition_embedding: |
|
input_embedding = self.condition_embedding(input_embedding) |
|
batch_size, channel, height, width = input_embedding.shape |
|
concat_feat = ( |
|
torch.cat([sample, input_embedding], dim=1) |
|
.view(batch_size, 2 * channel, height * width) |
|
.transpose(1, 2) |
|
) |
|
concat_feat = self.information_transformer_layes(concat_feat) |
|
feat_alpha = self.spatial_ch_projs(concat_feat).transpose(1, 2).view(batch_size, channel, height, width) |
|
sample = sample + feat_alpha if add_sample else feat_alpha |
|
|
|
|
|
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
gligen_args = cross_attention_kwargs.pop("gligen") |
|
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} |
|
|
|
|
|
if cross_attention_kwargs is not None: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
lora_scale = cross_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
scale_lora_layers(self, lora_scale) |
|
|
|
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None |
|
is_adapter = down_intrablock_additional_residuals is not None |
|
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: |
|
deprecate( |
|
"T2I should not use down_block_additional_residuals", |
|
"1.3.0", |
|
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ |
|
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ |
|
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", |
|
standard_warn=False, |
|
) |
|
down_intrablock_additional_residuals = down_block_additional_residuals |
|
is_adapter = True |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
additional_residuals = {} |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
**additional_residuals, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
down_block_res_samples += res_samples |
|
|
|
if is_controlnet: |
|
new_down_block_res_samples = () |
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
if ( |
|
is_adapter |
|
and len(down_intrablock_additional_residuals) > 0 |
|
and sample.shape == down_intrablock_additional_residuals[0].shape |
|
): |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
if is_controlnet: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
upsample_size=upsample_size, |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if USE_PEFT_BACKEND: |
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
return UNet2DConditionOutput(sample=sample) |
|
|
|
|
|
class LocalAttention: |
|
"""A class to handle local attention by splitting tensors into overlapping grids for processing.""" |
|
|
|
def __init__(self, kernel_size=None, overlap=0.5): |
|
"""Initialize the LocalAttention module. |
|
|
|
Args: |
|
kernel_size (tuple[int, int], optional): Size of the grid (height, width). Defaults to None. |
|
overlap (float): Overlap factor between adjacent grids (0.0 to 1.0). Defaults to 0.5. |
|
""" |
|
super().__init__() |
|
self.kernel_size = kernel_size |
|
self.overlap = overlap |
|
|
|
def grids_list(self, x): |
|
"""Split the input tensor into a list of non-overlapping grid patches. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). |
|
|
|
Returns: |
|
list[torch.Tensor]: List of tensor patches. |
|
""" |
|
b, c, h, w = x.shape |
|
self.original_size = (b, c, h, w) |
|
assert b == 1 |
|
k1, k2 = self.kernel_size |
|
if h < k1: |
|
k1 = h |
|
if w < k2: |
|
k2 = w |
|
num_row = (h - 1) // k1 + 1 |
|
num_col = (w - 1) // k2 + 1 |
|
self.nr = num_row |
|
self.nc = num_col |
|
|
|
import math |
|
|
|
step_j = k2 if num_col == 1 else math.ceil(k2 * self.overlap) |
|
step_i = k1 if num_row == 1 else math.ceil(k1 * self.overlap) |
|
parts = [] |
|
idxes = [] |
|
i = 0 |
|
last_i = False |
|
while i < h and not last_i: |
|
j = 0 |
|
if i + k1 >= h: |
|
i = h - k1 |
|
last_i = True |
|
last_j = False |
|
while j < w and not last_j: |
|
if j + k2 >= w: |
|
j = w - k2 |
|
last_j = True |
|
parts.append(x[:, :, i : i + k1, j : j + k2]) |
|
idxes.append({"i": i, "j": j}) |
|
j = j + step_j |
|
i = i + step_i |
|
return parts |
|
|
|
def grids(self, x): |
|
"""Split the input tensor into overlapping grid patches and concatenate them. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). |
|
|
|
Returns: |
|
torch.Tensor: Concatenated tensor of all grid patches. |
|
""" |
|
b, c, h, w = x.shape |
|
self.original_size = (b, c, h, w) |
|
assert b == 1 |
|
k1, k2 = self.kernel_size |
|
if h < k1: |
|
k1 = h |
|
if w < k2: |
|
k2 = w |
|
self.tile_weights = self._gaussian_weights(k2, k1) |
|
num_row = (h - 1) // k1 + 1 |
|
num_col = (w - 1) // k2 + 1 |
|
self.nr = num_row |
|
self.nc = num_col |
|
|
|
import math |
|
|
|
step_j = k2 if num_col == 1 else math.ceil(k2 * self.overlap) |
|
step_i = k1 if num_row == 1 else math.ceil(k1 * self.overlap) |
|
parts = [] |
|
idxes = [] |
|
i = 0 |
|
last_i = False |
|
while i < h and not last_i: |
|
j = 0 |
|
if i + k1 >= h: |
|
i = h - k1 |
|
last_i = True |
|
last_j = False |
|
while j < w and not last_j: |
|
if j + k2 >= w: |
|
j = w - k2 |
|
last_j = True |
|
parts.append(x[:, :, i : i + k1, j : j + k2]) |
|
idxes.append({"i": i, "j": j}) |
|
j = j + step_j |
|
i = i + step_i |
|
self.idxes = idxes |
|
return torch.cat(parts, dim=0) |
|
|
|
def _gaussian_weights(self, tile_width, tile_height): |
|
"""Generate a Gaussian weight mask for tile contributions. |
|
|
|
Args: |
|
tile_width (int): Width of the tile. |
|
tile_height (int): Height of the tile. |
|
|
|
Returns: |
|
torch.Tensor: Gaussian weight tensor of shape (channels, height, width). |
|
""" |
|
import numpy as np |
|
from numpy import exp, pi, sqrt |
|
|
|
latent_width = tile_width |
|
latent_height = tile_height |
|
var = 0.01 |
|
midpoint = (latent_width - 1) / 2 |
|
x_probs = [ |
|
exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var) |
|
for x in range(latent_width) |
|
] |
|
midpoint = latent_height / 2 |
|
y_probs = [ |
|
exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var) |
|
for y in range(latent_height) |
|
] |
|
weights = np.outer(y_probs, x_probs) |
|
return torch.tile(torch.tensor(weights, device=torch.device("cuda")), (4, 1, 1)) |
|
|
|
def grids_inverse(self, outs): |
|
"""Reconstruct the original tensor from processed grid patches with overlap blending. |
|
|
|
Args: |
|
outs (torch.Tensor): Processed grid patches. |
|
|
|
Returns: |
|
torch.Tensor: Reconstructed tensor of original size. |
|
""" |
|
preds = torch.zeros(self.original_size).to(outs.device) |
|
b, c, h, w = self.original_size |
|
count_mt = torch.zeros((b, 4, h, w)).to(outs.device) |
|
k1, k2 = self.kernel_size |
|
|
|
for cnt, each_idx in enumerate(self.idxes): |
|
i = each_idx["i"] |
|
j = each_idx["j"] |
|
preds[0, :, i : i + k1, j : j + k2] += outs[cnt, :, :, :] * self.tile_weights |
|
count_mt[0, :, i : i + k1, j : j + k2] += self.tile_weights |
|
|
|
del outs |
|
torch.cuda.empty_cache() |
|
return preds / count_mt |
|
|
|
def _pad(self, x): |
|
"""Pad the input tensor to align with kernel size. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). |
|
|
|
Returns: |
|
tuple: Padded tensor and padding values. |
|
""" |
|
b, c, h, w = x.shape |
|
k1, k2 = self.kernel_size |
|
mod_pad_h = (k1 - h % k1) % k1 |
|
mod_pad_w = (k2 - w % k2) % k2 |
|
pad = (mod_pad_w // 2, mod_pad_w - mod_pad_w // 2, mod_pad_h // 2, mod_pad_h - mod_pad_h // 2) |
|
x = F.pad(x, pad, "reflect") |
|
return x, pad |
|
|
|
def forward(self, x): |
|
"""Apply local attention by splitting into grids and reconstructing. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). |
|
|
|
Returns: |
|
torch.Tensor: Processed tensor of original size. |
|
""" |
|
b, c, h, w = x.shape |
|
qkv = self.grids(x) |
|
out = self.grids_inverse(qkv) |
|
return out |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
|
|
Args: |
|
noise_cfg (torch.Tensor): Noise configuration tensor. |
|
noise_pred_text (torch.Tensor): Predicted noise from text-conditioned model. |
|
guidance_rescale (float): Rescaling factor for guidance. Defaults to 0.0. |
|
|
|
Returns: |
|
torch.Tensor: Rescaled noise configuration. |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
"""Retrieve latents from an encoder output. |
|
|
|
Args: |
|
encoder_output (torch.Tensor): Output from an encoder (e.g., VAE). |
|
generator (torch.Generator, optional): Random generator for sampling. Defaults to None. |
|
sample_mode (str): Sampling mode ("sample" or "argmax"). Defaults to "sample". |
|
|
|
Returns: |
|
torch.Tensor: Retrieved latent tensor. |
|
""" |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class FaithDiffStableDiffusionXLPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
FromSingleFileMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
IPAdapterMixin, |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion XL. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([` CLIPTextModelWithProjection`]): |
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
specifically the |
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`CLIPTokenizer`): |
|
Second Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): |
|
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of |
|
`stabilityai/stable-diffusion-xl-base-1-0`. |
|
add_watermarker (`bool`, *optional*): |
|
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to |
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no |
|
watermarker will be used. |
|
""" |
|
|
|
unet_model = UNet2DConditionModel |
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" |
|
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2", "feature_extractor", "unet"] |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
"add_text_embeds", |
|
"add_time_ids", |
|
"negative_pooled_prompt_embeds", |
|
"negative_add_time_ids", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: OriginalUNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
force_zeros_for_empty_prompt: bool = True, |
|
add_watermarker: Optional[bool] = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.DDPMScheduler = DDPMScheduler.from_config(self.scheduler.config, subfolder="scheduler") |
|
self.default_sample_size = self.unet.config.sample_size if unet is not None else 128 |
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() |
|
|
|
if add_watermarker: |
|
self.watermark = StableDiffusionXLWatermarker() |
|
else: |
|
self.watermark = None |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
device = "cuda" |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
dtype = text_encoders[0].dtype |
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_encoder = text_encoder.to(dtype) |
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
if clip_skip is None: |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
else: |
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
negative_prompt_2 = ( |
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 |
|
) |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
if self.text_encoder_2 is not None: |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
if self.text_encoder_2 is not None: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_image_size(self, x, padder_size=8): |
|
|
|
width, height = x.size |
|
padder_size = padder_size |
|
|
|
mod_pad_h = (padder_size - height % padder_size) % padder_size |
|
mod_pad_w = (padder_size - width % padder_size) % padder_size |
|
x_np = np.array(x) |
|
|
|
x_padded = cv2.copyMakeBorder( |
|
x_np, top=0, bottom=mod_pad_h, left=0, right=mod_pad_w, borderType=cv2.BORDER_REPLICATE |
|
) |
|
|
|
x = PIL.Image.fromarray(x_padded) |
|
|
|
|
|
return x, width, height, width + mod_pad_w, height + mod_pad_h |
|
|
|
def check_inputs( |
|
self, |
|
lr_img, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if lr_img is None: |
|
raise ValueError("`lr_image` must be provided!") |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
|
|
def get_guidance_scale_embedding( |
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 |
|
) -> torch.FloatTensor: |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
w (`torch.Tensor`): |
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
Dimension of the embeddings to generate. |
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): |
|
Data type of the generated embeddings. |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`. |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
def set_encoder_tile_settings( |
|
self, |
|
denoise_encoder_tile_sample_min_size=1024, |
|
denoise_encoder_sample_overlap_factor=0.25, |
|
vae_sample_size=1024, |
|
vae_tile_overlap_factor=0.25, |
|
): |
|
self.unet.denoise_encoder.tile_sample_min_size = denoise_encoder_tile_sample_min_size |
|
self.unet.denoise_encoder.tile_overlap_factor = denoise_encoder_sample_overlap_factor |
|
self.vae.config.sample_size = vae_sample_size |
|
self.vae.tile_overlap_factor = vae_tile_overlap_factor |
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
self.unet.denoise_encoder.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
self.unet.denoise_encoder.disable_tiling() |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def denoising_end(self): |
|
return self._denoising_end |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
def prepare_image_latents( |
|
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None |
|
): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
image_latents = image |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
self.unet.denoise_encoder.to(device=image.device, dtype=image.dtype) |
|
image_latents = self.unet.denoise_encoder(image) |
|
self.unet.denoise_encoder.to("cpu") |
|
|
|
|
|
|
|
|
|
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) |
|
additional_image_per_prompt = batch_size // image_latents.shape[0] |
|
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
image_latents = torch.cat([image_latents], dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
image_latents = image_latents |
|
|
|
if image_latents.dtype != self.vae.dtype: |
|
image_latents = image_latents.to(dtype=self.vae.dtype) |
|
|
|
return image_latents |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
lr_img: PipelineImageInput = None, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
start_point: Optional[str] = "noise", |
|
timesteps: List[int] = None, |
|
denoising_end: Optional[float] = None, |
|
overlap: float = 0.5, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
add_sample: bool = True, |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
lr_img (PipelineImageInput, optional): Low-resolution input image for conditioning the generation process. |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
start_point (str, *optional*): |
|
The starting point for the generation process. Can be "noise" (random noise) or "lr" (low-resolution image). |
|
Defaults to "noise". |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the |
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a |
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image |
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) |
|
overlap (float): |
|
Overlap factor for local attention tiling (between 0.0 and 1.0). Controls the overlap between adjacent |
|
grid patches during processing. Defaults to 0.5. |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
add_sample (bool): |
|
Whether to include sample conditioning (e.g., low-resolution image) in the UNet during denoising. |
|
Defaults to True. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
lr_img, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._denoising_end = denoising_end |
|
self._interrupt = False |
|
self.tlc_vae_latents = LocalAttention((target_size[0] // 8, target_size[1] // 8), overlap) |
|
self.tlc_vae_img = LocalAttention((target_size[0] // 8, target_size[1] // 8), overlap) |
|
|
|
|
|
batch_size = 1 |
|
num_images_per_prompt = 1 |
|
|
|
device = torch.device("cuda") |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
num_samples = num_images_per_prompt |
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
lr_img_list = [lr_img] |
|
lr_img = self.image_processor.preprocess(lr_img_list, height=height, width=width).to( |
|
device, dtype=prompt_embeds.dtype |
|
) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
image_latents = self.prepare_image_latents( |
|
lr_img, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, self.do_classifier_free_guidance |
|
) |
|
|
|
image_latents = self.tlc_vae_img.grids(image_latents) |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
if start_point == "lr": |
|
latents_condition_image = self.vae.encode(lr_img * 2 - 1).latent_dist.sample() |
|
latents_condition_image = latents_condition_image * self.vae.config.scaling_factor |
|
start_steps_tensor = torch.randint(999, 999 + 1, (latents.shape[0],), device=latents.device) |
|
start_steps_tensor = start_steps_tensor.long() |
|
latents = self.DDPMScheduler.add_noise(latents_condition_image[0:1, ...], latents, start_steps_tensor) |
|
|
|
latents = self.tlc_vae_latents.grids(latents) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * image_latents.shape[0] |
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if ( |
|
self.denoising_end is not None |
|
and isinstance(self.denoising_end, float) |
|
and self.denoising_end > 0 |
|
and self.denoising_end < 1 |
|
): |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
self._num_timesteps = len(timesteps) |
|
sub_latents_num = latents.shape[0] |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if i >= 1: |
|
latents = self.tlc_vae_latents.grids(latents).to(dtype=latents.dtype) |
|
if self.interrupt: |
|
continue |
|
concat_grid = [] |
|
for sub_num in range(sub_latents_num): |
|
self.scheduler.__dict__.update(views_scheduler_status[sub_num]) |
|
sub_latents = latents[sub_num, :, :, :].unsqueeze(0) |
|
img_sub_latents = image_latents[sub_num, :, :, :].unsqueeze(0) |
|
latent_model_input = ( |
|
torch.cat([sub_latents] * 2) if self.do_classifier_free_guidance else sub_latents |
|
) |
|
img_sub_latents = ( |
|
torch.cat([img_sub_latents] * 2) if self.do_classifier_free_guidance else img_sub_latents |
|
) |
|
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
pos_height = self.tlc_vae_latents.idxes[sub_num]["i"] |
|
pos_width = self.tlc_vae_latents.idxes[sub_num]["j"] |
|
add_time_ids = [ |
|
torch.tensor([original_size]), |
|
torch.tensor([[pos_height, pos_width]]), |
|
torch.tensor([target_size]), |
|
] |
|
add_time_ids = torch.cat(add_time_ids, dim=1).to( |
|
img_sub_latents.device, dtype=img_sub_latents.dtype |
|
) |
|
add_time_ids = add_time_ids.repeat(2, 1).to(dtype=img_sub_latents.dtype) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
with torch.amp.autocast( |
|
device.type, dtype=latents.dtype, enabled=latents.dtype != self.unet.dtype |
|
): |
|
noise_pred = self.unet( |
|
scaled_latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
input_embedding=img_sub_latents, |
|
add_sample=add_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg( |
|
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale |
|
) |
|
|
|
|
|
latents_dtype = sub_latents.dtype |
|
sub_latents = self.scheduler.step( |
|
noise_pred, t, sub_latents, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
views_scheduler_status[sub_num] = copy.deepcopy(self.scheduler.__dict__) |
|
concat_grid.append(sub_latents) |
|
if latents.dtype != sub_latents: |
|
if torch.backends.mps.is_available(): |
|
|
|
sub_latents = sub_latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) |
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
) |
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
latents = self.tlc_vae_latents.grids_inverse(torch.cat(concat_grid, dim=0)).to(sub_latents.dtype) |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
elif latents.dtype != self.vae.dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
self.vae = self.vae.to(latents.dtype) |
|
|
|
|
|
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None |
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None |
|
if has_latents_mean and has_latents_std: |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents_std = ( |
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean |
|
else: |
|
latents = latents / self.vae.config.scaling_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|