--- dataset_info: features: - name: Prompt dtype: string - name: Category dtype: string - name: Challenge dtype: string - name: Note dtype: string - name: images dtype: image - name: model_name dtype: string - name: seed dtype: int64 splits: - name: train num_bytes: 166170790.0 num_examples: 1632 download_size: 166034308 dataset_size: 166170790.0 --- # Images of Parti Prompts for "if-v-1.0" Code that was used to get the results: ```py from diffusers import DiffusionPipeline import torch pipe_low = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", safety_checker=None, watermarker=None, torch_dtype=torch.float16, variant="fp16") pipe_low.enable_model_cpu_offload() pipe_up = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0", safety_checker=None, watermarker=None, text_encoder=pipe_low.text_encoder, torch_dtype=torch.float16, variant="fp16") pipe_up.enable_model_cpu_offload() prompt = "" # a parti prompt generator = torch.Generator("cuda").manual_seed(0) prompt_embeds, negative_prompt_embeds = pipe_low.encode_prompt(prompt) images = pipe_low(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=100, generator=generator, output_type="pt").images images = pipe_up(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=images, num_inference_steps=100, generator=generator).images[0] ```