devshaheen commited on
Commit
e29056e
ยท
verified ยท
1 Parent(s): fdc0254

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +171 -173
README.md CHANGED
@@ -1,175 +1,173 @@
1
  ---
 
2
  tags:
3
- - object-detection
4
- - agriculture
5
- - crops
6
- - plants
7
- - open-source
8
- - YOLOv5
9
- ---
10
- *Note: If you need this dataset in any other format, DM me on LinkedIn or ask in the discussions box. I will provide it ASAP.*
11
-
12
-
13
- # 100 Crops/Plants Object Detection 25K Image Dataset
14
-
15
- ## Dataset Summary
16
- This dataset consists of **25,000+ high-quality annotated images** for **100 different crops/plants**, enabling object detection for agricultural AI applications. It is designed for training models in **YOLOv5 format** and has been **expertly annotated using Roboflow**.
17
-
18
- ## Annotation and Format
19
- - The dataset was **annotated on Roboflow**, ensuring high-quality **bounding box annotations** for each crop/plant category.
20
- - All annotations follow the **YOLOv5 format**, making it easy to train models with YOLO-based architectures.
21
- - The dataset was **exported and preprocessed** into the required structure for direct training in YOLO-based object detection models.
22
-
23
- ## Dataset Structure
24
- The dataset is split into three subsets:
25
- - **Train:** 17,553 images with labels
26
- - **Validation:** 4,990 images with labels
27
- - **Test:** 2,458 images with labels
28
-
29
- Each split contains:
30
- - **Images** (JPG/PNG format)
31
- - **Labels** (in YOLOv5 `.txt` format)
32
- - **`data.yaml`** configuration file
33
-
34
- ### YOLOv5 Format
35
- Each image has a corresponding **text file** containing bounding box labels in the following format:
36
- ```
37
- <class_id> <x_center> <y_center> <width> <height>
38
- ```
39
- - All values are **normalized between 0 and 1**.
40
- - **Class ID** corresponds to one of the **100 crop/plant categories** listed below.
41
-
42
- ## Plant/Crop Categories
43
- This dataset includes **100 different crops/plants**, providing valuable labeled images for agricultural AI applications. The dataset contains the following categories:
44
-
45
- 1. Zingiber officinale (Ginger)
46
- 2. Almonds
47
- 3. Aloe Vera
48
- 4. Apple
49
- 5. Apricot
50
- 6. Areca Nut
51
- 7. Ashwagandha
52
- 8. Avocado
53
- 9. Bamboo
54
- 10. Banana
55
- 11. Beetroot
56
- 12. Bell Pepper (Capsicum)
57
- 13. Bitter Gourd
58
- 14. Black Pepper
59
- 15. Blackberry
60
- 16. Blackgram
61
- 17. Blueberry
62
- 18. Bottle Gourd
63
- 19. Brinjal (Eggplant)
64
- 20. Broccoli
65
- 21. Cabbage
66
- 22. Cactus
67
- 23. Cardamom
68
- 24. Carrot
69
- 25. Cashew
70
- 26. Cassava
71
- 27. Cauliflower
72
- 28. Chamomile
73
- 29. Cherry
74
- 30. Chili Pepper
75
- 31. Cinnamon
76
- 32. Coconut
77
- 33. Coffee Beans
78
- 34. Coriander
79
- 35. Cotton
80
- 36. Cucumber
81
- 37. Date Palm
82
- 38. Dates
83
- 39. Dragon Fruit
84
- 40. Figs (Anjeer)
85
- 41. Garlic
86
- 42. Grapes
87
- 43. Green Gram (Mung Bean)
88
- 44. Groundnut (Peanut)
89
- 45. Guava
90
- 46. Jaggery
91
- 47. Jute
92
- 48. Kidney Bean
93
- 49. Kiwi
94
- 50. Lavender
95
- 51. Lemon
96
- 52. Lychee
97
- 53. Maize
98
- 54. Mango
99
- 55. Mint Herb
100
- 56. Mushroom
101
- 57. Muskmelon
102
- 58. Mustard Crop
103
- 59. Oats
104
- 60. Okra (Ladyfinger)
105
- 61. Onion
106
- 62. Orange
107
- 63. Orchid (Orchidaceae)
108
- 64. Papaya
109
- 65. Pea
110
- 66. Peach
111
- 67. Pear
112
- 68. Pineapple
113
- 69. Pista (Pistachio)
114
- 70. Plum
115
- 71. Pomegranate
116
- 72. Pomelo
117
- 73. Potato
118
- 74. Pumpkin
119
- 75. Radish
120
- 76. Raspberry
121
- 77. Rice
122
- 78. Rose
123
- 79. Rosemary
124
- 80. Rubber Plant
125
- 81. Safflower
126
- 82. Saffron
127
- 83. Sesame
128
- 84. Sorghum
129
- 85. Soursop
130
- 86. Soybean
131
- 87. Spinach
132
- 88. Starfruit (Carambola)
133
- 89. Strawberry
134
- 90. Sugar Apple
135
- 91. Sugarcane
136
- 92. Sunflower
137
- 93. Sweet Potato
138
- 94. Tea
139
- 95. Tomato
140
- 96. Tulip
141
- 97. Turmeric
142
- 98. Walnut
143
- 99. Watermelon
144
- 100. Wheat
145
-
146
- ## Usage
147
- You can load this dataset using the Hugging Face `datasets` library:
148
-
149
- ```python
150
- from datasets import load_dataset
151
-
152
- dataset = load_dataset("devshaheen/100_crops_plants_object_detection_25k_image_dataset")
153
- ```
154
-
155
- Or, clone the dataset manually:
156
-
157
- ```bash
158
- git clone https://huggingface.co/datasets/devshaheen/100_crops_plants_object_detection_25k_image_dataset
159
- ```
160
-
161
- ## License
162
- This dataset is released under the **MIT License**, allowing free use for both research and commercial projects. Please credit the authors when using it.
163
-
164
- ## Credits
165
- Wherever this dataset is used, credits should be given to:
166
- - **Shaheen Nabi**: [LinkedIn](https://www.linkedin.com/in/shaheennabi/)
167
- - **Izhar Ashiq**: [LinkedIn](https://in.linkedin.com/in/izharashiq)
168
-
169
- ## Contact
170
- For any inquiries, feel free to reach out via LinkedIn or start a discussion on Hugging Face.
171
-
172
- ๐Ÿ”— **Hugging Face Profile**: [https://huggingface.co/devshaheen](https://huggingface.co/devshaheen)
173
-
174
- ---
175
- Let's build the future of AI-powered agriculture together! ๐Ÿš€๐ŸŒฑ
 
1
  ---
2
+ dataset_name: "100 Crops/Plants Object Detection 25K Image Dataset"
3
  tags:
4
+ - object-detection
5
+ - agriculture
6
+ - crops
7
+ - plants
8
+ - open-source
9
+ - YOLOv5
10
+ language: "en"
11
+ license: "MIT"
12
+ size_categories:
13
+ - "25K+ images"
14
+ task_categories:
15
+ - "object-detection"
16
+
17
+ dataset_summary: |
18
+ This dataset consists of **25,000+ high-quality annotated images** of **100 different crops/plants**, designed to train object detection models for agricultural applications. The annotations follow the **YOLOv5 format**, making it easy to use for training deep learning models.
19
+
20
+ dataset_structure: |
21
+ The dataset is provided in a **zip file**, which must be extracted before use. It is split into three subsets:
22
+ - **Train:** 17,553 images with labels
23
+ - **Validation:** 4,990 images with labels
24
+ - **Test:** 2,458 images with labels
25
+
26
+ Each split contains:
27
+ - **Images** (JPG/PNG format)
28
+ - **Labels** (YOLOv5 `.txt` format)
29
+ - **`data.yaml`** configuration file for YOLO training
30
+
31
+ annotation_details: |
32
+ - **Annotated using Roboflow**
33
+ - **Bounding boxes for each crop/plant category**
34
+ - **Preprocessed for YOLOv5-based models**
35
+ - Each image has a corresponding `.txt` annotation file with bounding boxes in the following format:
36
+ ```
37
+ <class_id> <x_center> <y_center> <width> <height>
38
+ ```
39
+ - All values are **normalized between 0 and 1**.
40
+
41
+ plant_categories: |
42
+ This dataset includes **100 crop/plant categories**, providing labeled images for agricultural AI applications:
43
+ 1. Zingiber officinale (Ginger)
44
+ 2. Almonds
45
+ 3. Aloe Vera
46
+ 4. Apple
47
+ 5. Apricot
48
+ 6. Areca Nut
49
+ 7. Ashwagandha
50
+ 8. Avocado
51
+ 9. Bamboo
52
+ 10. Banana
53
+ 11. Beetroot
54
+ 12. Bell Pepper (Capsicum)
55
+ 13. Bitter Gourd
56
+ 14. Black Pepper
57
+ 15. Blackberry
58
+ 16. Blackgram
59
+ 17. Blueberry
60
+ 18. Bottle Gourd
61
+ 19. Brinjal (Eggplant)
62
+ 20. Broccoli
63
+ 21. Cabbage
64
+ 22. Cactus
65
+ 23. Cardamom
66
+ 24. Carrot
67
+ 25. Cashew
68
+ 26. Cassava
69
+ 27. Cauliflower
70
+ 28. Chamomile
71
+ 29. Cherry
72
+ 30. Chili Pepper
73
+ 31. Cinnamon
74
+ 32. Coconut
75
+ 33. Coffee Beans
76
+ 34. Coriander
77
+ 35. Cotton
78
+ 36. Cucumber
79
+ 37. Date Palm
80
+ 38. Dates
81
+ 39. Dragon Fruit
82
+ 40. Figs (Anjeer)
83
+ 41. Garlic
84
+ 42. Grapes
85
+ 43. Green Gram (Mung Bean)
86
+ 44. Groundnut (Peanut)
87
+ 45. Guava
88
+ 46. Jaggery
89
+ 47. Jute
90
+ 48. Kidney Bean
91
+ 49. Kiwi
92
+ 50. Lavender
93
+ 51. Lemon
94
+ 52. Lychee
95
+ 53. Maize
96
+ 54. Mango
97
+ 55. Mint Herb
98
+ 56. Mushroom
99
+ 57. Muskmelon
100
+ 58. Mustard Crop
101
+ 59. Oats
102
+ 60. Okra (Ladyfinger)
103
+ 61. Onion
104
+ 62. Orange
105
+ 63. Orchid (Orchidaceae)
106
+ 64. Papaya
107
+ 65. Pea
108
+ 66. Peach
109
+ 67. Pear
110
+ 68. Pineapple
111
+ 69. Pista (Pistachio)
112
+ 70. Plum
113
+ 71. Pomegranate
114
+ 72. Pomelo
115
+ 73. Potato
116
+ 74. Pumpkin
117
+ 75. Radish
118
+ 76. Raspberry
119
+ 77. Rice
120
+ 78. Rose
121
+ 79. Rosemary
122
+ 80. Rubber Plant
123
+ 81. Safflower
124
+ 82. Saffron
125
+ 83. Sesame
126
+ 84. Sorghum
127
+ 85. Soursop
128
+ 86. Soybean
129
+ 87. Spinach
130
+ 88. Starfruit (Carambola)
131
+ 89. Strawberry
132
+ 90. Sugar Apple
133
+ 91. Sugarcane
134
+ 92. Sunflower
135
+ 93. Sweet Potato
136
+ 94. Tea
137
+ 95. Tomato
138
+ 96. Tulip
139
+ 97. Turmeric
140
+ 98. Walnut
141
+ 99. Watermelon
142
+ 100. Wheat
143
+
144
+ usage: |
145
+ You can load this dataset using the Hugging Face `datasets` library:
146
+
147
+ ```python
148
+ from datasets import load_dataset
149
+ dataset = load_dataset("devshaheen/100_crops_plants_object_detection_25k_image_dataset")
150
+
151
+ clone_dataset: |
152
+
153
+ Or, clone the dataset manually:
154
+
155
+ ```bash
156
+ git clone https://huggingface.co/datasets/devshaheen/100_crops_plants_object_detection_25k_image_dataset
157
+
158
+ license_details: |
159
+ This dataset is released under the MIT License, allowing free use for both research and commercial projects. Please credit the authors when using it.
160
+
161
+ citation: |
162
+ If you use this dataset, please credit:
163
+
164
+ - Shaheen Nabi ([LinkedIn](https://www.linkedin.com/in/shaheennabi/))
165
+ - Izhar Ashiq ([LinkedIn](https://in.linkedin.com/in/izharashiq))
166
+
167
+ contact: |
168
+ For any inquiries, feel free to reach out via LinkedIn or start a discussion on Hugging Face.
169
+
170
+ ๐Ÿ”— Hugging Face Profile: [https://huggingface.co/devshaheen](https://huggingface.co/devshaheen)
171
+
172
+ note: |
173
+ Note: If you need this dataset in any other format, DM me on LinkedIn or ask in the discussions box. I will provide it ASAP. ๐Ÿš€๐ŸŒฑ