Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,175 +1,173 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
-
- object-detection
|
4 |
-
- agriculture
|
5 |
-
- crops
|
6 |
-
- plants
|
7 |
-
- open-source
|
8 |
-
- YOLOv5
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
- **
|
27 |
-
- **
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
- **
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
dataset
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
---
|
175 |
-
Let's build the future of AI-powered agriculture together! ๐๐ฑ
|
|
|
1 |
---
|
2 |
+
dataset_name: "100 Crops/Plants Object Detection 25K Image Dataset"
|
3 |
tags:
|
4 |
+
- object-detection
|
5 |
+
- agriculture
|
6 |
+
- crops
|
7 |
+
- plants
|
8 |
+
- open-source
|
9 |
+
- YOLOv5
|
10 |
+
language: "en"
|
11 |
+
license: "MIT"
|
12 |
+
size_categories:
|
13 |
+
- "25K+ images"
|
14 |
+
task_categories:
|
15 |
+
- "object-detection"
|
16 |
+
|
17 |
+
dataset_summary: |
|
18 |
+
This dataset consists of **25,000+ high-quality annotated images** of **100 different crops/plants**, designed to train object detection models for agricultural applications. The annotations follow the **YOLOv5 format**, making it easy to use for training deep learning models.
|
19 |
+
|
20 |
+
dataset_structure: |
|
21 |
+
The dataset is provided in a **zip file**, which must be extracted before use. It is split into three subsets:
|
22 |
+
- **Train:** 17,553 images with labels
|
23 |
+
- **Validation:** 4,990 images with labels
|
24 |
+
- **Test:** 2,458 images with labels
|
25 |
+
|
26 |
+
Each split contains:
|
27 |
+
- **Images** (JPG/PNG format)
|
28 |
+
- **Labels** (YOLOv5 `.txt` format)
|
29 |
+
- **`data.yaml`** configuration file for YOLO training
|
30 |
+
|
31 |
+
annotation_details: |
|
32 |
+
- **Annotated using Roboflow**
|
33 |
+
- **Bounding boxes for each crop/plant category**
|
34 |
+
- **Preprocessed for YOLOv5-based models**
|
35 |
+
- Each image has a corresponding `.txt` annotation file with bounding boxes in the following format:
|
36 |
+
```
|
37 |
+
<class_id> <x_center> <y_center> <width> <height>
|
38 |
+
```
|
39 |
+
- All values are **normalized between 0 and 1**.
|
40 |
+
|
41 |
+
plant_categories: |
|
42 |
+
This dataset includes **100 crop/plant categories**, providing labeled images for agricultural AI applications:
|
43 |
+
1. Zingiber officinale (Ginger)
|
44 |
+
2. Almonds
|
45 |
+
3. Aloe Vera
|
46 |
+
4. Apple
|
47 |
+
5. Apricot
|
48 |
+
6. Areca Nut
|
49 |
+
7. Ashwagandha
|
50 |
+
8. Avocado
|
51 |
+
9. Bamboo
|
52 |
+
10. Banana
|
53 |
+
11. Beetroot
|
54 |
+
12. Bell Pepper (Capsicum)
|
55 |
+
13. Bitter Gourd
|
56 |
+
14. Black Pepper
|
57 |
+
15. Blackberry
|
58 |
+
16. Blackgram
|
59 |
+
17. Blueberry
|
60 |
+
18. Bottle Gourd
|
61 |
+
19. Brinjal (Eggplant)
|
62 |
+
20. Broccoli
|
63 |
+
21. Cabbage
|
64 |
+
22. Cactus
|
65 |
+
23. Cardamom
|
66 |
+
24. Carrot
|
67 |
+
25. Cashew
|
68 |
+
26. Cassava
|
69 |
+
27. Cauliflower
|
70 |
+
28. Chamomile
|
71 |
+
29. Cherry
|
72 |
+
30. Chili Pepper
|
73 |
+
31. Cinnamon
|
74 |
+
32. Coconut
|
75 |
+
33. Coffee Beans
|
76 |
+
34. Coriander
|
77 |
+
35. Cotton
|
78 |
+
36. Cucumber
|
79 |
+
37. Date Palm
|
80 |
+
38. Dates
|
81 |
+
39. Dragon Fruit
|
82 |
+
40. Figs (Anjeer)
|
83 |
+
41. Garlic
|
84 |
+
42. Grapes
|
85 |
+
43. Green Gram (Mung Bean)
|
86 |
+
44. Groundnut (Peanut)
|
87 |
+
45. Guava
|
88 |
+
46. Jaggery
|
89 |
+
47. Jute
|
90 |
+
48. Kidney Bean
|
91 |
+
49. Kiwi
|
92 |
+
50. Lavender
|
93 |
+
51. Lemon
|
94 |
+
52. Lychee
|
95 |
+
53. Maize
|
96 |
+
54. Mango
|
97 |
+
55. Mint Herb
|
98 |
+
56. Mushroom
|
99 |
+
57. Muskmelon
|
100 |
+
58. Mustard Crop
|
101 |
+
59. Oats
|
102 |
+
60. Okra (Ladyfinger)
|
103 |
+
61. Onion
|
104 |
+
62. Orange
|
105 |
+
63. Orchid (Orchidaceae)
|
106 |
+
64. Papaya
|
107 |
+
65. Pea
|
108 |
+
66. Peach
|
109 |
+
67. Pear
|
110 |
+
68. Pineapple
|
111 |
+
69. Pista (Pistachio)
|
112 |
+
70. Plum
|
113 |
+
71. Pomegranate
|
114 |
+
72. Pomelo
|
115 |
+
73. Potato
|
116 |
+
74. Pumpkin
|
117 |
+
75. Radish
|
118 |
+
76. Raspberry
|
119 |
+
77. Rice
|
120 |
+
78. Rose
|
121 |
+
79. Rosemary
|
122 |
+
80. Rubber Plant
|
123 |
+
81. Safflower
|
124 |
+
82. Saffron
|
125 |
+
83. Sesame
|
126 |
+
84. Sorghum
|
127 |
+
85. Soursop
|
128 |
+
86. Soybean
|
129 |
+
87. Spinach
|
130 |
+
88. Starfruit (Carambola)
|
131 |
+
89. Strawberry
|
132 |
+
90. Sugar Apple
|
133 |
+
91. Sugarcane
|
134 |
+
92. Sunflower
|
135 |
+
93. Sweet Potato
|
136 |
+
94. Tea
|
137 |
+
95. Tomato
|
138 |
+
96. Tulip
|
139 |
+
97. Turmeric
|
140 |
+
98. Walnut
|
141 |
+
99. Watermelon
|
142 |
+
100. Wheat
|
143 |
+
|
144 |
+
usage: |
|
145 |
+
You can load this dataset using the Hugging Face `datasets` library:
|
146 |
+
|
147 |
+
```python
|
148 |
+
from datasets import load_dataset
|
149 |
+
dataset = load_dataset("devshaheen/100_crops_plants_object_detection_25k_image_dataset")
|
150 |
+
|
151 |
+
clone_dataset: |
|
152 |
+
|
153 |
+
Or, clone the dataset manually:
|
154 |
+
|
155 |
+
```bash
|
156 |
+
git clone https://huggingface.co/datasets/devshaheen/100_crops_plants_object_detection_25k_image_dataset
|
157 |
+
|
158 |
+
license_details: |
|
159 |
+
This dataset is released under the MIT License, allowing free use for both research and commercial projects. Please credit the authors when using it.
|
160 |
+
|
161 |
+
citation: |
|
162 |
+
If you use this dataset, please credit:
|
163 |
+
|
164 |
+
- Shaheen Nabi ([LinkedIn](https://www.linkedin.com/in/shaheennabi/))
|
165 |
+
- Izhar Ashiq ([LinkedIn](https://in.linkedin.com/in/izharashiq))
|
166 |
+
|
167 |
+
contact: |
|
168 |
+
For any inquiries, feel free to reach out via LinkedIn or start a discussion on Hugging Face.
|
169 |
+
|
170 |
+
๐ Hugging Face Profile: [https://huggingface.co/devshaheen](https://huggingface.co/devshaheen)
|
171 |
+
|
172 |
+
note: |
|
173 |
+
Note: If you need this dataset in any other format, DM me on LinkedIn or ask in the discussions box. I will provide it ASAP. ๐๐ฑ
|
|
|
|
|
|