devshaheen commited on
Commit
1fa08be
·
verified ·
1 Parent(s): 4e6947a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -175
README.md CHANGED
@@ -1,178 +1,147 @@
1
- ---
2
- dataset_name: "100 Crops/Plants Object Detection 25K Image Dataset"
3
- tags:
4
- - object-detection
5
- - agriculture
6
- - crops
7
- - plants
8
- - open-source
9
- - YOLOv5
10
- language: "en"
11
- license: "MIT"
12
- size_categories:
13
- - "25K+ images"
14
- task_categories:
15
- - "object-detection"
16
-
17
- dataset_summary: |
18
- This dataset consists of **25,000+ high-quality annotated images** of **100 different crops/plants**, designed to train object detection models for agricultural applications. The annotations follow the **YOLOv5 format**, making it easy to use for training deep learning models.
19
-
20
- dataset_structure: |
21
- The dataset is provided in a **zip file**, which must be extracted before use. It is split into three subsets:
22
- - **Train:** 17,553 images with labels
23
- - **Validation:** 4,990 images with labels
24
- - **Test:** 2,458 images with labels
25
-
26
- Each split contains:
27
- - **Images** (JPG/PNG format)
28
- - **Labels** (YOLOv5 `.txt` format)
29
- - **`data.yaml`** configuration file for YOLO training
30
-
31
- annotation_details: |
32
- - **Annotated using Roboflow**
33
- - **Bounding boxes for each crop/plant category**
34
- - **Preprocessed for YOLOv5-based models**
35
- - Each image has a corresponding `.txt` annotation file with bounding boxes in the following format:
36
- ```
37
- <class_id> <x_center> <y_center> <width> <height>
38
- ```
39
- - All values are **normalized between 0 and 1**.
40
-
41
- plant_categories: |
42
- This dataset includes **100 crop/plant categories**, providing labeled images for agricultural AI applications:
43
- 1. Zingiber officinale (Ginger)
44
- 2. Almonds
45
- 3. Aloe Vera
46
- 4. Apple
47
- 5. Apricot
48
- 6. Areca Nut
49
- 7. Ashwagandha
50
- 8. Avocado
51
- 9. Bamboo
52
- 10. Banana
53
- 11. Beetroot
54
- 12. Bell Pepper (Capsicum)
55
- 13. Bitter Gourd
56
- 14. Black Pepper
57
- 15. Blackberry
58
- 16. Blackgram
59
- 17. Blueberry
60
- 18. Bottle Gourd
61
- 19. Brinjal (Eggplant)
62
- 20. Broccoli
63
- 21. Cabbage
64
- 22. Cactus
65
- 23. Cardamom
66
- 24. Carrot
67
- 25. Cashew
68
- 26. Cassava
69
- 27. Cauliflower
70
- 28. Chamomile
71
- 29. Cherry
72
- 30. Chili Pepper
73
- 31. Cinnamon
74
- 32. Coconut
75
- 33. Coffee Beans
76
- 34. Coriander
77
- 35. Cotton
78
- 36. Cucumber
79
- 37. Date Palm
80
- 38. Dates
81
- 39. Dragon Fruit
82
- 40. Figs (Anjeer)
83
- 41. Garlic
84
- 42. Grapes
85
- 43. Green Gram (Mung Bean)
86
- 44. Groundnut (Peanut)
87
- 45. Guava
88
- 46. Jaggery
89
- 47. Jute
90
- 48. Kidney Bean
91
- 49. Kiwi
92
- 50. Lavender
93
- 51. Lemon
94
- 52. Lychee
95
- 53. Maize
96
- 54. Mango
97
- 55. Mint Herb
98
- 56. Mushroom
99
- 57. Muskmelon
100
- 58. Mustard Crop
101
- 59. Oats
102
- 60. Okra (Ladyfinger)
103
- 61. Onion
104
- 62. Orange
105
- 63. Orchid (Orchidaceae)
106
- 64. Papaya
107
- 65. Pea
108
- 66. Peach
109
- 67. Pear
110
- 68. Pineapple
111
- 69. Pista (Pistachio)
112
- 70. Plum
113
- 71. Pomegranate
114
- 72. Pomelo
115
- 73. Potato
116
- 74. Pumpkin
117
- 75. Radish
118
- 76. Raspberry
119
- 77. Rice
120
- 78. Rose
121
- 79. Rosemary
122
- 80. Rubber Plant
123
- 81. Safflower
124
- 82. Saffron
125
- 83. Sesame
126
- 84. Sorghum
127
- 85. Soursop
128
- 86. Soybean
129
- 87. Spinach
130
- 88. Starfruit (Carambola)
131
- 89. Strawberry
132
- 90. Sugar Apple
133
- 91. Sugarcane
134
- 92. Sunflower
135
- 93. Sweet Potato
136
- 94. Tea
137
- 95. Tomato
138
- 96. Tulip
139
- 97. Turmeric
140
- 98. Walnut
141
- 99. Watermelon
142
- 100. Wheat
143
-
144
- usage: |
145
- You can load this dataset using the Hugging Face `datasets` library:
146
-
147
- ```python
148
- from datasets import load_dataset
149
- dataset = load_dataset("devshaheen/100_crops_plants_object_detection_25k_image_dataset")
150
-
151
-
152
- ## Clone Dataset
153
-
154
- Or, clone the dataset manually:
155
-
156
- ```bash
157
- git clone https://huggingface.co/datasets/devshaheen/100_crops_plants_object_detection_25k_image_dataset
158
-
159
- ## License Details
160
-
161
- This dataset is released under the **MIT License**, allowing free use for both research and commercial projects. Please credit the authors when using it.
162
-
163
- ## Citation
164
-
165
- If you use this dataset, please credit:
166
-
167
- - **Shaheen Nabi** ([LinkedIn](https://www.linkedin.com/in/shaheennabi/))
168
- - **Izhar Ashiq** ([LinkedIn](https://in.linkedin.com/in/izharashiq))
169
 
170
  ## Contact
 
171
 
172
- For any inquiries, feel free to reach out via LinkedIn or start a discussion on Hugging Face.
173
-
174
- 🔗 **Hugging Face Profile**: [https://huggingface.co/devshaheen](https://huggingface.co/devshaheen)
175
-
176
- ## Note
177
-
178
- 💡 **Note**: If you need this dataset in any other format, DM me on LinkedIn or ask in the discussions box. I will provide it ASAP. 🚀🌱
 
1
+ # Open-Source Crop/Plant Object Detection Dataset
2
+
3
+ *Note: If you need this dataset in any other format, DM me on LinkedIn or ask in the discussions box. I will provide it ASAP.*
4
+
5
+ ## Introduction
6
+ I am excited to open-source this dataset to help developers, researchers, and machine learning enthusiasts build object detection models for agricultural applications. This dataset consists of annotated images of **100 different crops/plants**, providing a valuable resource for training and evaluating object detection models.
7
+
8
+ *Remember: This dataset is in .zip format, extract the .zip file and dataset is yours*
9
+
10
+ ## Dataset Details
11
+ The dataset is available on **[Hugging Face](https://huggingface.co/datasets/devshaheen/100_crops_plants_object_detection_25k_image_dataset)** and contains three splits:
12
+ - **Train:** 17,553 images with corresponding labels
13
+ - **Validation:** 4,990 images with corresponding labels
14
+ - **Test:** 2,458 images with corresponding labels
15
+
16
+ Each split contains:
17
+ - Images
18
+ - Labels (in YOLOv5 format)
19
+ - A `data.yaml` file for configuration
20
+
21
+ ## Annotation
22
+ The dataset has been annotated using **Roboflow**, ensuring high-quality bounding box annotations for each crop/plant category.
23
+ All annotations follow the **YOLOv5 format**, making it easy to train models with YOLO-based architectures.
24
+
25
+ ## Plant/Crop Categories
26
+ This dataset includes **100 different crops/plants**, covering a wide range of agricultural produce:
27
+
28
+ 1. Zingiber officinale (Ginger)
29
+ 2. Almonds
30
+ 3. Aloe Vera
31
+ 4. Apple
32
+ 5. Apricot
33
+ 6. Areca Nut
34
+ 7. Ashwagandha
35
+ 8. Avocado
36
+ 9. Bamboo
37
+ 10. Banana
38
+ 11. Beetroot
39
+ 12. Bell Pepper (Capsicum)
40
+ 13. Bitter Gourd
41
+ 14. Black Pepper
42
+ 15. Blackberry
43
+ 16. Blackgram
44
+ 17. Blueberry
45
+ 18. Bottle Gourd
46
+ 19. Brinjal (Eggplant)
47
+ 20. Broccoli
48
+ 21. Cabbage
49
+ 22. Cactus
50
+ 23. Cardamom
51
+ 24. Carrot
52
+ 25. Cashew
53
+ 26. Cassava
54
+ 27. Cauliflower
55
+ 28. Chamomile
56
+ 29. Cherry
57
+ 30. Chili Pepper
58
+ 31. Cinnamon
59
+ 32. Coconut
60
+ 33. Coffee Beans
61
+ 34. Coriander
62
+ 35. Cotton
63
+ 36. Cucumber
64
+ 37. Date Palm
65
+ 38. Dates
66
+ 39. Dragon Fruit
67
+ 40. Figs (Anjeer)
68
+ 41. Garlic
69
+ 42. Grapes
70
+ 43. Green Gram (Mung Bean)
71
+ 44. Groundnut (Peanut)
72
+ 45. Guava
73
+ 46. Jaggery
74
+ 47. Jute
75
+ 48. Kidney Bean
76
+ 49. Kiwi
77
+ 50. Lavender
78
+ 51. Lemon
79
+ 52. Lychee
80
+ 53. Maize
81
+ 54. Mango
82
+ 55. Mint Herb
83
+ 56. Mushroom
84
+ 57. Muskmelon
85
+ 58. Mustard Crop
86
+ 59. Oats
87
+ 60. Okra (Ladyfinger)
88
+ 61. Onion
89
+ 62. Orange
90
+ 63. Orchid (Orchidaceae)
91
+ 64. Papaya
92
+ 65. Pea
93
+ 66. Peach
94
+ 67. Pear
95
+ 68. Pineapple
96
+ 69. Pista (Pistachio)
97
+ 70. Plum
98
+ 71. Pomegranate
99
+ 72. Pomelo
100
+ 73. Potato
101
+ 74. Pumpkin
102
+ 75. Radish
103
+ 76. Raspberry
104
+ 77. Rice
105
+ 78. Rose
106
+ 79. Rosemary
107
+ 80. Rubber Plant
108
+ 81. Safflower
109
+ 82. Saffron
110
+ 83. Sesame
111
+ 84. Sorghum
112
+ 85. Soursop
113
+ 86. Soybean
114
+ 87. Spinach
115
+ 88. Starfruit (Carambola)
116
+ 89. Strawberry
117
+ 90. Sugar Apple
118
+ 91. Sugarcane
119
+ 92. Sunflower
120
+ 93. Sweet Potato
121
+ 94. Tea
122
+ 95. Tomato
123
+ 96. Tulip
124
+ 97. Turmeric
125
+ 98. Walnut
126
+ 99. Watermelon
127
+ 100. Wheat
128
+
129
+ ## Download Dataset
130
+ Clone this repository to access the dataset:
131
+ ```bash
132
+ git clone https://github.com/shaheennabi/My_Datasets/tree/main/25k_Crops_Plants_object_detection_dataset_open-source
133
+ ```
134
+
135
+ ## License
136
+ This dataset is released under the **MIT License**, allowing free use for both research and commercial projects. Please credit this repository if you use it in your work.
137
+
138
+ ## Credits
139
+ Wherever this dataset is used, credits should be given to:
140
+ - **Shaheen Nabi**: [LinkedIn](https://www.linkedin.com/in/shaheennabi/)
141
+ - **Izhar Ashiq**: [LinkedIn](https://in.linkedin.com/in/izharashiq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  ## Contact
144
+ For any inquiries, you can DM on LinkedIn or use the discussion box on GitHub.
145
 
146
+ ---
147
+ Let's build the future of AI-powered agriculture together! 🚀🌱