Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,178 +1,147 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
100. Wheat
|
143 |
-
|
144 |
-
usage: |
|
145 |
-
You can load this dataset using the Hugging Face `datasets` library:
|
146 |
-
|
147 |
-
```python
|
148 |
-
from datasets import load_dataset
|
149 |
-
dataset = load_dataset("devshaheen/100_crops_plants_object_detection_25k_image_dataset")
|
150 |
-
|
151 |
-
|
152 |
-
## Clone Dataset
|
153 |
-
|
154 |
-
Or, clone the dataset manually:
|
155 |
-
|
156 |
-
```bash
|
157 |
-
git clone https://huggingface.co/datasets/devshaheen/100_crops_plants_object_detection_25k_image_dataset
|
158 |
-
|
159 |
-
## License Details
|
160 |
-
|
161 |
-
This dataset is released under the **MIT License**, allowing free use for both research and commercial projects. Please credit the authors when using it.
|
162 |
-
|
163 |
-
## Citation
|
164 |
-
|
165 |
-
If you use this dataset, please credit:
|
166 |
-
|
167 |
-
- **Shaheen Nabi** ([LinkedIn](https://www.linkedin.com/in/shaheennabi/))
|
168 |
-
- **Izhar Ashiq** ([LinkedIn](https://in.linkedin.com/in/izharashiq))
|
169 |
|
170 |
## Contact
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
🔗 **Hugging Face Profile**: [https://huggingface.co/devshaheen](https://huggingface.co/devshaheen)
|
175 |
-
|
176 |
-
## Note
|
177 |
-
|
178 |
-
💡 **Note**: If you need this dataset in any other format, DM me on LinkedIn or ask in the discussions box. I will provide it ASAP. 🚀🌱
|
|
|
1 |
+
# Open-Source Crop/Plant Object Detection Dataset
|
2 |
+
|
3 |
+
*Note: If you need this dataset in any other format, DM me on LinkedIn or ask in the discussions box. I will provide it ASAP.*
|
4 |
+
|
5 |
+
## Introduction
|
6 |
+
I am excited to open-source this dataset to help developers, researchers, and machine learning enthusiasts build object detection models for agricultural applications. This dataset consists of annotated images of **100 different crops/plants**, providing a valuable resource for training and evaluating object detection models.
|
7 |
+
|
8 |
+
*Remember: This dataset is in .zip format, extract the .zip file and dataset is yours*
|
9 |
+
|
10 |
+
## Dataset Details
|
11 |
+
The dataset is available on **[Hugging Face](https://huggingface.co/datasets/devshaheen/100_crops_plants_object_detection_25k_image_dataset)** and contains three splits:
|
12 |
+
- **Train:** 17,553 images with corresponding labels
|
13 |
+
- **Validation:** 4,990 images with corresponding labels
|
14 |
+
- **Test:** 2,458 images with corresponding labels
|
15 |
+
|
16 |
+
Each split contains:
|
17 |
+
- Images
|
18 |
+
- Labels (in YOLOv5 format)
|
19 |
+
- A `data.yaml` file for configuration
|
20 |
+
|
21 |
+
## Annotation
|
22 |
+
The dataset has been annotated using **Roboflow**, ensuring high-quality bounding box annotations for each crop/plant category.
|
23 |
+
All annotations follow the **YOLOv5 format**, making it easy to train models with YOLO-based architectures.
|
24 |
+
|
25 |
+
## Plant/Crop Categories
|
26 |
+
This dataset includes **100 different crops/plants**, covering a wide range of agricultural produce:
|
27 |
+
|
28 |
+
1. Zingiber officinale (Ginger)
|
29 |
+
2. Almonds
|
30 |
+
3. Aloe Vera
|
31 |
+
4. Apple
|
32 |
+
5. Apricot
|
33 |
+
6. Areca Nut
|
34 |
+
7. Ashwagandha
|
35 |
+
8. Avocado
|
36 |
+
9. Bamboo
|
37 |
+
10. Banana
|
38 |
+
11. Beetroot
|
39 |
+
12. Bell Pepper (Capsicum)
|
40 |
+
13. Bitter Gourd
|
41 |
+
14. Black Pepper
|
42 |
+
15. Blackberry
|
43 |
+
16. Blackgram
|
44 |
+
17. Blueberry
|
45 |
+
18. Bottle Gourd
|
46 |
+
19. Brinjal (Eggplant)
|
47 |
+
20. Broccoli
|
48 |
+
21. Cabbage
|
49 |
+
22. Cactus
|
50 |
+
23. Cardamom
|
51 |
+
24. Carrot
|
52 |
+
25. Cashew
|
53 |
+
26. Cassava
|
54 |
+
27. Cauliflower
|
55 |
+
28. Chamomile
|
56 |
+
29. Cherry
|
57 |
+
30. Chili Pepper
|
58 |
+
31. Cinnamon
|
59 |
+
32. Coconut
|
60 |
+
33. Coffee Beans
|
61 |
+
34. Coriander
|
62 |
+
35. Cotton
|
63 |
+
36. Cucumber
|
64 |
+
37. Date Palm
|
65 |
+
38. Dates
|
66 |
+
39. Dragon Fruit
|
67 |
+
40. Figs (Anjeer)
|
68 |
+
41. Garlic
|
69 |
+
42. Grapes
|
70 |
+
43. Green Gram (Mung Bean)
|
71 |
+
44. Groundnut (Peanut)
|
72 |
+
45. Guava
|
73 |
+
46. Jaggery
|
74 |
+
47. Jute
|
75 |
+
48. Kidney Bean
|
76 |
+
49. Kiwi
|
77 |
+
50. Lavender
|
78 |
+
51. Lemon
|
79 |
+
52. Lychee
|
80 |
+
53. Maize
|
81 |
+
54. Mango
|
82 |
+
55. Mint Herb
|
83 |
+
56. Mushroom
|
84 |
+
57. Muskmelon
|
85 |
+
58. Mustard Crop
|
86 |
+
59. Oats
|
87 |
+
60. Okra (Ladyfinger)
|
88 |
+
61. Onion
|
89 |
+
62. Orange
|
90 |
+
63. Orchid (Orchidaceae)
|
91 |
+
64. Papaya
|
92 |
+
65. Pea
|
93 |
+
66. Peach
|
94 |
+
67. Pear
|
95 |
+
68. Pineapple
|
96 |
+
69. Pista (Pistachio)
|
97 |
+
70. Plum
|
98 |
+
71. Pomegranate
|
99 |
+
72. Pomelo
|
100 |
+
73. Potato
|
101 |
+
74. Pumpkin
|
102 |
+
75. Radish
|
103 |
+
76. Raspberry
|
104 |
+
77. Rice
|
105 |
+
78. Rose
|
106 |
+
79. Rosemary
|
107 |
+
80. Rubber Plant
|
108 |
+
81. Safflower
|
109 |
+
82. Saffron
|
110 |
+
83. Sesame
|
111 |
+
84. Sorghum
|
112 |
+
85. Soursop
|
113 |
+
86. Soybean
|
114 |
+
87. Spinach
|
115 |
+
88. Starfruit (Carambola)
|
116 |
+
89. Strawberry
|
117 |
+
90. Sugar Apple
|
118 |
+
91. Sugarcane
|
119 |
+
92. Sunflower
|
120 |
+
93. Sweet Potato
|
121 |
+
94. Tea
|
122 |
+
95. Tomato
|
123 |
+
96. Tulip
|
124 |
+
97. Turmeric
|
125 |
+
98. Walnut
|
126 |
+
99. Watermelon
|
127 |
+
100. Wheat
|
128 |
+
|
129 |
+
## Download Dataset
|
130 |
+
Clone this repository to access the dataset:
|
131 |
+
```bash
|
132 |
+
git clone https://github.com/shaheennabi/My_Datasets/tree/main/25k_Crops_Plants_object_detection_dataset_open-source
|
133 |
+
```
|
134 |
+
|
135 |
+
## License
|
136 |
+
This dataset is released under the **MIT License**, allowing free use for both research and commercial projects. Please credit this repository if you use it in your work.
|
137 |
+
|
138 |
+
## Credits
|
139 |
+
Wherever this dataset is used, credits should be given to:
|
140 |
+
- **Shaheen Nabi**: [LinkedIn](https://www.linkedin.com/in/shaheennabi/)
|
141 |
+
- **Izhar Ashiq**: [LinkedIn](https://in.linkedin.com/in/izharashiq)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
## Contact
|
144 |
+
For any inquiries, you can DM on LinkedIn or use the discussion box on GitHub.
|
145 |
|
146 |
+
---
|
147 |
+
Let's build the future of AI-powered agriculture together! 🚀🌱
|
|
|
|
|
|
|
|
|
|