from oie_readers.oieReader import OieReader from oie_readers.extraction import Extraction class PropSReader(OieReader): def __init__(self): self.name = 'PropS' def read(self, fn): d = {} with open(fn) as fin: for line in fin: if not line.strip(): continue data = line.strip().split('\t') confidence, text, rel = data[:3] curExtraction = Extraction(pred = rel, sent = text, confidence = float(confidence), head_pred_index=-1) for arg in data[4::2]: curExtraction.addArg(arg) d[text] = d.get(text, []) + [curExtraction] self.oie = d # self.normalizeConfidence() def normalizeConfidence(self): ''' Normalize confidence to resemble probabilities ''' EPSILON = 1e-3 self.confidences = [extraction.confidence for sent in self.oie for extraction in self.oie[sent]] maxConfidence = max(self.confidences) minConfidence = min(self.confidences) denom = maxConfidence - minConfidence + (2*EPSILON) for sent, extractions in self.oie.items(): for extraction in extractions: extraction.confidence = ( (extraction.confidence - minConfidence) + EPSILON) / denom