File size: 11,883 Bytes
2bd4224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import json
import re
import argparse
def load_WiRe_annotations():
save_path = "../data/WiRe57_343-manual-oie.json"
annotations = json.load(open(save_path))
return annotations
def get_extraction_wire57(arg1, rel, arg2):
return {'arg1': arg1, 'rel': rel, 'arg2': arg2}
def get_extraction_wire57_gold(arg1, rel, arg2):
extraction = {}
extraction['arg1'] = {'text': arg1, 'words': arg1.split()}
extraction['rel'] = {'text': rel, 'words': rel.split()}
extraction['arg2'] = {'text': arg2, 'words': arg2.split()}
return extraction
def get_allenlp_args(line):
assert len(re.findall("<arg1>.*</arg1>", line)) == 1
assert len(re.findall("<rel>.*</rel>", line)) == 1
assert len(re.findall("<arg2>.*</arg2>", line)) == 1
arg1 = re.findall("<arg1>.*</arg1>", line)[0].strip('<arg1>').strip('</arg1>').strip()
rel = re.findall("<rel>.*</rel>", line)[0].strip('<rel>').strip('</rel>').strip()
arg2 = re.findall("<arg2>.*</arg2>", line)[0].strip('<arg2>').strip('</arg2>').strip()
return arg1, rel, arg2
def process_allennlp_format(file, gold=False):
with open(file, 'r') as f:
lines = f.readlines()
extractions = {}
current_sentence = None
for l in lines:
if len(l.strip()) > 0:
items = l.strip().split('\t')
assert len(items) == 3
if current_sentence != items[0]:
current_sentence = items[0]
extractions[current_sentence] = []
arg1, rel, arg2 = get_allenlp_args(items[1])
if gold:
extr = get_extraction_wire57_gold(arg1, rel, arg2)
else:
extr = get_extraction_wire57(arg1, rel, arg2)
extractions[current_sentence].append(extr)
return extractions
def main(arguments):
gold = process_allennlp_format(arguments.gold, gold=True)
predictions_by_OIE = process_allennlp_format(arguments.system)
report = ""
metrics, raw_match_scores = eval_system(gold, predictions_by_OIE)
# with open("raw_scores/"+e+"_prec_scores.dat", "w") as f:
# f.write(str(raw_match_scores[0]))
# with open("raw_scores/"+e+"_rec_scores.dat", "w") as f:
# f.write(str(raw_match_scores[1]))
prec, rec = metrics['precision'], metrics['recall']
f1_score = f1(prec, rec)
exactmatch_prec = metrics['exactmatches_precision'][0] / metrics['exactmatches_precision'][1]
exactmatch_rec = metrics['exactmatches_recall'][0] / metrics['exactmatches_recall'][1]
report += ("prec/rec/f1: {:.1%} {:.1%} {:.3f}"
.format(prec, rec, f1_score))
report += ("\nprec/rec of matches only (non-matches): {:.0%} {:.0%} ({})"
.format(metrics['precision_of_matches'], metrics['recall_of_matches'], metrics['matches']))
report += ("\n{} were exactly correct, out of {} predicted / the reference {}."
.format(metrics['exactmatches_precision'][0],
metrics['exactmatches_precision'][1], metrics['exactmatches_recall'][1]))
report += ("\nExact-match prec/rec/f1: {:.1%} {:.1%} {:.3f}"
.format(exactmatch_prec, exactmatch_rec, f1(exactmatch_prec, exactmatch_rec)))
# prec, rec = metrics['precision'], metrics['recall']
# f1_score = f1(prec, rec)
#
# report += ("prec/rec/f1: {:.1%} {:.1%} {:.3f}".format(prec, rec, f1_score))
print(report)
def eval_system(gold, predictions):
results = {}
# Get a manytuples-to-manytuples match-score for each sentence,
# then gather the scores across sentences and compute the weighted-average
for s, reference_tuples in gold.items():
predicted_tuples = predictions.get(s, [])
results[s] = sentence_match(reference_tuples, predicted_tuples)
prec_num, prec_denom = 0, 0
rec_num, rec_denom = 0, 0
exactmatches_precnum, exactmatches_precdenom = 0,0
exactmatches_recnum, exactmatches_recdenom = 0,0
tot_prec_of_matches, tot_rec_of_matches = 0, 0
for s in results.values():
prec_num += s['precision'][0]
prec_denom += s['precision'][1]
rec_num += s['recall'][0]
rec_denom += s['recall'][1]
exactmatches_precnum += s['exact_match_precision'][0]
exactmatches_precdenom += s['exact_match_precision'][1]
exactmatches_recnum += s['exact_match_recall'][0]
exactmatches_recdenom += s['exact_match_recall'][1]
tot_prec_of_matches += sum(s['precision_of_matches'])
tot_rec_of_matches += sum(s['recall_of_matches'])
precision_scores = [v for s in results.values() for v in s['precision_of_matches']]
recall_scores = [v for s in results.values() for v in s['recall_of_matches']]
raw_match_scores = [precision_scores, recall_scores]
matches = len(precision_scores)
metrics = {
'precision': prec_num / prec_denom,
'recall': rec_num / rec_denom,
'matches': matches,
'precision_of_matches': tot_prec_of_matches / matches,
'recall_of_matches': tot_rec_of_matches / matches,
'exactmatches_precision': [exactmatches_precnum, exactmatches_precdenom],
'exactmatches_recall': [exactmatches_recnum, exactmatches_recdenom]
}
# raw_match_scores = None
return metrics, raw_match_scores
# TODO:
# - Implement half points for part-misplaced words.
# - Deal with prepositions possibly being the first token of an arg, especially for arg2.
# > It's fully ok for "any" prep to be last word of ref_rel or first_word of pred_arg
def avg(l):
return sum(l) / len(l)
def f1(prec, rec):
try:
return 2 * prec * rec / (prec + rec)
except ZeroDivisionError:
return 0
def sentence_match(gold, predicted):
"""For a given sentence, compute tuple-tuple matching scores, and gather them
at the sentence level. Return scoring metrics."""
score, maximum_score = 0, len(gold)
exact_match_scores = [[None for _ in predicted] for __ in gold]
scores = [[None for _ in predicted] for __ in gold]
for i, gt in enumerate(gold):
for j, pt in enumerate(predicted):
exact_match_scores[i][j] = tuple_exact_match(pt, gt)
scores[i][j] = tuple_match(pt, gt) # this is a pair [prec,rec] or False
scoring_metrics = aggregate_scores_greedily(scores)
exact_match_summary = aggregate_exact_matches(exact_match_scores)
scoring_metrics['exact_match_precision'] = exact_match_summary['precision']
scoring_metrics['exact_match_recall'] = exact_match_summary['recall']
return scoring_metrics
def str_list(thing):
return "\n".join([str(s) for s in thing])
def aggregate_scores_greedily(scores):
# Greedy match: pick the prediction/gold match with the best f1 and exclude
# them both, until nothing left matches. Each input square is a [prec, rec]
# pair. Returns precision and recall as score-and-denominator pairs.
matches = []
while True:
max_s = 0
gold, pred = None, None
for i, gold_ss in enumerate(scores):
if i in [m[0] for m in matches]:
# Those are already taken rows
continue
for j, pred_s in enumerate(scores[i]):
if j in [m[1] for m in matches]:
# Those are used columns
continue
if pred_s and f1(*pred_s) > max_s:
max_s = f1(*pred_s)
gold = i
pred = j
if max_s == 0:
break
matches.append([gold, pred])
# Now that matches are determined, compute final scores.
prec_scores = [scores[i][j][0] for i, j in matches]
rec_scores = [scores[i][j][1] for i, j in matches]
total_prec = sum(prec_scores)
total_rec = sum(rec_scores)
scoring_metrics = {"precision": [total_prec, len(scores[0])],
"recall": [total_rec, len(scores)],
"precision_of_matches": prec_scores,
"recall_of_matches": rec_scores
}
# print(scoring_metrics)
return scoring_metrics
def aggregate_exact_matches(match_matrix):
# For this agregation task, no predicted tuple can exact-match two gold
# ones, so it's easy, look at lines and columns looking for OR-total booleans.
recall = [sum([any(gold_matches) for gold_matches in match_matrix], 0), len(match_matrix)]
# ^ this is [3,5] for "3 out of 5", to be lumped together later.
if len(match_matrix[0]) == 0:
precision = [0, 0] # N/A
else:
precision = [sum([any([g[i] for g in match_matrix]) for i in range(len(match_matrix[0]))], 0),
len(match_matrix[0])]
# f1 = 2 * precision * recall / (precision + recall)
metrics = {'precision': precision,
'recall': recall}
return metrics
def part_to_string(p):
return " ".join(p['words'])
def gold_to_text(gt):
text = " ; ".join([part_to_string(gt['arg1']), part_to_string(gt['rel']), part_to_string(gt['arg2'])])
if gt['arg3+']:
text += " ; " + " ; ".join(gt['arg3+'])
return text
def tuple_exact_match(t, gt):
"""Without resolving coref and WITH the need to hallucinate humanly infered
words, does the tuple match the reference ? Returns a boolean."""
for part in ['arg1', 'rel', 'arg2']:
if not t[part] == ' '.join(gt[part]['words']):
# This purposedly ignores that some of the gt words are 'inf'
# print("Predicted '{}' is different from reference '{}'".format(t[part], ' '.join(gt[part]['words'])))
return False
return True
"""
Wire57 tuples are built like so:
t = {"attrib/spec?" : attrib,
"arg1" : {'text' : arg1, 'words': arg1_w, "words_indexes" : arg1_ind,
'dc_text' : arg1dc, 'decorefed_words' : arg1dc_w, 'decorefed_indexes' : arg1dc_ind},
"rel" : {'text' : rel, 'words': rel_w, "words_indexes" : rel_ind},
"arg2" : {'text' : arg2, 'words': arg2_w, "words_indexes" : arg2_ind,
'dc_text' : arg2dc, 'decorefed_words' : arg2dc_w, 'decorefed_indexes' : arg2dc_ind},
"""
def tuple_match(t, gt):
"""t is a predicted tuple, gt is the gold tuple. How well do they match ?
Yields precision and recall scores, a pair of non-zero values, if it's a match, and False if it's not.
"""
precision = [0, 0] # 0 out of 0 predicted words match
recall = [0, 0] # 0 out of 0 reference words match
# If, for each part, any word is the same as a reference word, then it's a match.
for part in ['arg1', 'rel', 'arg2']:
predicted_words = t[part].split()
gold_words = gt[part]['words']
if not predicted_words:
if gold_words:
return False
else:
continue
matching_words = sum(1 for w in predicted_words if w in gold_words)
if matching_words == 0:
return False # t <-> gt is not a match
precision[0] += matching_words
precision[1] += len(predicted_words)
# Currently this slightly penalises systems when the reference
# reformulates the sentence words, because the reformulation doesn't
# match the predicted word. It's a one-wrong-word penalty to precision,
# to all systems that correctly extracted the reformulated word.
recall[0] += matching_words
recall[1] += len(gold_words)
if recall[1] == 0 or precision[1] == 0:
return False
prec = precision[0] / precision[1]
rec = recall[0] / recall[1]
return [prec, rec]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--gold', help="file path for gold in allennlp format", required=True)
parser.add_argument('--system', help="file path for system in allennlp format", required=True)
arguments = parser.parse_args()
main(arguments)
|