""" base_model.py Abstract definition of a model, where helper functions as image extraction and gradient propagation are defined. """ from collections import OrderedDict from abc import abstractmethod import pytorch_lightning as pl from torch.optim import lr_scheduler from torchvision.transforms import ToPILImage class BaseModel(pl.LightningModule): def __init__(self, opt): super().__init__() self.opt = opt self.gpu_ids = opt.gpu_ids self.loss_names = [] self.model_names = [] self.visual_names = [] self.image_paths = [] self.save_hyperparameters() self.schedulers = [] self.metric = 0 # used for learning rate policy 'plateau' @abstractmethod def set_input(self, input): pass def eval(self): for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) net.eval() def compute_visuals(self): pass def get_image_paths(self): return self.image_paths def update_learning_rate(self): for scheduler in self.schedulers: if self.opt.lr_policy == 'plateau': scheduler.step(self.metric) else: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] return lr def get_current_visuals(self): visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): visual_ret[name] = (getattr(self, name).detach() + 1) / 2 return visual_ret def log_current_losses(self): losses = '\n' for name in self.loss_names: if isinstance(name, str): loss_value = float(getattr(self, 'loss_' + name)) self.logger.log_metrics({'loss_{}'.format(name): loss_value}, self.trainer.global_step) losses += 'loss_{}={:.4f}\t'.format(name, loss_value) print(losses) def log_current_visuals(self): visuals = self.get_current_visuals() for key, viz in visuals.items(): self.logger.experiment.add_image('img_{}'.format(key), viz[0].cpu(), self.trainer.global_step) def get_scheduler(self, opt, optimizer): if opt.lr_policy == 'linear': def lambda_rule(iter): lr_l = 1.0 - max(0, self.trainer.global_step - opt.static_iters) / float(opt.decay_iters + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.decay_iters_step, gamma=0.5) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def print_networks(self): for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) def get_optimizer_dict(self): return_dict = {} for index, opt in enumerate(self.optimizers): return_dict['Optimizer_{}'.format(index)] = opt return return_dict def set_requires_grad(self, nets, requires_grad=False): if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad