|
""" |
|
This enables dynamic loading of models, similarly to what happens with the dataset. |
|
""" |
|
|
|
import importlib |
|
from networks.base_model import BaseModel |
|
|
|
|
|
def find_model_using_name(model_name): |
|
"""Import the module "networks/[model_name]_model.py". |
|
|
|
In the file, the class called DatasetNameModel() will |
|
be instantiated. It has to be a subclass of BaseModel, |
|
and it is case-insensitive. |
|
""" |
|
model_filename = "networks." + model_name + "_model" |
|
modellib = importlib.import_module(model_filename) |
|
model = None |
|
target_model_name = model_name.replace('_', '') + 'model' |
|
for name, cls in modellib.__dict__.items(): |
|
if name.lower() == target_model_name.lower() \ |
|
and issubclass(cls, BaseModel): |
|
model = cls |
|
|
|
if model is None: |
|
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) |
|
exit(0) |
|
|
|
return model |
|
|
|
|
|
def get_model_options(model_name): |
|
model_filename = "networks." + model_name + "_model" |
|
modellib = importlib.import_module(model_filename) |
|
for name, cls in modellib.__dict__.items(): |
|
if name.lower() == 'modeloptions': |
|
return cls |
|
return None |
|
|
|
def create_model(opt): |
|
"""Create a model given the option. |
|
|
|
This function warps the class CustomDatasetDataLoader. |
|
This is the main interface between this package and 'train.py'/'test.py' |
|
|
|
Example: |
|
>>> from networks import create_model |
|
>>> model = create_model(opt) |
|
""" |
|
model = find_model_using_name(opt.model) |
|
instance = model(opt) |
|
return instance |
|
|