File size: 29,731 Bytes
3894c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
"""
comomunit.py
In this file all architectural components of CoMo-MUNIT are defined. The *logic* is not defined here, but in the *_model.py files.
Most of the code is copied from https://github.com/NVlabs/MUNIT
Thttps://github.com/junyanz/pytorch-CycleGAN-and-pix2pixhere are some additional function to get compatibility with the CycleGAN codebase (https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
"""

import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import torch.nn.functional as F
from .functions import init_net, init_weights, get_scheduler


########################################################################################################################
# MUNIT architecture
########################################################################################################################

## Functions to get generator / discriminator / DRB
def define_G_munit(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res,
                   pad_type, mlp_dim, activ='relu', init_type = 'kaiming', init_gain=0.02, gpu_ids=[]):
    gen = AdaINGen(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim)
    return init_net(gen, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids)

def define_D_munit(input_nc, disc_dim, norm, activ, n_layer, gan_type, num_scales, pad_type,
                   init_type = 'kaiming', init_gain = 0.02, gpu_ids = [], output_channels = 1, final_function = None):
    disc = MsImageDis(input_nc, n_layer, gan_type, disc_dim, norm, activ, num_scales, pad_type, output_channels, final_function = final_function)
    return init_net(disc, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids)

def define_DRB_munit(resblocks, dim, norm, activation, pad_type,
                       init_type = 'kaiming', init_gain = 0.02, gpu_ids = []):
    demux = DRB(resblocks, dim, norm, activation, pad_type)
    return init_net(demux, init_type = init_type, init_gain = init_gain, gpu_ids = gpu_ids)

# This class has been strongly modified from MUNIT default version. We split the default MUNIT decoder
# in AdaINBlock + DecoderNoAdain because the DRB must be placed between the two. encode/assign_adain/decode
# are called by the network logic following CoMo-MUNIT implementation.
class AdaINGen(nn.Module):
    # AdaIN auto-encoder architecture
    def __init__(self, input_dim, output_dim, dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim):
        super(AdaINGen, self).__init__()

        # style encoder
        self.enc_style = StyleEncoder(4, input_dim, dim, style_dim, norm='none', activ=activ, pad_type=pad_type)

        # content encoder
        self.enc_content = ContentEncoder(n_downsample, n_res, input_dim, dim, 'instance', activ, pad_type=pad_type)
        self.adainblock = AdaINBlock(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type)
        self.dec = DecoderNoAdain(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type)
        # MLP to generate AdaIN parameters
        self.mlp = MLP(style_dim, self.get_num_adain_params(self.adainblock), mlp_dim, 3, norm='none', activ=activ)

    def forward(self, images):
        # reconstruct an image
        content, style_fake = self.encode(images)
        images_recon = self.decode(content, style_fake)
        return images_recon

    def encode(self, images):
        # encode an image to its content and style codes
        style_fake = self.enc_style(images)
        content = self.enc_content(images)
        return content, style_fake

    def assign_adain(self, content, style):
        # decode content and style codes to an image
        adain_params = self.mlp(style)
        self.assign_adain_params(adain_params, self.adainblock)
        features = self.adainblock(content)
        return features

    def decode(self, features):
        return self.dec(features)

    def assign_adain_params(self, adain_params, model):
        # assign the adain_params to the AdaIN layers in model
        for m in model.modules():
            if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
                mean = adain_params[:, :m.num_features]
                std = adain_params[:, m.num_features:2*m.num_features]
                m.bias = mean.contiguous().view(-1)
                m.weight = std.contiguous().view(-1)
                if adain_params.size(1) > 2*m.num_features:
                    adain_params = adain_params[:, 2*m.num_features:]

    def get_num_adain_params(self, model):
        # return the number of AdaIN parameters needed by the model
        num_adain_params = 0
        for m in model.modules():
            if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
                num_adain_params += 2*m.num_features
        return num_adain_params

# This is the FIN layer for cyclic encoding. It's our contribution and it does not exist in MUNIT.
class FIN2dCyclic(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.instance_norm = nn.InstanceNorm2d(dim, affine=False)
        self.a_gamma = nn.Parameter(torch.zeros(dim))
        self.b_gamma = nn.Parameter(torch.ones(dim))
        self.a_beta = nn.Parameter(torch.zeros(dim))
        self.b_beta = nn.Parameter(torch.zeros(dim))

    def forward(self, x, cos, sin):
        # The only way to encode something cyclic is to map gamma and beta to an ellipse point (x,y).
        # We are trying to learn their cyclic manner associating cos(continuity) to gamma and sin(continuity to beta)
        # Sin and cos are randomly sampled between -1 and 1, we know that they will be associated to one point
        gamma = self.a_gamma * cos.unsqueeze(-1) + self.b_gamma
        beta = self.a_beta * sin.unsqueeze(-1) + self.b_beta

        return self.instance_norm(x) * gamma.unsqueeze(-1).unsqueeze(-1) + beta.unsqueeze(-1).unsqueeze(-1)

# This is the DRB implementation, and it does not exist in MUNIT.
class DRB(nn.Module):
    def __init__(self, n_resblocks, dim, norm, activation, pad_type):
        super().__init__()
        self.common_features = []
        self.physical_features = []
        self.real_features = []
        self.continuous_features = nn.ModuleList()

        for i in range(0, n_resblocks):
            self.common_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
        for i in range(0, n_resblocks):
            self.physical_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
        for i in range(0, n_resblocks):
            self.real_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
        for i in range(0, n_resblocks):
            self.continuous_features.append(ResBlockContinuous(dim, norm='fin', activation=activation, pad_type=pad_type))

        self.common_features = nn.Sequential(*self.common_features)
        self.physical_features = nn.Sequential(*self.physical_features)
        self.real_features = nn.Sequential(*self.real_features)

    def forward(self, input_features, continuity_cos, continuity_sin):
        common_features = self.common_features(input_features)
        physical_features = self.physical_features(input_features)
        real_features = self.real_features(input_features)
        continuous_features = input_features
        for layer in self.continuous_features:
            continuous_features = layer(continuous_features, continuity_cos, continuity_sin)

        physical_output_features = common_features + physical_features + continuous_features + input_features
        real_output_features = common_features + real_features + continuous_features + input_features

        return real_output_features, physical_output_features

# Again, the default decoder is with adain, but we separated the two.
class DecoderNoAdain(nn.Module):
    def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'):
        super(DecoderNoAdain, self).__init__()

        self.model = []
        # upsampling blocks
        for i in range(n_upsample):
            self.model += [nn.Upsample(scale_factor=2),
                           Conv2dBlock(dim, dim // 2, 5, 1, 2, norm='layer', activation=activ, pad_type=pad_type)]
            dim //= 2
        # use reflection padding in the last conv layer
        self.model += [Conv2dBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)

    def forward(self, x):
        return self.model(x)

# This is a residual block with FIN layers inserted.
class ResBlockContinuous(nn.Module):
    def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'):
        super(ResBlockContinuous, self).__init__()

        self.model = nn.ModuleList()
        self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation=activation, pad_type=pad_type))
        self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation='none', pad_type=pad_type))

    def forward(self, x, cos_phi, sin_phi):
        residual = x
        for layer in self.model:
            x = layer(x, cos_phi, sin_phi)

        x += residual
        return x

# This is a convolutional block+nonlinear+norm with support for FIN layers as normalization strategy.
class Conv2dBlockContinuous(nn.Module):
    def __init__(self, input_dim ,output_dim, kernel_size, stride,
                 padding=0, norm='none', activation='relu', pad_type='zero'):
        super(Conv2dBlockContinuous, self).__init__()
        self.use_bias = True
        # initialize padding
        if pad_type == 'reflect':
            self.pad = nn.ReflectionPad2d(padding)
        elif pad_type == 'replicate':
            self.pad = nn.ReplicationPad2d(padding)
        elif pad_type == 'zero':
            self.pad = nn.ZeroPad2d(padding)
        else:
            assert 0, "Unsupported padding type: {}".format(pad_type)

        # initialize normalization
        norm_dim = output_dim
        if norm == 'batch':
            self.norm = nn.BatchNorm2d(norm_dim)
        elif norm == 'instance':
            #self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
            self.norm = nn.InstanceNorm2d(norm_dim)
        elif norm == 'layer':
            self.norm = LayerNorm(norm_dim)
        elif norm == 'adain':
            self.norm = AdaptiveInstanceNorm2d(norm_dim)
        elif norm == 'fin':
            self.norm = FIN2dCyclic(norm_dim)
        elif norm == 'none' or norm == 'spectral':
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # initialize activation
        if activation == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == 'prelu':
            self.activation = nn.PReLU()
        elif activation == 'selu':
            self.activation = nn.SELU(inplace=True)
        elif activation == 'tanh':
            self.activation = nn.Tanh()
        elif activation == 'none':
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

        # initialize convolution
        if norm == 'spectral':
            self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias))
        else:
            self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)

    def forward(self, x, continuity_cos, continuity_sin):
        x = self.conv(self.pad(x))
        if self.norm:
            x = self.norm(x, continuity_cos, continuity_sin)
        if self.activation:
            x = self.activation(x)
        return x



##################################################################################
# All below there are MUNIT default blocks.
##################################################################################
class ResBlocks(nn.Module):
    def __init__(self, num_blocks, dim, norm='instance', activation='relu', pad_type='zero'):
        super(ResBlocks, self).__init__()
        self.model = []
        for i in range(num_blocks):
            self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)

    def forward(self, x):
        return self.model(x)

class MLP(nn.Module):
    def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'):

        super(MLP, self).__init__()
        self.model = []
        self.model += [LinearBlock(input_dim, dim, norm=norm, activation=activ)]
        for i in range(n_blk - 2):
            self.model += [LinearBlock(dim, dim, norm=norm, activation=activ)]
        self.model += [LinearBlock(dim, output_dim, norm='none', activation='none')] # no output activations
        self.model = nn.Sequential(*self.model)

    def forward(self, x):
        return self.model(x.view(x.size(0), -1))



class ResBlock(nn.Module):
    def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'):
        super(ResBlock, self).__init__()

        model = []
        model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
        model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
        self.model = nn.Sequential(*model)

    def forward(self, x):
        residual = x
        out = self.model(x)
        out += residual
        return out

class Conv2dBlock(nn.Module):
    def __init__(self, input_dim ,output_dim, kernel_size, stride,
                 padding=0, norm='none', activation='relu', pad_type='zero'):
        super(Conv2dBlock, self).__init__()
        self.use_bias = True
        # initialize padding
        if pad_type == 'reflect':
            self.pad = nn.ReflectionPad2d(padding)
        elif pad_type == 'replicate':
            self.pad = nn.ReplicationPad2d(padding)
        elif pad_type == 'zero':
            self.pad = nn.ZeroPad2d(padding)
        else:
            assert 0, "Unsupported padding type: {}".format(pad_type)

        # initialize normalization
        norm_dim = output_dim
        if norm == 'batch':
            self.norm = nn.BatchNorm2d(norm_dim)
        elif norm == 'instance':
            #self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
            self.norm = nn.InstanceNorm2d(norm_dim)
        elif norm == 'layer':
            self.norm = LayerNorm(norm_dim)
        elif norm == 'adain':
            self.norm = AdaptiveInstanceNorm2d(norm_dim)
        elif norm == 'none' or norm == 'spectral':
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # initialize activation
        if activation == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == 'prelu':
            self.activation = nn.PReLU()
        elif activation == 'selu':
            self.activation = nn.SELU(inplace=True)
        elif activation == 'tanh':
            self.activation = nn.Tanh()
        elif activation == 'none':
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

        # initialize convolution
        if norm == 'spectral':
            self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias))
        else:
            self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)

    def forward(self, x):
        x = self.conv(self.pad(x))
        if self.norm:
            x = self.norm(x)
        if self.activation:
            x = self.activation(x)
        return x


class LinearBlock(nn.Module):
    def __init__(self, input_dim, output_dim, norm='none', activation='relu'):
        super(LinearBlock, self).__init__()
        use_bias = True
        # initialize fully connected layer
        if norm == 'spectral':
            self.fc = SpectralNorm(nn.Linear(input_dim, output_dim, bias=use_bias))
        else:
            self.fc = nn.Linear(input_dim, output_dim, bias=use_bias)

        # initialize normalization
        norm_dim = output_dim
        if norm == 'batch':
            self.norm = nn.BatchNorm1d(norm_dim)
        elif norm == 'instance':
            self.norm = nn.InstanceNorm1d(norm_dim)
        elif norm == 'layer':
            self.norm = LayerNorm(norm_dim)
        elif norm == 'none' or norm == 'spectral':
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # initialize activation
        if activation == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == 'prelu':
            self.activation = nn.PReLU()
        elif activation == 'selu':
            self.activation = nn.SELU(inplace=True)
        elif activation == 'tanh':
            self.activation = nn.Tanh()
        elif activation == 'none':
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

    def forward(self, x):
        out = self.fc(x)
        if self.norm:
            out = self.norm(out)
        if self.activation:
            out = self.activation(out)
        return out


class Vgg16(nn.Module):
    def __init__(self):
        super(Vgg16, self).__init__()
        self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)

        self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)

        self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

        self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)

        self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)

    def forward(self, X):
        h = F.relu(self.conv1_1(X), inplace=True)
        h = F.relu(self.conv1_2(h), inplace=True)
        # relu1_2 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv2_1(h), inplace=True)
        h = F.relu(self.conv2_2(h), inplace=True)
        # relu2_2 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv3_1(h), inplace=True)
        h = F.relu(self.conv3_2(h), inplace=True)
        h = F.relu(self.conv3_3(h), inplace=True)
        # relu3_3 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv4_1(h), inplace=True)
        h = F.relu(self.conv4_2(h), inplace=True)
        h = F.relu(self.conv4_3(h), inplace=True)
        # relu4_3 = h

        h = F.relu(self.conv5_1(h), inplace=True)
        h = F.relu(self.conv5_2(h), inplace=True)
        h = F.relu(self.conv5_3(h), inplace=True)
        relu5_3 = h

        return relu5_3
        # return [relu1_2, relu2_2, relu3_3, relu4_3]


class AdaptiveInstanceNorm2d(nn.Module):
    def __init__(self, num_features, eps=1e-5, momentum=0.1):
        super(AdaptiveInstanceNorm2d, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum
        # weight and bias are dynamically assigned
        self.weight = None
        self.bias = None
        # just dummy buffers, not used
        self.register_buffer('running_mean', torch.zeros(num_features))
        self.register_buffer('running_var', torch.ones(num_features))

    def forward(self, x):
        assert self.weight is not None and self.bias is not None, "Please assign weight and bias before calling AdaIN!"
        b, c = x.size(0), x.size(1)

        if self.weight.type() == 'torch.cuda.HalfTensor':
            running_mean = self.running_mean.repeat(b).to(torch.float16)
            running_var = self.running_var.repeat(b).to(torch.float16)
        else:
            running_mean = self.running_mean.repeat(b)
            running_var = self.running_var.repeat(b)

        # Apply instance norm
        x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])

        out = F.batch_norm(
            x_reshaped, running_mean, running_var, self.weight, self.bias,
            True, self.momentum, self.eps)

        return out.view(b, c, *x.size()[2:])

    def __repr__(self):
        return self.__class__.__name__ + '(' + str(self.num_features) + ')'


class LayerNorm(nn.Module):
    def __init__(self, num_features, eps=1e-5, affine=True):
        super(LayerNorm, self).__init__()
        self.num_features = num_features
        self.affine = affine
        self.eps = eps

        if self.affine:
            self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
            self.beta = nn.Parameter(torch.zeros(num_features))

    def forward(self, x):
        shape = [-1] + [1] * (x.dim() - 1)
        # print(x.size())
        if x.size(0) == 1:
            # These two lines run much faster in pytorch 0.4 than the two lines listed below.
            mean = x.view(-1).mean().view(*shape)
            std = x.view(-1).std().view(*shape)
        else:
            mean = x.view(x.size(0), -1).mean(1).view(*shape)
            std = x.view(x.size(0), -1).std(1).view(*shape)

        x = (x - mean) / (std + self.eps)

        if self.affine:
            shape = [1, -1] + [1] * (x.dim() - 2)
            x = x * self.gamma.view(*shape) + self.beta.view(*shape)
        return x

def l2normalize(v, eps=1e-12):
    return v / (v.norm() + eps)


class SpectralNorm(nn.Module):
    """
    Based on the paper "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida
    and the Pytorch implementation https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
    """
    def __init__(self, module, name='weight', power_iterations=1):
        super(SpectralNorm, self).__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()

    def _update_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data))
            u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data))

        # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _made_params(self):
        try:
            u = getattr(self.module, self.name + "_u")
            v = getattr(self.module, self.name + "_v")
            w = getattr(self.module, self.name + "_bar")
            return True
        except AttributeError:
            return False


    def _make_params(self):
        w = getattr(self.module, self.name)

        height = w.data.shape[0]
        width = w.view(height, -1).data.shape[1]

        u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
        v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
        u.data = l2normalize(u.data)
        v.data = l2normalize(v.data)
        w_bar = nn.Parameter(w.data)

        del self.module._parameters[self.name]

        self.module.register_parameter(self.name + "_u", u)
        self.module.register_parameter(self.name + "_v", v)
        self.module.register_parameter(self.name + "_bar", w_bar)


    def forward(self, *args):
        self._update_u_v()
        return self.module.forward(*args)

class MsImageDis(nn.Module):
    # Multi-scale discriminator architecture
    def __init__(self, input_dim, n_layer, gan_type, dim, norm, activ, num_scales, pad_type, output_channels = 1, final_function = None):
        super(MsImageDis, self).__init__()
        self.n_layer = n_layer
        self.gan_type = gan_type
        self.output_channels = output_channels
        self.dim = dim
        self.norm = norm
        self.activ = activ
        self.num_scales = num_scales
        self.pad_type = pad_type
        self.input_dim = input_dim
        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
        self.cnns = nn.ModuleList()
        self.final_function = final_function
        for _ in range(self.num_scales):
            self.cnns.append(self._make_net())

    def _make_net(self):
        dim = self.dim
        cnn_x = []
        cnn_x += [Conv2dBlock(self.input_dim, dim, 4, 2, 1, norm='none', activation=self.activ, pad_type=self.pad_type)]
        for i in range(self.n_layer - 1):
            cnn_x += [Conv2dBlock(dim, dim * 2, 4, 2, 1, norm=self.norm, activation=self.activ, pad_type=self.pad_type)]
            dim *= 2
        cnn_x += [nn.Conv2d(dim, self.output_channels, 1, 1, 0)]
        cnn_x = nn.Sequential(*cnn_x)
        return cnn_x

    def forward(self, x):
        outputs = []
        for model in self.cnns:
            output = model(x)
            if self.final_function is not None:
                output = self.final_function(output)
            outputs.append(output)
            x = self.downsample(x)
        return outputs

    def calc_dis_loss(self, input_fake, input_real):
        # calculate the loss to train D
        outs0 = self.forward(input_fake)
        outs1 = self.forward(input_real)
        loss = 0

        for it, (out0, out1) in enumerate(zip(outs0, outs1)):
            if self.gan_type == 'lsgan':
                loss += torch.mean((out0 - 0)**2) + torch.mean((out1 - 1)**2)
            elif self.gan_type == 'nsgan':
                all0 = torch.zeros_like(out0)
                all1 = torch.ones_like(out1)
                loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all0) +
                                   F.binary_cross_entropy(F.sigmoid(out1), all1))
            else:
                assert 0, "Unsupported GAN type: {}".format(self.gan_type)
        return loss

    def calc_gen_loss(self, input_fake):
        # calculate the loss to train G
        outs0 = self.forward(input_fake)
        loss = 0
        for it, (out0) in enumerate(outs0):
            if self.gan_type == 'lsgan':
                loss += torch.mean((out0 - 1)**2) # LSGAN
            elif self.gan_type == 'nsgan':
                all1 = torch.ones_like(out0.data)
                loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all1))
            else:
                assert 0, "Unsupported GAN type: {}".format(self.gan_type)
        return loss

class StyleEncoder(nn.Module):
    def __init__(self, n_downsample, input_dim, dim, style_dim, norm, activ, pad_type):
        super(StyleEncoder, self).__init__()
        self.model = []
        self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
        for i in range(2):
            self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
            dim *= 2
        for i in range(n_downsample - 2):
            self.model += [Conv2dBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
        self.model += [nn.AdaptiveAvgPool2d(1)] # global average pooling
        self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)]
        self.model = nn.Sequential(*self.model)
        self.output_dim = dim

    def forward(self, x):
        return self.model(x)

class ContentEncoder(nn.Module):
    def __init__(self, n_downsample, n_res, input_dim, dim, norm, activ, pad_type):
        super(ContentEncoder, self).__init__()
        self.model = []
        self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
        # downsampling blocks
        for i in range(n_downsample):
            self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
            dim *= 2
        # residual blocks
        self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)
        self.output_dim = dim

    def forward(self, x):
        return self.model(x)

class AdaINBlock(nn.Module):
    def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'):
        super(AdaINBlock, self).__init__()

        self.model = []
        # AdaIN residual blocks
        self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)

    def forward(self, x):
        return self.model(x)