diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..ebc61e67f460b9cb7c65cdec297c71e0a5116dd7 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc filter=lfs diff=lfs merge=lfs -text +pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/run-igbnn5u2.wandb filter=lfs diff=lfs merge=lfs -text diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/args.yaml b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/args.yaml new file mode 100644 index 0000000000000000000000000000000000000000..15a1bd9f9d84845a44100b086330d923a210adce --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/args.yaml @@ -0,0 +1,153 @@ +aa: null +amp: true +amp_dtype: float16 +amp_impl: native +aug_repeats: 0 +aug_splits: 0 +batch_size: 256 +bce_loss: false +bce_pos_weight: null +bce_sum: false +bce_target_thresh: null +bn_eps: null +bn_momentum: null +channels_last: false +checkpoint_hist: 10 +class_map: '' +clip_grad: null +clip_mode: norm +color_jitter: 0.4 +color_jitter_prob: null +cooldown_epochs: 0 +crop_pct: null +cutmix: 0.0 +cutmix_minmax: null +data: null +data_dir: null +dataset: hfds/datacomp/imagenet-1k-random-40.0-frac-1over4 +dataset_download: false +dataset_trust_remote_code: false +decay_epochs: 90 +decay_milestones: +- 90 +- 180 +- 270 +decay_rate: 0.1 +device: cuda +device_modules: null +dist_bn: reduce +drop: 0.0 +drop_block: null +drop_connect: null +drop_path: null +epoch_repeats: 0.0 +epochs: 150 +eval_metric: top1 +experiment: ImageNetTraining40.0-frac-1over4 +fast_norm: false +fuser: '' +gaussian_blur_prob: null +gp: null +grad_accum_steps: 1 +grad_checkpointing: false +grayscale_prob: null +head_init_bias: null +head_init_scale: null +hflip: 0.5 +img_size: null +in_chans: null +initial_checkpoint: '' +input_img_mode: null +input_key: null +input_size: null +interpolation: '' +jsd_loss: false +layer_decay: null +local_rank: 0 +log_interval: 50 +log_wandb: true +lr: 0.4 +lr_base: 0.1 +lr_base_scale: '' +lr_base_size: 256 +lr_cycle_decay: 0.5 +lr_cycle_limit: 1 +lr_cycle_mul: 1.0 +lr_k_decay: 1.0 +lr_noise: null +lr_noise_pct: 0.67 +lr_noise_std: 1.0 +mean: null +min_lr: 0 +mixup: 0.0 +mixup_mode: batch +mixup_off_epoch: 0 +mixup_prob: 1.0 +mixup_switch_prob: 0.5 +model: seresnet34 +model_dtype: null +model_ema: false +model_ema_decay: 0.9998 +model_ema_force_cpu: false +model_ema_warmup: false +model_kwargs: {} +momentum: 0.9 +no_aug: false +no_ddp_bb: false +no_prefetcher: false +no_resume_opt: false +num_classes: null +opt: sgd +opt_betas: null +opt_eps: null +opt_kwargs: {} +output: '' +patience_epochs: 10 +pin_mem: false +pretrained: false +pretrained_path: null +ratio: +- 0.75 +- 1.3333333333333333 +recount: 1 +recovery_interval: 0 +remode: pixel +reprob: 0.5 +resplit: false +resume: '' +save_images: false +scale: +- 0.08 +- 1.0 +sched: cosine +sched_on_updates: false +seed: 42 +smoothing: 0.1 +split_bn: false +start_epoch: null +std: null +sync_bn: false +synchronize_step: false +target_key: null +torchcompile: null +torchcompile_mode: null +torchscript: false +train_crop_mode: null +train_interpolation: random +train_num_samples: null +train_split: train +tta: 0 +use_multi_epochs_loader: false +val_num_samples: null +val_split: validation +validation_batch_size: null +vflip: 0.0 +wandb_project: ImageNetTraining40.0-frac-1over4 +wandb_resume_id: '' +wandb_tags: [] +warmup_epochs: 5 +warmup_lr: 1.0e-05 +warmup_prefix: false +weight_decay: 2.0e-05 +worker_seeding: all +workers: 4 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..ec55837a0401b9e628fd77b583cd0ecdf70fa81f --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:13cf807931b5ed1a2df1eced0b1df301f1e08b77fcf1d0abd519b0206f94a2b0 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..c3009f0643990e34fa6c87b3e77f6d503da0a187 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d4931f11caa7af1cac37f03aabe808397705df68b1007099a9c203058dfbb6bf +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..abe707760dfdcce3af96aafd0105093693f200fa --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c5e7bc1c5c62e7be391bf4d4d5a777212124afa8d6702a620d6c28bdab8e00ea +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..80b2da6b8c1466687e27c7a792d0ad981b6eef80 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6fd4bf145ee4e7a21cf9801b0ca3445485aa05029c0338031b2688fdbc78fa51 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..c84f8138def76846e69a137e9e4d0ca4bbb50e41 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e78990236e3bea2e22b795fb3e19d1dae4b7ba1863eab53886c81f38ceac1855 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..3202b7f7e0aa0540bd20e853b34edcb60922b897 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ea80adb5c8a0e4fa16602be88e208078b9ae394707d5bbea8d5eb5f380ea7e49 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..87a567eef42b0f63e6073cc4f6522a1ec2c58d16 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:806a834cafe330e7f0160afc8d013164bbafc27731161a761983b3a6812a1714 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-61.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-61.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..33f242e946942a1d67c952dd6c0d4f9ef28e7a41 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-61.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:559f28da7fc46938cddeaa9aa9fe0333a44f9e008dacb605220ef4a12d280d6a +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-63.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-63.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..f194149d3a9e9419bf98d119ed3c2bcf498dbd47 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-63.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ee43dd68063d426aa790a914830c2307bfde6a15b1b033cd5ed90318b9a69553 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-70.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-70.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..811b93514d152e5033871c1bdb8cbad6439a1603 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/checkpoint-70.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5cf7868a91562c8f0a8856acf4435e30812f75a336ca961b67d76666e11d5300 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/last.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/last.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..953a863e893282a3eaf626d8df780b19761786a0 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/last.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cc70f64fd3c00263169b6d3b9f8511d5dce22449037de08ade89c0313d73f1a8 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/model_best.pth.tar b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/model_best.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..c3009f0643990e34fa6c87b3e77f6d503da0a187 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/model_best.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d4931f11caa7af1cac37f03aabe808397705df68b1007099a9c203058dfbb6bf +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/summary.csv b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/summary.csv new file mode 100644 index 0000000000000000000000000000000000000000..e9ca276418c39a6f26f617cf05a7652f9ec57c83 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining40.0-frac-1over4/summary.csv @@ -0,0 +1,151 @@ +epoch,train_loss,eval_loss,eval_top1,eval_top5,lr +0,6.943024158477783,6.938859452056885,0.0819999999666214,0.5060000001525878,1e-05 +1,6.856327056884766,6.588315466003418,1.1719999995803834,4.328000001983643,0.080008 +2,6.772615909576416,6.36948266418457,2.0620000020599365,6.893999995422363,0.160006 +3,6.69498348236084,6.173257058410645,2.724000001487732,8.756000006713867,0.240004 +4,6.612429618835449,5.910049392700195,4.39399999923706,13.085999998168946,0.320002 +5,6.5145649909973145,5.706791815795898,5.044000005493164,15.573999982910156,0.39890437907365467 +6,6.408770561218262,5.4572058047485354,7.9440000012207035,20.93799999938965,0.3984229402628956 +7,6.31180477142334,5.093959313659668,11.026000010375977,27.40800000732422,0.3978544665925977 +8,6.219870567321777,5.179748318481446,10.976000012512207,26.67000002319336,0.39719920741410103 +9,6.129653453826904,4.9151684353637695,13.284000017089843,31.441999990234375,0.3964574501457378 +10,6.049684524536133,4.9168432046508785,13.27999999786377,30.705999997558592,0.39562952014676117 +11,5.972713947296143,4.848119541931152,15.195999993896484,34.58199996826172,0.3947157805746321 +12,5.903981685638428,4.410434129638672,19.95999999572754,42.26200004638672,0.3937166322257262 +13,5.840912342071533,4.405841118164062,19.78800000366211,41.39199998413086,0.39263251335953164 +14,5.782167911529541,4.308849479064941,21.92200001831055,44.71399998046875,0.39146389950641347 +15,5.729307174682617,4.164249961853027,23.765999982910156,47.20200003540039,0.39021130325903075 +16,5.678974151611328,4.11299892211914,25.064000014038086,49.45199993408203,0.3888752740474963 +17,5.629786491394043,4.10596147277832,24.186000009155272,47.82400001464844,0.3874563978983783 +18,5.586076259613037,3.948684051361084,27.040000001220704,51.97600000732422,0.3859552971776503 +19,5.544066429138184,3.8799483682250977,28.800000046386717,53.93599999267578,0.38437263031770014 +20,5.507201194763184,3.762152017440796,29.547999996948242,54.969999995117185,0.3827090915285202 +21,5.471296310424805,3.805467914428711,29.696,54.773999979248046,0.3809654104932039 +22,5.432684421539307,3.825436313781738,28.34599999206543,53.22199996826172,0.3791423520478826 +23,5.398519515991211,3.6082389656066893,31.69399999206543,57.26799995605469,0.37724071584624297 +24,5.366550445556641,3.6650337581634522,31.279999985351562,56.856000063476564,0.3752613360087727 +25,5.33527946472168,3.5391836129760743,34.42799998535156,60.43599996826172,0.37320508075688774 +26,5.305219650268555,3.5810128129577636,34.13999997558594,59.57599993652344,0.3710728520321014 +27,5.273719310760498,3.527241053161621,34.32400001586914,59.970000010986325,0.368865585100403 +28,5.24809455871582,3.5433296742248537,34.68199999755859,60.43000005981445,0.3665842481420199 +29,5.219091415405273,3.53101170173645,34.04800002929687,59.38999997314453,0.36422984182674084 +30,5.188267707824707,3.594739681777954,33.46999997680664,58.683999997558594,0.3618033988749895 +31,5.167198181152344,3.392540680999756,36.234000021972655,62.0020000390625,0.3593059836048393 +32,5.139483451843262,3.465734861602783,35.62000002197266,61.583999929199216,0.356738691465168 +33,5.114716529846191,3.327832818069458,37.397999990234375,63.092000036621094,0.3541026485551579 +34,5.091244220733643,3.372329916534424,37.86000004150391,63.28799998046875,0.3513990111303513 +35,5.06257438659668,3.3403953475189208,37.50199998779297,63.52399987792969,0.3486289650954789 +36,5.038999557495117,3.3542633992004394,38.713999995117184,63.98199998046875,0.34579372548428233 +37,5.017002105712891,3.25261526512146,38.84599999145508,64.96000002685547,0.3428945359265607 +38,4.991616249084473,3.2753990757751463,37.914000006103514,63.564000085449216,0.33993266810267314 +39,4.969043731689453,3.354761472930908,37.8260000390625,63.1519999609375,0.33690942118573775 +40,4.945049285888672,3.304535781478882,39.13200002807617,64.33799995605469,0.3338261212717717 +41,4.929953575134277,3.485507546005249,35.92000001953125,60.72199999511719,0.3306841207980211 +42,4.902693748474121,3.257430730895996,38.97600005371094,64.06800005371093,0.32748479794973795 +43,4.880340099334717,3.2041633930206297,39.845999993896484,65.22999995117188,0.3242295560556621 +44,4.862368106842041,3.2704891176605226,40.14400001586914,64.98400003173828,0.320919822972475 +45,4.836077690124512,3.2527811197662353,39.1879999987793,64.35400000244141,0.31755705045849464 +46,4.820522308349609,3.259491576690674,39.758000061035155,64.89800000732421,0.3141427135368864 +47,4.795742034912109,3.2654841972351076,39.92399998657226,64.78800002685547,0.31067830984866884 +48,4.773715019226074,3.275195260925293,40.16000001831055,64.94200005126953,0.30716535899579933 +49,4.754312992095947,3.3014261947631836,40.17200005615234,64.99399995117187,0.3036054018746261 +50,4.7323479652404785,3.214202807006836,40.79600005126953,65.56000002929687,0.30000000000000004 +51,4.713468551635742,3.28939544052124,40.16000000854492,64.85599994628906,0.2963507348203431 +52,4.688541412353516,3.14884043838501,41.433999997558594,65.80999999023437,0.29265920702397236 +53,4.6714186668396,3.2486075187683103,40.2559999975586,64.62600002685546,0.2889270358369855 +54,4.649861812591553,3.2325782968139647,40.596,64.64200002441406,0.28515585831301454 +55,4.632839679718018,3.225374926071167,40.43199999755859,64.7759999975586,0.28134732861516004 +56,4.607300281524658,3.2064396517944336,40.981999959716795,64.99800004638672,0.2775031172904206 +57,4.585275650024414,3.2218094375610353,40.771999975585935,64.49400004638672,0.27362491053693566 +58,4.566425323486328,3.2375895790863036,40.74600000488281,64.89999996826172,0.26971440946436304 +59,4.547436714172363,3.26148624130249,39.90400000244141,64.38800010253907,0.26577332934771664 +60,4.52419900894165,3.2946114099121093,40.165999984130856,63.70799992919922,0.2618033988749895 +61,4.507087707519531,3.2332502903747558,41.02999997802734,64.60199997314453,0.25780635938889435 +62,4.485959053039551,3.4348681547546387,37.69399999267578,61.18800004638672,0.25378396412305315 +63,4.463349342346191,3.2511073503112793,40.76000002685547,64.48399997802734,0.24973797743297094 +64,4.441277027130127,3.3182686504364014,39.33000001220703,62.731999985351564,0.24567017402213118 +65,4.4217963218688965,3.2748363047790527,40.10800002319336,63.47400003662109,0.2415823381635519 +66,4.402285099029541,3.3001190892028807,39.8540000024414,63.21800003417969,0.23747626291714496 +67,4.382106781005859,3.331339216003418,39.53399995361328,62.79800000732422,0.23335374934322048 +68,4.358300685882568,3.256801219558716,40.27800003417969,63.56600005371094,0.22921660571248237 +69,4.338809967041016,3.3791692337036134,38.721999998779296,61.39600001708985,0.22506664671286086 +70,4.318325996398926,3.291542735748291,40.44399999755859,63.37799990966797,0.22090569265353077 +71,4.293638229370117,3.386038561248779,39.07200002075195,61.83600003417969,0.21673556866646312 +72,4.274496078491211,3.425867526245117,38.45599995605469,60.69000001464844,0.21255810390586272 +73,4.2581682205200195,3.3847217195892334,39.418000056152344,61.62199995605469,0.20837513074583996 +74,4.230520248413086,3.40245957611084,38.902000043945314,61.285999943847656,0.20418848397667141 +75,4.215935707092285,3.3389018489837645,39.355999998779296,62.07800008789062,0.2 +76,4.187872886657715,3.441907887802124,38.378000014648435,60.40399998535156,0.1958115160233287 +77,4.173551559448242,3.4760118829345705,38.27800002929688,60.04599994140625,0.19162486925416009 +78,4.14718770980835,3.538728616027832,36.851999990234376,58.97200001586914,0.1874418960941374 +79,4.126643657684326,3.3666327865600585,39.42800002319336,61.24199999267578,0.1832644313335369 +80,4.105745315551758,3.5649089305877686,36.76200001098633,58.264000015869144,0.17909430734646936 +81,4.082300186157227,3.4401110125732424,38.55000005004883,60.332000021972654,0.1749333532871392 +82,4.059758186340332,3.4652897735595705,38.472000040283206,59.69599999511719,0.17078339428751776 +83,4.043277263641357,3.512290891113281,38.06000005859375,59.2540000402832,0.16664625065677952 +84,4.019094467163086,3.474024595489502,37.935999998779295,59.408000056152346,0.16252373708285509 +85,4.000632286071777,3.4906584406280516,38.13400000366211,59.759999997558594,0.15841766183644812 +86,3.9719996452331543,3.618461647186279,35.87800000366211,57.39199998901367,0.1543298259778689 +87,3.9512109756469727,3.5773420275878904,36.87399995849609,57.80999996948242,0.15026202256702909 +88,3.931777238845825,3.513327244567871,37.6200000390625,58.93400005126953,0.14621603587694693 +89,3.905181646347046,3.516221976547241,37.87400000976562,59.09600002197266,0.14219364061110565 +90,3.8866517543792725,3.519011474838257,37.71600004516601,58.83400000488281,0.13819660112501053 +91,3.863650321960449,3.5913996340179444,36.82600001953125,57.51599998535156,0.13422667065228336 +92,3.835031032562256,3.543882612915039,37.390000050048826,58.41800001586914,0.130285590535637 +93,3.8165123462677,3.563828221435547,37.22800001220703,58.01800002929688,0.12637508946306447 +94,3.7957019805908203,3.671313189086914,35.925999992675784,56.445999993896486,0.12249688270957942 +95,3.773899793624878,3.6619523892974852,36.204000043945314,56.50000004760742,0.11865267138483995 +96,3.7454912662506104,3.633371482543945,36.48599999511719,56.94599998291016,0.11484414168698548 +97,3.7233355045318604,3.5920180224609375,36.910000041503906,57.656000056152344,0.11107296416301456 +98,3.7022433280944824,3.684746437911987,35.594000024414065,56.22000003417969,0.10734079297602771 +99,3.681253671646118,3.75458634185791,35.155999997558595,55.427999958496095,0.10364926517965692 +100,3.655606746673584,3.699174881439209,36.01000000610352,55.918000034179684,0.09999999999999996 +101,3.6334176063537598,3.6724345876312254,35.996000012207034,56.42800003417969,0.09639459812537399 +102,3.6112112998962402,3.809721075744629,34.15400002075195,54.33400001098633,0.09283464100420072 +103,3.5921597480773926,3.66792995513916,36.200000021972656,56.554000028076175,0.0893216901513312 +104,3.5633926391601562,3.6342549645233153,36.4820000024414,57.04000003173828,0.08585728646311369 +105,3.547360897064209,3.6811806187438965,36.22399999755859,56.42999997192383,0.0824429495415054 +106,3.5171875953674316,3.6844659465026854,35.82000007080078,56.42200000488281,0.07908017702752504 +107,3.4977030754089355,3.7272265797424318,35.87599996459961,55.741999952392575,0.07577044394433795 +108,3.4759888648986816,3.7203902688598633,35.57000005126953,55.73599998535156,0.07251520205026206 +109,3.450176954269409,3.7217521075439453,35.72000000244141,55.78000007446289,0.06931587920197897 +110,3.4277639389038086,3.747455071029663,35.450000043945316,55.5640000390625,0.06617387872822836 +111,3.416098117828369,3.7601297509765623,35.39599999145508,55.14600007080078,0.06309057881426226 +112,3.3863039016723633,3.7305660575866697,35.41600001953125,55.51200000366211,0.060067331897326895 +113,3.3614370822906494,3.7883984119415284,35.07799999755859,54.91400003051758,0.057105464073439374 +114,3.3459599018096924,3.8143752993774416,34.60399998291015,54.43800001342773,0.05420627451571774 +115,3.324420690536499,3.845425550994873,34.43000002929688,54.08799999145508,0.051371034904521135 +116,3.301175594329834,3.797059640197754,34.79399997558594,54.75399999267578,0.04860098886964875 +117,3.287332057952881,3.7661463146209715,35.42599999755859,55.044,0.04589735144484217 +118,3.264589309692383,3.79609424369812,34.92200000244141,54.938000041503905,0.04326130853483206 +119,3.2444350719451904,3.787090714492798,35.099999982910155,54.972000008544924,0.04069401639516075 +120,3.2343955039978027,3.842648572769165,34.615999969482424,54.060000024414066,0.03819660112501053 +121,3.2078042030334473,3.8437905423736574,34.19400003662109,54.21000004272461,0.035770158173259195 +122,3.1891088485717773,3.8577507749176023,34.34199998901367,53.96999997070313,0.03341575185798012 +123,3.1690220832824707,3.8453804344177245,34.715999989013675,54.14000001586914,0.031134414899596986 +124,3.1524007320404053,3.837953787918091,34.664000004882816,54.28999998657227,0.02892714796789868 +125,3.1350340843200684,3.8350729121398928,34.566000009765624,54.21999998413086,0.026794919243112305 +126,3.119072675704956,3.8095665394592286,35.16200004272461,54.5780000402832,0.024738663991227285 +127,3.104735851287842,3.842745321044922,34.79200002929687,54.229999970703126,0.022759284153757053 +128,3.088559865951538,3.833246276092529,34.75999998901367,54.252,0.020857647952117465 +129,3.0738117694854736,3.817981937942505,34.95599997802734,54.49600001098633,0.01903458950679613 +130,3.0625498294830322,3.7851865193939207,35.4400000378418,54.83400001342773,0.01729090847147985 +131,3.0461535453796387,3.7905793181610106,35.12399999633789,54.838000024414065,0.015627369682299875 +132,3.0352942943573,3.828107550506592,34.88200000244141,54.292000037841795,0.014044702822349731 +133,3.019928455352783,3.851025446166992,34.61200008544922,54.00000001586914,0.01254360210162171 +134,3.0150368213653564,3.8325876887512207,34.90600000976563,54.358000064697265,0.0111247259525038 +135,3.0059900283813477,3.8107926860046386,35.14400000488281,54.48799997802735,0.009788696740969294 +136,2.9911904335021973,3.8233774924468995,34.93000003173828,54.30000001098633,0.008536100493586551 +137,2.9871811866760254,3.8200714123535158,35.026000031738285,54.44399997314453,0.007367486640468379 +138,2.975555419921875,3.838066194076538,34.84800004760742,54.144000026855466,0.0062833677742737855 +139,2.9698402881622314,3.843063649902344,34.78999999633789,54.111999989013675,0.005284219425367942 +140,2.9598073959350586,3.8197866806793215,35.016000007324216,54.4160000378418,0.004370479853238885 +141,2.9604668617248535,3.8244626051330566,34.95200000244141,54.32200006958008,0.003542549854262278 +142,2.9512643814086914,3.8194301012420655,35.06800004272461,54.41000002441406,0.0028007925858990037 +143,2.947340488433838,3.8177618417358397,35.03400003173828,54.34200002929688,0.0021455334074023335 +144,2.9478812217712402,3.8047248735046386,35.15400005615234,54.61399995727539,0.0015770597371044472 +145,2.939971446990967,3.8246466130065917,34.91800000732422,54.347999946289065,0.001095620926345342 +146,2.9368896484375,3.81159196144104,35.13600003417969,54.471999973144534,0.000701428150099126 +147,2.9364731311798096,3.8063423165893555,35.133999982910154,54.55000003540039,0.00039465431434568824 +148,2.9346437454223633,3.8170816706085207,34.988000020751954,54.476000013427736,0.00017543398022832336 +149,2.935042142868042,3.823150135498047,34.89400003417969,54.403999986572266,4.3863305030900085e-05 diff --git a/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f38cb19d0c68e34e907105c922c8f97408d126a1 Binary files /dev/null and b/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc b/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..15b224a3e803e22d6449220a877598c139829f9a Binary files /dev/null and b/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..341636579914fd964a9a9fef7d8ad57c964b2e32 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db228d0f1e7c3031f28d6b4e8ead427c4c5065ff Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d2f35873d913ac13e6e4ce9ae8920103be9c67f Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7c842cf410132e76a9834f091f98ac63eec8476f Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ddf7751bb6b0fc9a4c9d7e45e6aa43cf64cf223a Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fd8aa868d973348206cc215e74fa2e9a6e0a9bd Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bbdc29f82ce06548931d6b7c506648aed81eabb8 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b88d56c1a2d8cc0f79c2a3f0a532cd31940c76d5 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..561de8a02610eb8febd3f8ce3be00f82f2169846 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a5520e180aae9005fcf06d82e619892680fc6d6 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f652fec988fb9842a694dbb113335e7be9064eee Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ddbb04bd4b2fadf810c5ce8105a4a90496c6391 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18470dbc3eca184a6e936817394ea8f4de3d1026 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f9b36b7e6cfdc0d84eab0954a37470001df04906 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..35dc5ffe78b21fdd0a1cf44ca5f49d629d38590d Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6e14e0362888c6a867f1385a2336414eefb9cab Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f9b472bd52d99ff37eefbb8ba575caeab90401b8 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ed701bf06ac86b4dec40908c83479c0f7a61f4e3 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e17c11062998a20cce6383ee338d1e70e437bce8 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f81ac024c7aaac197eaae00971c436845242175a Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..76f2a1e5a62940dd6085f95f151917bace398005 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..729597d08bbd438cb1ee60610fd70db59f2ee849 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b5d2cec44678489813aa6d642d3adbe0c4a8df8 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcbde50367f629ecf056369fc3a2874b5aacc455 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..116e5d8afb91bb6d4666f8c761b39c87001b9012 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..368bd659a0a65abfa5ddb25fd90737e9b3588bfb Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09b8846f0402819e231c33ffa6d038515e60d357 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66d6928c04004f3ab783668cf92208d83287b50d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66f4f463e134ad6970fa82f9dc9e830b95df2d90 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..addb62139b295ab5efcb4ea3ffb6e5ee688f6119 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8e8838c7f6a948db1f7345b402acfd1155087d02 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..74dcdc463e9cb3938b9046087891bba287482fa0 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..96906a0739441259535ff8c5124d6cfae6d32318 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c66338b0718f9518f7c8cc76e61e8619f26238e Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c6da34ad78a035b5eacc0de98a5cb016dc9aed0 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b4fe0706d2f89007517fac9dbc529f826d920657 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8e57c2446521c7390d492d08883fafda8018d33 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9803340fbe0f89892d7eb8de1364509a3f04ff62 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85814284d550b9e3039383e33b2f01dbf11cfbfb Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e26518bed7c1f7820d2ae4c73d7ff06533ca5103 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fa165fa6716610e34dcc6db0243c16553900507 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc1bff9d2e597545ac66e98b092e4141607c9198 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d365410e7c79e75f8ecacad8deec05d6e2a916e7 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f46c39fae89e465efc1cae4838cd508e1d0abde Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dc3d2a21c80dc2de216bf6ff9a32040bbe2f7452 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..17005d44ad5214fd601886c65d3c378b4a20e74f Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..293f6a1541dcc520b49f33418350997d87006055 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6695456723107fde349a9e67de237adaa2373371 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..031668647eb4a875c6937db43fd91f38023ad9f5 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2cc00f96e8cc5046bee99ea535d2dfbffd86b390 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..411e7d46f4cda7618869449e89664dafb7cb44d4 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c13e135f07e41c276cafce3ee557f27c577830b Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85d31edd5beb8344a61a2314f37909ba77884cc2 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22286a8044f8cd5bfd6e16a86f2a8bbae7a2baad Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ccc4198fd8785e6617816fe0b58b280029fc1b69 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..02d389d40823ee5a259d49a402696a1d209232f7 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f0404703573ecccc6f60848a3b5f68d527fd1a4 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6758840cee417f0d42c3aae0b7398d64301de75 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c504f53e7b2dfa3eaf3729faaacfd6829966d598 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7470bdef2750251995bc63b3a3b4a4168db2609b Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..302021e9c6107962e0789e96268b3b2da4492709 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0cfb5638dbd4bd727041bf622c5909057614f8a1 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ebb016a39e9c51b8169dd9c2c84f566b0a723ab Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..548f052420ba7a52ed49c942af52f8d2687a9eaf Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fd1c6be9db040fc3b22e9cd5db44797af4b752fe Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e3a3b20354b140d330676af454cd507507e90df Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e418ba0a1317f909802104c3c7f3513757ffd4c1 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..daefb1a391beaad72ef7609b0e19c85715e0a1fc Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7eca7456dc80f8dcb7aa078f91f6663888ba91d9 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e5819423abbf9e4072a0972d4ae618a71e6c1c38 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d141e4748a4cfa7135e05447e3773eaa811ed0af Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..314b013c7472dc9b03be6998caf436704938ad95 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6b196c8c6931a4c8a107aa3bf3da85439529ff3 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d9b83265b0f6b0953a4e4d35926bba53a2803053 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1bfed08176272a17b759852b2c83b1eb87b41b5a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5d52c7e335c54de69bac7503f493ba39fc76a30a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e64e9e9138f68a50b21b99b5df31b0d5ad9b35b3 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9965d468da242143288ba01739aa744e18f2c8ee Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5fc6f7d9322581e35ae76c1283ecd183779bfac6 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ab3da727741d0e4a480fde4a66ab9e02e8a632d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..86190c301426dda97f9853ab8aad1c01cd7d6cab Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..297cb3ff766ed31cc81d98c4661fa68a8a22766d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ac9f886655dfe3308cf26ce8ec92c8573fbdc73 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5cfd6a582923ea8996ea3094bf3b16f7cf8d129d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..464980e24fb72e00f91f0d098b465bc6172790d2 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e241ca1a3d8401d3c675db23adbe173b84bb8208 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50e71df2a3322d56ab28bc3c042c44a7811136bb Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99c14b8ac2fc6ba211dddb0324351a32d7fa5700 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b7cab54d62b136fb3bb960ea2bfa8a584e08f28 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c09b067bd12a2a15ee546b56a49633c0d5abd8b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8cbd68054ef891ed3189fb659cc8e2a17faf719d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..daf7b29e2807ba4e14b834912f205665ec8041b5 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..132b701623e0a1b95fae6f467fcac4db9789be09 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3a6b06ad4ce9180a8f1f63d0a4f4fb97fcee9e3b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8ad3ca91b71881f9aa69b294723d70e29e47e2c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ec91fdbd531611e79ce3492aa8faa7581aa4466e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09045f00329ca151ce93549a2afb4dfa2a490ef4 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ca6f45d4cfb9c27beafbf5c3f299b62187d719e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4f639762cf379d3ccf80e0edc2566977e9419566 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..885a7eb6958e8cb952f3a29d1e2e354e3d861308 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d3d667c761c19539bbdaa247f7cb0e0447a95654 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..286a7885550f5e2d7370c92124d9e026066b761e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fcf1af79c4e416604117a3e1a736289334c5de9b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4303ac2a99520e7b38902be4cb9f93522062f0d1 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f22b557ad308cf07c340a51892d9a4dc591fe16d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..91c4481ef941d670523dc8fa51c2f0d7310d95c7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3de8432043289196771dbeca03bec970b6a65f36 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e73f3b79c5fd7c64940cb5d67d635af0df90f1f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..faddaf5c784ca13d2a7a2d27fd5eec4950b630ae Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93e13ce84f6553460961ac7b46abb565ad31b3b0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be3bededd41ee1771e88bbe9531348f47b2df86b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db67eae5a6a2360135193719595c467047e55271 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40a8c857461af305b7b6611de2497efd45c12034 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7770f3db4d39f2a63396e851bff9181b03d55a70 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e108beb113e27d01d22126da7f924fdcade2dd19 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6933f52b1b9bcb0692080a6568e8c51737f617c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7e05b5d3ba8c343229bae1ee17e1a827f5b2f0cf Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..538b6f1d516acf162c2fc50774c5f515b9bb1d45 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..25e094c4d9b9c9e71ae43ee0d9513aa6e388969c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..197a72e8dca923674009f447e9a46c37b7090682 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9b50a92493f17ec6752b5eb062da371534ed5465 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b3c85ced561df8c76dfc6d5a00a38cd629475bb Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6370346b31f309e69ff7d353709571923ad40b98 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..754b5d514688ecdefebde41b253bd9d5873892d7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07f528682d6e6cb72e8c38d4dd088f287d413cdd Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d8e58955b5af239654d609037d880735f7dc4ad Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..29bd6e7d39f333b7d4975cdb5b2e6d89360ab8a4 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7590158d335f802637234ec90108e1c350151b9b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55088c46ba3e70d59f023d1ee563ce9fee480c12 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e5a5b1ef66bf97de33bb47ede801f416a53fd570 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d981a116c9315a41b6600ceafa47919af0ea26e3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2e5c285bd3b731ab07cbdad5ff25bf9e63b1e45c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be7f11ec85d3220f96c77b92a8696b46ceb8201c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..424171f6038dbd459ee5ed95e79ad9480fbbbc61 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f7a3d3c3f0445607792187700a19faf683a3d56 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab552420b47fc83961360aec96948a3e3cb62679 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cfc1ebe74a337ad6fe1ba075f4da7faf2d5c9c48 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d83773c0fd6c135b09b73f71396567bb495d516e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d143bb1de7a543bfcbacd7312a440a6eaea9d5d8 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..392f34fedd0e4aa20bd3da5a010d13a24d414543 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a5a1b30ae0d4cf764682b24cc3200d1fd22fa46 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea27f268397f72e8e2b2b6c2313eed11814a27a0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df2c766aab14b7dca1209c1e5732d04ccfb5bb37 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3325483f82ff59a64cf8ccef0924cd4728673230 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..82491d38287630c1d95c6e21f20926306b4589e7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..92c036c18670ffbb27eafc52406aa844b189d5ff Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb2ead555d9fdcc76b387297746fe8ddaed8294d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5666183d33cdddbe191c2628c421f82d0e9c78b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..298ba8363d35b0de2d76efeeceb2bed21b4f903d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..703ccc9991c43ca269cea049743d8e8e197851c6 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..138e654fae1a4977e1a947a1995bfaf37e815e3f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..56f4edc60e6d8ddcd032a2c8e63b12d10793af98 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..364b7fe0dfd96bede26566bf23891aeb1852391e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..987847daae6ce89b5c7635fdf2359b6293466c8c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a37e9422d47a4cbb11909e15b699b18efae61362 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3b2bb33ce636bab5e7451645e2f523ff3df31afd Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..409098e3a1b42498a30fee882138d0809cb23d23 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b943df4f625ee2cd38af79435eb419aca6982a9 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4d722f3b0ad90d4aa36b8a3fcf3418e638f4ec3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b0c0972986ef1dfb541a3419af7fbe71eb3918f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb7afe4232bf6f9f8f27e4d2a98ed2092d4d986d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef65cfcc65e54ea28564f2c07a0cb0bdf08d3b31 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..391127723baad352549d6327d0e784e5151ef945 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b02e059e86b2880b25fbf2dc0fde964bf016ac91 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e4bc0bd0c1080d38a983a2ce4bb8b4e30bbb8582 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22d713d8599aa4bf48f2dcc6a3ba8c022e0afe0e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14c930502257640a0222d0d28c2426e45eb2c2ba Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8e2734f3564979c36342fada0c000f51d2728ea6 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aaf45ca818deac916a32a76749026a3f6bb962e4 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9514c36df179fc1cc9db28b6636e1ac7206b707a Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b9ca65ae82010e2723fd4b0bce89ee94d5ea7cd Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..630a98b1193135973cb6d0c0adb3cba2edc7ecf5 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..946b2024f5dc251c823bc5953c92dd81826d509b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..853b5a0a03421227931767141de2786b171f55f1 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bd2bfc9e17c8d69fce0d91a1e04f6feeb69a5b52 --- /dev/null +++ b/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba5ec3f6e4e18ca1bb4d7bc7b06192e9d555a37ab7ab865e8c833881be08d46f +size 113395 diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9f90012fc5f514b2e55701927f7ca1ea05b21a0c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de5ab77c00e898c16694abae6a393d3aeefd81b0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8a82c563fd53df0ed4a4c5495d95933ece295f11 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c96c6cb64d57f933e318061e5f2c17c90893b807 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c8134ec4853a208ffa7740f319270e3bff8eadc Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b1c776091c8c2b9a49b58bb66f3b937a162e187c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e160139f32e31e86daceca69e8d679bfb666e83 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5db0a680605fa3ca6f0e9852a0e26ceb182b70c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b9c371411eff0bbaadce3b3c4a3e396d085c70a Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..036df469ebe2ced3e48d88367bae63e62c7dff98 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3fd44b309030f20923c697c0b8dd84d5fcb5747c Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d97f511ffd56ff0edb31b5cdad0bf98bf514744 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7177a853bb4dc4f8e50e1cfa1fc5b8506529da62 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d28b6402b0a907fde7fd14b300ab9c1e051caf1 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a27977fec4c6672e1b78df12e472197dbba17a08 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18fa5592c7efff71b9eaed79df4a59be16db0433 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..befabcf0ef8226f864f6437d554f0dc0b0ace75b Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..acf9f6b461f4698fa787da74fff93ebf25e6d56e Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14ef40da97d85f19ec32929940db8a602bcedf80 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df213ad8a516354974c5f2aacd47c9d304d2dc65 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d738451f21fa7bf834ef95637f230b7a5abd398c Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/kron.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/kron.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f631a8b4734a04747ad5cc09d1e6f5864d859d84 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/kron.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6ee4d6fc21e5323a32a8578c82f0507641daff2 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1d73be289b2bf72e58923037825296375239094b Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcaae0f30b921d3b4262e5874b92ac4755af5870 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..65e2f5f375c4d9d3cc5020fbe516c7dc38606ec9 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..caaac87dd284cfcea181e1decc8014eca2573256 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3bcb141ba0b72047e1687667a1fce9c5d72e9cd Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08e145eee408c3487ba285089f10598b25da6057 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8abce573102d28a695901e3107235fe872f9a0e Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a503c9b76741052ddf63fcb38cebb4d5e9a5cb2 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..230457db658ba254999ffdda75428ced074e7871 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..79adf18c206c257f710b5a863cf11fb6d71c5cfa Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6d9582602bdc115a760d7242c3d26a230aab2454 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b8ff6e9b7c3dd3999a8a2dedeb2044c1fbf1319 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6511975737a4800085c4dad0117c12d246b3d773 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea0c18fd6367435574c3bac7568df1b222aaa779 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f0d26a3092d278909b00e57ff58c3752117561dc Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a576fa51ae77ede72592f46516676f38993e0148 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53b626c63e8571c09f85742a8d2bd3dfd01a3d86 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4a027b0e27c9a0c634909921d0074f7b15f923dc Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de44b1c383265f067f5931cbcc4b57f1e0b97a24 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5fb919836ece14510cc1bb1e84d2455f8d25da6 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48759ed9ecee790d479b8f6a11fe65a74108f1be Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0159a87e08f61f7d214e74f1343a7c18d6e88d39 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2afcded53543a5e57fec55a5998cbd11beadddac Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8edda40404f0a5c206908b1b18dd17bd23442762 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2136b5d1c3997232298d3e6f6f4d90208c182468 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7172f11f277b130d006187c981e25b93602960dc Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8530abf1d4d749db1ac5f6b51928b49a88b4aad Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9d685c9b761db93c5a62c305cbcbfd145640436 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bd6321e31095c1f8762117a87076579dd0032ce Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..95cc7d00902568261d8726316eed380b626ed256 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5d616484965d241e6b3c5f4d18a80f6653be232 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4f88ba02effa5c29ed7f7a937a2c54de86e1e81c Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e4a245a5b6d7bb456ef2d071abc6445e732e723 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c04b8d7ab86fc97588e989d971847c65907b0b71 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9709bc62b7d4dabbb57b941bec0dc069d707fac3 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0dc83b54c4553f89cee1dbdb25c7acbf974426dc Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4103302fa7aa417eda625c27fa9bd800dddc99e0 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6060be608d2350c6d39f09fb1ea4439252968568 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc differ diff --git a/pytorch-image-models/wandb/debug-internal.log b/pytorch-image-models/wandb/debug-internal.log new file mode 100644 index 0000000000000000000000000000000000000000..c873b27afac9247fba521fc35d97d1752ceb2799 --- /dev/null +++ b/pytorch-image-models/wandb/debug-internal.log @@ -0,0 +1,12 @@ +{"time":"2025-02-24T01:57:23.359826036Z","level":"INFO","msg":"stream: starting","core version":"0.19.7","symlink path":"/app/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-core.log"} +{"time":"2025-02-24T01:57:23.465214531Z","level":"INFO","msg":"created new stream","id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465261892Z","level":"INFO","msg":"stream: started","id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465305653Z","level":"INFO","msg":"writer: Do: started","stream_id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465321763Z","level":"INFO","msg":"handler: started","stream_id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465352523Z","level":"INFO","msg":"sender: started","stream_id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.611998175Z","level":"INFO","msg":"Starting system monitor"} +{"time":"2025-02-24T07:06:45.361263979Z","level":"INFO","msg":"api: retrying HTTP error","status":500,"url":"https://api.wandb.ai/files/quality-is-all-you-need/ImageNetTraining40.0-frac-1over4/igbnn5u2/file_stream","body":"{\"error\":\"context deadline exceeded\"}"} +{"time":"2025-02-24T08:00:03.613039509Z","level":"ERROR","msg":"monitor: cpu: error sampling metrics: open /proc/158/stat: no such file or directory\nopen /proc/158/status: no such file or directory"} +{"time":"2025-02-24T08:00:03.613225502Z","level":"ERROR","msg":"monitor: memory: error sampling metrics: open /proc/158/statm: no such file or directory"} +{"time":"2025-02-24T08:00:13.613153147Z","level":"ERROR","msg":"monitor: memory: error sampling metrics: open /proc/158/statm: no such file or directory"} +{"time":"2025-02-24T08:00:13.613153037Z","level":"ERROR","msg":"monitor: cpu: error sampling metrics: open /proc/158/stat: no such file or directory\nopen /proc/158/status: no such file or directory"} diff --git a/pytorch-image-models/wandb/debug.log b/pytorch-image-models/wandb/debug.log new file mode 100644 index 0000000000000000000000000000000000000000..6d1c2e8833f0fbe361b626f042289fcc3fb2fce5 --- /dev/null +++ b/pytorch-image-models/wandb/debug.log @@ -0,0 +1,22 @@ +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Current SDK version is 0.19.7 +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Configure stats pid to 158 +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Loading settings from /home/user/.config/wandb/settings +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Loading settings from /app/pytorch-image-models/wandb/settings +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Loading settings from environment variables +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:setup_run_log_directory():647] Logging user logs to /app/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug.log +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:setup_run_log_directory():648] Logging internal logs to /app/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-internal.log +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():761] calling init triggers +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():766] wandb.init called with sweep_config: {} +config: {'data': None, 'data_dir': None, 'dataset': 'hfds/datacomp/imagenet-1k-random-40.0-frac-1over4', 'train_split': 'train', 'val_split': 'validation', 'train_num_samples': None, 'val_num_samples': None, 'dataset_download': False, 'class_map': '', 'input_img_mode': None, 'input_key': None, 'target_key': None, 'dataset_trust_remote_code': False, 'model': 'seresnet34', 'pretrained': False, 'pretrained_path': None, 'initial_checkpoint': '', 'resume': '', 'no_resume_opt': False, 'num_classes': 1000, 'gp': None, 'img_size': None, 'in_chans': None, 'input_size': None, 'crop_pct': None, 'mean': None, 'std': None, 'interpolation': '', 'batch_size': 256, 'validation_batch_size': None, 'channels_last': False, 'fuser': '', 'grad_accum_steps': 1, 'grad_checkpointing': False, 'fast_norm': False, 'model_kwargs': {}, 'head_init_scale': None, 'head_init_bias': None, 'torchcompile_mode': None, 'torchscript': False, 'torchcompile': None, 'device': 'cuda:0', 'amp': True, 'amp_dtype': 'float16', 'amp_impl': 'native', 'model_dtype': None, 'no_ddp_bb': False, 'synchronize_step': False, 'local_rank': 0, 'device_modules': None, 'opt': 'sgd', 'opt_eps': None, 'opt_betas': None, 'momentum': 0.9, 'weight_decay': 2e-05, 'clip_grad': None, 'clip_mode': 'norm', 'layer_decay': None, 'opt_kwargs': {}, 'sched': 'cosine', 'sched_on_updates': False, 'lr': 0.4, 'lr_base': 0.1, 'lr_base_size': 256, 'lr_base_scale': '', 'lr_noise': None, 'lr_noise_pct': 0.67, 'lr_noise_std': 1.0, 'lr_cycle_mul': 1.0, 'lr_cycle_decay': 0.5, 'lr_cycle_limit': 1, 'lr_k_decay': 1.0, 'warmup_lr': 1e-05, 'min_lr': 0, 'epochs': 150, 'epoch_repeats': 0.0, 'start_epoch': None, 'decay_milestones': [90, 180, 270], 'decay_epochs': 90, 'warmup_epochs': 5, 'warmup_prefix': False, 'cooldown_epochs': 0, 'patience_epochs': 10, 'decay_rate': 0.1, 'no_aug': False, 'train_crop_mode': None, 'scale': [0.08, 1.0], 'ratio': [0.75, 1.3333333333333333], 'hflip': 0.5, 'vflip': 0.0, 'color_jitter': 0.4, 'color_jitter_prob': None, 'grayscale_prob': None, 'gaussian_blur_prob': None, 'aa': None, 'aug_repeats': 0, 'aug_splits': 0, 'jsd_loss': False, 'bce_loss': False, 'bce_sum': False, 'bce_target_thresh': None, 'bce_pos_weight': None, 'reprob': 0.5, 'remode': 'pixel', 'recount': 1, 'resplit': False, 'mixup': 0.0, 'cutmix': 0.0, 'cutmix_minmax': None, 'mixup_prob': 1.0, 'mixup_switch_prob': 0.5, 'mixup_mode': 'batch', 'mixup_off_epoch': 0, 'smoothing': 0.1, 'train_interpolation': 'random', 'drop': 0.0, 'drop_connect': None, 'drop_path': None, 'drop_block': None, 'bn_momentum': None, 'bn_eps': None, 'sync_bn': False, 'dist_bn': 'reduce', 'split_bn': False, 'model_ema': False, 'model_ema_force_cpu': False, 'model_ema_decay': 0.9998, 'model_ema_warmup': False, 'seed': 42, 'worker_seeding': 'all', 'log_interval': 50, 'recovery_interval': 0, 'checkpoint_hist': 10, 'workers': 4, 'save_images': False, 'pin_mem': False, 'no_prefetcher': False, 'output': '', 'experiment': 'ImageNetTraining40.0-frac-1over4', 'eval_metric': 'top1', 'tta': 0, 'use_multi_epochs_loader': False, 'log_wandb': True, 'wandb_project': 'ImageNetTraining40.0-frac-1over4', 'wandb_tags': [], 'wandb_resume_id': '', 'prefetcher': True, 'distributed': True, 'world_size': 4, 'rank': 0, '_wandb': {}} +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():784] starting backend +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():788] sending inform_init request +2025-02-24 01:57:23,357 INFO MainThread:158 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn +2025-02-24 01:57:23,358 INFO MainThread:158 [wandb_init.py:init():803] backend started and connected +2025-02-24 01:57:23,361 INFO MainThread:158 [wandb_init.py:init():896] updated telemetry +2025-02-24 01:57:23,383 INFO MainThread:158 [wandb_init.py:init():920] communicating run to backend with 90.0 second timeout +2025-02-24 01:57:23,608 INFO MainThread:158 [wandb_init.py:init():995] starting run threads in backend +2025-02-24 01:57:23,711 INFO MainThread:158 [wandb_run.py:_console_start():2377] atexit reg +2025-02-24 01:57:23,712 INFO MainThread:158 [wandb_run.py:_redirect():2227] redirect: wrap_raw +2025-02-24 01:57:23,712 INFO MainThread:158 [wandb_run.py:_redirect():2292] Wrapping output streams. +2025-02-24 01:57:23,712 INFO MainThread:158 [wandb_run.py:_redirect():2317] Redirects installed. +2025-02-24 01:57:23,714 INFO MainThread:158 [wandb_init.py:init():1037] run started, returning control to user process diff --git a/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/output.log b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/output.log new file mode 100644 index 0000000000000000000000000000000000000000..58c8efff79f604515d6d0cd90cabba7a48bb1643 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/output.log @@ -0,0 +1,2338 @@ +Scheduled epochs: 150 (epochs + cooldown_epochs). Warmup within epochs when warmup_prefix=False. LR stepped per epoch. +Train: 0 [ 0/312 ( 0%)] Loss: 6.93 (6.93) Time: 3.868s, 264.76/s (3.868s, 264.76/s) LR: 1.000e-05 Data: 1.239 (1.239) +Train: 0 [ 50/312 ( 16%)] Loss: 6.95 (6.94) Time: 0.398s, 2571.53/s (0.466s, 2198.40/s) LR: 1.000e-05 Data: 0.027 (0.051) +Train: 0 [ 100/312 ( 32%)] Loss: 6.94 (6.94) Time: 0.402s, 2546.78/s (0.434s, 2359.68/s) LR: 1.000e-05 Data: 0.026 (0.039) +Train: 0 [ 150/312 ( 48%)] Loss: 6.96 (6.94) Time: 0.403s, 2542.54/s (0.424s, 2414.35/s) LR: 1.000e-05 Data: 0.028 (0.035) +Train: 0 [ 200/312 ( 64%)] Loss: 6.94 (6.94) Time: 0.402s, 2549.84/s (0.419s, 2442.71/s) LR: 1.000e-05 Data: 0.025 (0.033) +Train: 0 [ 250/312 ( 80%)] Loss: 6.94 (6.94) Time: 0.406s, 2525.12/s (0.416s, 2460.34/s) LR: 1.000e-05 Data: 0.027 (0.032) +Train: 0 [ 300/312 ( 96%)] Loss: 6.95 (6.94) Time: 0.406s, 2523.83/s (0.414s, 2472.72/s) LR: 1.000e-05 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.548 (1.548) Loss: 6.946 ( 6.946) Acc@1: 0.098 ( 0.098) Acc@5: 0.391 ( 0.391) +Test: [ 48/48] Time: 0.704 (0.340) Loss: 6.940 ( 6.939) Acc@1: 0.118 ( 0.082) Acc@5: 0.354 ( 0.506) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 1 [ 0/312 ( 0%)] Loss: 6.94 (6.94) Time: 1.813s, 564.81/s (1.813s, 564.81/s) LR: 8.001e-02 Data: 1.446 (1.446) +Train: 1 [ 50/312 ( 16%)] Loss: 6.90 (6.92) Time: 0.411s, 2490.73/s (0.436s, 2347.02/s) LR: 8.001e-02 Data: 0.027 (0.054) +Train: 1 [ 100/312 ( 32%)] Loss: 6.88 (6.90) Time: 0.407s, 2516.64/s (0.424s, 2413.03/s) LR: 8.001e-02 Data: 0.027 (0.041) +Train: 1 [ 150/312 ( 48%)] Loss: 6.84 (6.89) Time: 0.405s, 2527.72/s (0.418s, 2447.28/s) LR: 8.001e-02 Data: 0.027 (0.036) +Train: 1 [ 200/312 ( 64%)] Loss: 6.85 (6.88) Time: 0.405s, 2527.03/s (0.415s, 2466.66/s) LR: 8.001e-02 Data: 0.024 (0.034) +Train: 1 [ 250/312 ( 80%)] Loss: 6.84 (6.87) Time: 0.414s, 2473.66/s (0.413s, 2477.29/s) LR: 8.001e-02 Data: 0.028 (0.033) +Train: 1 [ 300/312 ( 96%)] Loss: 6.81 (6.86) Time: 0.412s, 2482.99/s (0.413s, 2481.12/s) LR: 8.001e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.431 (1.431) Loss: 6.600 ( 6.600) Acc@1: 0.879 ( 0.879) Acc@5: 4.297 ( 4.297) +Test: [ 48/48] Time: 0.089 (0.325) Loss: 6.546 ( 6.588) Acc@1: 0.590 ( 1.172) Acc@5: 4.599 ( 4.328) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 2 [ 0/312 ( 0%)] Loss: 6.79 (6.79) Time: 1.623s, 631.09/s (1.623s, 631.09/s) LR: 1.600e-01 Data: 1.133 (1.133) +Train: 2 [ 50/312 ( 16%)] Loss: 6.78 (6.80) Time: 0.411s, 2490.12/s (0.434s, 2361.87/s) LR: 1.600e-01 Data: 0.029 (0.048) +Train: 2 [ 100/312 ( 32%)] Loss: 6.78 (6.80) Time: 0.408s, 2511.70/s (0.422s, 2429.18/s) LR: 1.600e-01 Data: 0.027 (0.038) +Train: 2 [ 150/312 ( 48%)] Loss: 6.78 (6.79) Time: 0.413s, 2479.35/s (0.418s, 2447.98/s) LR: 1.600e-01 Data: 0.026 (0.034) +Train: 2 [ 200/312 ( 64%)] Loss: 6.75 (6.79) Time: 0.414s, 2472.15/s (0.417s, 2455.18/s) LR: 1.600e-01 Data: 0.026 (0.032) +Train: 2 [ 250/312 ( 80%)] Loss: 6.75 (6.78) Time: 0.413s, 2479.35/s (0.416s, 2459.39/s) LR: 1.600e-01 Data: 0.026 (0.031) +Train: 2 [ 300/312 ( 96%)] Loss: 6.72 (6.77) Time: 0.414s, 2470.91/s (0.416s, 2463.00/s) LR: 1.600e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.411 (1.411) Loss: 6.380 ( 6.380) Acc@1: 1.562 ( 1.562) Acc@5: 6.152 ( 6.152) +Test: [ 48/48] Time: 0.089 (0.323) Loss: 6.318 ( 6.369) Acc@1: 1.651 ( 2.062) Acc@5: 8.137 ( 6.894) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 3 [ 0/312 ( 0%)] Loss: 6.72 (6.72) Time: 1.833s, 558.77/s (1.833s, 558.77/s) LR: 2.400e-01 Data: 1.162 (1.162) +Train: 3 [ 50/312 ( 16%)] Loss: 6.74 (6.72) Time: 0.410s, 2497.60/s (0.438s, 2338.11/s) LR: 2.400e-01 Data: 0.027 (0.049) +Train: 3 [ 100/312 ( 32%)] Loss: 6.70 (6.72) Time: 0.415s, 2466.45/s (0.425s, 2411.86/s) LR: 2.400e-01 Data: 0.028 (0.038) +Train: 3 [ 150/312 ( 48%)] Loss: 6.68 (6.71) Time: 0.408s, 2511.53/s (0.421s, 2433.97/s) LR: 2.400e-01 Data: 0.026 (0.035) +Train: 3 [ 200/312 ( 64%)] Loss: 6.68 (6.71) Time: 0.405s, 2527.38/s (0.417s, 2453.12/s) LR: 2.400e-01 Data: 0.026 (0.033) +Train: 3 [ 250/312 ( 80%)] Loss: 6.69 (6.70) Time: 0.405s, 2526.21/s (0.415s, 2466.50/s) LR: 2.400e-01 Data: 0.028 (0.032) +Train: 3 [ 300/312 ( 96%)] Loss: 6.64 (6.70) Time: 0.407s, 2514.84/s (0.414s, 2476.22/s) LR: 2.400e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.418 (1.418) Loss: 6.199 ( 6.199) Acc@1: 2.734 ( 2.734) Acc@5: 8.887 ( 8.887) +Test: [ 48/48] Time: 0.088 (0.324) Loss: 6.148 ( 6.173) Acc@1: 1.887 ( 2.724) Acc@5: 9.316 ( 8.756) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 4 [ 0/312 ( 0%)] Loss: 6.68 (6.68) Time: 1.654s, 618.96/s (1.654s, 618.96/s) LR: 3.200e-01 Data: 1.281 (1.281) +Train: 4 [ 50/312 ( 16%)] Loss: 6.65 (6.64) Time: 0.411s, 2489.62/s (0.433s, 2365.94/s) LR: 3.200e-01 Data: 0.028 (0.052) +Train: 4 [ 100/312 ( 32%)] Loss: 6.61 (6.64) Time: 0.417s, 2457.93/s (0.423s, 2419.66/s) LR: 3.200e-01 Data: 0.030 (0.040) +Train: 4 [ 150/312 ( 48%)] Loss: 6.61 (6.63) Time: 0.416s, 2461.58/s (0.420s, 2437.14/s) LR: 3.200e-01 Data: 0.027 (0.036) +Train: 4 [ 200/312 ( 64%)] Loss: 6.60 (6.63) Time: 0.412s, 2487.69/s (0.419s, 2446.02/s) LR: 3.200e-01 Data: 0.027 (0.033) +Train: 4 [ 250/312 ( 80%)] Loss: 6.62 (6.62) Time: 0.414s, 2474.98/s (0.418s, 2450.79/s) LR: 3.200e-01 Data: 0.028 (0.032) +Train: 4 [ 300/312 ( 96%)] Loss: 6.57 (6.61) Time: 0.417s, 2453.89/s (0.417s, 2454.18/s) LR: 3.200e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.411 (1.411) Loss: 5.937 ( 5.937) Acc@1: 3.223 ( 3.223) Acc@5: 11.816 ( 11.816) +Test: [ 48/48] Time: 0.089 (0.324) Loss: 5.869 ( 5.910) Acc@1: 4.481 ( 4.394) Acc@5: 14.505 ( 13.086) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 5 [ 0/312 ( 0%)] Loss: 6.54 (6.54) Time: 1.653s, 619.58/s (1.653s, 619.58/s) LR: 3.989e-01 Data: 1.277 (1.277) +Train: 5 [ 50/312 ( 16%)] Loss: 6.55 (6.55) Time: 0.413s, 2477.17/s (0.437s, 2344.13/s) LR: 3.989e-01 Data: 0.027 (0.052) +Train: 5 [ 100/312 ( 32%)] Loss: 6.50 (6.54) Time: 0.414s, 2470.52/s (0.426s, 2405.13/s) LR: 3.989e-01 Data: 0.026 (0.040) +Train: 5 [ 150/312 ( 48%)] Loss: 6.52 (6.54) Time: 0.414s, 2473.19/s (0.422s, 2428.90/s) LR: 3.989e-01 Data: 0.026 (0.036) +Train: 5 [ 200/312 ( 64%)] Loss: 6.53 (6.53) Time: 0.418s, 2451.95/s (0.420s, 2439.50/s) LR: 3.989e-01 Data: 0.028 (0.034) +Train: 5 [ 250/312 ( 80%)] Loss: 6.52 (6.52) Time: 0.411s, 2491.03/s (0.418s, 2447.58/s) LR: 3.989e-01 Data: 0.026 (0.032) +Train: 5 [ 300/312 ( 96%)] Loss: 6.43 (6.52) Time: 0.414s, 2474.98/s (0.418s, 2452.14/s) LR: 3.989e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.431 (1.431) Loss: 5.733 ( 5.733) Acc@1: 4.395 ( 4.395) Acc@5: 14.453 ( 14.453) +Test: [ 48/48] Time: 0.089 (0.327) Loss: 5.687 ( 5.707) Acc@1: 6.486 ( 5.044) Acc@5: 16.627 ( 15.574) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 6 [ 0/312 ( 0%)] Loss: 6.42 (6.42) Time: 2.166s, 472.72/s (2.166s, 472.72/s) LR: 3.984e-01 Data: 1.791 (1.791) +Train: 6 [ 50/312 ( 16%)] Loss: 6.48 (6.44) Time: 0.410s, 2498.03/s (0.444s, 2306.40/s) LR: 3.984e-01 Data: 0.027 (0.062) +Train: 6 [ 100/312 ( 32%)] Loss: 6.43 (6.43) Time: 0.413s, 2480.31/s (0.429s, 2386.51/s) LR: 3.984e-01 Data: 0.027 (0.045) +Train: 6 [ 150/312 ( 48%)] Loss: 6.38 (6.43) Time: 0.412s, 2488.12/s (0.424s, 2417.05/s) LR: 3.984e-01 Data: 0.028 (0.039) +Train: 6 [ 200/312 ( 64%)] Loss: 6.41 (6.42) Time: 0.411s, 2493.20/s (0.421s, 2430.83/s) LR: 3.984e-01 Data: 0.026 (0.036) +Train: 6 [ 250/312 ( 80%)] Loss: 6.39 (6.42) Time: 0.409s, 2501.34/s (0.419s, 2442.37/s) LR: 3.984e-01 Data: 0.025 (0.034) +Train: 6 [ 300/312 ( 96%)] Loss: 6.29 (6.41) Time: 0.414s, 2474.90/s (0.418s, 2449.01/s) LR: 3.984e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.413 (1.413) Loss: 5.489 ( 5.489) Acc@1: 7.715 ( 7.715) Acc@5: 18.457 ( 18.457) +Test: [ 48/48] Time: 0.089 (0.323) Loss: 5.395 ( 5.457) Acc@1: 9.080 ( 7.944) Acc@5: 23.585 ( 20.938) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 7 [ 0/312 ( 0%)] Loss: 6.37 (6.37) Time: 1.503s, 681.25/s (1.503s, 681.25/s) LR: 3.979e-01 Data: 1.122 (1.122) +Train: 7 [ 50/312 ( 16%)] Loss: 6.35 (6.33) Time: 0.410s, 2494.98/s (0.431s, 2373.17/s) LR: 3.979e-01 Data: 0.028 (0.049) +Train: 7 [ 100/312 ( 32%)] Loss: 6.32 (6.33) Time: 0.418s, 2449.24/s (0.422s, 2424.19/s) LR: 3.979e-01 Data: 0.027 (0.038) +Train: 7 [ 150/312 ( 48%)] Loss: 6.26 (6.33) Time: 0.406s, 2522.87/s (0.418s, 2447.17/s) LR: 3.979e-01 Data: 0.028 (0.035) +Train: 7 [ 200/312 ( 64%)] Loss: 6.29 (6.32) Time: 0.409s, 2501.63/s (0.415s, 2464.93/s) LR: 3.979e-01 Data: 0.029 (0.033) +Train: 7 [ 250/312 ( 80%)] Loss: 6.26 (6.32) Time: 0.405s, 2525.92/s (0.413s, 2476.48/s) LR: 3.979e-01 Data: 0.028 (0.032) +Train: 7 [ 300/312 ( 96%)] Loss: 6.35 (6.31) Time: 0.409s, 2501.88/s (0.413s, 2481.59/s) LR: 3.979e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.422 (1.422) Loss: 5.083 ( 5.083) Acc@1: 10.156 ( 10.156) Acc@5: 27.344 ( 27.344) +Test: [ 48/48] Time: 0.089 (0.324) Loss: 5.029 ( 5.094) Acc@1: 11.557 ( 11.026) Acc@5: 29.481 ( 27.408) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 8 [ 0/312 ( 0%)] Loss: 6.17 (6.17) Time: 1.719s, 595.87/s (1.719s, 595.87/s) LR: 3.972e-01 Data: 1.341 (1.341) +Train: 8 [ 50/312 ( 16%)] Loss: 6.29 (6.24) Time: 0.411s, 2491.24/s (0.439s, 2331.21/s) LR: 3.972e-01 Data: 0.027 (0.053) +Train: 8 [ 100/312 ( 32%)] Loss: 6.23 (6.23) Time: 0.415s, 2469.64/s (0.427s, 2397.12/s) LR: 3.972e-01 Data: 0.027 (0.040) +Train: 8 [ 150/312 ( 48%)] Loss: 6.20 (6.23) Time: 0.410s, 2496.46/s (0.423s, 2422.31/s) LR: 3.972e-01 Data: 0.027 (0.036) +Train: 8 [ 200/312 ( 64%)] Loss: 6.23 (6.23) Time: 0.418s, 2450.45/s (0.420s, 2435.88/s) LR: 3.972e-01 Data: 0.025 (0.034) +Train: 8 [ 250/312 ( 80%)] Loss: 6.29 (6.23) Time: 0.411s, 2490.35/s (0.419s, 2443.91/s) LR: 3.972e-01 Data: 0.029 (0.032) +Train: 8 [ 300/312 ( 96%)] Loss: 6.15 (6.22) Time: 0.417s, 2455.37/s (0.418s, 2448.94/s) LR: 3.972e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.421 (1.421) Loss: 5.200 ( 5.200) Acc@1: 9.863 ( 9.863) Acc@5: 24.023 ( 24.023) +Test: [ 48/48] Time: 0.089 (0.326) Loss: 5.144 ( 5.180) Acc@1: 10.259 ( 10.976) Acc@5: 28.774 ( 26.670) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 9 [ 0/312 ( 0%)] Loss: 6.22 (6.22) Time: 1.520s, 673.61/s (1.520s, 673.61/s) LR: 3.965e-01 Data: 1.043 (1.043) +Train: 9 [ 50/312 ( 16%)] Loss: 6.17 (6.14) Time: 0.407s, 2513.64/s (0.434s, 2357.25/s) LR: 3.965e-01 Data: 0.027 (0.047) +Train: 9 [ 100/312 ( 32%)] Loss: 6.04 (6.14) Time: 0.410s, 2500.41/s (0.421s, 2431.55/s) LR: 3.965e-01 Data: 0.027 (0.037) +Train: 9 [ 150/312 ( 48%)] Loss: 6.10 (6.14) Time: 0.410s, 2497.82/s (0.418s, 2448.95/s) LR: 3.965e-01 Data: 0.027 (0.034) +Train: 9 [ 200/312 ( 64%)] Loss: 6.19 (6.14) Time: 0.409s, 2504.54/s (0.416s, 2459.82/s) LR: 3.965e-01 Data: 0.025 (0.032) +Train: 9 [ 250/312 ( 80%)] Loss: 6.12 (6.14) Time: 0.413s, 2479.14/s (0.416s, 2463.72/s) LR: 3.965e-01 Data: 0.028 (0.031) +Train: 9 [ 300/312 ( 96%)] Loss: 6.14 (6.13) Time: 0.410s, 2496.24/s (0.415s, 2466.30/s) LR: 3.965e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.408 (1.408) Loss: 4.918 ( 4.918) Acc@1: 12.012 ( 12.012) Acc@5: 32.227 ( 32.227) +Test: [ 48/48] Time: 0.088 (0.325) Loss: 4.843 ( 4.915) Acc@1: 14.623 ( 13.284) Acc@5: 33.608 ( 31.442) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-0.pth.tar', 0.0819999999666214) + +Train: 10 [ 0/312 ( 0%)] Loss: 6.05 (6.05) Time: 1.760s, 581.81/s (1.760s, 581.81/s) LR: 3.956e-01 Data: 1.388 (1.388) +Train: 10 [ 50/312 ( 16%)] Loss: 6.06 (6.06) Time: 0.409s, 2503.22/s (0.432s, 2372.76/s) LR: 3.956e-01 Data: 0.030 (0.054) +Train: 10 [ 100/312 ( 32%)] Loss: 6.04 (6.06) Time: 0.408s, 2507.25/s (0.420s, 2439.34/s) LR: 3.956e-01 Data: 0.027 (0.041) +Train: 10 [ 150/312 ( 48%)] Loss: 6.03 (6.06) Time: 0.412s, 2482.80/s (0.417s, 2455.85/s) LR: 3.956e-01 Data: 0.027 (0.036) +Train: 10 [ 200/312 ( 64%)] Loss: 6.06 (6.05) Time: 0.408s, 2508.70/s (0.415s, 2465.75/s) LR: 3.956e-01 Data: 0.026 (0.034) +Train: 10 [ 250/312 ( 80%)] Loss: 6.07 (6.05) Time: 0.415s, 2466.42/s (0.415s, 2470.25/s) LR: 3.956e-01 Data: 0.027 (0.033) +Train: 10 [ 300/312 ( 96%)] Loss: 6.05 (6.05) Time: 0.412s, 2487.57/s (0.414s, 2470.79/s) LR: 3.956e-01 Data: 0.025 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 4.959 ( 4.959) Acc@1: 13.184 ( 13.184) Acc@5: 30.078 ( 30.078) +Test: [ 48/48] Time: 0.089 (0.325) Loss: 4.820 ( 4.917) Acc@1: 13.797 ( 13.280) Acc@5: 31.840 ( 30.706) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-1.pth.tar', 1.1719999995803834) + +Train: 11 [ 0/312 ( 0%)] Loss: 5.99 (5.99) Time: 1.986s, 515.64/s (1.986s, 515.64/s) LR: 3.947e-01 Data: 1.608 (1.608) +Train: 11 [ 50/312 ( 16%)] Loss: 5.99 (5.97) Time: 0.414s, 2475.60/s (0.445s, 2302.74/s) LR: 3.947e-01 Data: 0.026 (0.058) +Train: 11 [ 100/312 ( 32%)] Loss: 6.04 (5.97) Time: 0.405s, 2529.68/s (0.428s, 2392.48/s) LR: 3.947e-01 Data: 0.026 (0.042) +Train: 11 [ 150/312 ( 48%)] Loss: 5.97 (5.97) Time: 0.406s, 2521.68/s (0.421s, 2431.67/s) LR: 3.947e-01 Data: 0.028 (0.037) +Train: 11 [ 200/312 ( 64%)] Loss: 6.00 (5.98) Time: 0.407s, 2515.91/s (0.418s, 2451.15/s) LR: 3.947e-01 Data: 0.025 (0.035) +Train: 11 [ 250/312 ( 80%)] Loss: 6.01 (5.97) Time: 0.413s, 2476.65/s (0.416s, 2459.57/s) LR: 3.947e-01 Data: 0.027 (0.033) +Train: 11 [ 300/312 ( 96%)] Loss: 5.94 (5.97) Time: 0.413s, 2478.39/s (0.416s, 2462.28/s) LR: 3.947e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.442 (1.442) Loss: 4.841 ( 4.841) Acc@1: 13.574 ( 13.574) Acc@5: 34.180 ( 34.180) +Test: [ 48/48] Time: 0.089 (0.325) Loss: 4.724 ( 4.848) Acc@1: 17.099 ( 15.196) Acc@5: 38.915 ( 34.582) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-2.pth.tar', 2.0620000020599365) + +Train: 12 [ 0/312 ( 0%)] Loss: 5.86 (5.86) Time: 1.496s, 684.52/s (1.496s, 684.52/s) LR: 3.937e-01 Data: 1.125 (1.125) +Train: 12 [ 50/312 ( 16%)] Loss: 5.85 (5.90) Time: 0.406s, 2520.10/s (0.432s, 2370.25/s) LR: 3.937e-01 Data: 0.028 (0.049) +Train: 12 [ 100/312 ( 32%)] Loss: 5.90 (5.90) Time: 0.411s, 2488.46/s (0.421s, 2433.11/s) LR: 3.937e-01 Data: 0.027 (0.038) +Train: 12 [ 150/312 ( 48%)] Loss: 5.95 (5.91) Time: 0.408s, 2508.36/s (0.418s, 2449.56/s) LR: 3.937e-01 Data: 0.027 (0.035) +Train: 12 [ 200/312 ( 64%)] Loss: 5.85 (5.91) Time: 0.409s, 2504.19/s (0.416s, 2463.77/s) LR: 3.937e-01 Data: 0.025 (0.033) +Train: 12 [ 250/312 ( 80%)] Loss: 5.86 (5.91) Time: 0.409s, 2505.00/s (0.414s, 2472.26/s) LR: 3.937e-01 Data: 0.027 (0.032) +Train: 12 [ 300/312 ( 96%)] Loss: 5.89 (5.90) Time: 0.414s, 2473.79/s (0.414s, 2474.16/s) LR: 3.937e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.416 (1.416) Loss: 4.359 ( 4.359) Acc@1: 20.898 ( 20.898) Acc@5: 44.238 ( 44.238) +Test: [ 48/48] Time: 0.089 (0.326) Loss: 4.327 ( 4.410) Acc@1: 21.344 ( 19.960) Acc@5: 45.047 ( 42.262) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-3.pth.tar', 2.724000001487732) + +Train: 13 [ 0/312 ( 0%)] Loss: 5.80 (5.80) Time: 1.578s, 648.86/s (1.578s, 648.86/s) LR: 3.926e-01 Data: 1.201 (1.201) +Train: 13 [ 50/312 ( 16%)] Loss: 5.76 (5.84) Time: 0.411s, 2492.68/s (0.435s, 2352.53/s) LR: 3.926e-01 Data: 0.028 (0.051) +Train: 13 [ 100/312 ( 32%)] Loss: 5.82 (5.84) Time: 0.411s, 2493.58/s (0.423s, 2419.74/s) LR: 3.926e-01 Data: 0.028 (0.039) +Train: 13 [ 150/312 ( 48%)] Loss: 5.82 (5.84) Time: 0.419s, 2445.79/s (0.420s, 2437.11/s) LR: 3.926e-01 Data: 0.025 (0.035) +Train: 13 [ 200/312 ( 64%)] Loss: 5.86 (5.85) Time: 0.409s, 2501.31/s (0.418s, 2448.43/s) LR: 3.926e-01 Data: 0.027 (0.033) +Train: 13 [ 250/312 ( 80%)] Loss: 5.86 (5.84) Time: 0.411s, 2489.88/s (0.417s, 2458.23/s) LR: 3.926e-01 Data: 0.029 (0.032) +Train: 13 [ 300/312 ( 96%)] Loss: 5.78 (5.84) Time: 0.414s, 2472.10/s (0.416s, 2463.60/s) LR: 3.926e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.435 (1.435) Loss: 4.378 ( 4.378) Acc@1: 19.922 ( 19.922) Acc@5: 42.578 ( 42.578) +Test: [ 48/48] Time: 0.089 (0.325) Loss: 4.280 ( 4.406) Acc@1: 20.991 ( 19.788) Acc@5: 44.458 ( 41.392) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-4.pth.tar', 4.39399999923706) + +Train: 14 [ 0/312 ( 0%)] Loss: 5.79 (5.79) Time: 1.615s, 633.97/s (1.615s, 633.97/s) LR: 3.915e-01 Data: 1.242 (1.242) +Train: 14 [ 50/312 ( 16%)] Loss: 5.80 (5.76) Time: 0.409s, 2506.71/s (0.432s, 2369.12/s) LR: 3.915e-01 Data: 0.027 (0.051) +Train: 14 [ 100/312 ( 32%)] Loss: 5.82 (5.77) Time: 0.420s, 2439.50/s (0.422s, 2423.84/s) LR: 3.915e-01 Data: 0.034 (0.040) +Train: 14 [ 150/312 ( 48%)] Loss: 5.82 (5.78) Time: 0.414s, 2475.41/s (0.420s, 2438.88/s) LR: 3.915e-01 Data: 0.027 (0.036) +Train: 14 [ 200/312 ( 64%)] Loss: 6.00 (5.78) Time: 0.411s, 2492.96/s (0.418s, 2450.38/s) LR: 3.915e-01 Data: 0.025 (0.034) +Train: 14 [ 250/312 ( 80%)] Loss: 5.79 (5.78) Time: 0.408s, 2511.98/s (0.416s, 2461.45/s) LR: 3.915e-01 Data: 0.027 (0.032) +Train: 14 [ 300/312 ( 96%)] Loss: 5.70 (5.78) Time: 0.410s, 2495.36/s (0.415s, 2467.86/s) LR: 3.915e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.469 (1.469) Loss: 4.315 ( 4.315) Acc@1: 23.633 ( 23.633) Acc@5: 45.215 ( 45.215) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 4.163 ( 4.309) Acc@1: 23.703 ( 21.922) Acc@5: 48.467 ( 44.714) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-5.pth.tar', 5.044000005493164) + +Train: 15 [ 0/312 ( 0%)] Loss: 5.70 (5.70) Time: 1.709s, 599.19/s (1.709s, 599.19/s) LR: 3.902e-01 Data: 1.329 (1.329) +Train: 15 [ 50/312 ( 16%)] Loss: 5.76 (5.71) Time: 0.411s, 2494.35/s (0.439s, 2334.03/s) LR: 3.902e-01 Data: 0.028 (0.053) +Train: 15 [ 100/312 ( 32%)] Loss: 5.78 (5.72) Time: 0.404s, 2536.81/s (0.423s, 2421.26/s) LR: 3.902e-01 Data: 0.027 (0.040) +Train: 15 [ 150/312 ( 48%)] Loss: 5.74 (5.72) Time: 0.408s, 2512.56/s (0.417s, 2455.36/s) LR: 3.902e-01 Data: 0.028 (0.036) +Train: 15 [ 200/312 ( 64%)] Loss: 5.62 (5.73) Time: 0.408s, 2512.86/s (0.414s, 2471.58/s) LR: 3.902e-01 Data: 0.027 (0.034) +Train: 15 [ 250/312 ( 80%)] Loss: 5.59 (5.73) Time: 0.409s, 2501.03/s (0.413s, 2478.08/s) LR: 3.902e-01 Data: 0.027 (0.033) +Train: 15 [ 300/312 ( 96%)] Loss: 5.70 (5.73) Time: 0.415s, 2466.03/s (0.413s, 2477.61/s) LR: 3.902e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.413 (1.413) Loss: 4.164 ( 4.164) Acc@1: 24.902 ( 24.902) Acc@5: 46.973 ( 46.973) +Test: [ 48/48] Time: 0.088 (0.323) Loss: 4.049 ( 4.164) Acc@1: 22.877 ( 23.766) Acc@5: 50.825 ( 47.202) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-6.pth.tar', 7.9440000012207035) + +Train: 16 [ 0/312 ( 0%)] Loss: 5.50 (5.50) Time: 1.652s, 619.96/s (1.652s, 619.96/s) LR: 3.889e-01 Data: 1.281 (1.281) +Train: 16 [ 50/312 ( 16%)] Loss: 5.64 (5.65) Time: 0.406s, 2521.75/s (0.429s, 2384.90/s) LR: 3.889e-01 Data: 0.028 (0.052) +Train: 16 [ 100/312 ( 32%)] Loss: 5.64 (5.66) Time: 0.406s, 2523.98/s (0.418s, 2451.89/s) LR: 3.889e-01 Data: 0.025 (0.040) +Train: 16 [ 150/312 ( 48%)] Loss: 5.69 (5.67) Time: 0.410s, 2497.69/s (0.414s, 2472.86/s) LR: 3.889e-01 Data: 0.033 (0.036) +Train: 16 [ 200/312 ( 64%)] Loss: 5.64 (5.67) Time: 0.408s, 2508.64/s (0.413s, 2479.00/s) LR: 3.889e-01 Data: 0.027 (0.034) +Train: 16 [ 250/312 ( 80%)] Loss: 5.71 (5.68) Time: 0.411s, 2490.69/s (0.413s, 2479.06/s) LR: 3.889e-01 Data: 0.026 (0.032) +Train: 16 [ 300/312 ( 96%)] Loss: 5.73 (5.68) Time: 0.407s, 2512.95/s (0.412s, 2483.26/s) LR: 3.889e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.707 (1.707) Loss: 4.127 ( 4.127) Acc@1: 25.879 ( 25.879) Acc@5: 49.121 ( 49.121) +Test: [ 48/48] Time: 0.088 (0.324) Loss: 3.952 ( 4.113) Acc@1: 26.297 ( 25.064) Acc@5: 53.420 ( 49.452) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-8.pth.tar', 10.976000012512207) + +Train: 17 [ 0/312 ( 0%)] Loss: 5.52 (5.52) Time: 1.565s, 654.41/s (1.565s, 654.41/s) LR: 3.875e-01 Data: 1.191 (1.191) +Train: 17 [ 50/312 ( 16%)] Loss: 5.66 (5.60) Time: 0.409s, 2502.36/s (0.431s, 2373.67/s) LR: 3.875e-01 Data: 0.029 (0.050) +Train: 17 [ 100/312 ( 32%)] Loss: 5.76 (5.62) Time: 0.407s, 2514.03/s (0.421s, 2430.17/s) LR: 3.875e-01 Data: 0.027 (0.039) +Train: 17 [ 150/312 ( 48%)] Loss: 5.58 (5.63) Time: 0.404s, 2531.89/s (0.416s, 2458.82/s) LR: 3.875e-01 Data: 0.027 (0.035) +Train: 17 [ 200/312 ( 64%)] Loss: 5.61 (5.63) Time: 0.404s, 2532.53/s (0.413s, 2477.65/s) LR: 3.875e-01 Data: 0.027 (0.033) +Train: 17 [ 250/312 ( 80%)] Loss: 5.61 (5.63) Time: 0.405s, 2526.85/s (0.411s, 2488.56/s) LR: 3.875e-01 Data: 0.028 (0.032) +Train: 17 [ 300/312 ( 96%)] Loss: 5.72 (5.63) Time: 0.411s, 2493.90/s (0.411s, 2493.18/s) LR: 3.875e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 4.120 ( 4.120) Acc@1: 24.316 ( 24.316) Acc@5: 46.973 ( 46.973) +Test: [ 48/48] Time: 0.089 (0.323) Loss: 3.897 ( 4.106) Acc@1: 27.476 ( 24.186) Acc@5: 52.712 ( 47.824) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-7.pth.tar', 11.026000010375977) + +Train: 18 [ 0/312 ( 0%)] Loss: 5.56 (5.56) Time: 1.708s, 599.64/s (1.708s, 599.64/s) LR: 3.860e-01 Data: 1.333 (1.333) +Train: 18 [ 50/312 ( 16%)] Loss: 5.61 (5.56) Time: 0.413s, 2482.26/s (0.438s, 2338.15/s) LR: 3.860e-01 Data: 0.026 (0.053) +Train: 18 [ 100/312 ( 32%)] Loss: 5.52 (5.57) Time: 0.413s, 2478.13/s (0.424s, 2413.85/s) LR: 3.860e-01 Data: 0.027 (0.040) +Train: 18 [ 150/312 ( 48%)] Loss: 5.75 (5.57) Time: 0.417s, 2454.91/s (0.421s, 2434.96/s) LR: 3.860e-01 Data: 0.026 (0.036) +Train: 18 [ 200/312 ( 64%)] Loss: 5.50 (5.58) Time: 0.412s, 2484.20/s (0.419s, 2446.20/s) LR: 3.860e-01 Data: 0.025 (0.034) +Train: 18 [ 250/312 ( 80%)] Loss: 5.64 (5.59) Time: 0.405s, 2529.77/s (0.416s, 2459.41/s) LR: 3.860e-01 Data: 0.027 (0.032) +Train: 18 [ 300/312 ( 96%)] Loss: 5.66 (5.58) Time: 0.408s, 2509.96/s (0.415s, 2468.70/s) LR: 3.860e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.404 (1.404) Loss: 4.003 ( 4.003) Acc@1: 25.488 ( 25.488) Acc@5: 51.172 ( 51.172) +Test: [ 48/48] Time: 0.088 (0.324) Loss: 3.817 ( 3.949) Acc@1: 27.830 ( 27.040) Acc@5: 54.481 ( 51.976) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-10.pth.tar', 13.27999999786377) + +Train: 19 [ 0/312 ( 0%)] Loss: 5.51 (5.51) Time: 1.648s, 621.47/s (1.648s, 621.47/s) LR: 3.844e-01 Data: 1.273 (1.273) +Train: 19 [ 50/312 ( 16%)] Loss: 5.62 (5.52) Time: 0.412s, 2485.48/s (0.435s, 2356.68/s) LR: 3.844e-01 Data: 0.027 (0.051) +Train: 19 [ 100/312 ( 32%)] Loss: 5.43 (5.53) Time: 0.410s, 2498.36/s (0.423s, 2420.16/s) LR: 3.844e-01 Data: 0.027 (0.039) +Train: 19 [ 150/312 ( 48%)] Loss: 5.59 (5.54) Time: 0.412s, 2486.22/s (0.419s, 2444.53/s) LR: 3.844e-01 Data: 0.027 (0.035) +Train: 19 [ 200/312 ( 64%)] Loss: 5.56 (5.54) Time: 0.410s, 2495.79/s (0.417s, 2453.21/s) LR: 3.844e-01 Data: 0.026 (0.033) +Train: 19 [ 250/312 ( 80%)] Loss: 5.50 (5.54) Time: 0.414s, 2472.84/s (0.416s, 2460.89/s) LR: 3.844e-01 Data: 0.028 (0.032) +Train: 19 [ 300/312 ( 96%)] Loss: 5.44 (5.54) Time: 0.409s, 2505.23/s (0.415s, 2465.77/s) LR: 3.844e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 3.887 ( 3.887) Acc@1: 29.102 ( 29.102) Acc@5: 53.418 ( 53.418) +Test: [ 48/48] Time: 0.089 (0.326) Loss: 3.722 ( 3.880) Acc@1: 32.547 ( 28.800) Acc@5: 58.019 ( 53.936) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-9.pth.tar', 13.284000017089843) + +Train: 20 [ 0/312 ( 0%)] Loss: 5.58 (5.58) Time: 1.554s, 658.94/s (1.554s, 658.94/s) LR: 3.827e-01 Data: 1.143 (1.143) +Train: 20 [ 50/312 ( 16%)] Loss: 5.41 (5.49) Time: 0.411s, 2491.66/s (0.432s, 2370.15/s) LR: 3.827e-01 Data: 0.027 (0.049) +Train: 20 [ 100/312 ( 32%)] Loss: 5.59 (5.50) Time: 0.407s, 2513.33/s (0.422s, 2424.88/s) LR: 3.827e-01 Data: 0.026 (0.038) +Train: 20 [ 150/312 ( 48%)] Loss: 5.39 (5.49) Time: 0.408s, 2509.07/s (0.418s, 2452.19/s) LR: 3.827e-01 Data: 0.026 (0.035) +Train: 20 [ 200/312 ( 64%)] Loss: 5.50 (5.50) Time: 0.408s, 2511.81/s (0.415s, 2465.88/s) LR: 3.827e-01 Data: 0.027 (0.033) +Train: 20 [ 250/312 ( 80%)] Loss: 5.62 (5.50) Time: 0.412s, 2485.44/s (0.415s, 2469.59/s) LR: 3.827e-01 Data: 0.028 (0.032) +Train: 20 [ 300/312 ( 96%)] Loss: 5.49 (5.51) Time: 0.411s, 2492.48/s (0.414s, 2475.10/s) LR: 3.827e-01 Data: 0.030 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.426 (1.426) Loss: 3.746 ( 3.746) Acc@1: 29.883 ( 29.883) Acc@5: 54.590 ( 54.590) +Test: [ 48/48] Time: 0.088 (0.324) Loss: 3.662 ( 3.762) Acc@1: 30.425 ( 29.548) Acc@5: 57.429 ( 54.970) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-11.pth.tar', 15.195999993896484) + +Train: 21 [ 0/312 ( 0%)] Loss: 5.45 (5.45) Time: 1.565s, 654.32/s (1.565s, 654.32/s) LR: 3.810e-01 Data: 1.192 (1.192) +Train: 21 [ 50/312 ( 16%)] Loss: 5.48 (5.43) Time: 0.407s, 2514.37/s (0.430s, 2382.92/s) LR: 3.810e-01 Data: 0.027 (0.052) +Train: 21 [ 100/312 ( 32%)] Loss: 5.52 (5.45) Time: 0.411s, 2488.60/s (0.420s, 2440.61/s) LR: 3.810e-01 Data: 0.027 (0.040) +Train: 21 [ 150/312 ( 48%)] Loss: 5.47 (5.46) Time: 0.415s, 2467.67/s (0.417s, 2453.58/s) LR: 3.810e-01 Data: 0.029 (0.036) +Train: 21 [ 200/312 ( 64%)] Loss: 5.58 (5.47) Time: 0.408s, 2512.70/s (0.415s, 2465.18/s) LR: 3.810e-01 Data: 0.027 (0.033) +Train: 21 [ 250/312 ( 80%)] Loss: 5.32 (5.47) Time: 0.407s, 2516.19/s (0.414s, 2472.74/s) LR: 3.810e-01 Data: 0.026 (0.032) +Train: 21 [ 300/312 ( 96%)] Loss: 5.53 (5.47) Time: 0.413s, 2479.30/s (0.414s, 2475.33/s) LR: 3.810e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.444 (1.444) Loss: 3.788 ( 3.788) Acc@1: 30.371 ( 30.371) Acc@5: 55.273 ( 55.273) +Test: [ 48/48] Time: 0.088 (0.324) Loss: 3.642 ( 3.805) Acc@1: 31.250 ( 29.696) Acc@5: 58.137 ( 54.774) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-13.pth.tar', 19.78800000366211) + +Train: 22 [ 0/312 ( 0%)] Loss: 5.47 (5.47) Time: 1.791s, 571.81/s (1.791s, 571.81/s) LR: 3.791e-01 Data: 1.420 (1.420) +Train: 22 [ 50/312 ( 16%)] Loss: 5.37 (5.41) Time: 0.400s, 2561.31/s (0.430s, 2381.85/s) LR: 3.791e-01 Data: 0.025 (0.055) +Train: 22 [ 100/312 ( 32%)] Loss: 5.41 (5.41) Time: 0.403s, 2543.57/s (0.416s, 2461.16/s) LR: 3.791e-01 Data: 0.028 (0.041) +Train: 22 [ 150/312 ( 48%)] Loss: 5.50 (5.42) Time: 0.405s, 2528.48/s (0.412s, 2486.11/s) LR: 3.791e-01 Data: 0.027 (0.036) +Train: 22 [ 200/312 ( 64%)] Loss: 5.31 (5.42) Time: 0.413s, 2481.55/s (0.411s, 2494.43/s) LR: 3.791e-01 Data: 0.029 (0.034) +Train: 22 [ 250/312 ( 80%)] Loss: 5.38 (5.43) Time: 0.412s, 2483.01/s (0.411s, 2492.40/s) LR: 3.791e-01 Data: 0.028 (0.033) +Train: 22 [ 300/312 ( 96%)] Loss: 5.46 (5.43) Time: 0.406s, 2522.13/s (0.411s, 2493.37/s) LR: 3.791e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.406 (1.406) Loss: 3.758 ( 3.758) Acc@1: 30.273 ( 30.273) Acc@5: 54.102 ( 54.102) +Test: [ 48/48] Time: 0.088 (0.322) Loss: 3.634 ( 3.825) Acc@1: 31.604 ( 28.346) Acc@5: 57.665 ( 53.222) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-22.pth.tar', 28.34599999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-12.pth.tar', 19.95999999572754) + +Train: 23 [ 0/312 ( 0%)] Loss: 5.28 (5.28) Time: 1.552s, 659.75/s (1.552s, 659.75/s) LR: 3.772e-01 Data: 1.180 (1.180) +Train: 23 [ 50/312 ( 16%)] Loss: 5.33 (5.35) Time: 0.412s, 2487.89/s (0.429s, 2389.54/s) LR: 3.772e-01 Data: 0.026 (0.050) +Train: 23 [ 100/312 ( 32%)] Loss: 5.32 (5.37) Time: 0.412s, 2485.80/s (0.420s, 2440.07/s) LR: 3.772e-01 Data: 0.027 (0.038) +Train: 23 [ 150/312 ( 48%)] Loss: 5.29 (5.38) Time: 0.415s, 2469.34/s (0.417s, 2453.09/s) LR: 3.772e-01 Data: 0.029 (0.035) +Train: 23 [ 200/312 ( 64%)] Loss: 5.40 (5.39) Time: 0.412s, 2487.13/s (0.416s, 2460.30/s) LR: 3.772e-01 Data: 0.028 (0.033) +Train: 23 [ 250/312 ( 80%)] Loss: 5.30 (5.39) Time: 0.412s, 2484.55/s (0.416s, 2464.26/s) LR: 3.772e-01 Data: 0.027 (0.032) +Train: 23 [ 300/312 ( 96%)] Loss: 5.51 (5.40) Time: 0.416s, 2463.94/s (0.415s, 2467.05/s) LR: 3.772e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.405 (1.405) Loss: 3.652 ( 3.652) Acc@1: 30.371 ( 30.371) Acc@5: 56.445 ( 56.445) +Test: [ 48/48] Time: 0.088 (0.326) Loss: 3.498 ( 3.608) Acc@1: 31.604 ( 31.694) Acc@5: 60.613 ( 57.268) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-22.pth.tar', 28.34599999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-14.pth.tar', 21.92200001831055) + +Train: 24 [ 0/312 ( 0%)] Loss: 5.23 (5.23) Time: 1.692s, 605.30/s (1.692s, 605.30/s) LR: 3.753e-01 Data: 1.318 (1.318) +Train: 24 [ 50/312 ( 16%)] Loss: 5.37 (5.32) Time: 0.405s, 2529.25/s (0.431s, 2373.31/s) LR: 3.753e-01 Data: 0.025 (0.052) +Train: 24 [ 100/312 ( 32%)] Loss: 5.44 (5.34) Time: 0.410s, 2497.48/s (0.420s, 2440.46/s) LR: 3.753e-01 Data: 0.028 (0.040) +Train: 24 [ 150/312 ( 48%)] Loss: 5.38 (5.35) Time: 0.414s, 2474.00/s (0.417s, 2455.95/s) LR: 3.753e-01 Data: 0.028 (0.036) +Train: 24 [ 200/312 ( 64%)] Loss: 5.29 (5.36) Time: 0.407s, 2514.95/s (0.415s, 2465.36/s) LR: 3.753e-01 Data: 0.027 (0.034) +Train: 24 [ 250/312 ( 80%)] Loss: 5.33 (5.36) Time: 0.405s, 2525.98/s (0.414s, 2474.42/s) LR: 3.753e-01 Data: 0.028 (0.032) +Train: 24 [ 300/312 ( 96%)] Loss: 5.47 (5.37) Time: 0.413s, 2481.35/s (0.413s, 2479.73/s) LR: 3.753e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.412 (1.412) Loss: 3.689 ( 3.689) Acc@1: 31.641 ( 31.641) Acc@5: 56.250 ( 56.250) +Test: [ 48/48] Time: 0.089 (0.322) Loss: 3.503 ( 3.665) Acc@1: 34.788 ( 31.280) Acc@5: 59.670 ( 56.856) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-22.pth.tar', 28.34599999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-15.pth.tar', 23.765999982910156) + +Train: 25 [ 0/312 ( 0%)] Loss: 5.36 (5.36) Time: 2.020s, 506.87/s (2.020s, 506.87/s) LR: 3.732e-01 Data: 1.644 (1.644) +Train: 25 [ 50/312 ( 16%)] Loss: 5.29 (5.29) Time: 0.409s, 2504.62/s (0.444s, 2306.79/s) LR: 3.732e-01 Data: 0.026 (0.059) +Train: 25 [ 100/312 ( 32%)] Loss: 5.22 (5.30) Time: 0.407s, 2514.41/s (0.426s, 2402.68/s) LR: 3.732e-01 Data: 0.027 (0.043) +Train: 25 [ 150/312 ( 48%)] Loss: 5.28 (5.31) Time: 0.406s, 2519.30/s (0.420s, 2438.81/s) LR: 3.732e-01 Data: 0.028 (0.038) +Train: 25 [ 200/312 ( 64%)] Loss: 5.47 (5.32) Time: 0.410s, 2495.20/s (0.417s, 2454.22/s) LR: 3.732e-01 Data: 0.027 (0.035) +Train: 25 [ 250/312 ( 80%)] Loss: 5.41 (5.33) Time: 0.408s, 2507.07/s (0.416s, 2460.21/s) LR: 3.732e-01 Data: 0.027 (0.033) +Train: 25 [ 300/312 ( 96%)] Loss: 5.35 (5.33) Time: 0.408s, 2507.85/s (0.415s, 2468.67/s) LR: 3.732e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.512 ( 3.512) Acc@1: 34.375 ( 34.375) Acc@5: 60.938 ( 60.938) +Test: [ 48/48] Time: 0.088 (0.323) Loss: 3.396 ( 3.539) Acc@1: 34.788 ( 34.428) Acc@5: 63.915 ( 60.436) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-22.pth.tar', 28.34599999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-17.pth.tar', 24.186000009155272) + +Train: 26 [ 0/312 ( 0%)] Loss: 5.16 (5.16) Time: 1.668s, 614.05/s (1.668s, 614.05/s) LR: 3.711e-01 Data: 1.296 (1.296) +Train: 26 [ 50/312 ( 16%)] Loss: 5.26 (5.27) Time: 0.407s, 2513.65/s (0.433s, 2365.55/s) LR: 3.711e-01 Data: 0.027 (0.052) +Train: 26 [ 100/312 ( 32%)] Loss: 5.23 (5.28) Time: 0.413s, 2477.10/s (0.423s, 2422.05/s) LR: 3.711e-01 Data: 0.027 (0.040) +Train: 26 [ 150/312 ( 48%)] Loss: 5.32 (5.29) Time: 0.408s, 2509.62/s (0.419s, 2441.19/s) LR: 3.711e-01 Data: 0.027 (0.036) +Train: 26 [ 200/312 ( 64%)] Loss: 5.38 (5.29) Time: 0.407s, 2517.70/s (0.417s, 2458.01/s) LR: 3.711e-01 Data: 0.027 (0.034) +Train: 26 [ 250/312 ( 80%)] Loss: 5.25 (5.30) Time: 0.404s, 2532.16/s (0.414s, 2470.56/s) LR: 3.711e-01 Data: 0.027 (0.033) +Train: 26 [ 300/312 ( 96%)] Loss: 5.31 (5.30) Time: 0.408s, 2507.68/s (0.413s, 2478.60/s) LR: 3.711e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 3.600 ( 3.600) Acc@1: 33.398 ( 33.398) Acc@5: 58.203 ( 58.203) +Test: [ 48/48] Time: 0.089 (0.322) Loss: 3.389 ( 3.581) Acc@1: 37.146 ( 34.140) Acc@5: 65.330 ( 59.576) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-22.pth.tar', 28.34599999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-16.pth.tar', 25.064000014038086) + +Train: 27 [ 0/312 ( 0%)] Loss: 5.17 (5.17) Time: 1.670s, 613.28/s (1.670s, 613.28/s) LR: 3.689e-01 Data: 1.282 (1.282) +Train: 27 [ 50/312 ( 16%)] Loss: 5.24 (5.22) Time: 0.415s, 2468.98/s (0.437s, 2342.41/s) LR: 3.689e-01 Data: 0.032 (0.052) +Train: 27 [ 100/312 ( 32%)] Loss: 5.25 (5.24) Time: 0.410s, 2499.03/s (0.424s, 2414.07/s) LR: 3.689e-01 Data: 0.027 (0.039) +Train: 27 [ 150/312 ( 48%)] Loss: 5.35 (5.25) Time: 0.405s, 2529.49/s (0.418s, 2447.29/s) LR: 3.689e-01 Data: 0.027 (0.035) +Train: 27 [ 200/312 ( 64%)] Loss: 5.21 (5.26) Time: 0.406s, 2519.35/s (0.415s, 2465.94/s) LR: 3.689e-01 Data: 0.027 (0.033) +Train: 27 [ 250/312 ( 80%)] Loss: 5.28 (5.27) Time: 0.412s, 2488.11/s (0.414s, 2475.19/s) LR: 3.689e-01 Data: 0.029 (0.032) +Train: 27 [ 300/312 ( 96%)] Loss: 5.32 (5.27) Time: 0.414s, 2473.14/s (0.413s, 2476.67/s) LR: 3.689e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.437 (1.437) Loss: 3.535 ( 3.535) Acc@1: 35.059 ( 35.059) Acc@5: 58.105 ( 58.105) +Test: [ 48/48] Time: 0.088 (0.325) Loss: 3.338 ( 3.527) Acc@1: 36.792 ( 34.324) Acc@5: 62.972 ( 59.970) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-22.pth.tar', 28.34599999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-18.pth.tar', 27.040000001220704) + +Train: 28 [ 0/312 ( 0%)] Loss: 5.18 (5.18) Time: 1.623s, 630.99/s (1.623s, 630.99/s) LR: 3.666e-01 Data: 1.198 (1.198) +Train: 28 [ 50/312 ( 16%)] Loss: 5.20 (5.21) Time: 0.410s, 2499.23/s (0.430s, 2382.76/s) LR: 3.666e-01 Data: 0.035 (0.051) +Train: 28 [ 100/312 ( 32%)] Loss: 5.31 (5.22) Time: 0.411s, 2492.12/s (0.419s, 2445.56/s) LR: 3.666e-01 Data: 0.026 (0.039) +Train: 28 [ 150/312 ( 48%)] Loss: 5.27 (5.23) Time: 0.410s, 2499.52/s (0.416s, 2460.30/s) LR: 3.666e-01 Data: 0.028 (0.035) +Train: 28 [ 200/312 ( 64%)] Loss: 5.36 (5.24) Time: 0.409s, 2506.42/s (0.415s, 2470.18/s) LR: 3.666e-01 Data: 0.024 (0.033) +Train: 28 [ 250/312 ( 80%)] Loss: 5.22 (5.25) Time: 0.413s, 2481.40/s (0.414s, 2474.52/s) LR: 3.666e-01 Data: 0.027 (0.032) +Train: 28 [ 300/312 ( 96%)] Loss: 5.29 (5.25) Time: 0.410s, 2495.55/s (0.414s, 2476.22/s) LR: 3.666e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.440 (1.440) Loss: 3.501 ( 3.501) Acc@1: 36.328 ( 36.328) Acc@5: 61.426 ( 61.426) +Test: [ 48/48] Time: 0.089 (0.327) Loss: 3.393 ( 3.543) Acc@1: 38.090 ( 34.682) Acc@5: 63.679 ( 60.430) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-22.pth.tar', 28.34599999206543) + +Train: 29 [ 0/312 ( 0%)] Loss: 5.11 (5.11) Time: 1.904s, 537.77/s (1.904s, 537.77/s) LR: 3.642e-01 Data: 1.530 (1.530) +Train: 29 [ 50/312 ( 16%)] Loss: 5.26 (5.19) Time: 0.406s, 2524.53/s (0.436s, 2346.35/s) LR: 3.642e-01 Data: 0.028 (0.057) +Train: 29 [ 100/312 ( 32%)] Loss: 5.21 (5.20) Time: 0.406s, 2520.12/s (0.422s, 2426.05/s) LR: 3.642e-01 Data: 0.027 (0.042) +Train: 29 [ 150/312 ( 48%)] Loss: 5.09 (5.20) Time: 0.413s, 2482.07/s (0.418s, 2448.65/s) LR: 3.642e-01 Data: 0.028 (0.037) +Train: 29 [ 200/312 ( 64%)] Loss: 5.24 (5.20) Time: 0.410s, 2495.48/s (0.417s, 2456.43/s) LR: 3.642e-01 Data: 0.026 (0.035) +Train: 29 [ 250/312 ( 80%)] Loss: 5.34 (5.21) Time: 0.406s, 2522.63/s (0.416s, 2464.02/s) LR: 3.642e-01 Data: 0.027 (0.033) +Train: 29 [ 300/312 ( 96%)] Loss: 5.19 (5.22) Time: 0.406s, 2522.00/s (0.414s, 2472.76/s) LR: 3.642e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.446 (1.446) Loss: 3.580 ( 3.580) Acc@1: 31.348 ( 31.348) Acc@5: 59.473 ( 59.473) +Test: [ 48/48] Time: 0.088 (0.327) Loss: 3.335 ( 3.531) Acc@1: 36.675 ( 34.048) Acc@5: 62.736 ( 59.390) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-29.pth.tar', 34.04800002929687) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-19.pth.tar', 28.800000046386717) + +Train: 30 [ 0/312 ( 0%)] Loss: 5.13 (5.13) Time: 1.810s, 565.72/s (1.810s, 565.72/s) LR: 3.618e-01 Data: 1.358 (1.358) +Train: 30 [ 50/312 ( 16%)] Loss: 5.18 (5.14) Time: 0.407s, 2513.45/s (0.434s, 2358.07/s) LR: 3.618e-01 Data: 0.027 (0.053) +Train: 30 [ 100/312 ( 32%)] Loss: 5.20 (5.14) Time: 0.414s, 2473.46/s (0.422s, 2426.02/s) LR: 3.618e-01 Data: 0.028 (0.040) +Train: 30 [ 150/312 ( 48%)] Loss: 5.18 (5.16) Time: 0.416s, 2464.22/s (0.419s, 2444.84/s) LR: 3.618e-01 Data: 0.024 (0.036) +Train: 30 [ 200/312 ( 64%)] Loss: 5.21 (5.17) Time: 0.405s, 2526.55/s (0.416s, 2460.05/s) LR: 3.618e-01 Data: 0.028 (0.034) +Train: 30 [ 250/312 ( 80%)] Loss: 5.20 (5.18) Time: 0.411s, 2489.98/s (0.414s, 2471.92/s) LR: 3.618e-01 Data: 0.028 (0.033) +Train: 30 [ 300/312 ( 96%)] Loss: 5.08 (5.19) Time: 0.411s, 2488.88/s (0.413s, 2478.45/s) LR: 3.618e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.417 (1.417) Loss: 3.572 ( 3.572) Acc@1: 33.594 ( 33.594) Acc@5: 60.156 ( 60.156) +Test: [ 48/48] Time: 0.089 (0.325) Loss: 3.430 ( 3.595) Acc@1: 33.726 ( 33.470) Acc@5: 63.090 ( 58.684) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-29.pth.tar', 34.04800002929687) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-30.pth.tar', 33.46999997680664) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-20.pth.tar', 29.547999996948242) + +Train: 31 [ 0/312 ( 0%)] Loss: 5.15 (5.15) Time: 1.611s, 635.52/s (1.611s, 635.52/s) LR: 3.593e-01 Data: 1.236 (1.236) +Train: 31 [ 50/312 ( 16%)] Loss: 5.13 (5.12) Time: 0.403s, 2539.48/s (0.430s, 2380.28/s) LR: 3.593e-01 Data: 0.027 (0.051) +Train: 31 [ 100/312 ( 32%)] Loss: 5.20 (5.13) Time: 0.407s, 2513.07/s (0.418s, 2449.16/s) LR: 3.593e-01 Data: 0.027 (0.039) +Train: 31 [ 150/312 ( 48%)] Loss: 5.16 (5.14) Time: 0.412s, 2487.24/s (0.414s, 2472.53/s) LR: 3.593e-01 Data: 0.026 (0.035) +Train: 31 [ 200/312 ( 64%)] Loss: 5.18 (5.15) Time: 0.413s, 2478.87/s (0.413s, 2478.19/s) LR: 3.593e-01 Data: 0.027 (0.033) +Train: 31 [ 250/312 ( 80%)] Loss: 5.16 (5.16) Time: 0.407s, 2517.97/s (0.413s, 2480.67/s) LR: 3.593e-01 Data: 0.027 (0.032) +Train: 31 [ 300/312 ( 96%)] Loss: 5.17 (5.17) Time: 0.403s, 2539.04/s (0.411s, 2488.95/s) LR: 3.593e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.475 (1.475) Loss: 3.367 ( 3.367) Acc@1: 36.719 ( 36.719) Acc@5: 63.379 ( 63.379) +Test: [ 48/48] Time: 0.087 (0.328) Loss: 3.209 ( 3.393) Acc@1: 38.443 ( 36.234) Acc@5: 65.566 ( 62.002) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-29.pth.tar', 34.04800002929687) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-30.pth.tar', 33.46999997680664) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-21.pth.tar', 29.696) + +Train: 32 [ 0/312 ( 0%)] Loss: 5.03 (5.03) Time: 1.979s, 517.49/s (1.979s, 517.49/s) LR: 3.567e-01 Data: 1.272 (1.272) +Train: 32 [ 50/312 ( 16%)] Loss: 5.03 (5.07) Time: 0.402s, 2546.56/s (0.432s, 2368.09/s) LR: 3.567e-01 Data: 0.026 (0.052) +Train: 32 [ 100/312 ( 32%)] Loss: 5.14 (5.10) Time: 0.403s, 2541.05/s (0.418s, 2448.72/s) LR: 3.567e-01 Data: 0.025 (0.040) +Train: 32 [ 150/312 ( 48%)] Loss: 5.19 (5.11) Time: 0.415s, 2465.75/s (0.415s, 2468.23/s) LR: 3.567e-01 Data: 0.030 (0.036) +Train: 32 [ 200/312 ( 64%)] Loss: 5.11 (5.12) Time: 0.414s, 2475.07/s (0.414s, 2471.55/s) LR: 3.567e-01 Data: 0.028 (0.033) +Train: 32 [ 250/312 ( 80%)] Loss: 5.14 (5.13) Time: 0.411s, 2490.92/s (0.414s, 2474.55/s) LR: 3.567e-01 Data: 0.026 (0.032) +Train: 32 [ 300/312 ( 96%)] Loss: 5.18 (5.14) Time: 0.413s, 2479.93/s (0.413s, 2477.12/s) LR: 3.567e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.409 (1.409) Loss: 3.459 ( 3.459) Acc@1: 36.719 ( 36.719) Acc@5: 61.133 ( 61.133) +Test: [ 48/48] Time: 0.088 (0.323) Loss: 3.259 ( 3.466) Acc@1: 38.443 ( 35.620) Acc@5: 67.099 ( 61.584) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-29.pth.tar', 34.04800002929687) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-30.pth.tar', 33.46999997680664) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-24.pth.tar', 31.279999985351562) + +Train: 33 [ 0/312 ( 0%)] Loss: 5.05 (5.05) Time: 1.792s, 571.35/s (1.792s, 571.35/s) LR: 3.541e-01 Data: 1.261 (1.261) +Train: 33 [ 50/312 ( 16%)] Loss: 5.11 (5.06) Time: 0.410s, 2496.15/s (0.438s, 2336.88/s) LR: 3.541e-01 Data: 0.028 (0.052) +Train: 33 [ 100/312 ( 32%)] Loss: 5.15 (5.07) Time: 0.406s, 2525.12/s (0.422s, 2424.17/s) LR: 3.541e-01 Data: 0.028 (0.040) +Train: 33 [ 150/312 ( 48%)] Loss: 5.13 (5.08) Time: 0.406s, 2524.07/s (0.417s, 2457.98/s) LR: 3.541e-01 Data: 0.027 (0.036) +Train: 33 [ 200/312 ( 64%)] Loss: 5.08 (5.10) Time: 0.413s, 2482.20/s (0.414s, 2473.09/s) LR: 3.541e-01 Data: 0.026 (0.034) +Train: 33 [ 250/312 ( 80%)] Loss: 5.14 (5.11) Time: 0.413s, 2478.40/s (0.414s, 2476.03/s) LR: 3.541e-01 Data: 0.032 (0.032) +Train: 33 [ 300/312 ( 96%)] Loss: 5.10 (5.11) Time: 0.415s, 2468.53/s (0.413s, 2477.08/s) LR: 3.541e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.414 (1.414) Loss: 3.337 ( 3.337) Acc@1: 36.816 ( 36.816) Acc@5: 61.133 ( 61.133) +Test: [ 48/48] Time: 0.089 (0.324) Loss: 3.113 ( 3.328) Acc@1: 39.858 ( 37.398) Acc@5: 66.156 ( 63.092) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-29.pth.tar', 34.04800002929687) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-30.pth.tar', 33.46999997680664) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-23.pth.tar', 31.69399999206543) + +Train: 34 [ 0/312 ( 0%)] Loss: 4.96 (4.96) Time: 1.444s, 708.95/s (1.444s, 708.95/s) LR: 3.514e-01 Data: 1.071 (1.071) +Train: 34 [ 50/312 ( 16%)] Loss: 5.12 (5.03) Time: 0.411s, 2492.54/s (0.430s, 2379.43/s) LR: 3.514e-01 Data: 0.028 (0.048) +Train: 34 [ 100/312 ( 32%)] Loss: 5.03 (5.05) Time: 0.413s, 2477.07/s (0.421s, 2435.02/s) LR: 3.514e-01 Data: 0.027 (0.038) +Train: 34 [ 150/312 ( 48%)] Loss: 5.09 (5.06) Time: 0.410s, 2499.00/s (0.417s, 2455.50/s) LR: 3.514e-01 Data: 0.027 (0.034) +Train: 34 [ 200/312 ( 64%)] Loss: 5.00 (5.07) Time: 0.406s, 2520.29/s (0.415s, 2465.86/s) LR: 3.514e-01 Data: 0.027 (0.032) +Train: 34 [ 250/312 ( 80%)] Loss: 5.19 (5.08) Time: 0.409s, 2504.71/s (0.414s, 2474.97/s) LR: 3.514e-01 Data: 0.028 (0.031) +Train: 34 [ 300/312 ( 96%)] Loss: 5.13 (5.09) Time: 0.410s, 2496.30/s (0.413s, 2480.68/s) LR: 3.514e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.444 (1.444) Loss: 3.364 ( 3.364) Acc@1: 37.891 ( 37.891) Acc@5: 63.184 ( 63.184) +Test: [ 48/48] Time: 0.089 (0.322) Loss: 3.187 ( 3.372) Acc@1: 39.976 ( 37.860) Acc@5: 67.217 ( 63.288) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-29.pth.tar', 34.04800002929687) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-30.pth.tar', 33.46999997680664) + +Train: 35 [ 0/312 ( 0%)] Loss: 4.92 (4.92) Time: 1.865s, 549.03/s (1.865s, 549.03/s) LR: 3.486e-01 Data: 1.489 (1.489) +Train: 35 [ 50/312 ( 16%)] Loss: 5.07 (5.00) Time: 0.407s, 2514.58/s (0.440s, 2327.66/s) LR: 3.486e-01 Data: 0.027 (0.056) +Train: 35 [ 100/312 ( 32%)] Loss: 5.03 (5.01) Time: 0.405s, 2528.66/s (0.424s, 2415.56/s) LR: 3.486e-01 Data: 0.027 (0.041) +Train: 35 [ 150/312 ( 48%)] Loss: 5.09 (5.02) Time: 0.407s, 2519.06/s (0.418s, 2447.76/s) LR: 3.486e-01 Data: 0.028 (0.037) +Train: 35 [ 200/312 ( 64%)] Loss: 5.00 (5.04) Time: 0.410s, 2498.58/s (0.416s, 2460.63/s) LR: 3.486e-01 Data: 0.026 (0.034) +Train: 35 [ 250/312 ( 80%)] Loss: 5.16 (5.05) Time: 0.408s, 2510.29/s (0.415s, 2467.23/s) LR: 3.486e-01 Data: 0.027 (0.033) +Train: 35 [ 300/312 ( 96%)] Loss: 5.01 (5.06) Time: 0.408s, 2511.71/s (0.414s, 2474.49/s) LR: 3.486e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.417 (1.417) Loss: 3.330 ( 3.330) Acc@1: 37.695 ( 37.695) Acc@5: 63.867 ( 63.867) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.195 ( 3.340) Acc@1: 40.448 ( 37.502) Acc@5: 66.981 ( 63.524) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-29.pth.tar', 34.04800002929687) + +Train: 36 [ 0/312 ( 0%)] Loss: 4.93 (4.93) Time: 1.657s, 618.00/s (1.657s, 618.00/s) LR: 3.458e-01 Data: 1.137 (1.137) +Train: 36 [ 50/312 ( 16%)] Loss: 5.04 (4.98) Time: 0.409s, 2501.04/s (0.433s, 2366.77/s) LR: 3.458e-01 Data: 0.028 (0.049) +Train: 36 [ 100/312 ( 32%)] Loss: 4.97 (5.00) Time: 0.410s, 2499.13/s (0.422s, 2425.64/s) LR: 3.458e-01 Data: 0.026 (0.038) +Train: 36 [ 150/312 ( 48%)] Loss: 4.95 (5.01) Time: 0.406s, 2521.95/s (0.418s, 2451.75/s) LR: 3.458e-01 Data: 0.028 (0.035) +Train: 36 [ 200/312 ( 64%)] Loss: 4.93 (5.02) Time: 0.408s, 2511.93/s (0.415s, 2467.67/s) LR: 3.458e-01 Data: 0.027 (0.033) +Train: 36 [ 250/312 ( 80%)] Loss: 5.16 (5.03) Time: 0.409s, 2505.20/s (0.414s, 2475.48/s) LR: 3.458e-01 Data: 0.027 (0.032) +Train: 36 [ 300/312 ( 96%)] Loss: 5.08 (5.04) Time: 0.408s, 2511.89/s (0.413s, 2478.40/s) LR: 3.458e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 3.394 ( 3.394) Acc@1: 37.305 ( 37.305) Acc@5: 63.477 ( 63.477) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.117 ( 3.354) Acc@1: 44.929 ( 38.714) Acc@5: 67.217 ( 63.982) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-26.pth.tar', 34.13999997558594) + +Train: 37 [ 0/312 ( 0%)] Loss: 4.97 (4.97) Time: 1.952s, 524.64/s (1.952s, 524.64/s) LR: 3.429e-01 Data: 1.579 (1.579) +Train: 37 [ 50/312 ( 16%)] Loss: 4.88 (4.94) Time: 0.409s, 2501.75/s (0.440s, 2329.76/s) LR: 3.429e-01 Data: 0.026 (0.057) +Train: 37 [ 100/312 ( 32%)] Loss: 4.88 (4.96) Time: 0.409s, 2503.29/s (0.425s, 2408.05/s) LR: 3.429e-01 Data: 0.028 (0.042) +Train: 37 [ 150/312 ( 48%)] Loss: 4.98 (4.98) Time: 0.408s, 2510.02/s (0.420s, 2436.80/s) LR: 3.429e-01 Data: 0.028 (0.038) +Train: 37 [ 200/312 ( 64%)] Loss: 5.03 (4.99) Time: 0.411s, 2491.86/s (0.418s, 2448.87/s) LR: 3.429e-01 Data: 0.028 (0.035) +Train: 37 [ 250/312 ( 80%)] Loss: 5.09 (5.01) Time: 0.406s, 2525.23/s (0.416s, 2460.19/s) LR: 3.429e-01 Data: 0.027 (0.033) +Train: 37 [ 300/312 ( 96%)] Loss: 5.05 (5.01) Time: 0.403s, 2543.02/s (0.415s, 2470.02/s) LR: 3.429e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.421 (1.421) Loss: 3.260 ( 3.260) Acc@1: 37.207 ( 37.207) Acc@5: 65.137 ( 65.137) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.055 ( 3.253) Acc@1: 42.689 ( 38.846) Acc@5: 68.514 ( 64.960) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-27.pth.tar', 34.32400001586914) + +Train: 38 [ 0/312 ( 0%)] Loss: 4.93 (4.93) Time: 1.516s, 675.42/s (1.516s, 675.42/s) LR: 3.399e-01 Data: 1.143 (1.143) +Train: 38 [ 50/312 ( 16%)] Loss: 4.96 (4.92) Time: 0.414s, 2472.99/s (0.430s, 2381.63/s) LR: 3.399e-01 Data: 0.027 (0.049) +Train: 38 [ 100/312 ( 32%)] Loss: 5.06 (4.94) Time: 0.413s, 2481.19/s (0.421s, 2433.30/s) LR: 3.399e-01 Data: 0.028 (0.038) +Train: 38 [ 150/312 ( 48%)] Loss: 4.90 (4.96) Time: 0.410s, 2497.17/s (0.418s, 2451.18/s) LR: 3.399e-01 Data: 0.028 (0.035) +Train: 38 [ 200/312 ( 64%)] Loss: 4.97 (4.97) Time: 0.414s, 2476.22/s (0.416s, 2459.99/s) LR: 3.399e-01 Data: 0.028 (0.033) +Train: 38 [ 250/312 ( 80%)] Loss: 5.08 (4.98) Time: 0.411s, 2490.12/s (0.415s, 2465.98/s) LR: 3.399e-01 Data: 0.027 (0.032) +Train: 38 [ 300/312 ( 96%)] Loss: 5.05 (4.99) Time: 0.412s, 2484.40/s (0.415s, 2470.06/s) LR: 3.399e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.414 (1.414) Loss: 3.262 ( 3.262) Acc@1: 40.527 ( 40.527) Acc@5: 63.086 ( 63.086) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.103 ( 3.275) Acc@1: 39.151 ( 37.914) Acc@5: 66.863 ( 63.564) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-25.pth.tar', 34.42799998535156) + +Train: 39 [ 0/312 ( 0%)] Loss: 4.91 (4.91) Time: 1.748s, 585.71/s (1.748s, 585.71/s) LR: 3.369e-01 Data: 1.374 (1.374) +Train: 39 [ 50/312 ( 16%)] Loss: 4.94 (4.90) Time: 0.409s, 2503.72/s (0.435s, 2352.05/s) LR: 3.369e-01 Data: 0.027 (0.054) +Train: 39 [ 100/312 ( 32%)] Loss: 5.00 (4.92) Time: 0.411s, 2489.83/s (0.422s, 2424.12/s) LR: 3.369e-01 Data: 0.027 (0.041) +Train: 39 [ 150/312 ( 48%)] Loss: 4.80 (4.93) Time: 0.408s, 2508.19/s (0.419s, 2446.58/s) LR: 3.369e-01 Data: 0.026 (0.036) +Train: 39 [ 200/312 ( 64%)] Loss: 4.91 (4.94) Time: 0.405s, 2526.97/s (0.416s, 2463.89/s) LR: 3.369e-01 Data: 0.028 (0.034) +Train: 39 [ 250/312 ( 80%)] Loss: 4.90 (4.96) Time: 0.402s, 2550.36/s (0.413s, 2477.65/s) LR: 3.369e-01 Data: 0.027 (0.033) +Train: 39 [ 300/312 ( 96%)] Loss: 4.95 (4.97) Time: 0.402s, 2544.49/s (0.412s, 2486.42/s) LR: 3.369e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.450 (1.450) Loss: 3.315 ( 3.315) Acc@1: 38.379 ( 38.379) Acc@5: 63.281 ( 63.281) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.208 ( 3.355) Acc@1: 40.566 ( 37.826) Acc@5: 65.684 ( 63.152) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-39.pth.tar', 37.8260000390625) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-28.pth.tar', 34.68199999755859) + +Train: 40 [ 0/312 ( 0%)] Loss: 4.82 (4.82) Time: 1.688s, 606.65/s (1.688s, 606.65/s) LR: 3.338e-01 Data: 1.143 (1.143) +Train: 40 [ 50/312 ( 16%)] Loss: 5.06 (4.88) Time: 0.409s, 2501.36/s (0.433s, 2362.73/s) LR: 3.338e-01 Data: 0.026 (0.049) +Train: 40 [ 100/312 ( 32%)] Loss: 5.05 (4.89) Time: 0.409s, 2501.70/s (0.422s, 2426.75/s) LR: 3.338e-01 Data: 0.026 (0.038) +Train: 40 [ 150/312 ( 48%)] Loss: 4.99 (4.91) Time: 0.409s, 2504.99/s (0.418s, 2448.70/s) LR: 3.338e-01 Data: 0.027 (0.035) +Train: 40 [ 200/312 ( 64%)] Loss: 4.99 (4.92) Time: 0.408s, 2509.28/s (0.416s, 2462.92/s) LR: 3.338e-01 Data: 0.027 (0.033) +Train: 40 [ 250/312 ( 80%)] Loss: 4.90 (4.93) Time: 0.406s, 2519.41/s (0.414s, 2471.55/s) LR: 3.338e-01 Data: 0.026 (0.032) +Train: 40 [ 300/312 ( 96%)] Loss: 5.02 (4.94) Time: 0.411s, 2491.22/s (0.414s, 2475.74/s) LR: 3.338e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.435 (1.435) Loss: 3.343 ( 3.343) Acc@1: 37.598 ( 37.598) Acc@5: 64.062 ( 64.062) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 3.169 ( 3.305) Acc@1: 40.094 ( 39.132) Acc@5: 66.863 ( 64.338) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-39.pth.tar', 37.8260000390625) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-32.pth.tar', 35.62000002197266) + +Train: 41 [ 0/312 ( 0%)] Loss: 5.05 (5.05) Time: 1.628s, 628.99/s (1.628s, 628.99/s) LR: 3.307e-01 Data: 1.228 (1.228) +Train: 41 [ 50/312 ( 16%)] Loss: 4.95 (4.88) Time: 0.411s, 2491.38/s (0.435s, 2356.53/s) LR: 3.307e-01 Data: 0.029 (0.051) +Train: 41 [ 100/312 ( 32%)] Loss: 4.85 (4.88) Time: 0.409s, 2502.35/s (0.423s, 2422.95/s) LR: 3.307e-01 Data: 0.026 (0.039) +Train: 41 [ 150/312 ( 48%)] Loss: 4.80 (4.89) Time: 0.409s, 2500.82/s (0.418s, 2448.55/s) LR: 3.307e-01 Data: 0.027 (0.035) +Train: 41 [ 200/312 ( 64%)] Loss: 5.02 (4.91) Time: 0.411s, 2489.34/s (0.416s, 2459.55/s) LR: 3.307e-01 Data: 0.027 (0.033) +Train: 41 [ 250/312 ( 80%)] Loss: 4.91 (4.92) Time: 0.412s, 2486.68/s (0.415s, 2464.60/s) LR: 3.307e-01 Data: 0.027 (0.032) +Train: 41 [ 300/312 ( 96%)] Loss: 4.89 (4.93) Time: 0.414s, 2475.35/s (0.415s, 2468.13/s) LR: 3.307e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.484 (1.484) Loss: 3.497 ( 3.497) Acc@1: 37.402 ( 37.402) Acc@5: 60.645 ( 60.645) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.306 ( 3.486) Acc@1: 39.033 ( 35.920) Acc@5: 63.679 ( 60.722) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-39.pth.tar', 37.8260000390625) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-41.pth.tar', 35.92000001953125) + +Train: 42 [ 0/312 ( 0%)] Loss: 4.68 (4.68) Time: 1.655s, 618.77/s (1.655s, 618.77/s) LR: 3.275e-01 Data: 1.283 (1.283) +Train: 42 [ 50/312 ( 16%)] Loss: 4.89 (4.82) Time: 0.405s, 2528.72/s (0.427s, 2400.68/s) LR: 3.275e-01 Data: 0.032 (0.052) +Train: 42 [ 100/312 ( 32%)] Loss: 4.83 (4.84) Time: 0.404s, 2532.37/s (0.414s, 2471.72/s) LR: 3.275e-01 Data: 0.031 (0.040) +Train: 42 [ 150/312 ( 48%)] Loss: 4.88 (4.86) Time: 0.406s, 2519.44/s (0.411s, 2493.22/s) LR: 3.275e-01 Data: 0.029 (0.036) +Train: 42 [ 200/312 ( 64%)] Loss: 4.91 (4.88) Time: 0.413s, 2479.99/s (0.409s, 2500.82/s) LR: 3.275e-01 Data: 0.027 (0.034) +Train: 42 [ 250/312 ( 80%)] Loss: 5.02 (4.89) Time: 0.413s, 2478.81/s (0.410s, 2499.39/s) LR: 3.275e-01 Data: 0.027 (0.032) +Train: 42 [ 300/312 ( 96%)] Loss: 4.93 (4.90) Time: 0.418s, 2451.55/s (0.410s, 2496.35/s) LR: 3.275e-01 Data: 0.033 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.445 (1.445) Loss: 3.233 ( 3.233) Acc@1: 40.625 ( 40.625) Acc@5: 64.160 ( 64.160) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.046 ( 3.257) Acc@1: 43.278 ( 38.976) Acc@5: 68.278 ( 64.068) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-39.pth.tar', 37.8260000390625) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-31.pth.tar', 36.234000021972655) + +Train: 43 [ 0/312 ( 0%)] Loss: 4.86 (4.86) Time: 1.826s, 560.83/s (1.826s, 560.83/s) LR: 3.242e-01 Data: 1.111 (1.111) +Train: 43 [ 50/312 ( 16%)] Loss: 4.89 (4.82) Time: 0.405s, 2526.71/s (0.431s, 2375.48/s) LR: 3.242e-01 Data: 0.030 (0.049) +Train: 43 [ 100/312 ( 32%)] Loss: 4.81 (4.82) Time: 0.410s, 2500.21/s (0.418s, 2449.99/s) LR: 3.242e-01 Data: 0.029 (0.038) +Train: 43 [ 150/312 ( 48%)] Loss: 4.94 (4.84) Time: 0.411s, 2491.39/s (0.414s, 2470.83/s) LR: 3.242e-01 Data: 0.028 (0.035) +Train: 43 [ 200/312 ( 64%)] Loss: 4.96 (4.86) Time: 0.409s, 2502.39/s (0.414s, 2475.51/s) LR: 3.242e-01 Data: 0.026 (0.033) +Train: 43 [ 250/312 ( 80%)] Loss: 4.87 (4.87) Time: 0.411s, 2492.67/s (0.413s, 2480.82/s) LR: 3.242e-01 Data: 0.027 (0.032) +Train: 43 [ 300/312 ( 96%)] Loss: 5.01 (4.88) Time: 0.412s, 2485.74/s (0.413s, 2481.56/s) LR: 3.242e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.445 (1.445) Loss: 3.192 ( 3.192) Acc@1: 40.039 ( 40.039) Acc@5: 64.551 ( 64.551) +Test: [ 48/48] Time: 0.088 (0.332) Loss: 3.049 ( 3.204) Acc@1: 42.099 ( 39.846) Acc@5: 68.042 ( 65.230) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-39.pth.tar', 37.8260000390625) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-33.pth.tar', 37.397999990234375) + +Train: 44 [ 0/312 ( 0%)] Loss: 4.72 (4.72) Time: 1.603s, 638.88/s (1.603s, 638.88/s) LR: 3.209e-01 Data: 1.231 (1.231) +Train: 44 [ 50/312 ( 16%)] Loss: 4.77 (4.78) Time: 0.409s, 2502.44/s (0.430s, 2380.11/s) LR: 3.209e-01 Data: 0.028 (0.051) +Train: 44 [ 100/312 ( 32%)] Loss: 4.77 (4.80) Time: 0.406s, 2522.48/s (0.419s, 2445.51/s) LR: 3.209e-01 Data: 0.027 (0.040) +Train: 44 [ 150/312 ( 48%)] Loss: 4.85 (4.83) Time: 0.413s, 2481.31/s (0.416s, 2460.01/s) LR: 3.209e-01 Data: 0.028 (0.036) +Train: 44 [ 200/312 ( 64%)] Loss: 4.82 (4.84) Time: 0.410s, 2494.59/s (0.415s, 2469.26/s) LR: 3.209e-01 Data: 0.027 (0.034) +Train: 44 [ 250/312 ( 80%)] Loss: 4.91 (4.85) Time: 0.407s, 2517.81/s (0.413s, 2478.21/s) LR: 3.209e-01 Data: 0.027 (0.032) +Train: 44 [ 300/312 ( 96%)] Loss: 4.90 (4.86) Time: 0.409s, 2506.41/s (0.412s, 2482.68/s) LR: 3.209e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.438 (1.438) Loss: 3.259 ( 3.259) Acc@1: 41.504 ( 41.504) Acc@5: 65.137 ( 65.137) +Test: [ 48/48] Time: 0.089 (0.332) Loss: 3.106 ( 3.270) Acc@1: 43.042 ( 40.144) Acc@5: 67.335 ( 64.984) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-39.pth.tar', 37.8260000390625) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-35.pth.tar', 37.50199998779297) + +Train: 45 [ 0/312 ( 0%)] Loss: 4.80 (4.80) Time: 1.881s, 544.53/s (1.881s, 544.53/s) LR: 3.176e-01 Data: 1.121 (1.121) +Train: 45 [ 50/312 ( 16%)] Loss: 4.86 (4.77) Time: 0.413s, 2480.62/s (0.440s, 2327.00/s) LR: 3.176e-01 Data: 0.029 (0.049) +Train: 45 [ 100/312 ( 32%)] Loss: 4.87 (4.79) Time: 0.405s, 2530.83/s (0.425s, 2412.15/s) LR: 3.176e-01 Data: 0.025 (0.039) +Train: 45 [ 150/312 ( 48%)] Loss: 4.97 (4.80) Time: 0.405s, 2527.85/s (0.418s, 2448.21/s) LR: 3.176e-01 Data: 0.028 (0.035) +Train: 45 [ 200/312 ( 64%)] Loss: 4.88 (4.81) Time: 0.409s, 2504.48/s (0.416s, 2464.28/s) LR: 3.176e-01 Data: 0.028 (0.033) +Train: 45 [ 250/312 ( 80%)] Loss: 4.90 (4.82) Time: 0.419s, 2442.08/s (0.415s, 2469.55/s) LR: 3.176e-01 Data: 0.030 (0.032) +Train: 45 [ 300/312 ( 96%)] Loss: 4.98 (4.83) Time: 0.412s, 2486.42/s (0.414s, 2474.00/s) LR: 3.176e-01 Data: 0.032 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 3.217 ( 3.217) Acc@1: 39.844 ( 39.844) Acc@5: 66.309 ( 66.309) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.067 ( 3.253) Acc@1: 40.920 ( 39.188) Acc@5: 68.160 ( 64.354) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-39.pth.tar', 37.8260000390625) + +Train: 46 [ 0/312 ( 0%)] Loss: 4.77 (4.77) Time: 1.669s, 613.36/s (1.669s, 613.36/s) LR: 3.141e-01 Data: 1.298 (1.298) +Train: 46 [ 50/312 ( 16%)] Loss: 4.90 (4.72) Time: 0.406s, 2521.89/s (0.435s, 2355.07/s) LR: 3.141e-01 Data: 0.028 (0.057) +Train: 46 [ 100/312 ( 32%)] Loss: 4.72 (4.76) Time: 0.411s, 2493.07/s (0.422s, 2427.50/s) LR: 3.141e-01 Data: 0.028 (0.043) +Train: 46 [ 150/312 ( 48%)] Loss: 4.78 (4.78) Time: 0.407s, 2518.01/s (0.418s, 2450.71/s) LR: 3.141e-01 Data: 0.027 (0.038) +Train: 46 [ 200/312 ( 64%)] Loss: 4.76 (4.80) Time: 0.412s, 2485.13/s (0.416s, 2462.79/s) LR: 3.141e-01 Data: 0.032 (0.035) +Train: 46 [ 250/312 ( 80%)] Loss: 4.80 (4.81) Time: 0.411s, 2491.33/s (0.415s, 2468.51/s) LR: 3.141e-01 Data: 0.026 (0.034) +Train: 46 [ 300/312 ( 96%)] Loss: 4.87 (4.82) Time: 0.407s, 2514.85/s (0.414s, 2474.43/s) LR: 3.141e-01 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.439 (1.439) Loss: 3.291 ( 3.291) Acc@1: 39.648 ( 39.648) Acc@5: 63.770 ( 63.770) +Test: [ 48/48] Time: 0.087 (0.327) Loss: 3.111 ( 3.259) Acc@1: 41.509 ( 39.758) Acc@5: 66.981 ( 64.898) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-34.pth.tar', 37.86000004150391) + +Train: 47 [ 0/312 ( 0%)] Loss: 4.68 (4.68) Time: 1.681s, 609.20/s (1.681s, 609.20/s) LR: 3.107e-01 Data: 1.284 (1.284) +Train: 47 [ 50/312 ( 16%)] Loss: 4.66 (4.71) Time: 0.405s, 2530.18/s (0.430s, 2382.62/s) LR: 3.107e-01 Data: 0.026 (0.052) +Train: 47 [ 100/312 ( 32%)] Loss: 4.73 (4.73) Time: 0.412s, 2487.34/s (0.419s, 2446.59/s) LR: 3.107e-01 Data: 0.027 (0.040) +Train: 47 [ 150/312 ( 48%)] Loss: 4.81 (4.74) Time: 0.408s, 2510.07/s (0.416s, 2463.44/s) LR: 3.107e-01 Data: 0.028 (0.036) +Train: 47 [ 200/312 ( 64%)] Loss: 4.83 (4.76) Time: 0.407s, 2515.82/s (0.413s, 2476.46/s) LR: 3.107e-01 Data: 0.026 (0.033) +Train: 47 [ 250/312 ( 80%)] Loss: 4.96 (4.78) Time: 0.407s, 2514.58/s (0.412s, 2484.85/s) LR: 3.107e-01 Data: 0.030 (0.032) +Train: 47 [ 300/312 ( 96%)] Loss: 4.90 (4.79) Time: 0.412s, 2487.87/s (0.412s, 2487.23/s) LR: 3.107e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.464 (1.464) Loss: 3.268 ( 3.268) Acc@1: 41.602 ( 41.602) Acc@5: 65.332 ( 65.332) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.077 ( 3.265) Acc@1: 43.868 ( 39.924) Acc@5: 68.514 ( 64.788) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-38.pth.tar', 37.914000006103514) + +Train: 48 [ 0/312 ( 0%)] Loss: 4.63 (4.63) Time: 2.294s, 446.41/s (2.294s, 446.41/s) LR: 3.072e-01 Data: 1.924 (1.924) +Train: 48 [ 50/312 ( 16%)] Loss: 4.80 (4.69) Time: 0.402s, 2548.89/s (0.439s, 2331.57/s) LR: 3.072e-01 Data: 0.029 (0.064) +Train: 48 [ 100/312 ( 32%)] Loss: 4.75 (4.72) Time: 0.401s, 2554.24/s (0.421s, 2431.88/s) LR: 3.072e-01 Data: 0.026 (0.046) +Train: 48 [ 150/312 ( 48%)] Loss: 4.77 (4.73) Time: 0.403s, 2542.96/s (0.415s, 2464.57/s) LR: 3.072e-01 Data: 0.027 (0.040) +Train: 48 [ 200/312 ( 64%)] Loss: 4.75 (4.75) Time: 0.409s, 2506.30/s (0.414s, 2475.73/s) LR: 3.072e-01 Data: 0.027 (0.037) +Train: 48 [ 250/312 ( 80%)] Loss: 4.91 (4.76) Time: 0.412s, 2483.22/s (0.413s, 2478.12/s) LR: 3.072e-01 Data: 0.029 (0.035) +Train: 48 [ 300/312 ( 96%)] Loss: 4.72 (4.77) Time: 0.409s, 2501.76/s (0.413s, 2479.46/s) LR: 3.072e-01 Data: 0.027 (0.034) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.435 (1.435) Loss: 3.281 ( 3.281) Acc@1: 41.406 ( 41.406) Acc@5: 65.625 ( 65.625) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.082 ( 3.275) Acc@1: 42.453 ( 40.160) Acc@5: 68.868 ( 64.942) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-36.pth.tar', 38.713999995117184) + +Train: 49 [ 0/312 ( 0%)] Loss: 4.69 (4.69) Time: 1.826s, 560.77/s (1.826s, 560.77/s) LR: 3.036e-01 Data: 1.451 (1.451) +Train: 49 [ 50/312 ( 16%)] Loss: 4.69 (4.66) Time: 0.413s, 2478.12/s (0.439s, 2333.51/s) LR: 3.036e-01 Data: 0.026 (0.055) +Train: 49 [ 100/312 ( 32%)] Loss: 4.69 (4.69) Time: 0.410s, 2497.49/s (0.425s, 2409.66/s) LR: 3.036e-01 Data: 0.026 (0.041) +Train: 49 [ 150/312 ( 48%)] Loss: 4.69 (4.71) Time: 0.409s, 2505.89/s (0.420s, 2438.58/s) LR: 3.036e-01 Data: 0.029 (0.037) +Train: 49 [ 200/312 ( 64%)] Loss: 4.76 (4.72) Time: 0.410s, 2499.68/s (0.417s, 2452.90/s) LR: 3.036e-01 Data: 0.027 (0.034) +Train: 49 [ 250/312 ( 80%)] Loss: 4.79 (4.74) Time: 0.410s, 2496.49/s (0.416s, 2462.13/s) LR: 3.036e-01 Data: 0.028 (0.033) +Train: 49 [ 300/312 ( 96%)] Loss: 4.86 (4.75) Time: 0.409s, 2503.72/s (0.415s, 2468.52/s) LR: 3.036e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.443 (1.443) Loss: 3.220 ( 3.220) Acc@1: 42.773 ( 42.773) Acc@5: 67.285 ( 67.285) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.126 ( 3.301) Acc@1: 42.689 ( 40.172) Acc@5: 68.042 ( 64.994) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-37.pth.tar', 38.84599999145508) + +Train: 50 [ 0/312 ( 0%)] Loss: 4.63 (4.63) Time: 1.605s, 637.84/s (1.605s, 637.84/s) LR: 3.000e-01 Data: 1.231 (1.231) +Train: 50 [ 50/312 ( 16%)] Loss: 4.66 (4.64) Time: 0.413s, 2478.32/s (0.434s, 2359.89/s) LR: 3.000e-01 Data: 0.030 (0.051) +Train: 50 [ 100/312 ( 32%)] Loss: 4.73 (4.67) Time: 0.407s, 2515.46/s (0.422s, 2428.28/s) LR: 3.000e-01 Data: 0.028 (0.040) +Train: 50 [ 150/312 ( 48%)] Loss: 4.62 (4.69) Time: 0.411s, 2489.11/s (0.417s, 2453.41/s) LR: 3.000e-01 Data: 0.027 (0.036) +Train: 50 [ 200/312 ( 64%)] Loss: 4.66 (4.71) Time: 0.413s, 2477.08/s (0.416s, 2463.86/s) LR: 3.000e-01 Data: 0.028 (0.034) +Train: 50 [ 250/312 ( 80%)] Loss: 4.80 (4.72) Time: 0.413s, 2479.75/s (0.415s, 2469.35/s) LR: 3.000e-01 Data: 0.028 (0.033) +Train: 50 [ 300/312 ( 96%)] Loss: 4.91 (4.73) Time: 0.408s, 2507.23/s (0.414s, 2473.18/s) LR: 3.000e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.426 (1.426) Loss: 3.189 ( 3.189) Acc@1: 41.895 ( 41.895) Acc@5: 66.406 ( 66.406) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.029 ( 3.214) Acc@1: 43.868 ( 40.796) Acc@5: 67.925 ( 65.560) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-42.pth.tar', 38.97600005371094) + +Train: 51 [ 0/312 ( 0%)] Loss: 4.46 (4.46) Time: 1.870s, 547.51/s (1.870s, 547.51/s) LR: 2.964e-01 Data: 1.500 (1.500) +Train: 51 [ 50/312 ( 16%)] Loss: 4.74 (4.62) Time: 0.403s, 2541.36/s (0.433s, 2365.91/s) LR: 2.964e-01 Data: 0.026 (0.056) +Train: 51 [ 100/312 ( 32%)] Loss: 4.64 (4.64) Time: 0.407s, 2517.20/s (0.419s, 2441.97/s) LR: 2.964e-01 Data: 0.025 (0.042) +Train: 51 [ 150/312 ( 48%)] Loss: 4.72 (4.67) Time: 0.412s, 2488.26/s (0.416s, 2460.12/s) LR: 2.964e-01 Data: 0.029 (0.037) +Train: 51 [ 200/312 ( 64%)] Loss: 4.63 (4.68) Time: 0.407s, 2514.01/s (0.415s, 2469.14/s) LR: 2.964e-01 Data: 0.027 (0.035) +Train: 51 [ 250/312 ( 80%)] Loss: 4.78 (4.70) Time: 0.403s, 2540.39/s (0.413s, 2481.06/s) LR: 2.964e-01 Data: 0.027 (0.033) +Train: 51 [ 300/312 ( 96%)] Loss: 4.95 (4.71) Time: 0.405s, 2528.80/s (0.411s, 2489.80/s) LR: 2.964e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 3.278 ( 3.278) Acc@1: 41.602 ( 41.602) Acc@5: 64.746 ( 64.746) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.057 ( 3.289) Acc@1: 44.811 ( 40.160) Acc@5: 69.222 ( 64.856) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-51.pth.tar', 40.16000000854492) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-40.pth.tar', 39.13200002807617) + +Train: 52 [ 0/312 ( 0%)] Loss: 4.66 (4.66) Time: 1.705s, 600.68/s (1.705s, 600.68/s) LR: 2.927e-01 Data: 1.334 (1.334) +Train: 52 [ 50/312 ( 16%)] Loss: 4.60 (4.60) Time: 0.408s, 2506.98/s (0.432s, 2371.90/s) LR: 2.927e-01 Data: 0.027 (0.053) +Train: 52 [ 100/312 ( 32%)] Loss: 4.66 (4.62) Time: 0.413s, 2481.92/s (0.421s, 2431.71/s) LR: 2.927e-01 Data: 0.027 (0.040) +Train: 52 [ 150/312 ( 48%)] Loss: 4.66 (4.64) Time: 0.414s, 2476.30/s (0.418s, 2448.02/s) LR: 2.927e-01 Data: 0.026 (0.036) +Train: 52 [ 200/312 ( 64%)] Loss: 4.69 (4.66) Time: 0.414s, 2476.21/s (0.417s, 2457.32/s) LR: 2.927e-01 Data: 0.028 (0.034) +Train: 52 [ 250/312 ( 80%)] Loss: 4.67 (4.67) Time: 0.407s, 2513.42/s (0.415s, 2465.76/s) LR: 2.927e-01 Data: 0.027 (0.032) +Train: 52 [ 300/312 ( 96%)] Loss: 4.74 (4.69) Time: 0.409s, 2506.61/s (0.414s, 2472.52/s) LR: 2.927e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.433 (1.433) Loss: 3.114 ( 3.114) Acc@1: 42.480 ( 42.480) Acc@5: 67.090 ( 67.090) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 2.895 ( 3.149) Acc@1: 44.340 ( 41.434) Acc@5: 71.108 ( 65.810) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-51.pth.tar', 40.16000000854492) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-45.pth.tar', 39.1879999987793) + +Train: 53 [ 0/312 ( 0%)] Loss: 4.56 (4.56) Time: 1.824s, 561.36/s (1.824s, 561.36/s) LR: 2.889e-01 Data: 1.448 (1.448) +Train: 53 [ 50/312 ( 16%)] Loss: 4.61 (4.58) Time: 0.407s, 2512.98/s (0.439s, 2333.02/s) LR: 2.889e-01 Data: 0.027 (0.055) +Train: 53 [ 100/312 ( 32%)] Loss: 4.61 (4.61) Time: 0.403s, 2538.65/s (0.423s, 2423.36/s) LR: 2.889e-01 Data: 0.026 (0.042) +Train: 53 [ 150/312 ( 48%)] Loss: 4.61 (4.63) Time: 0.403s, 2541.90/s (0.417s, 2458.26/s) LR: 2.889e-01 Data: 0.027 (0.037) +Train: 53 [ 200/312 ( 64%)] Loss: 4.71 (4.65) Time: 0.407s, 2516.70/s (0.414s, 2475.24/s) LR: 2.889e-01 Data: 0.028 (0.035) +Train: 53 [ 250/312 ( 80%)] Loss: 4.80 (4.66) Time: 0.409s, 2505.25/s (0.412s, 2482.87/s) LR: 2.889e-01 Data: 0.027 (0.033) +Train: 53 [ 300/312 ( 96%)] Loss: 4.76 (4.67) Time: 0.410s, 2500.07/s (0.412s, 2483.40/s) LR: 2.889e-01 Data: 0.023 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.434 (1.434) Loss: 3.242 ( 3.242) Acc@1: 39.160 ( 39.160) Acc@5: 66.406 ( 66.406) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 2.999 ( 3.249) Acc@1: 44.340 ( 40.256) Acc@5: 68.514 ( 64.626) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-51.pth.tar', 40.16000000854492) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-46.pth.tar', 39.758000061035155) + +Train: 54 [ 0/312 ( 0%)] Loss: 4.71 (4.71) Time: 1.852s, 553.02/s (1.852s, 553.02/s) LR: 2.852e-01 Data: 1.476 (1.476) +Train: 54 [ 50/312 ( 16%)] Loss: 4.63 (4.58) Time: 0.409s, 2504.40/s (0.437s, 2344.94/s) LR: 2.852e-01 Data: 0.028 (0.056) +Train: 54 [ 100/312 ( 32%)] Loss: 4.53 (4.59) Time: 0.410s, 2498.02/s (0.422s, 2424.01/s) LR: 2.852e-01 Data: 0.028 (0.042) +Train: 54 [ 150/312 ( 48%)] Loss: 4.53 (4.61) Time: 0.415s, 2464.81/s (0.419s, 2446.17/s) LR: 2.852e-01 Data: 0.029 (0.037) +Train: 54 [ 200/312 ( 64%)] Loss: 4.71 (4.63) Time: 0.412s, 2484.47/s (0.416s, 2458.86/s) LR: 2.852e-01 Data: 0.030 (0.035) +Train: 54 [ 250/312 ( 80%)] Loss: 4.79 (4.64) Time: 0.410s, 2499.44/s (0.415s, 2470.03/s) LR: 2.852e-01 Data: 0.032 (0.033) +Train: 54 [ 300/312 ( 96%)] Loss: 4.79 (4.65) Time: 0.408s, 2508.05/s (0.414s, 2475.66/s) LR: 2.852e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.414 (1.414) Loss: 3.199 ( 3.199) Acc@1: 40.430 ( 40.430) Acc@5: 64.355 ( 64.355) +Test: [ 48/48] Time: 0.089 (0.327) Loss: 3.035 ( 3.233) Acc@1: 43.750 ( 40.596) Acc@5: 69.104 ( 64.642) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-51.pth.tar', 40.16000000854492) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-43.pth.tar', 39.845999993896484) + +Train: 55 [ 0/312 ( 0%)] Loss: 4.57 (4.57) Time: 1.675s, 611.18/s (1.675s, 611.18/s) LR: 2.813e-01 Data: 1.301 (1.301) +Train: 55 [ 50/312 ( 16%)] Loss: 4.57 (4.55) Time: 0.407s, 2517.42/s (0.433s, 2366.24/s) LR: 2.813e-01 Data: 0.027 (0.053) +Train: 55 [ 100/312 ( 32%)] Loss: 4.66 (4.57) Time: 0.408s, 2509.72/s (0.420s, 2438.26/s) LR: 2.813e-01 Data: 0.027 (0.041) +Train: 55 [ 150/312 ( 48%)] Loss: 4.68 (4.59) Time: 0.411s, 2488.51/s (0.416s, 2459.02/s) LR: 2.813e-01 Data: 0.032 (0.036) +Train: 55 [ 200/312 ( 64%)] Loss: 4.61 (4.61) Time: 0.410s, 2496.30/s (0.415s, 2464.97/s) LR: 2.813e-01 Data: 0.027 (0.034) +Train: 55 [ 250/312 ( 80%)] Loss: 4.62 (4.62) Time: 0.409s, 2501.31/s (0.414s, 2471.39/s) LR: 2.813e-01 Data: 0.029 (0.033) +Train: 55 [ 300/312 ( 96%)] Loss: 4.67 (4.63) Time: 0.405s, 2525.54/s (0.413s, 2479.38/s) LR: 2.813e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.439 (1.439) Loss: 3.160 ( 3.160) Acc@1: 41.309 ( 41.309) Acc@5: 65.918 ( 65.918) +Test: [ 48/48] Time: 0.088 (0.327) Loss: 2.978 ( 3.225) Acc@1: 44.340 ( 40.432) Acc@5: 69.340 ( 64.776) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-51.pth.tar', 40.16000000854492) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-47.pth.tar', 39.92399998657226) + +Train: 56 [ 0/312 ( 0%)] Loss: 4.52 (4.52) Time: 1.557s, 657.84/s (1.557s, 657.84/s) LR: 2.775e-01 Data: 1.137 (1.137) +Train: 56 [ 50/312 ( 16%)] Loss: 4.64 (4.51) Time: 0.412s, 2487.86/s (0.429s, 2385.11/s) LR: 2.775e-01 Data: 0.027 (0.050) +Train: 56 [ 100/312 ( 32%)] Loss: 4.78 (4.54) Time: 0.415s, 2468.23/s (0.420s, 2440.13/s) LR: 2.775e-01 Data: 0.028 (0.039) +Train: 56 [ 150/312 ( 48%)] Loss: 4.63 (4.56) Time: 0.409s, 2505.42/s (0.417s, 2457.93/s) LR: 2.775e-01 Data: 0.026 (0.035) +Train: 56 [ 200/312 ( 64%)] Loss: 4.70 (4.58) Time: 0.412s, 2485.74/s (0.415s, 2466.36/s) LR: 2.775e-01 Data: 0.028 (0.033) +Train: 56 [ 250/312 ( 80%)] Loss: 4.69 (4.59) Time: 0.409s, 2501.38/s (0.414s, 2472.45/s) LR: 2.775e-01 Data: 0.027 (0.032) +Train: 56 [ 300/312 ( 96%)] Loss: 4.79 (4.60) Time: 0.410s, 2496.01/s (0.413s, 2477.02/s) LR: 2.775e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 3.176 ( 3.176) Acc@1: 41.211 ( 41.211) Acc@5: 66.113 ( 66.113) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 2.994 ( 3.206) Acc@1: 44.104 ( 40.982) Acc@5: 70.047 ( 64.998) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-51.pth.tar', 40.16000000854492) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-44.pth.tar', 40.14400001586914) + +Train: 57 [ 0/312 ( 0%)] Loss: 4.52 (4.52) Time: 1.895s, 540.48/s (1.895s, 540.48/s) LR: 2.736e-01 Data: 1.520 (1.520) +Train: 57 [ 50/312 ( 16%)] Loss: 4.56 (4.50) Time: 0.409s, 2503.25/s (0.438s, 2339.86/s) LR: 2.736e-01 Data: 0.026 (0.056) +Train: 57 [ 100/312 ( 32%)] Loss: 4.56 (4.52) Time: 0.409s, 2506.39/s (0.424s, 2415.22/s) LR: 2.736e-01 Data: 0.027 (0.042) +Train: 57 [ 150/312 ( 48%)] Loss: 4.53 (4.54) Time: 0.413s, 2478.44/s (0.420s, 2440.53/s) LR: 2.736e-01 Data: 0.027 (0.037) +Train: 57 [ 200/312 ( 64%)] Loss: 4.58 (4.55) Time: 0.407s, 2515.42/s (0.417s, 2453.95/s) LR: 2.736e-01 Data: 0.027 (0.035) +Train: 57 [ 250/312 ( 80%)] Loss: 4.68 (4.57) Time: 0.409s, 2503.46/s (0.416s, 2463.55/s) LR: 2.736e-01 Data: 0.028 (0.033) +Train: 57 [ 300/312 ( 96%)] Loss: 4.55 (4.58) Time: 0.411s, 2489.79/s (0.415s, 2468.72/s) LR: 2.736e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 3.217 ( 3.217) Acc@1: 42.480 ( 42.480) Acc@5: 64.648 ( 64.648) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.022 ( 3.222) Acc@1: 43.396 ( 40.772) Acc@5: 70.047 ( 64.494) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar', 40.771999975585935) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-51.pth.tar', 40.16000000854492) + +Train: 58 [ 0/312 ( 0%)] Loss: 4.47 (4.47) Time: 1.867s, 548.53/s (1.867s, 548.53/s) LR: 2.697e-01 Data: 1.152 (1.152) +Train: 58 [ 50/312 ( 16%)] Loss: 4.51 (4.47) Time: 0.401s, 2552.79/s (0.432s, 2369.50/s) LR: 2.697e-01 Data: 0.023 (0.050) +Train: 58 [ 100/312 ( 32%)] Loss: 4.55 (4.50) Time: 0.405s, 2525.34/s (0.418s, 2450.73/s) LR: 2.697e-01 Data: 0.028 (0.038) +Train: 58 [ 150/312 ( 48%)] Loss: 4.67 (4.52) Time: 0.407s, 2514.85/s (0.414s, 2472.70/s) LR: 2.697e-01 Data: 0.027 (0.035) +Train: 58 [ 200/312 ( 64%)] Loss: 4.60 (4.54) Time: 0.413s, 2479.80/s (0.413s, 2479.37/s) LR: 2.697e-01 Data: 0.026 (0.033) +Train: 58 [ 250/312 ( 80%)] Loss: 4.67 (4.55) Time: 0.408s, 2508.35/s (0.412s, 2482.84/s) LR: 2.697e-01 Data: 0.027 (0.031) +Train: 58 [ 300/312 ( 96%)] Loss: 4.68 (4.56) Time: 0.409s, 2501.31/s (0.412s, 2487.32/s) LR: 2.697e-01 Data: 0.023 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.439 (1.439) Loss: 3.166 ( 3.166) Acc@1: 43.066 ( 43.066) Acc@5: 64.941 ( 64.941) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.047 ( 3.238) Acc@1: 42.571 ( 40.746) Acc@5: 70.165 ( 64.900) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar', 40.771999975585935) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar', 40.74600000488281) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-48.pth.tar', 40.16000001831055) + +Train: 59 [ 0/312 ( 0%)] Loss: 4.50 (4.50) Time: 1.598s, 640.66/s (1.598s, 640.66/s) LR: 2.658e-01 Data: 1.224 (1.224) +Train: 59 [ 50/312 ( 16%)] Loss: 4.51 (4.46) Time: 0.412s, 2487.52/s (0.435s, 2356.34/s) LR: 2.658e-01 Data: 0.027 (0.051) +Train: 59 [ 100/312 ( 32%)] Loss: 4.31 (4.48) Time: 0.413s, 2480.17/s (0.424s, 2415.70/s) LR: 2.658e-01 Data: 0.028 (0.039) +Train: 59 [ 150/312 ( 48%)] Loss: 4.48 (4.50) Time: 0.405s, 2530.60/s (0.419s, 2445.00/s) LR: 2.658e-01 Data: 0.027 (0.036) +Train: 59 [ 200/312 ( 64%)] Loss: 4.64 (4.52) Time: 0.406s, 2524.21/s (0.416s, 2463.85/s) LR: 2.658e-01 Data: 0.028 (0.034) +Train: 59 [ 250/312 ( 80%)] Loss: 4.65 (4.53) Time: 0.408s, 2507.64/s (0.414s, 2474.70/s) LR: 2.658e-01 Data: 0.027 (0.032) +Train: 59 [ 300/312 ( 96%)] Loss: 4.66 (4.55) Time: 0.412s, 2482.61/s (0.413s, 2477.93/s) LR: 2.658e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 3.240 ( 3.240) Acc@1: 40.723 ( 40.723) Acc@5: 65.527 ( 65.527) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.043 ( 3.261) Acc@1: 43.160 ( 39.904) Acc@5: 68.986 ( 64.388) +Train: 60 [ 0/312 ( 0%)] Loss: 4.37 (4.37) Time: 1.609s, 636.58/s (1.609s, 636.58/s) LR: 2.618e-01 Data: 1.237 (1.237) +Train: 60 [ 50/312 ( 16%)] Loss: 4.52 (4.43) Time: 0.403s, 2543.99/s (0.428s, 2395.18/s) LR: 2.618e-01 Data: 0.025 (0.051) +Train: 60 [ 100/312 ( 32%)] Loss: 4.57 (4.45) Time: 0.409s, 2501.79/s (0.417s, 2456.10/s) LR: 2.618e-01 Data: 0.026 (0.039) +Train: 60 [ 150/312 ( 48%)] Loss: 4.43 (4.47) Time: 0.410s, 2498.00/s (0.415s, 2466.81/s) LR: 2.618e-01 Data: 0.027 (0.035) +Train: 60 [ 200/312 ( 64%)] Loss: 4.42 (4.49) Time: 0.408s, 2507.92/s (0.414s, 2471.77/s) LR: 2.618e-01 Data: 0.028 (0.033) +Train: 60 [ 250/312 ( 80%)] Loss: 4.58 (4.51) Time: 0.405s, 2526.24/s (0.413s, 2480.73/s) LR: 2.618e-01 Data: 0.027 (0.032) +Train: 60 [ 300/312 ( 96%)] Loss: 4.74 (4.52) Time: 0.409s, 2501.25/s (0.412s, 2487.57/s) LR: 2.618e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 3.264 ( 3.264) Acc@1: 40.332 ( 40.332) Acc@5: 63.574 ( 63.574) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.043 ( 3.295) Acc@1: 44.458 ( 40.166) Acc@5: 67.099 ( 63.708) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar', 40.771999975585935) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar', 40.74600000488281) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-60.pth.tar', 40.165999984130856) + +Train: 61 [ 0/312 ( 0%)] Loss: 4.35 (4.35) Time: 1.663s, 615.78/s (1.663s, 615.78/s) LR: 2.578e-01 Data: 1.169 (1.169) +Train: 61 [ 50/312 ( 16%)] Loss: 4.39 (4.43) Time: 0.410s, 2497.17/s (0.439s, 2333.63/s) LR: 2.578e-01 Data: 0.027 (0.050) +Train: 61 [ 100/312 ( 32%)] Loss: 4.42 (4.44) Time: 0.407s, 2516.17/s (0.424s, 2413.47/s) LR: 2.578e-01 Data: 0.027 (0.039) +Train: 61 [ 150/312 ( 48%)] Loss: 4.54 (4.46) Time: 0.404s, 2532.11/s (0.418s, 2447.85/s) LR: 2.578e-01 Data: 0.028 (0.035) +Train: 61 [ 200/312 ( 64%)] Loss: 4.55 (4.48) Time: 0.406s, 2519.98/s (0.415s, 2466.84/s) LR: 2.578e-01 Data: 0.027 (0.033) +Train: 61 [ 250/312 ( 80%)] Loss: 4.59 (4.49) Time: 0.407s, 2516.83/s (0.414s, 2475.85/s) LR: 2.578e-01 Data: 0.027 (0.032) +Train: 61 [ 300/312 ( 96%)] Loss: 4.61 (4.50) Time: 0.410s, 2496.99/s (0.413s, 2477.70/s) LR: 2.578e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.440 (1.440) Loss: 3.189 ( 3.189) Acc@1: 42.871 ( 42.871) Acc@5: 64.551 ( 64.551) +Test: [ 48/48] Time: 0.089 (0.331) Loss: 3.015 ( 3.233) Acc@1: 42.807 ( 41.030) Acc@5: 68.986 ( 64.602) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-61.pth.tar', 41.02999997802734) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar', 40.771999975585935) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar', 40.74600000488281) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-49.pth.tar', 40.17200005615234) + +Train: 62 [ 0/312 ( 0%)] Loss: 4.41 (4.41) Time: 1.597s, 641.31/s (1.597s, 641.31/s) LR: 2.538e-01 Data: 1.090 (1.090) +Train: 62 [ 50/312 ( 16%)] Loss: 4.50 (4.39) Time: 0.412s, 2485.91/s (0.434s, 2358.63/s) LR: 2.538e-01 Data: 0.027 (0.048) +Train: 62 [ 100/312 ( 32%)] Loss: 4.46 (4.41) Time: 0.405s, 2531.26/s (0.421s, 2432.06/s) LR: 2.538e-01 Data: 0.028 (0.038) +Train: 62 [ 150/312 ( 48%)] Loss: 4.45 (4.43) Time: 0.403s, 2543.08/s (0.416s, 2464.26/s) LR: 2.538e-01 Data: 0.027 (0.035) +Train: 62 [ 200/312 ( 64%)] Loss: 4.50 (4.45) Time: 0.406s, 2521.05/s (0.413s, 2480.84/s) LR: 2.538e-01 Data: 0.028 (0.033) +Train: 62 [ 250/312 ( 80%)] Loss: 4.58 (4.47) Time: 0.409s, 2503.63/s (0.412s, 2487.58/s) LR: 2.538e-01 Data: 0.028 (0.032) +Train: 62 [ 300/312 ( 96%)] Loss: 4.66 (4.48) Time: 0.410s, 2498.44/s (0.412s, 2488.13/s) LR: 2.538e-01 Data: 0.030 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.418 (1.418) Loss: 3.488 ( 3.488) Acc@1: 36.719 ( 36.719) Acc@5: 60.938 ( 60.938) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.286 ( 3.435) Acc@1: 39.269 ( 37.694) Acc@5: 63.797 ( 61.188) +Train: 63 [ 0/312 ( 0%)] Loss: 4.36 (4.36) Time: 1.825s, 560.94/s (1.825s, 560.94/s) LR: 2.497e-01 Data: 1.454 (1.454) +Train: 63 [ 50/312 ( 16%)] Loss: 4.35 (4.37) Time: 0.405s, 2526.50/s (0.433s, 2365.91/s) LR: 2.497e-01 Data: 0.027 (0.055) +Train: 63 [ 100/312 ( 32%)] Loss: 4.37 (4.39) Time: 0.407s, 2514.64/s (0.420s, 2438.23/s) LR: 2.497e-01 Data: 0.025 (0.041) +Train: 63 [ 150/312 ( 48%)] Loss: 4.39 (4.41) Time: 0.413s, 2482.34/s (0.417s, 2454.00/s) LR: 2.497e-01 Data: 0.028 (0.037) +Train: 63 [ 200/312 ( 64%)] Loss: 4.59 (4.43) Time: 0.408s, 2512.83/s (0.415s, 2466.99/s) LR: 2.497e-01 Data: 0.028 (0.034) +Train: 63 [ 250/312 ( 80%)] Loss: 4.52 (4.45) Time: 0.407s, 2513.81/s (0.413s, 2478.01/s) LR: 2.497e-01 Data: 0.027 (0.033) +Train: 63 [ 300/312 ( 96%)] Loss: 4.70 (4.46) Time: 0.410s, 2496.04/s (0.412s, 2484.41/s) LR: 2.497e-01 Data: 0.032 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.433 (1.433) Loss: 3.253 ( 3.253) Acc@1: 41.016 ( 41.016) Acc@5: 65.332 ( 65.332) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 3.046 ( 3.251) Acc@1: 43.514 ( 40.760) Acc@5: 67.807 ( 64.484) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-61.pth.tar', 41.02999997802734) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar', 40.771999975585935) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-63.pth.tar', 40.76000002685547) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar', 40.74600000488281) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-53.pth.tar', 40.2559999975586) + +Train: 64 [ 0/312 ( 0%)] Loss: 4.38 (4.38) Time: 1.955s, 523.83/s (1.955s, 523.83/s) LR: 2.457e-01 Data: 1.579 (1.579) +Train: 64 [ 50/312 ( 16%)] Loss: 4.50 (4.35) Time: 0.407s, 2513.34/s (0.441s, 2320.53/s) LR: 2.457e-01 Data: 0.028 (0.058) +Train: 64 [ 100/312 ( 32%)] Loss: 4.51 (4.38) Time: 0.407s, 2514.13/s (0.424s, 2412.26/s) LR: 2.457e-01 Data: 0.027 (0.043) +Train: 64 [ 150/312 ( 48%)] Loss: 4.48 (4.39) Time: 0.407s, 2513.57/s (0.419s, 2446.10/s) LR: 2.457e-01 Data: 0.027 (0.038) +Train: 64 [ 200/312 ( 64%)] Loss: 4.51 (4.41) Time: 0.408s, 2506.84/s (0.416s, 2458.91/s) LR: 2.457e-01 Data: 0.026 (0.035) +Train: 64 [ 250/312 ( 80%)] Loss: 4.54 (4.43) Time: 0.412s, 2488.40/s (0.416s, 2463.24/s) LR: 2.457e-01 Data: 0.026 (0.034) +Train: 64 [ 300/312 ( 96%)] Loss: 4.49 (4.44) Time: 0.408s, 2511.12/s (0.414s, 2470.70/s) LR: 2.457e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.495 (1.495) Loss: 3.323 ( 3.323) Acc@1: 40.137 ( 40.137) Acc@5: 62.891 ( 62.891) +Test: [ 48/48] Time: 0.088 (0.332) Loss: 3.101 ( 3.318) Acc@1: 40.802 ( 39.330) Acc@5: 66.038 ( 62.732) +Train: 65 [ 0/312 ( 0%)] Loss: 4.32 (4.32) Time: 1.466s, 698.65/s (1.466s, 698.65/s) LR: 2.416e-01 Data: 1.093 (1.093) +Train: 65 [ 50/312 ( 16%)] Loss: 4.41 (4.33) Time: 0.405s, 2526.99/s (0.428s, 2391.90/s) LR: 2.416e-01 Data: 0.027 (0.049) +Train: 65 [ 100/312 ( 32%)] Loss: 4.41 (4.34) Time: 0.410s, 2499.69/s (0.419s, 2445.18/s) LR: 2.416e-01 Data: 0.026 (0.039) +Train: 65 [ 150/312 ( 48%)] Loss: 4.47 (4.37) Time: 0.408s, 2509.24/s (0.416s, 2461.88/s) LR: 2.416e-01 Data: 0.027 (0.035) +Train: 65 [ 200/312 ( 64%)] Loss: 4.39 (4.39) Time: 0.407s, 2515.66/s (0.414s, 2475.69/s) LR: 2.416e-01 Data: 0.028 (0.033) +Train: 65 [ 250/312 ( 80%)] Loss: 4.47 (4.41) Time: 0.405s, 2530.44/s (0.412s, 2485.97/s) LR: 2.416e-01 Data: 0.025 (0.032) +Train: 65 [ 300/312 ( 96%)] Loss: 4.46 (4.42) Time: 0.406s, 2522.76/s (0.411s, 2491.84/s) LR: 2.416e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 3.184 ( 3.184) Acc@1: 42.676 ( 42.676) Acc@5: 65.137 ( 65.137) +Test: [ 48/48] Time: 0.088 (0.332) Loss: 3.043 ( 3.275) Acc@1: 41.274 ( 40.108) Acc@5: 66.156 ( 63.474) +Train: 66 [ 0/312 ( 0%)] Loss: 4.36 (4.36) Time: 1.960s, 522.47/s (1.960s, 522.47/s) LR: 2.375e-01 Data: 1.072 (1.072) +Train: 66 [ 50/312 ( 16%)] Loss: 4.29 (4.29) Time: 0.407s, 2513.89/s (0.440s, 2327.87/s) LR: 2.375e-01 Data: 0.027 (0.048) +Train: 66 [ 100/312 ( 32%)] Loss: 4.42 (4.33) Time: 0.410s, 2500.15/s (0.424s, 2412.43/s) LR: 2.375e-01 Data: 0.028 (0.038) +Train: 66 [ 150/312 ( 48%)] Loss: 4.43 (4.35) Time: 0.409s, 2503.93/s (0.420s, 2438.29/s) LR: 2.375e-01 Data: 0.027 (0.034) +Train: 66 [ 200/312 ( 64%)] Loss: 4.43 (4.37) Time: 0.407s, 2517.78/s (0.418s, 2452.29/s) LR: 2.375e-01 Data: 0.026 (0.033) +Train: 66 [ 250/312 ( 80%)] Loss: 4.59 (4.39) Time: 0.411s, 2492.66/s (0.415s, 2464.66/s) LR: 2.375e-01 Data: 0.035 (0.032) +Train: 66 [ 300/312 ( 96%)] Loss: 4.52 (4.40) Time: 0.404s, 2533.20/s (0.414s, 2474.40/s) LR: 2.375e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.440 (1.440) Loss: 3.256 ( 3.256) Acc@1: 39.844 ( 39.844) Acc@5: 63.965 ( 63.965) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.073 ( 3.300) Acc@1: 43.160 ( 39.854) Acc@5: 66.745 ( 63.218) +Train: 67 [ 0/312 ( 0%)] Loss: 4.08 (4.08) Time: 1.548s, 661.30/s (1.548s, 661.30/s) LR: 2.334e-01 Data: 1.176 (1.176) +Train: 67 [ 50/312 ( 16%)] Loss: 4.26 (4.28) Time: 0.412s, 2484.39/s (0.432s, 2372.79/s) LR: 2.334e-01 Data: 0.029 (0.049) +Train: 67 [ 100/312 ( 32%)] Loss: 4.34 (4.31) Time: 0.405s, 2527.65/s (0.421s, 2434.94/s) LR: 2.334e-01 Data: 0.028 (0.038) +Train: 67 [ 150/312 ( 48%)] Loss: 4.35 (4.33) Time: 0.403s, 2540.64/s (0.415s, 2467.23/s) LR: 2.334e-01 Data: 0.028 (0.035) +Train: 67 [ 200/312 ( 64%)] Loss: 4.37 (4.35) Time: 0.404s, 2536.09/s (0.412s, 2485.03/s) LR: 2.334e-01 Data: 0.026 (0.033) +Train: 67 [ 250/312 ( 80%)] Loss: 4.37 (4.37) Time: 0.407s, 2518.42/s (0.411s, 2493.84/s) LR: 2.334e-01 Data: 0.028 (0.032) +Train: 67 [ 300/312 ( 96%)] Loss: 4.41 (4.38) Time: 0.410s, 2499.09/s (0.410s, 2496.24/s) LR: 2.334e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 3.347 ( 3.347) Acc@1: 39.160 ( 39.160) Acc@5: 61.523 ( 61.523) +Test: [ 48/48] Time: 0.089 (0.329) Loss: 3.121 ( 3.331) Acc@1: 42.453 ( 39.534) Acc@5: 66.981 ( 62.798) +Train: 68 [ 0/312 ( 0%)] Loss: 4.23 (4.23) Time: 1.590s, 644.12/s (1.590s, 644.12/s) LR: 2.292e-01 Data: 1.068 (1.068) +Train: 68 [ 50/312 ( 16%)] Loss: 4.23 (4.24) Time: 0.407s, 2513.72/s (0.436s, 2346.97/s) LR: 2.292e-01 Data: 0.027 (0.048) +Train: 68 [ 100/312 ( 32%)] Loss: 4.43 (4.28) Time: 0.409s, 2505.48/s (0.423s, 2422.37/s) LR: 2.292e-01 Data: 0.027 (0.038) +Train: 68 [ 150/312 ( 48%)] Loss: 4.25 (4.30) Time: 0.412s, 2485.43/s (0.419s, 2444.51/s) LR: 2.292e-01 Data: 0.027 (0.034) +Train: 68 [ 200/312 ( 64%)] Loss: 4.45 (4.32) Time: 0.409s, 2504.30/s (0.417s, 2456.95/s) LR: 2.292e-01 Data: 0.025 (0.033) +Train: 68 [ 250/312 ( 80%)] Loss: 4.47 (4.34) Time: 0.406s, 2522.73/s (0.415s, 2469.36/s) LR: 2.292e-01 Data: 0.028 (0.031) +Train: 68 [ 300/312 ( 96%)] Loss: 4.51 (4.36) Time: 0.407s, 2517.74/s (0.413s, 2476.79/s) LR: 2.292e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 3.221 ( 3.221) Acc@1: 41.309 ( 41.309) Acc@5: 63.477 ( 63.477) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.067 ( 3.257) Acc@1: 41.745 ( 40.278) Acc@5: 68.278 ( 63.566) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-61.pth.tar', 41.02999997802734) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar', 40.771999975585935) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-63.pth.tar', 40.76000002685547) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar', 40.74600000488281) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-68.pth.tar', 40.27800003417969) + +Train: 69 [ 0/312 ( 0%)] Loss: 4.19 (4.19) Time: 1.532s, 668.25/s (1.532s, 668.25/s) LR: 2.251e-01 Data: 1.128 (1.128) +Train: 69 [ 50/312 ( 16%)] Loss: 4.30 (4.24) Time: 0.408s, 2512.33/s (0.434s, 2360.82/s) LR: 2.251e-01 Data: 0.025 (0.049) +Train: 69 [ 100/312 ( 32%)] Loss: 4.39 (4.27) Time: 0.406s, 2522.21/s (0.421s, 2430.83/s) LR: 2.251e-01 Data: 0.027 (0.038) +Train: 69 [ 150/312 ( 48%)] Loss: 4.42 (4.29) Time: 0.408s, 2511.00/s (0.417s, 2457.29/s) LR: 2.251e-01 Data: 0.028 (0.034) +Train: 69 [ 200/312 ( 64%)] Loss: 4.42 (4.31) Time: 0.411s, 2491.28/s (0.415s, 2468.44/s) LR: 2.251e-01 Data: 0.029 (0.033) +Train: 69 [ 250/312 ( 80%)] Loss: 4.27 (4.32) Time: 0.410s, 2496.54/s (0.414s, 2470.49/s) LR: 2.251e-01 Data: 0.029 (0.032) +Train: 69 [ 300/312 ( 96%)] Loss: 4.45 (4.34) Time: 0.408s, 2512.59/s (0.414s, 2475.49/s) LR: 2.251e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.419 (1.419) Loss: 3.298 ( 3.298) Acc@1: 39.648 ( 39.648) Acc@5: 63.281 ( 63.281) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.136 ( 3.379) Acc@1: 40.920 ( 38.722) Acc@5: 64.623 ( 61.396) +Train: 70 [ 0/312 ( 0%)] Loss: 4.26 (4.26) Time: 1.908s, 536.70/s (1.908s, 536.70/s) LR: 2.209e-01 Data: 1.078 (1.078) +Train: 70 [ 50/312 ( 16%)] Loss: 4.37 (4.23) Time: 0.409s, 2503.77/s (0.437s, 2342.47/s) LR: 2.209e-01 Data: 0.028 (0.048) +Train: 70 [ 100/312 ( 32%)] Loss: 4.30 (4.24) Time: 0.410s, 2497.97/s (0.423s, 2417.96/s) LR: 2.209e-01 Data: 0.027 (0.038) +Train: 70 [ 150/312 ( 48%)] Loss: 4.33 (4.27) Time: 0.402s, 2545.81/s (0.418s, 2450.92/s) LR: 2.209e-01 Data: 0.026 (0.034) +Train: 70 [ 200/312 ( 64%)] Loss: 4.36 (4.29) Time: 0.403s, 2541.28/s (0.414s, 2470.86/s) LR: 2.209e-01 Data: 0.027 (0.032) +Train: 70 [ 250/312 ( 80%)] Loss: 4.29 (4.30) Time: 0.410s, 2499.60/s (0.413s, 2480.12/s) LR: 2.209e-01 Data: 0.027 (0.031) +Train: 70 [ 300/312 ( 96%)] Loss: 4.48 (4.32) Time: 0.412s, 2486.22/s (0.412s, 2482.56/s) LR: 2.209e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.426 (1.426) Loss: 3.314 ( 3.314) Acc@1: 40.332 ( 40.332) Acc@5: 62.891 ( 62.891) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.078 ( 3.292) Acc@1: 44.340 ( 40.444) Acc@5: 65.566 ( 63.378) +Current checkpoints: + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-52.pth.tar', 41.433999997558594) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-61.pth.tar', 41.02999997802734) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-56.pth.tar', 40.981999959716795) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-50.pth.tar', 40.79600005126953) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-57.pth.tar', 40.771999975585935) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-63.pth.tar', 40.76000002685547) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-58.pth.tar', 40.74600000488281) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-54.pth.tar', 40.596) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-70.pth.tar', 40.44399999755859) + ('./output/train/ImageNetTraining40.0-frac-1over4/checkpoint-55.pth.tar', 40.43199999755859) + +Train: 71 [ 0/312 ( 0%)] Loss: 4.19 (4.19) Time: 1.612s, 635.19/s (1.612s, 635.19/s) LR: 2.167e-01 Data: 1.239 (1.239) +Train: 71 [ 50/312 ( 16%)] Loss: 4.18 (4.18) Time: 0.403s, 2540.50/s (0.428s, 2390.75/s) LR: 2.167e-01 Data: 0.027 (0.051) +Train: 71 [ 100/312 ( 32%)] Loss: 4.22 (4.22) Time: 0.407s, 2513.79/s (0.418s, 2450.52/s) LR: 2.167e-01 Data: 0.027 (0.040) +Train: 71 [ 150/312 ( 48%)] Loss: 4.21 (4.24) Time: 0.412s, 2488.39/s (0.415s, 2464.56/s) LR: 2.167e-01 Data: 0.027 (0.036) +Train: 71 [ 200/312 ( 64%)] Loss: 4.31 (4.26) Time: 0.407s, 2518.39/s (0.414s, 2473.74/s) LR: 2.167e-01 Data: 0.027 (0.034) +Train: 71 [ 250/312 ( 80%)] Loss: 4.36 (4.28) Time: 0.408s, 2510.19/s (0.413s, 2481.70/s) LR: 2.167e-01 Data: 0.027 (0.032) +Train: 71 [ 300/312 ( 96%)] Loss: 4.40 (4.29) Time: 0.408s, 2508.79/s (0.412s, 2485.02/s) LR: 2.167e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.431 ( 3.431) Acc@1: 38.574 ( 38.574) Acc@5: 61.426 ( 61.426) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 3.156 ( 3.386) Acc@1: 41.863 ( 39.072) Acc@5: 66.745 ( 61.836) +Train: 72 [ 0/312 ( 0%)] Loss: 4.16 (4.16) Time: 1.637s, 625.51/s (1.637s, 625.51/s) LR: 2.126e-01 Data: 1.262 (1.262) +Train: 72 [ 50/312 ( 16%)] Loss: 4.32 (4.17) Time: 0.408s, 2507.61/s (0.434s, 2358.40/s) LR: 2.126e-01 Data: 0.027 (0.051) +Train: 72 [ 100/312 ( 32%)] Loss: 4.25 (4.20) Time: 0.412s, 2483.64/s (0.423s, 2423.52/s) LR: 2.126e-01 Data: 0.026 (0.040) +Train: 72 [ 150/312 ( 48%)] Loss: 4.31 (4.22) Time: 0.407s, 2515.69/s (0.418s, 2447.00/s) LR: 2.126e-01 Data: 0.027 (0.035) +Train: 72 [ 200/312 ( 64%)] Loss: 4.34 (4.24) Time: 0.412s, 2484.92/s (0.416s, 2461.10/s) LR: 2.126e-01 Data: 0.029 (0.034) +Train: 72 [ 250/312 ( 80%)] Loss: 4.36 (4.25) Time: 0.407s, 2517.35/s (0.415s, 2467.77/s) LR: 2.126e-01 Data: 0.027 (0.032) +Train: 72 [ 300/312 ( 96%)] Loss: 4.35 (4.27) Time: 0.408s, 2510.91/s (0.414s, 2473.56/s) LR: 2.126e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 3.375 ( 3.375) Acc@1: 40.820 ( 40.820) Acc@5: 61.328 ( 61.328) +Test: [ 48/48] Time: 0.089 (0.329) Loss: 3.217 ( 3.426) Acc@1: 41.863 ( 38.456) Acc@5: 65.212 ( 60.690) +Train: 73 [ 0/312 ( 0%)] Loss: 4.14 (4.14) Time: 1.890s, 541.92/s (1.890s, 541.92/s) LR: 2.084e-01 Data: 1.514 (1.514) +Train: 73 [ 50/312 ( 16%)] Loss: 4.26 (4.16) Time: 0.409s, 2504.79/s (0.439s, 2331.72/s) LR: 2.084e-01 Data: 0.027 (0.056) +Train: 73 [ 100/312 ( 32%)] Loss: 4.06 (4.19) Time: 0.407s, 2513.81/s (0.424s, 2412.86/s) LR: 2.084e-01 Data: 0.027 (0.042) +Train: 73 [ 150/312 ( 48%)] Loss: 4.34 (4.21) Time: 0.409s, 2505.76/s (0.419s, 2441.90/s) LR: 2.084e-01 Data: 0.027 (0.037) +Train: 73 [ 200/312 ( 64%)] Loss: 4.28 (4.22) Time: 0.411s, 2489.08/s (0.417s, 2456.30/s) LR: 2.084e-01 Data: 0.027 (0.035) +Train: 73 [ 250/312 ( 80%)] Loss: 4.34 (4.24) Time: 0.405s, 2527.60/s (0.415s, 2467.26/s) LR: 2.084e-01 Data: 0.027 (0.033) +Train: 73 [ 300/312 ( 96%)] Loss: 4.31 (4.26) Time: 0.410s, 2498.29/s (0.414s, 2473.74/s) LR: 2.084e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.502 (1.502) Loss: 3.398 ( 3.398) Acc@1: 39.062 ( 39.062) Acc@5: 61.328 ( 61.328) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 3.141 ( 3.385) Acc@1: 42.689 ( 39.418) Acc@5: 66.863 ( 61.622) +Train: 74 [ 0/312 ( 0%)] Loss: 4.02 (4.02) Time: 1.897s, 539.73/s (1.897s, 539.73/s) LR: 2.042e-01 Data: 1.522 (1.522) +Train: 74 [ 50/312 ( 16%)] Loss: 4.18 (4.13) Time: 0.413s, 2481.87/s (0.440s, 2329.18/s) LR: 2.042e-01 Data: 0.027 (0.056) +Train: 74 [ 100/312 ( 32%)] Loss: 4.12 (4.16) Time: 0.405s, 2531.24/s (0.424s, 2416.35/s) LR: 2.042e-01 Data: 0.026 (0.042) +Train: 74 [ 150/312 ( 48%)] Loss: 4.33 (4.18) Time: 0.405s, 2527.54/s (0.418s, 2450.91/s) LR: 2.042e-01 Data: 0.026 (0.037) +Train: 74 [ 200/312 ( 64%)] Loss: 4.26 (4.20) Time: 0.410s, 2496.33/s (0.415s, 2467.70/s) LR: 2.042e-01 Data: 0.028 (0.035) +Train: 74 [ 250/312 ( 80%)] Loss: 4.35 (4.22) Time: 0.410s, 2500.46/s (0.414s, 2475.35/s) LR: 2.042e-01 Data: 0.027 (0.033) +Train: 74 [ 300/312 ( 96%)] Loss: 4.35 (4.23) Time: 0.408s, 2506.97/s (0.413s, 2478.24/s) LR: 2.042e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.471 (1.471) Loss: 3.344 ( 3.344) Acc@1: 41.699 ( 41.699) Acc@5: 63.086 ( 63.086) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.210 ( 3.402) Acc@1: 39.387 ( 38.902) Acc@5: 63.561 ( 61.286) +Train: 75 [ 0/312 ( 0%)] Loss: 4.13 (4.13) Time: 1.636s, 625.82/s (1.636s, 625.82/s) LR: 2.000e-01 Data: 1.102 (1.102) +Train: 75 [ 50/312 ( 16%)] Loss: 4.09 (4.12) Time: 0.405s, 2525.50/s (0.429s, 2386.53/s) LR: 2.000e-01 Data: 0.027 (0.048) +Train: 75 [ 100/312 ( 32%)] Loss: 4.16 (4.14) Time: 0.409s, 2502.13/s (0.419s, 2445.48/s) LR: 2.000e-01 Data: 0.027 (0.038) +Train: 75 [ 150/312 ( 48%)] Loss: 4.31 (4.17) Time: 0.410s, 2495.89/s (0.416s, 2461.48/s) LR: 2.000e-01 Data: 0.028 (0.035) +Train: 75 [ 200/312 ( 64%)] Loss: 4.09 (4.18) Time: 0.406s, 2519.68/s (0.414s, 2472.44/s) LR: 2.000e-01 Data: 0.028 (0.033) +Train: 75 [ 250/312 ( 80%)] Loss: 4.27 (4.20) Time: 0.404s, 2536.22/s (0.412s, 2482.66/s) LR: 2.000e-01 Data: 0.027 (0.032) +Train: 75 [ 300/312 ( 96%)] Loss: 4.38 (4.21) Time: 0.407s, 2517.38/s (0.411s, 2488.55/s) LR: 2.000e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 3.235 ( 3.235) Acc@1: 41.699 ( 41.699) Acc@5: 64.551 ( 64.551) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.111 ( 3.339) Acc@1: 40.920 ( 39.356) Acc@5: 66.274 ( 62.078) +Train: 76 [ 0/312 ( 0%)] Loss: 4.11 (4.11) Time: 1.913s, 535.39/s (1.913s, 535.39/s) LR: 1.958e-01 Data: 1.537 (1.537) +Train: 76 [ 50/312 ( 16%)] Loss: 4.14 (4.09) Time: 0.406s, 2521.54/s (0.438s, 2335.44/s) LR: 1.958e-01 Data: 0.027 (0.057) +Train: 76 [ 100/312 ( 32%)] Loss: 4.19 (4.11) Time: 0.404s, 2535.95/s (0.422s, 2424.66/s) LR: 1.958e-01 Data: 0.029 (0.043) +Train: 76 [ 150/312 ( 48%)] Loss: 4.17 (4.14) Time: 0.408s, 2512.80/s (0.417s, 2457.28/s) LR: 1.958e-01 Data: 0.029 (0.038) +Train: 76 [ 200/312 ( 64%)] Loss: 4.29 (4.15) Time: 0.414s, 2472.98/s (0.415s, 2469.09/s) LR: 1.958e-01 Data: 0.027 (0.035) +Train: 76 [ 250/312 ( 80%)] Loss: 4.30 (4.17) Time: 0.404s, 2531.59/s (0.414s, 2476.27/s) LR: 1.958e-01 Data: 0.028 (0.034) +Train: 76 [ 300/312 ( 96%)] Loss: 4.29 (4.18) Time: 0.399s, 2568.67/s (0.412s, 2487.41/s) LR: 1.958e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.415 (1.415) Loss: 3.357 ( 3.357) Acc@1: 39.941 ( 39.941) Acc@5: 61.328 ( 61.328) +Test: [ 48/48] Time: 0.087 (0.328) Loss: 3.153 ( 3.442) Acc@1: 40.212 ( 38.378) Acc@5: 66.038 ( 60.404) +Train: 77 [ 0/312 ( 0%)] Loss: 4.08 (4.08) Time: 1.705s, 600.66/s (1.705s, 600.66/s) LR: 1.916e-01 Data: 1.159 (1.159) +Train: 77 [ 50/312 ( 16%)] Loss: 4.12 (4.09) Time: 0.400s, 2561.26/s (0.425s, 2408.31/s) LR: 1.916e-01 Data: 0.027 (0.050) +Train: 77 [ 100/312 ( 32%)] Loss: 4.01 (4.10) Time: 0.402s, 2547.21/s (0.413s, 2477.71/s) LR: 1.916e-01 Data: 0.028 (0.039) +Train: 77 [ 150/312 ( 48%)] Loss: 4.18 (4.13) Time: 0.403s, 2543.20/s (0.410s, 2498.11/s) LR: 1.916e-01 Data: 0.027 (0.035) +Train: 77 [ 200/312 ( 64%)] Loss: 4.20 (4.14) Time: 0.409s, 2505.76/s (0.409s, 2502.90/s) LR: 1.916e-01 Data: 0.028 (0.033) +Train: 77 [ 250/312 ( 80%)] Loss: 4.30 (4.15) Time: 0.413s, 2481.48/s (0.409s, 2500.65/s) LR: 1.916e-01 Data: 0.027 (0.032) +Train: 77 [ 300/312 ( 96%)] Loss: 4.28 (4.17) Time: 0.404s, 2534.53/s (0.409s, 2504.79/s) LR: 1.916e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.442 (1.442) Loss: 3.446 ( 3.446) Acc@1: 39.258 ( 39.258) Acc@5: 60.059 ( 60.059) +Test: [ 48/48] Time: 0.087 (0.329) Loss: 3.227 ( 3.476) Acc@1: 42.925 ( 38.278) Acc@5: 64.151 ( 60.046) +Train: 78 [ 0/312 ( 0%)] Loss: 4.01 (4.01) Time: 2.055s, 498.40/s (2.055s, 498.40/s) LR: 1.874e-01 Data: 1.688 (1.688) +Train: 78 [ 50/312 ( 16%)] Loss: 4.03 (4.04) Time: 0.400s, 2560.19/s (0.432s, 2371.48/s) LR: 1.874e-01 Data: 0.028 (0.060) +Train: 78 [ 100/312 ( 32%)] Loss: 4.17 (4.08) Time: 0.399s, 2568.85/s (0.416s, 2460.59/s) LR: 1.874e-01 Data: 0.026 (0.044) +Train: 78 [ 150/312 ( 48%)] Loss: 4.11 (4.10) Time: 0.408s, 2507.82/s (0.412s, 2487.92/s) LR: 1.874e-01 Data: 0.032 (0.038) +Train: 78 [ 200/312 ( 64%)] Loss: 4.30 (4.11) Time: 0.407s, 2517.04/s (0.410s, 2498.58/s) LR: 1.874e-01 Data: 0.028 (0.036) +Train: 78 [ 250/312 ( 80%)] Loss: 4.20 (4.13) Time: 0.409s, 2500.97/s (0.410s, 2499.44/s) LR: 1.874e-01 Data: 0.027 (0.034) +Train: 78 [ 300/312 ( 96%)] Loss: 4.17 (4.14) Time: 0.411s, 2491.44/s (0.410s, 2497.17/s) LR: 1.874e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 3.526 ( 3.526) Acc@1: 36.621 ( 36.621) Acc@5: 57.812 ( 57.812) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.288 ( 3.539) Acc@1: 39.858 ( 36.852) Acc@5: 61.792 ( 58.972) +Train: 79 [ 0/312 ( 0%)] Loss: 4.07 (4.07) Time: 1.572s, 651.59/s (1.572s, 651.59/s) LR: 1.833e-01 Data: 1.161 (1.161) +Train: 79 [ 50/312 ( 16%)] Loss: 4.01 (4.03) Time: 0.405s, 2526.47/s (0.427s, 2396.10/s) LR: 1.833e-01 Data: 0.026 (0.050) +Train: 79 [ 100/312 ( 32%)] Loss: 4.08 (4.05) Time: 0.409s, 2501.15/s (0.417s, 2453.12/s) LR: 1.833e-01 Data: 0.027 (0.038) +Train: 79 [ 150/312 ( 48%)] Loss: 4.12 (4.07) Time: 0.410s, 2496.03/s (0.415s, 2466.44/s) LR: 1.833e-01 Data: 0.028 (0.034) +Train: 79 [ 200/312 ( 64%)] Loss: 4.09 (4.09) Time: 0.412s, 2484.72/s (0.414s, 2475.87/s) LR: 1.833e-01 Data: 0.028 (0.033) +Train: 79 [ 250/312 ( 80%)] Loss: 4.16 (4.11) Time: 0.411s, 2493.24/s (0.413s, 2481.60/s) LR: 1.833e-01 Data: 0.028 (0.032) +Train: 79 [ 300/312 ( 96%)] Loss: 4.28 (4.12) Time: 0.415s, 2469.30/s (0.412s, 2483.43/s) LR: 1.833e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 3.334 ( 3.334) Acc@1: 40.137 ( 40.137) Acc@5: 62.598 ( 62.598) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.163 ( 3.367) Acc@1: 41.274 ( 39.428) Acc@5: 64.269 ( 61.242) +Train: 80 [ 0/312 ( 0%)] Loss: 3.98 (3.98) Time: 1.659s, 617.06/s (1.659s, 617.06/s) LR: 1.791e-01 Data: 1.089 (1.089) +Train: 80 [ 50/312 ( 16%)] Loss: 4.07 (4.00) Time: 0.406s, 2523.24/s (0.429s, 2384.80/s) LR: 1.791e-01 Data: 0.027 (0.049) +Train: 80 [ 100/312 ( 32%)] Loss: 4.22 (4.03) Time: 0.407s, 2518.20/s (0.418s, 2451.56/s) LR: 1.791e-01 Data: 0.026 (0.038) +Train: 80 [ 150/312 ( 48%)] Loss: 4.07 (4.04) Time: 0.409s, 2503.21/s (0.415s, 2467.07/s) LR: 1.791e-01 Data: 0.028 (0.034) +Train: 80 [ 200/312 ( 64%)] Loss: 4.07 (4.07) Time: 0.407s, 2517.21/s (0.414s, 2472.56/s) LR: 1.791e-01 Data: 0.027 (0.033) +Train: 80 [ 250/312 ( 80%)] Loss: 4.19 (4.08) Time: 0.404s, 2537.12/s (0.412s, 2483.19/s) LR: 1.791e-01 Data: 0.028 (0.032) +Train: 80 [ 300/312 ( 96%)] Loss: 4.25 (4.10) Time: 0.403s, 2541.07/s (0.411s, 2492.90/s) LR: 1.791e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.416 (1.416) Loss: 3.511 ( 3.511) Acc@1: 37.988 ( 37.988) Acc@5: 60.059 ( 60.059) +Test: [ 48/48] Time: 0.087 (0.330) Loss: 3.312 ( 3.565) Acc@1: 37.972 ( 36.762) Acc@5: 61.792 ( 58.264) +Train: 81 [ 0/312 ( 0%)] Loss: 3.97 (3.97) Time: 1.495s, 684.81/s (1.495s, 684.81/s) LR: 1.749e-01 Data: 1.127 (1.127) +Train: 81 [ 50/312 ( 16%)] Loss: 3.95 (3.98) Time: 0.403s, 2539.46/s (0.426s, 2402.31/s) LR: 1.749e-01 Data: 0.027 (0.051) +Train: 81 [ 100/312 ( 32%)] Loss: 4.07 (4.01) Time: 0.407s, 2518.26/s (0.416s, 2458.89/s) LR: 1.749e-01 Data: 0.027 (0.039) +Train: 81 [ 150/312 ( 48%)] Loss: 4.15 (4.03) Time: 0.410s, 2499.11/s (0.414s, 2471.33/s) LR: 1.749e-01 Data: 0.027 (0.035) +Train: 81 [ 200/312 ( 64%)] Loss: 4.06 (4.04) Time: 0.406s, 2523.21/s (0.413s, 2480.37/s) LR: 1.749e-01 Data: 0.026 (0.034) +Train: 81 [ 250/312 ( 80%)] Loss: 4.15 (4.06) Time: 0.406s, 2521.75/s (0.412s, 2488.11/s) LR: 1.749e-01 Data: 0.028 (0.032) +Train: 81 [ 300/312 ( 96%)] Loss: 4.11 (4.08) Time: 0.410s, 2498.20/s (0.411s, 2492.02/s) LR: 1.749e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 3.365 ( 3.365) Acc@1: 40.234 ( 40.234) Acc@5: 62.500 ( 62.500) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.214 ( 3.440) Acc@1: 41.038 ( 38.550) Acc@5: 63.443 ( 60.332) +Train: 82 [ 0/312 ( 0%)] Loss: 3.92 (3.92) Time: 1.524s, 672.02/s (1.524s, 672.02/s) LR: 1.708e-01 Data: 1.126 (1.126) +Train: 82 [ 50/312 ( 16%)] Loss: 3.94 (3.96) Time: 0.406s, 2520.24/s (0.430s, 2379.42/s) LR: 1.708e-01 Data: 0.027 (0.049) +Train: 82 [ 100/312 ( 32%)] Loss: 4.10 (3.99) Time: 0.411s, 2493.47/s (0.420s, 2438.04/s) LR: 1.708e-01 Data: 0.028 (0.039) +Train: 82 [ 150/312 ( 48%)] Loss: 4.07 (4.01) Time: 0.408s, 2509.10/s (0.417s, 2457.12/s) LR: 1.708e-01 Data: 0.026 (0.035) +Train: 82 [ 200/312 ( 64%)] Loss: 4.10 (4.02) Time: 0.405s, 2527.34/s (0.414s, 2471.85/s) LR: 1.708e-01 Data: 0.028 (0.033) +Train: 82 [ 250/312 ( 80%)] Loss: 4.15 (4.04) Time: 0.409s, 2505.23/s (0.413s, 2480.27/s) LR: 1.708e-01 Data: 0.028 (0.032) +Train: 82 [ 300/312 ( 96%)] Loss: 3.99 (4.06) Time: 0.412s, 2483.35/s (0.412s, 2483.01/s) LR: 1.708e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.426 (1.426) Loss: 3.453 ( 3.453) Acc@1: 36.914 ( 36.914) Acc@5: 60.645 ( 60.645) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.160 ( 3.465) Acc@1: 43.396 ( 38.472) Acc@5: 63.679 ( 59.696) +Train: 83 [ 0/312 ( 0%)] Loss: 3.87 (3.87) Time: 1.927s, 531.41/s (1.927s, 531.41/s) LR: 1.666e-01 Data: 1.556 (1.556) +Train: 83 [ 50/312 ( 16%)] Loss: 3.94 (3.94) Time: 0.403s, 2540.82/s (0.433s, 2366.49/s) LR: 1.666e-01 Data: 0.027 (0.058) +Train: 83 [ 100/312 ( 32%)] Loss: 4.05 (3.97) Time: 0.403s, 2542.79/s (0.418s, 2452.25/s) LR: 1.666e-01 Data: 0.026 (0.043) +Train: 83 [ 150/312 ( 48%)] Loss: 4.01 (4.00) Time: 0.404s, 2536.71/s (0.413s, 2479.17/s) LR: 1.666e-01 Data: 0.026 (0.038) +Train: 83 [ 200/312 ( 64%)] Loss: 4.03 (4.01) Time: 0.411s, 2489.75/s (0.412s, 2487.18/s) LR: 1.666e-01 Data: 0.028 (0.035) +Train: 83 [ 250/312 ( 80%)] Loss: 4.13 (4.03) Time: 0.406s, 2522.60/s (0.411s, 2489.02/s) LR: 1.666e-01 Data: 0.027 (0.034) +Train: 83 [ 300/312 ( 96%)] Loss: 4.15 (4.04) Time: 0.406s, 2522.13/s (0.411s, 2493.79/s) LR: 1.666e-01 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.430 (1.430) Loss: 3.449 ( 3.449) Acc@1: 38.184 ( 38.184) Acc@5: 61.426 ( 61.426) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.302 ( 3.512) Acc@1: 42.099 ( 38.060) Acc@5: 62.146 ( 59.254) +Train: 84 [ 0/312 ( 0%)] Loss: 3.96 (3.96) Time: 1.731s, 591.41/s (1.731s, 591.41/s) LR: 1.625e-01 Data: 1.359 (1.359) +Train: 84 [ 50/312 ( 16%)] Loss: 4.06 (3.92) Time: 0.408s, 2511.60/s (0.434s, 2359.83/s) LR: 1.625e-01 Data: 0.028 (0.053) +Train: 84 [ 100/312 ( 32%)] Loss: 3.99 (3.95) Time: 0.410s, 2498.97/s (0.423s, 2423.37/s) LR: 1.625e-01 Data: 0.024 (0.041) +Train: 84 [ 150/312 ( 48%)] Loss: 4.08 (3.97) Time: 0.407s, 2517.12/s (0.417s, 2456.55/s) LR: 1.625e-01 Data: 0.032 (0.036) +Train: 84 [ 200/312 ( 64%)] Loss: 4.12 (3.99) Time: 0.403s, 2543.56/s (0.413s, 2477.21/s) LR: 1.625e-01 Data: 0.027 (0.034) +Train: 84 [ 250/312 ( 80%)] Loss: 4.06 (4.00) Time: 0.405s, 2527.42/s (0.411s, 2489.16/s) LR: 1.625e-01 Data: 0.025 (0.033) +Train: 84 [ 300/312 ( 96%)] Loss: 4.14 (4.02) Time: 0.411s, 2494.14/s (0.411s, 2494.21/s) LR: 1.625e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.471 ( 3.471) Acc@1: 38.770 ( 38.770) Acc@5: 59.277 ( 59.277) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.228 ( 3.474) Acc@1: 40.920 ( 37.936) Acc@5: 61.439 ( 59.408) +Train: 85 [ 0/312 ( 0%)] Loss: 3.90 (3.90) Time: 1.775s, 577.00/s (1.775s, 577.00/s) LR: 1.584e-01 Data: 1.144 (1.144) +Train: 85 [ 50/312 ( 16%)] Loss: 4.03 (3.90) Time: 0.415s, 2465.09/s (0.438s, 2340.28/s) LR: 1.584e-01 Data: 0.029 (0.049) +Train: 85 [ 100/312 ( 32%)] Loss: 3.97 (3.92) Time: 0.406s, 2521.91/s (0.424s, 2414.83/s) LR: 1.584e-01 Data: 0.028 (0.039) +Train: 85 [ 150/312 ( 48%)] Loss: 3.86 (3.94) Time: 0.403s, 2541.55/s (0.418s, 2447.92/s) LR: 1.584e-01 Data: 0.026 (0.035) +Train: 85 [ 200/312 ( 64%)] Loss: 4.05 (3.96) Time: 0.409s, 2503.12/s (0.415s, 2465.76/s) LR: 1.584e-01 Data: 0.027 (0.033) +Train: 85 [ 250/312 ( 80%)] Loss: 4.09 (3.98) Time: 0.411s, 2491.85/s (0.414s, 2472.82/s) LR: 1.584e-01 Data: 0.027 (0.032) +Train: 85 [ 300/312 ( 96%)] Loss: 4.12 (4.00) Time: 0.414s, 2471.91/s (0.414s, 2474.93/s) LR: 1.584e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.444 (1.444) Loss: 3.485 ( 3.485) Acc@1: 37.891 ( 37.891) Acc@5: 59.570 ( 59.570) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.248 ( 3.491) Acc@1: 39.741 ( 38.134) Acc@5: 63.090 ( 59.760) +Train: 86 [ 0/312 ( 0%)] Loss: 3.87 (3.87) Time: 1.597s, 641.38/s (1.597s, 641.38/s) LR: 1.543e-01 Data: 1.190 (1.190) +Train: 86 [ 50/312 ( 16%)] Loss: 3.88 (3.89) Time: 0.410s, 2499.30/s (0.433s, 2363.97/s) LR: 1.543e-01 Data: 0.028 (0.050) +Train: 86 [ 100/312 ( 32%)] Loss: 3.95 (3.90) Time: 0.411s, 2489.82/s (0.422s, 2428.08/s) LR: 1.543e-01 Data: 0.025 (0.038) +Train: 86 [ 150/312 ( 48%)] Loss: 3.93 (3.92) Time: 0.409s, 2500.78/s (0.418s, 2450.39/s) LR: 1.543e-01 Data: 0.027 (0.035) +Train: 86 [ 200/312 ( 64%)] Loss: 4.00 (3.94) Time: 0.409s, 2500.83/s (0.416s, 2462.63/s) LR: 1.543e-01 Data: 0.028 (0.033) +Train: 86 [ 250/312 ( 80%)] Loss: 3.98 (3.96) Time: 0.409s, 2500.81/s (0.415s, 2469.05/s) LR: 1.543e-01 Data: 0.028 (0.032) +Train: 86 [ 300/312 ( 96%)] Loss: 3.92 (3.97) Time: 0.412s, 2484.51/s (0.414s, 2474.22/s) LR: 1.543e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.441 (1.441) Loss: 3.528 ( 3.528) Acc@1: 35.742 ( 35.742) Acc@5: 57.910 ( 57.910) +Test: [ 48/48] Time: 0.089 (0.332) Loss: 3.324 ( 3.618) Acc@1: 39.741 ( 35.878) Acc@5: 62.028 ( 57.392) +Train: 87 [ 0/312 ( 0%)] Loss: 3.81 (3.81) Time: 1.606s, 637.70/s (1.606s, 637.70/s) LR: 1.503e-01 Data: 1.232 (1.232) +Train: 87 [ 50/312 ( 16%)] Loss: 3.88 (3.86) Time: 0.410s, 2497.11/s (0.433s, 2364.10/s) LR: 1.503e-01 Data: 0.027 (0.051) +Train: 87 [ 100/312 ( 32%)] Loss: 3.96 (3.88) Time: 0.408s, 2509.46/s (0.422s, 2427.46/s) LR: 1.503e-01 Data: 0.028 (0.040) +Train: 87 [ 150/312 ( 48%)] Loss: 3.98 (3.89) Time: 0.402s, 2546.79/s (0.416s, 2464.13/s) LR: 1.503e-01 Data: 0.028 (0.035) +Train: 87 [ 200/312 ( 64%)] Loss: 3.99 (3.91) Time: 0.402s, 2546.76/s (0.412s, 2485.42/s) LR: 1.503e-01 Data: 0.028 (0.033) +Train: 87 [ 250/312 ( 80%)] Loss: 3.90 (3.93) Time: 0.403s, 2541.67/s (0.410s, 2498.29/s) LR: 1.503e-01 Data: 0.027 (0.032) +Train: 87 [ 300/312 ( 96%)] Loss: 3.97 (3.95) Time: 0.402s, 2545.90/s (0.409s, 2505.45/s) LR: 1.503e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.440 (1.440) Loss: 3.501 ( 3.501) Acc@1: 37.891 ( 37.891) Acc@5: 57.422 ( 57.422) +Test: [ 48/48] Time: 0.088 (0.332) Loss: 3.326 ( 3.577) Acc@1: 41.274 ( 36.874) Acc@5: 60.495 ( 57.810) +Train: 88 [ 0/312 ( 0%)] Loss: 3.83 (3.83) Time: 1.814s, 564.42/s (1.814s, 564.42/s) LR: 1.462e-01 Data: 1.441 (1.441) +Train: 88 [ 50/312 ( 16%)] Loss: 3.96 (3.83) Time: 0.408s, 2509.30/s (0.435s, 2355.13/s) LR: 1.462e-01 Data: 0.028 (0.055) +Train: 88 [ 100/312 ( 32%)] Loss: 4.00 (3.86) Time: 0.411s, 2488.90/s (0.423s, 2420.97/s) LR: 1.462e-01 Data: 0.028 (0.041) +Train: 88 [ 150/312 ( 48%)] Loss: 3.96 (3.88) Time: 0.408s, 2511.38/s (0.419s, 2443.55/s) LR: 1.462e-01 Data: 0.027 (0.037) +Train: 88 [ 200/312 ( 64%)] Loss: 3.92 (3.90) Time: 0.411s, 2489.63/s (0.417s, 2456.09/s) LR: 1.462e-01 Data: 0.028 (0.034) +Train: 88 [ 250/312 ( 80%)] Loss: 4.08 (3.91) Time: 0.411s, 2492.57/s (0.416s, 2464.33/s) LR: 1.462e-01 Data: 0.028 (0.033) +Train: 88 [ 300/312 ( 96%)] Loss: 4.03 (3.93) Time: 0.411s, 2494.21/s (0.415s, 2469.31/s) LR: 1.462e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.453 (1.453) Loss: 3.478 ( 3.478) Acc@1: 37.500 ( 37.500) Acc@5: 59.473 ( 59.473) +Test: [ 48/48] Time: 0.089 (0.329) Loss: 3.248 ( 3.513) Acc@1: 40.566 ( 37.620) Acc@5: 62.618 ( 58.934) +Train: 89 [ 0/312 ( 0%)] Loss: 3.82 (3.82) Time: 1.862s, 550.00/s (1.862s, 550.00/s) LR: 1.422e-01 Data: 1.485 (1.485) +Train: 89 [ 50/312 ( 16%)] Loss: 3.85 (3.82) Time: 0.411s, 2493.90/s (0.441s, 2323.56/s) LR: 1.422e-01 Data: 0.026 (0.056) +Train: 89 [ 100/312 ( 32%)] Loss: 3.91 (3.84) Time: 0.404s, 2534.59/s (0.424s, 2412.39/s) LR: 1.422e-01 Data: 0.029 (0.042) +Train: 89 [ 150/312 ( 48%)] Loss: 4.00 (3.86) Time: 0.402s, 2546.25/s (0.418s, 2448.95/s) LR: 1.422e-01 Data: 0.027 (0.037) +Train: 89 [ 200/312 ( 64%)] Loss: 3.96 (3.88) Time: 0.405s, 2528.24/s (0.415s, 2468.52/s) LR: 1.422e-01 Data: 0.026 (0.035) +Train: 89 [ 250/312 ( 80%)] Loss: 3.78 (3.89) Time: 0.407s, 2517.33/s (0.413s, 2478.15/s) LR: 1.422e-01 Data: 0.027 (0.033) +Train: 89 [ 300/312 ( 96%)] Loss: 4.11 (3.90) Time: 0.416s, 2463.74/s (0.413s, 2479.80/s) LR: 1.422e-01 Data: 0.032 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.441 (1.441) Loss: 3.479 ( 3.479) Acc@1: 38.770 ( 38.770) Acc@5: 61.230 ( 61.230) +Test: [ 48/48] Time: 0.089 (0.332) Loss: 3.269 ( 3.516) Acc@1: 41.392 ( 37.874) Acc@5: 63.443 ( 59.096) +Train: 90 [ 0/312 ( 0%)] Loss: 3.74 (3.74) Time: 1.568s, 653.16/s (1.568s, 653.16/s) LR: 1.382e-01 Data: 1.193 (1.193) +Train: 90 [ 50/312 ( 16%)] Loss: 3.87 (3.79) Time: 0.411s, 2489.65/s (0.431s, 2378.43/s) LR: 1.382e-01 Data: 0.026 (0.051) +Train: 90 [ 100/312 ( 32%)] Loss: 3.92 (3.82) Time: 0.407s, 2515.25/s (0.420s, 2440.27/s) LR: 1.382e-01 Data: 0.027 (0.039) +Train: 90 [ 150/312 ( 48%)] Loss: 3.91 (3.84) Time: 0.411s, 2492.57/s (0.417s, 2456.84/s) LR: 1.382e-01 Data: 0.028 (0.035) +Train: 90 [ 200/312 ( 64%)] Loss: 3.97 (3.85) Time: 0.407s, 2516.06/s (0.415s, 2467.01/s) LR: 1.382e-01 Data: 0.027 (0.033) +Train: 90 [ 250/312 ( 80%)] Loss: 3.92 (3.87) Time: 0.407s, 2518.27/s (0.413s, 2477.64/s) LR: 1.382e-01 Data: 0.026 (0.032) +Train: 90 [ 300/312 ( 96%)] Loss: 3.90 (3.88) Time: 0.407s, 2518.54/s (0.412s, 2485.12/s) LR: 1.382e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.464 ( 3.464) Acc@1: 37.793 ( 37.793) Acc@5: 59.473 ( 59.473) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.267 ( 3.519) Acc@1: 42.217 ( 37.716) Acc@5: 61.321 ( 58.834) +Train: 91 [ 0/312 ( 0%)] Loss: 3.72 (3.72) Time: 1.754s, 583.94/s (1.754s, 583.94/s) LR: 1.342e-01 Data: 1.381 (1.381) +Train: 91 [ 50/312 ( 16%)] Loss: 3.56 (3.76) Time: 0.411s, 2491.28/s (0.434s, 2358.61/s) LR: 1.342e-01 Data: 0.027 (0.053) +Train: 91 [ 100/312 ( 32%)] Loss: 3.74 (3.79) Time: 0.409s, 2504.70/s (0.422s, 2425.81/s) LR: 1.342e-01 Data: 0.026 (0.040) +Train: 91 [ 150/312 ( 48%)] Loss: 3.93 (3.81) Time: 0.411s, 2493.78/s (0.418s, 2448.50/s) LR: 1.342e-01 Data: 0.028 (0.036) +Train: 91 [ 200/312 ( 64%)] Loss: 3.97 (3.83) Time: 0.411s, 2492.00/s (0.416s, 2461.02/s) LR: 1.342e-01 Data: 0.027 (0.034) +Train: 91 [ 250/312 ( 80%)] Loss: 3.91 (3.84) Time: 0.408s, 2507.93/s (0.415s, 2465.57/s) LR: 1.342e-01 Data: 0.027 (0.032) +Train: 91 [ 300/312 ( 96%)] Loss: 4.00 (3.86) Time: 0.406s, 2519.38/s (0.414s, 2472.79/s) LR: 1.342e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.421 (1.421) Loss: 3.550 ( 3.550) Acc@1: 38.477 ( 38.477) Acc@5: 58.691 ( 58.691) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.350 ( 3.591) Acc@1: 39.033 ( 36.826) Acc@5: 59.788 ( 57.516) +Train: 92 [ 0/312 ( 0%)] Loss: 3.78 (3.78) Time: 1.800s, 568.76/s (1.800s, 568.76/s) LR: 1.303e-01 Data: 1.053 (1.053) +Train: 92 [ 50/312 ( 16%)] Loss: 3.84 (3.75) Time: 0.406s, 2522.16/s (0.432s, 2369.75/s) LR: 1.303e-01 Data: 0.028 (0.047) +Train: 92 [ 100/312 ( 32%)] Loss: 3.63 (3.76) Time: 0.413s, 2476.63/s (0.421s, 2434.17/s) LR: 1.303e-01 Data: 0.028 (0.038) +Train: 92 [ 150/312 ( 48%)] Loss: 3.83 (3.78) Time: 0.403s, 2540.87/s (0.417s, 2456.62/s) LR: 1.303e-01 Data: 0.028 (0.034) +Train: 92 [ 200/312 ( 64%)] Loss: 3.96 (3.80) Time: 0.402s, 2545.51/s (0.413s, 2477.60/s) LR: 1.303e-01 Data: 0.027 (0.033) +Train: 92 [ 250/312 ( 80%)] Loss: 3.87 (3.81) Time: 0.403s, 2538.67/s (0.411s, 2492.51/s) LR: 1.303e-01 Data: 0.029 (0.032) +Train: 92 [ 300/312 ( 96%)] Loss: 3.86 (3.83) Time: 0.399s, 2568.86/s (0.409s, 2503.21/s) LR: 1.303e-01 Data: 0.025 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.409 (1.409) Loss: 3.559 ( 3.559) Acc@1: 38.965 ( 38.965) Acc@5: 57.812 ( 57.812) +Test: [ 48/48] Time: 0.087 (0.327) Loss: 3.283 ( 3.544) Acc@1: 41.038 ( 37.390) Acc@5: 61.792 ( 58.418) +Train: 93 [ 0/312 ( 0%)] Loss: 3.79 (3.79) Time: 1.477s, 693.52/s (1.477s, 693.52/s) LR: 1.264e-01 Data: 1.109 (1.109) +Train: 93 [ 50/312 ( 16%)] Loss: 3.73 (3.73) Time: 0.405s, 2525.33/s (0.425s, 2407.82/s) LR: 1.264e-01 Data: 0.028 (0.049) +Train: 93 [ 100/312 ( 32%)] Loss: 3.68 (3.74) Time: 0.408s, 2510.15/s (0.416s, 2460.89/s) LR: 1.264e-01 Data: 0.027 (0.038) +Train: 93 [ 150/312 ( 48%)] Loss: 3.91 (3.77) Time: 0.412s, 2485.60/s (0.414s, 2470.69/s) LR: 1.264e-01 Data: 0.027 (0.035) +Train: 93 [ 200/312 ( 64%)] Loss: 4.00 (3.79) Time: 0.409s, 2505.92/s (0.414s, 2475.19/s) LR: 1.264e-01 Data: 0.028 (0.033) +Train: 93 [ 250/312 ( 80%)] Loss: 3.85 (3.80) Time: 0.405s, 2527.91/s (0.412s, 2483.24/s) LR: 1.264e-01 Data: 0.027 (0.032) +Train: 93 [ 300/312 ( 96%)] Loss: 3.93 (3.81) Time: 0.405s, 2531.23/s (0.411s, 2488.80/s) LR: 1.264e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 3.541 ( 3.541) Acc@1: 37.500 ( 37.500) Acc@5: 57.715 ( 57.715) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.300 ( 3.564) Acc@1: 40.802 ( 37.228) Acc@5: 61.675 ( 58.018) +Train: 94 [ 0/312 ( 0%)] Loss: 3.55 (3.55) Time: 1.624s, 630.68/s (1.624s, 630.68/s) LR: 1.225e-01 Data: 1.249 (1.249) +Train: 94 [ 50/312 ( 16%)] Loss: 3.60 (3.70) Time: 0.411s, 2491.76/s (0.434s, 2361.60/s) LR: 1.225e-01 Data: 0.029 (0.051) +Train: 94 [ 100/312 ( 32%)] Loss: 3.82 (3.73) Time: 0.406s, 2523.75/s (0.421s, 2435.17/s) LR: 1.225e-01 Data: 0.027 (0.039) +Train: 94 [ 150/312 ( 48%)] Loss: 3.65 (3.75) Time: 0.408s, 2508.03/s (0.416s, 2463.07/s) LR: 1.225e-01 Data: 0.028 (0.036) +Train: 94 [ 200/312 ( 64%)] Loss: 3.90 (3.76) Time: 0.410s, 2497.90/s (0.414s, 2474.30/s) LR: 1.225e-01 Data: 0.026 (0.033) +Train: 94 [ 250/312 ( 80%)] Loss: 3.90 (3.78) Time: 0.408s, 2508.52/s (0.413s, 2480.14/s) LR: 1.225e-01 Data: 0.029 (0.032) +Train: 94 [ 300/312 ( 96%)] Loss: 3.90 (3.79) Time: 0.403s, 2543.17/s (0.411s, 2488.54/s) LR: 1.225e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.409 (1.409) Loss: 3.650 ( 3.650) Acc@1: 37.012 ( 37.012) Acc@5: 56.152 ( 56.152) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.425 ( 3.671) Acc@1: 39.269 ( 35.926) Acc@5: 60.849 ( 56.446) +Train: 95 [ 0/312 ( 0%)] Loss: 3.59 (3.59) Time: 1.815s, 564.09/s (1.815s, 564.09/s) LR: 1.187e-01 Data: 1.076 (1.076) +Train: 95 [ 50/312 ( 16%)] Loss: 3.61 (3.69) Time: 0.406s, 2523.96/s (0.431s, 2374.21/s) LR: 1.187e-01 Data: 0.027 (0.048) +Train: 95 [ 100/312 ( 32%)] Loss: 3.69 (3.71) Time: 0.411s, 2493.95/s (0.420s, 2439.73/s) LR: 1.187e-01 Data: 0.027 (0.038) +Train: 95 [ 150/312 ( 48%)] Loss: 3.78 (3.72) Time: 0.412s, 2485.60/s (0.417s, 2455.93/s) LR: 1.187e-01 Data: 0.027 (0.035) +Train: 95 [ 200/312 ( 64%)] Loss: 3.77 (3.74) Time: 0.410s, 2495.62/s (0.415s, 2465.59/s) LR: 1.187e-01 Data: 0.027 (0.033) +Train: 95 [ 250/312 ( 80%)] Loss: 3.76 (3.76) Time: 0.410s, 2496.00/s (0.414s, 2474.27/s) LR: 1.187e-01 Data: 0.028 (0.032) +Train: 95 [ 300/312 ( 96%)] Loss: 3.77 (3.77) Time: 0.410s, 2495.78/s (0.413s, 2478.88/s) LR: 1.187e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.436 (1.436) Loss: 3.658 ( 3.658) Acc@1: 37.207 ( 37.207) Acc@5: 56.445 ( 56.445) +Test: [ 48/48] Time: 0.089 (0.329) Loss: 3.375 ( 3.662) Acc@1: 39.387 ( 36.204) Acc@5: 60.377 ( 56.500) +Train: 96 [ 0/312 ( 0%)] Loss: 3.64 (3.64) Time: 1.867s, 548.60/s (1.867s, 548.60/s) LR: 1.148e-01 Data: 1.491 (1.491) +Train: 96 [ 50/312 ( 16%)] Loss: 3.66 (3.66) Time: 0.411s, 2493.38/s (0.439s, 2333.75/s) LR: 1.148e-01 Data: 0.031 (0.058) +Train: 96 [ 100/312 ( 32%)] Loss: 3.68 (3.69) Time: 0.411s, 2490.67/s (0.425s, 2411.22/s) LR: 1.148e-01 Data: 0.027 (0.043) +Train: 96 [ 150/312 ( 48%)] Loss: 3.60 (3.70) Time: 0.414s, 2475.41/s (0.420s, 2436.26/s) LR: 1.148e-01 Data: 0.027 (0.038) +Train: 96 [ 200/312 ( 64%)] Loss: 3.80 (3.71) Time: 0.406s, 2522.51/s (0.417s, 2453.15/s) LR: 1.148e-01 Data: 0.027 (0.035) +Train: 96 [ 250/312 ( 80%)] Loss: 3.74 (3.73) Time: 0.405s, 2525.93/s (0.415s, 2467.78/s) LR: 1.148e-01 Data: 0.028 (0.034) +Train: 96 [ 300/312 ( 96%)] Loss: 3.87 (3.74) Time: 0.404s, 2531.99/s (0.413s, 2477.75/s) LR: 1.148e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 3.572 ( 3.572) Acc@1: 37.598 ( 37.598) Acc@5: 57.715 ( 57.715) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.374 ( 3.633) Acc@1: 38.679 ( 36.486) Acc@5: 60.377 ( 56.946) +Train: 97 [ 0/312 ( 0%)] Loss: 3.50 (3.50) Time: 1.627s, 629.35/s (1.627s, 629.35/s) LR: 1.111e-01 Data: 1.255 (1.255) +Train: 97 [ 50/312 ( 16%)] Loss: 3.71 (3.63) Time: 0.408s, 2509.60/s (0.431s, 2375.10/s) LR: 1.111e-01 Data: 0.027 (0.051) +Train: 97 [ 100/312 ( 32%)] Loss: 3.80 (3.66) Time: 0.412s, 2483.41/s (0.421s, 2433.76/s) LR: 1.111e-01 Data: 0.027 (0.039) +Train: 97 [ 150/312 ( 48%)] Loss: 3.83 (3.68) Time: 0.409s, 2501.02/s (0.417s, 2452.75/s) LR: 1.111e-01 Data: 0.027 (0.035) +Train: 97 [ 200/312 ( 64%)] Loss: 3.76 (3.69) Time: 0.414s, 2475.68/s (0.416s, 2461.46/s) LR: 1.111e-01 Data: 0.028 (0.034) +Train: 97 [ 250/312 ( 80%)] Loss: 3.89 (3.71) Time: 0.415s, 2468.10/s (0.415s, 2466.85/s) LR: 1.111e-01 Data: 0.031 (0.032) +Train: 97 [ 300/312 ( 96%)] Loss: 3.78 (3.72) Time: 0.410s, 2495.62/s (0.415s, 2469.98/s) LR: 1.111e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.447 (1.447) Loss: 3.568 ( 3.568) Acc@1: 36.328 ( 36.328) Acc@5: 57.227 ( 57.227) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.382 ( 3.592) Acc@1: 39.976 ( 36.910) Acc@5: 61.439 ( 57.656) +Train: 98 [ 0/312 ( 0%)] Loss: 3.57 (3.57) Time: 1.796s, 570.03/s (1.796s, 570.03/s) LR: 1.073e-01 Data: 1.238 (1.238) +Train: 98 [ 50/312 ( 16%)] Loss: 3.73 (3.62) Time: 0.409s, 2504.32/s (0.435s, 2355.22/s) LR: 1.073e-01 Data: 0.028 (0.050) +Train: 98 [ 100/312 ( 32%)] Loss: 3.73 (3.63) Time: 0.408s, 2507.80/s (0.423s, 2420.77/s) LR: 1.073e-01 Data: 0.027 (0.039) +Train: 98 [ 150/312 ( 48%)] Loss: 3.68 (3.65) Time: 0.404s, 2534.85/s (0.417s, 2454.75/s) LR: 1.073e-01 Data: 0.026 (0.035) +Train: 98 [ 200/312 ( 64%)] Loss: 3.72 (3.67) Time: 0.404s, 2536.95/s (0.414s, 2475.48/s) LR: 1.073e-01 Data: 0.026 (0.033) +Train: 98 [ 250/312 ( 80%)] Loss: 3.66 (3.69) Time: 0.403s, 2541.54/s (0.411s, 2488.46/s) LR: 1.073e-01 Data: 0.028 (0.032) +Train: 98 [ 300/312 ( 96%)] Loss: 3.92 (3.70) Time: 0.406s, 2519.57/s (0.410s, 2494.96/s) LR: 1.073e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.674 ( 3.674) Acc@1: 35.254 ( 35.254) Acc@5: 56.445 ( 56.445) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.425 ( 3.685) Acc@1: 37.854 ( 35.594) Acc@5: 60.495 ( 56.220) +Train: 99 [ 0/312 ( 0%)] Loss: 3.57 (3.57) Time: 1.601s, 639.79/s (1.601s, 639.79/s) LR: 1.036e-01 Data: 1.105 (1.105) +Train: 99 [ 50/312 ( 16%)] Loss: 3.62 (3.59) Time: 0.412s, 2483.83/s (0.435s, 2352.32/s) LR: 1.036e-01 Data: 0.027 (0.050) +Train: 99 [ 100/312 ( 32%)] Loss: 3.57 (3.62) Time: 0.411s, 2491.08/s (0.424s, 2415.24/s) LR: 1.036e-01 Data: 0.027 (0.039) +Train: 99 [ 150/312 ( 48%)] Loss: 3.68 (3.63) Time: 0.407s, 2518.71/s (0.420s, 2440.19/s) LR: 1.036e-01 Data: 0.027 (0.035) +Train: 99 [ 200/312 ( 64%)] Loss: 3.67 (3.65) Time: 0.405s, 2527.81/s (0.416s, 2459.85/s) LR: 1.036e-01 Data: 0.027 (0.033) +Train: 99 [ 250/312 ( 80%)] Loss: 3.78 (3.67) Time: 0.405s, 2526.49/s (0.414s, 2473.17/s) LR: 1.036e-01 Data: 0.027 (0.032) +Train: 99 [ 300/312 ( 96%)] Loss: 3.83 (3.68) Time: 0.412s, 2485.95/s (0.413s, 2480.65/s) LR: 1.036e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.459 (1.459) Loss: 3.754 ( 3.754) Acc@1: 35.254 ( 35.254) Acc@5: 54.688 ( 54.688) +Test: [ 48/48] Time: 0.089 (0.329) Loss: 3.481 ( 3.755) Acc@1: 38.090 ( 35.156) Acc@5: 60.024 ( 55.428) +Train: 100 [ 0/312 ( 0%)] Loss: 3.70 (3.70) Time: 1.630s, 628.04/s (1.630s, 628.04/s) LR: 1.000e-01 Data: 1.255 (1.255) +Train: 100 [ 50/312 ( 16%)] Loss: 3.60 (3.56) Time: 0.402s, 2544.34/s (0.430s, 2382.25/s) LR: 1.000e-01 Data: 0.027 (0.051) +Train: 100 [ 100/312 ( 32%)] Loss: 3.60 (3.59) Time: 0.404s, 2536.25/s (0.418s, 2452.56/s) LR: 1.000e-01 Data: 0.027 (0.039) +Train: 100 [ 150/312 ( 48%)] Loss: 3.73 (3.61) Time: 0.405s, 2527.46/s (0.414s, 2476.22/s) LR: 1.000e-01 Data: 0.025 (0.035) +Train: 100 [ 200/312 ( 64%)] Loss: 3.81 (3.63) Time: 0.414s, 2470.88/s (0.412s, 2484.44/s) LR: 1.000e-01 Data: 0.033 (0.033) +Train: 100 [ 250/312 ( 80%)] Loss: 3.65 (3.64) Time: 0.410s, 2499.72/s (0.412s, 2485.76/s) LR: 1.000e-01 Data: 0.027 (0.032) +Train: 100 [ 300/312 ( 96%)] Loss: 3.85 (3.65) Time: 0.409s, 2503.39/s (0.412s, 2487.06/s) LR: 1.000e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 3.659 ( 3.659) Acc@1: 36.523 ( 36.523) Acc@5: 58.008 ( 58.008) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.392 ( 3.699) Acc@1: 39.151 ( 36.010) Acc@5: 60.495 ( 55.918) +Train: 101 [ 0/312 ( 0%)] Loss: 3.50 (3.50) Time: 1.801s, 568.61/s (1.801s, 568.61/s) LR: 9.639e-02 Data: 1.426 (1.426) +Train: 101 [ 50/312 ( 16%)] Loss: 3.55 (3.55) Time: 0.412s, 2486.49/s (0.438s, 2336.31/s) LR: 9.639e-02 Data: 0.027 (0.055) +Train: 101 [ 100/312 ( 32%)] Loss: 3.57 (3.57) Time: 0.408s, 2512.05/s (0.425s, 2411.71/s) LR: 9.639e-02 Data: 0.027 (0.041) +Train: 101 [ 150/312 ( 48%)] Loss: 3.72 (3.59) Time: 0.404s, 2532.14/s (0.418s, 2450.82/s) LR: 9.639e-02 Data: 0.028 (0.037) +Train: 101 [ 200/312 ( 64%)] Loss: 3.79 (3.61) Time: 0.404s, 2536.88/s (0.414s, 2473.12/s) LR: 9.639e-02 Data: 0.027 (0.035) +Train: 101 [ 250/312 ( 80%)] Loss: 3.67 (3.62) Time: 0.402s, 2548.57/s (0.412s, 2486.52/s) LR: 9.639e-02 Data: 0.027 (0.033) +Train: 101 [ 300/312 ( 96%)] Loss: 3.71 (3.63) Time: 0.406s, 2524.24/s (0.411s, 2493.90/s) LR: 9.639e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.472 (1.472) Loss: 3.630 ( 3.630) Acc@1: 36.035 ( 36.035) Acc@5: 56.445 ( 56.445) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.417 ( 3.672) Acc@1: 40.802 ( 35.996) Acc@5: 60.495 ( 56.428) +Train: 102 [ 0/312 ( 0%)] Loss: 3.59 (3.59) Time: 1.665s, 615.15/s (1.665s, 615.15/s) LR: 9.283e-02 Data: 1.291 (1.291) +Train: 102 [ 50/312 ( 16%)] Loss: 3.65 (3.53) Time: 0.412s, 2488.38/s (0.434s, 2359.83/s) LR: 9.283e-02 Data: 0.027 (0.052) +Train: 102 [ 100/312 ( 32%)] Loss: 3.69 (3.54) Time: 0.408s, 2510.20/s (0.423s, 2423.33/s) LR: 9.283e-02 Data: 0.027 (0.040) +Train: 102 [ 150/312 ( 48%)] Loss: 3.60 (3.57) Time: 0.409s, 2502.15/s (0.418s, 2452.23/s) LR: 9.283e-02 Data: 0.028 (0.036) +Train: 102 [ 200/312 ( 64%)] Loss: 3.65 (3.58) Time: 0.408s, 2511.58/s (0.415s, 2467.75/s) LR: 9.283e-02 Data: 0.027 (0.034) +Train: 102 [ 250/312 ( 80%)] Loss: 3.65 (3.60) Time: 0.418s, 2447.85/s (0.414s, 2473.67/s) LR: 9.283e-02 Data: 0.027 (0.032) +Train: 102 [ 300/312 ( 96%)] Loss: 3.69 (3.61) Time: 0.413s, 2476.51/s (0.414s, 2476.20/s) LR: 9.283e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.457 (1.457) Loss: 3.793 ( 3.793) Acc@1: 35.742 ( 35.742) Acc@5: 52.832 ( 52.832) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.586 ( 3.810) Acc@1: 35.613 ( 34.154) Acc@5: 56.722 ( 54.334) +Train: 103 [ 0/312 ( 0%)] Loss: 3.48 (3.48) Time: 1.877s, 545.53/s (1.877s, 545.53/s) LR: 8.932e-02 Data: 1.504 (1.504) +Train: 103 [ 50/312 ( 16%)] Loss: 3.49 (3.50) Time: 0.408s, 2510.68/s (0.434s, 2358.02/s) LR: 8.932e-02 Data: 0.028 (0.056) +Train: 103 [ 100/312 ( 32%)] Loss: 3.50 (3.53) Time: 0.414s, 2475.14/s (0.422s, 2423.70/s) LR: 8.932e-02 Data: 0.027 (0.042) +Train: 103 [ 150/312 ( 48%)] Loss: 3.64 (3.55) Time: 0.406s, 2520.24/s (0.419s, 2445.52/s) LR: 8.932e-02 Data: 0.027 (0.037) +Train: 103 [ 200/312 ( 64%)] Loss: 3.57 (3.56) Time: 0.406s, 2520.87/s (0.416s, 2462.19/s) LR: 8.932e-02 Data: 0.028 (0.035) +Train: 103 [ 250/312 ( 80%)] Loss: 3.64 (3.57) Time: 0.408s, 2507.07/s (0.414s, 2471.46/s) LR: 8.932e-02 Data: 0.027 (0.033) +Train: 103 [ 300/312 ( 96%)] Loss: 3.69 (3.59) Time: 0.412s, 2486.37/s (0.414s, 2473.90/s) LR: 8.932e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.463 (1.463) Loss: 3.693 ( 3.693) Acc@1: 36.230 ( 36.230) Acc@5: 56.445 ( 56.445) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 3.421 ( 3.668) Acc@1: 38.443 ( 36.200) Acc@5: 58.844 ( 56.554) +Train: 104 [ 0/312 ( 0%)] Loss: 3.58 (3.58) Time: 1.601s, 639.54/s (1.601s, 639.54/s) LR: 8.586e-02 Data: 1.138 (1.138) +Train: 104 [ 50/312 ( 16%)] Loss: 3.49 (3.48) Time: 0.404s, 2537.68/s (0.432s, 2372.72/s) LR: 8.586e-02 Data: 0.028 (0.050) +Train: 104 [ 100/312 ( 32%)] Loss: 3.63 (3.51) Time: 0.405s, 2527.83/s (0.419s, 2446.20/s) LR: 8.586e-02 Data: 0.027 (0.039) +Train: 104 [ 150/312 ( 48%)] Loss: 3.59 (3.52) Time: 0.411s, 2490.80/s (0.415s, 2466.86/s) LR: 8.586e-02 Data: 0.028 (0.035) +Train: 104 [ 200/312 ( 64%)] Loss: 3.60 (3.54) Time: 0.410s, 2496.49/s (0.414s, 2474.31/s) LR: 8.586e-02 Data: 0.028 (0.033) +Train: 104 [ 250/312 ( 80%)] Loss: 3.72 (3.55) Time: 0.408s, 2512.47/s (0.413s, 2478.13/s) LR: 8.586e-02 Data: 0.027 (0.032) +Train: 104 [ 300/312 ( 96%)] Loss: 3.63 (3.56) Time: 0.407s, 2515.46/s (0.412s, 2486.65/s) LR: 8.586e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.415 (1.415) Loss: 3.683 ( 3.683) Acc@1: 36.719 ( 36.719) Acc@5: 55.664 ( 55.664) +Test: [ 48/48] Time: 0.087 (0.328) Loss: 3.414 ( 3.634) Acc@1: 36.910 ( 36.482) Acc@5: 61.085 ( 57.040) +Train: 105 [ 0/312 ( 0%)] Loss: 3.52 (3.52) Time: 1.643s, 623.15/s (1.643s, 623.15/s) LR: 8.244e-02 Data: 1.276 (1.276) +Train: 105 [ 50/312 ( 16%)] Loss: 3.55 (3.47) Time: 0.402s, 2549.94/s (0.426s, 2401.42/s) LR: 8.244e-02 Data: 0.028 (0.053) +Train: 105 [ 100/312 ( 32%)] Loss: 3.56 (3.48) Time: 0.404s, 2533.62/s (0.415s, 2467.31/s) LR: 8.244e-02 Data: 0.027 (0.040) +Train: 105 [ 150/312 ( 48%)] Loss: 3.51 (3.50) Time: 0.409s, 2505.69/s (0.412s, 2485.05/s) LR: 8.244e-02 Data: 0.028 (0.036) +Train: 105 [ 200/312 ( 64%)] Loss: 3.52 (3.52) Time: 0.412s, 2486.05/s (0.412s, 2487.15/s) LR: 8.244e-02 Data: 0.027 (0.034) +Train: 105 [ 250/312 ( 80%)] Loss: 3.67 (3.53) Time: 0.410s, 2498.11/s (0.411s, 2488.65/s) LR: 8.244e-02 Data: 0.029 (0.033) +Train: 105 [ 300/312 ( 96%)] Loss: 3.68 (3.55) Time: 0.412s, 2483.83/s (0.411s, 2489.26/s) LR: 8.244e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 3.648 ( 3.648) Acc@1: 37.402 ( 37.402) Acc@5: 57.129 ( 57.129) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.417 ( 3.681) Acc@1: 38.090 ( 36.224) Acc@5: 59.906 ( 56.430) +Train: 106 [ 0/312 ( 0%)] Loss: 3.38 (3.38) Time: 1.674s, 611.61/s (1.674s, 611.61/s) LR: 7.908e-02 Data: 1.302 (1.302) +Train: 106 [ 50/312 ( 16%)] Loss: 3.45 (3.45) Time: 0.407s, 2517.59/s (0.432s, 2371.42/s) LR: 7.908e-02 Data: 0.028 (0.053) +Train: 106 [ 100/312 ( 32%)] Loss: 3.45 (3.47) Time: 0.416s, 2460.67/s (0.421s, 2433.10/s) LR: 7.908e-02 Data: 0.027 (0.040) +Train: 106 [ 150/312 ( 48%)] Loss: 3.52 (3.48) Time: 0.408s, 2511.52/s (0.417s, 2456.23/s) LR: 7.908e-02 Data: 0.027 (0.036) +Train: 106 [ 200/312 ( 64%)] Loss: 3.65 (3.49) Time: 0.411s, 2490.48/s (0.415s, 2466.65/s) LR: 7.908e-02 Data: 0.029 (0.034) +Train: 106 [ 250/312 ( 80%)] Loss: 3.59 (3.51) Time: 0.408s, 2510.62/s (0.414s, 2473.19/s) LR: 7.908e-02 Data: 0.029 (0.032) +Train: 106 [ 300/312 ( 96%)] Loss: 3.57 (3.52) Time: 0.405s, 2529.94/s (0.413s, 2480.68/s) LR: 7.908e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.417 (1.417) Loss: 3.708 ( 3.708) Acc@1: 34.961 ( 34.961) Acc@5: 55.176 ( 55.176) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.424 ( 3.684) Acc@1: 39.151 ( 35.820) Acc@5: 61.321 ( 56.422) +Train: 107 [ 0/312 ( 0%)] Loss: 3.39 (3.39) Time: 1.775s, 576.87/s (1.775s, 576.87/s) LR: 7.577e-02 Data: 1.403 (1.403) +Train: 107 [ 50/312 ( 16%)] Loss: 3.44 (3.44) Time: 0.409s, 2501.14/s (0.435s, 2355.21/s) LR: 7.577e-02 Data: 0.027 (0.054) +Train: 107 [ 100/312 ( 32%)] Loss: 3.51 (3.45) Time: 0.411s, 2494.44/s (0.423s, 2421.05/s) LR: 7.577e-02 Data: 0.034 (0.041) +Train: 107 [ 150/312 ( 48%)] Loss: 3.47 (3.46) Time: 0.404s, 2535.20/s (0.417s, 2454.82/s) LR: 7.577e-02 Data: 0.027 (0.037) +Train: 107 [ 200/312 ( 64%)] Loss: 3.51 (3.47) Time: 0.402s, 2548.46/s (0.414s, 2474.23/s) LR: 7.577e-02 Data: 0.028 (0.034) +Train: 107 [ 250/312 ( 80%)] Loss: 3.44 (3.48) Time: 0.404s, 2534.74/s (0.412s, 2485.62/s) LR: 7.577e-02 Data: 0.027 (0.033) +Train: 107 [ 300/312 ( 96%)] Loss: 3.52 (3.50) Time: 0.406s, 2519.43/s (0.411s, 2490.73/s) LR: 7.577e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.434 (1.434) Loss: 3.677 ( 3.677) Acc@1: 37.500 ( 37.500) Acc@5: 56.445 ( 56.445) +Test: [ 48/48] Time: 0.089 (0.329) Loss: 3.543 ( 3.727) Acc@1: 36.675 ( 35.876) Acc@5: 58.373 ( 55.742) +Train: 108 [ 0/312 ( 0%)] Loss: 3.41 (3.41) Time: 1.587s, 645.23/s (1.587s, 645.23/s) LR: 7.252e-02 Data: 1.211 (1.211) +Train: 108 [ 50/312 ( 16%)] Loss: 3.49 (3.40) Time: 0.409s, 2504.57/s (0.434s, 2359.85/s) LR: 7.252e-02 Data: 0.027 (0.050) +Train: 108 [ 100/312 ( 32%)] Loss: 3.54 (3.41) Time: 0.407s, 2518.04/s (0.421s, 2433.18/s) LR: 7.252e-02 Data: 0.029 (0.039) +Train: 108 [ 150/312 ( 48%)] Loss: 3.46 (3.43) Time: 0.406s, 2520.82/s (0.416s, 2459.72/s) LR: 7.252e-02 Data: 0.028 (0.035) +Train: 108 [ 200/312 ( 64%)] Loss: 3.47 (3.45) Time: 0.408s, 2510.62/s (0.414s, 2470.68/s) LR: 7.252e-02 Data: 0.027 (0.033) +Train: 108 [ 250/312 ( 80%)] Loss: 3.52 (3.46) Time: 0.408s, 2512.22/s (0.413s, 2477.58/s) LR: 7.252e-02 Data: 0.027 (0.032) +Train: 108 [ 300/312 ( 96%)] Loss: 3.59 (3.47) Time: 0.411s, 2489.62/s (0.413s, 2481.52/s) LR: 7.252e-02 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.447 (1.447) Loss: 3.766 ( 3.766) Acc@1: 35.645 ( 35.645) Acc@5: 55.566 ( 55.566) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 3.532 ( 3.720) Acc@1: 37.618 ( 35.570) Acc@5: 59.788 ( 55.736) +Train: 109 [ 0/312 ( 0%)] Loss: 3.38 (3.38) Time: 1.615s, 633.87/s (1.615s, 633.87/s) LR: 6.932e-02 Data: 1.241 (1.241) +Train: 109 [ 50/312 ( 16%)] Loss: 3.51 (3.39) Time: 0.410s, 2500.23/s (0.433s, 2362.34/s) LR: 6.932e-02 Data: 0.028 (0.051) +Train: 109 [ 100/312 ( 32%)] Loss: 3.41 (3.40) Time: 0.410s, 2495.63/s (0.422s, 2426.89/s) LR: 6.932e-02 Data: 0.028 (0.039) +Train: 109 [ 150/312 ( 48%)] Loss: 3.63 (3.41) Time: 0.410s, 2499.44/s (0.418s, 2451.44/s) LR: 6.932e-02 Data: 0.029 (0.035) +Train: 109 [ 200/312 ( 64%)] Loss: 3.47 (3.43) Time: 0.415s, 2468.21/s (0.415s, 2464.87/s) LR: 6.932e-02 Data: 0.027 (0.033) +Train: 109 [ 250/312 ( 80%)] Loss: 3.50 (3.44) Time: 0.407s, 2513.85/s (0.414s, 2472.76/s) LR: 6.932e-02 Data: 0.028 (0.032) +Train: 109 [ 300/312 ( 96%)] Loss: 3.56 (3.45) Time: 0.404s, 2531.64/s (0.413s, 2482.26/s) LR: 6.932e-02 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.416 (1.416) Loss: 3.699 ( 3.699) Acc@1: 35.742 ( 35.742) Acc@5: 55.176 ( 55.176) +Test: [ 48/48] Time: 0.087 (0.328) Loss: 3.496 ( 3.722) Acc@1: 36.910 ( 35.720) Acc@5: 60.142 ( 55.780) +Train: 110 [ 0/312 ( 0%)] Loss: 3.35 (3.35) Time: 1.660s, 616.81/s (1.660s, 616.81/s) LR: 6.617e-02 Data: 1.292 (1.292) +Train: 110 [ 50/312 ( 16%)] Loss: 3.36 (3.37) Time: 0.404s, 2535.29/s (0.429s, 2389.45/s) LR: 6.617e-02 Data: 0.028 (0.052) +Train: 110 [ 100/312 ( 32%)] Loss: 3.45 (3.38) Time: 0.407s, 2516.61/s (0.418s, 2450.11/s) LR: 6.617e-02 Data: 0.027 (0.040) +Train: 110 [ 150/312 ( 48%)] Loss: 3.43 (3.40) Time: 0.412s, 2485.18/s (0.415s, 2466.09/s) LR: 6.617e-02 Data: 0.029 (0.036) +Train: 110 [ 200/312 ( 64%)] Loss: 3.38 (3.41) Time: 0.413s, 2479.64/s (0.414s, 2472.18/s) LR: 6.617e-02 Data: 0.028 (0.034) +Train: 110 [ 250/312 ( 80%)] Loss: 3.38 (3.42) Time: 0.408s, 2510.75/s (0.413s, 2476.71/s) LR: 6.617e-02 Data: 0.028 (0.033) +Train: 110 [ 300/312 ( 96%)] Loss: 3.39 (3.43) Time: 0.415s, 2467.65/s (0.413s, 2481.38/s) LR: 6.617e-02 Data: 0.032 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.438 (1.438) Loss: 3.723 ( 3.723) Acc@1: 35.449 ( 35.449) Acc@5: 56.250 ( 56.250) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.494 ( 3.747) Acc@1: 39.387 ( 35.450) Acc@5: 59.316 ( 55.564) +Train: 111 [ 0/312 ( 0%)] Loss: 3.30 (3.30) Time: 1.582s, 647.27/s (1.582s, 647.27/s) LR: 6.309e-02 Data: 1.062 (1.062) +Train: 111 [ 50/312 ( 16%)] Loss: 3.44 (3.36) Time: 0.408s, 2511.37/s (0.432s, 2368.46/s) LR: 6.309e-02 Data: 0.024 (0.047) +Train: 111 [ 100/312 ( 32%)] Loss: 3.39 (3.37) Time: 0.410s, 2498.94/s (0.421s, 2434.33/s) LR: 6.309e-02 Data: 0.027 (0.037) +Train: 111 [ 150/312 ( 48%)] Loss: 3.51 (3.37) Time: 0.410s, 2500.61/s (0.417s, 2456.02/s) LR: 6.309e-02 Data: 0.027 (0.034) +Train: 111 [ 200/312 ( 64%)] Loss: 3.41 (3.39) Time: 0.408s, 2512.14/s (0.415s, 2469.14/s) LR: 6.309e-02 Data: 0.027 (0.032) +Train: 111 [ 250/312 ( 80%)] Loss: 3.55 (3.40) Time: 0.414s, 2472.64/s (0.414s, 2475.66/s) LR: 6.309e-02 Data: 0.028 (0.031) +Train: 111 [ 300/312 ( 96%)] Loss: 3.35 (3.41) Time: 0.408s, 2512.26/s (0.413s, 2480.65/s) LR: 6.309e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.456 (1.456) Loss: 3.734 ( 3.734) Acc@1: 33.984 ( 33.984) Acc@5: 56.250 ( 56.250) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.539 ( 3.760) Acc@1: 36.439 ( 35.396) Acc@5: 57.901 ( 55.146) +Train: 112 [ 0/312 ( 0%)] Loss: 3.35 (3.35) Time: 1.584s, 646.59/s (1.584s, 646.59/s) LR: 6.007e-02 Data: 1.151 (1.151) +Train: 112 [ 50/312 ( 16%)] Loss: 3.42 (3.32) Time: 0.407s, 2513.74/s (0.430s, 2380.53/s) LR: 6.007e-02 Data: 0.027 (0.049) +Train: 112 [ 100/312 ( 32%)] Loss: 3.42 (3.33) Time: 0.410s, 2495.54/s (0.420s, 2436.63/s) LR: 6.007e-02 Data: 0.028 (0.038) +Train: 112 [ 150/312 ( 48%)] Loss: 3.44 (3.35) Time: 0.407s, 2514.99/s (0.416s, 2460.50/s) LR: 6.007e-02 Data: 0.027 (0.035) +Train: 112 [ 200/312 ( 64%)] Loss: 3.36 (3.36) Time: 0.407s, 2516.01/s (0.414s, 2476.25/s) LR: 6.007e-02 Data: 0.027 (0.033) +Train: 112 [ 250/312 ( 80%)] Loss: 3.36 (3.37) Time: 0.409s, 2503.02/s (0.412s, 2484.84/s) LR: 6.007e-02 Data: 0.027 (0.032) +Train: 112 [ 300/312 ( 96%)] Loss: 3.45 (3.38) Time: 0.412s, 2485.80/s (0.412s, 2486.77/s) LR: 6.007e-02 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.434 (1.434) Loss: 3.719 ( 3.719) Acc@1: 35.254 ( 35.254) Acc@5: 52.930 ( 52.930) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.457 ( 3.731) Acc@1: 39.033 ( 35.416) Acc@5: 58.491 ( 55.512) +Train: 113 [ 0/312 ( 0%)] Loss: 3.25 (3.25) Time: 1.643s, 623.12/s (1.643s, 623.12/s) LR: 5.711e-02 Data: 1.203 (1.203) +Train: 113 [ 50/312 ( 16%)] Loss: 3.38 (3.30) Time: 0.407s, 2515.79/s (0.430s, 2383.11/s) LR: 5.711e-02 Data: 0.024 (0.051) +Train: 113 [ 100/312 ( 32%)] Loss: 3.38 (3.32) Time: 0.407s, 2515.03/s (0.418s, 2450.68/s) LR: 5.711e-02 Data: 0.026 (0.039) +Train: 113 [ 150/312 ( 48%)] Loss: 3.32 (3.33) Time: 0.408s, 2510.48/s (0.415s, 2466.11/s) LR: 5.711e-02 Data: 0.027 (0.035) +Train: 113 [ 200/312 ( 64%)] Loss: 3.43 (3.35) Time: 0.409s, 2504.04/s (0.414s, 2472.99/s) LR: 5.711e-02 Data: 0.027 (0.033) +Train: 113 [ 250/312 ( 80%)] Loss: 3.40 (3.35) Time: 0.408s, 2512.44/s (0.413s, 2479.72/s) LR: 5.711e-02 Data: 0.027 (0.032) +Train: 113 [ 300/312 ( 96%)] Loss: 3.27 (3.36) Time: 0.410s, 2499.83/s (0.412s, 2483.51/s) LR: 5.711e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.416 (1.416) Loss: 3.771 ( 3.771) Acc@1: 34.961 ( 34.961) Acc@5: 55.859 ( 55.859) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.523 ( 3.788) Acc@1: 38.090 ( 35.078) Acc@5: 58.255 ( 54.914) +Train: 114 [ 0/312 ( 0%)] Loss: 3.30 (3.30) Time: 1.760s, 581.88/s (1.760s, 581.88/s) LR: 5.421e-02 Data: 1.384 (1.384) +Train: 114 [ 50/312 ( 16%)] Loss: 3.31 (3.28) Time: 0.413s, 2476.52/s (0.438s, 2338.20/s) LR: 5.421e-02 Data: 0.028 (0.054) +Train: 114 [ 100/312 ( 32%)] Loss: 3.31 (3.30) Time: 0.406s, 2521.91/s (0.424s, 2416.37/s) LR: 5.421e-02 Data: 0.028 (0.041) +Train: 114 [ 150/312 ( 48%)] Loss: 3.44 (3.31) Time: 0.404s, 2531.90/s (0.418s, 2447.75/s) LR: 5.421e-02 Data: 0.029 (0.037) +Train: 114 [ 200/312 ( 64%)] Loss: 3.36 (3.33) Time: 0.408s, 2512.32/s (0.415s, 2465.43/s) LR: 5.421e-02 Data: 0.029 (0.034) +Train: 114 [ 250/312 ( 80%)] Loss: 3.34 (3.33) Time: 0.413s, 2479.20/s (0.414s, 2472.11/s) LR: 5.421e-02 Data: 0.027 (0.033) +Train: 114 [ 300/312 ( 96%)] Loss: 3.36 (3.34) Time: 0.412s, 2485.96/s (0.414s, 2474.44/s) LR: 5.421e-02 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 3.829 ( 3.829) Acc@1: 31.934 ( 31.934) Acc@5: 55.176 ( 55.176) +Test: [ 48/48] Time: 0.088 (0.327) Loss: 3.570 ( 3.814) Acc@1: 35.377 ( 34.604) Acc@5: 56.132 ( 54.438) +Train: 115 [ 0/312 ( 0%)] Loss: 3.37 (3.37) Time: 1.664s, 615.46/s (1.664s, 615.46/s) LR: 5.137e-02 Data: 1.222 (1.222) +Train: 115 [ 50/312 ( 16%)] Loss: 3.41 (3.27) Time: 0.408s, 2509.51/s (0.432s, 2368.90/s) LR: 5.137e-02 Data: 0.028 (0.051) +Train: 115 [ 100/312 ( 32%)] Loss: 3.31 (3.29) Time: 0.416s, 2459.26/s (0.422s, 2428.47/s) LR: 5.137e-02 Data: 0.032 (0.039) +Train: 115 [ 150/312 ( 48%)] Loss: 3.35 (3.30) Time: 0.408s, 2511.14/s (0.418s, 2451.96/s) LR: 5.137e-02 Data: 0.027 (0.035) +Train: 115 [ 200/312 ( 64%)] Loss: 3.35 (3.30) Time: 0.414s, 2473.06/s (0.416s, 2461.03/s) LR: 5.137e-02 Data: 0.029 (0.034) +Train: 115 [ 250/312 ( 80%)] Loss: 3.34 (3.31) Time: 0.406s, 2519.96/s (0.415s, 2469.95/s) LR: 5.137e-02 Data: 0.027 (0.032) +Train: 115 [ 300/312 ( 96%)] Loss: 3.28 (3.32) Time: 0.406s, 2522.45/s (0.413s, 2477.53/s) LR: 5.137e-02 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.426 (1.426) Loss: 3.831 ( 3.831) Acc@1: 34.082 ( 34.082) Acc@5: 54.980 ( 54.980) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.610 ( 3.845) Acc@1: 36.675 ( 34.430) Acc@5: 55.189 ( 54.088) +Train: 116 [ 0/312 ( 0%)] Loss: 3.16 (3.16) Time: 1.540s, 665.06/s (1.540s, 665.06/s) LR: 4.860e-02 Data: 1.117 (1.117) +Train: 116 [ 50/312 ( 16%)] Loss: 3.16 (3.24) Time: 0.416s, 2463.96/s (0.437s, 2343.73/s) LR: 4.860e-02 Data: 0.028 (0.049) +Train: 116 [ 100/312 ( 32%)] Loss: 3.30 (3.25) Time: 0.414s, 2471.23/s (0.424s, 2417.55/s) LR: 4.860e-02 Data: 0.034 (0.039) +Train: 116 [ 150/312 ( 48%)] Loss: 3.33 (3.27) Time: 0.406s, 2521.78/s (0.418s, 2450.65/s) LR: 4.860e-02 Data: 0.027 (0.035) +Train: 116 [ 200/312 ( 64%)] Loss: 3.42 (3.28) Time: 0.411s, 2494.33/s (0.415s, 2466.89/s) LR: 4.860e-02 Data: 0.028 (0.033) +Train: 116 [ 250/312 ( 80%)] Loss: 3.22 (3.29) Time: 0.413s, 2479.04/s (0.414s, 2472.08/s) LR: 4.860e-02 Data: 0.027 (0.032) +Train: 116 [ 300/312 ( 96%)] Loss: 3.38 (3.30) Time: 0.407s, 2515.97/s (0.414s, 2476.31/s) LR: 4.860e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.465 (1.465) Loss: 3.758 ( 3.758) Acc@1: 34.766 ( 34.766) Acc@5: 53.613 ( 53.613) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.562 ( 3.797) Acc@1: 37.146 ( 34.794) Acc@5: 58.019 ( 54.754) +Train: 117 [ 0/312 ( 0%)] Loss: 3.20 (3.20) Time: 1.619s, 632.39/s (1.619s, 632.39/s) LR: 4.590e-02 Data: 1.248 (1.248) +Train: 117 [ 50/312 ( 16%)] Loss: 3.29 (3.23) Time: 0.410s, 2496.27/s (0.432s, 2368.92/s) LR: 4.590e-02 Data: 0.026 (0.051) +Train: 117 [ 100/312 ( 32%)] Loss: 3.28 (3.25) Time: 0.412s, 2482.77/s (0.421s, 2432.32/s) LR: 4.590e-02 Data: 0.027 (0.040) +Train: 117 [ 150/312 ( 48%)] Loss: 3.19 (3.26) Time: 0.407s, 2515.95/s (0.417s, 2453.41/s) LR: 4.590e-02 Data: 0.026 (0.036) +Train: 117 [ 200/312 ( 64%)] Loss: 3.30 (3.27) Time: 0.409s, 2502.60/s (0.415s, 2465.21/s) LR: 4.590e-02 Data: 0.026 (0.034) +Train: 117 [ 250/312 ( 80%)] Loss: 3.28 (3.28) Time: 0.412s, 2483.87/s (0.415s, 2470.00/s) LR: 4.590e-02 Data: 0.028 (0.032) +Train: 117 [ 300/312 ( 96%)] Loss: 3.26 (3.28) Time: 0.411s, 2490.42/s (0.414s, 2472.90/s) LR: 4.590e-02 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.449 (1.449) Loss: 3.790 ( 3.790) Acc@1: 34.570 ( 34.570) Acc@5: 55.176 ( 55.176) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.541 ( 3.766) Acc@1: 38.090 ( 35.426) Acc@5: 56.250 ( 55.044) +Train: 118 [ 0/312 ( 0%)] Loss: 3.21 (3.21) Time: 1.706s, 600.17/s (1.706s, 600.17/s) LR: 4.326e-02 Data: 1.282 (1.282) +Train: 118 [ 50/312 ( 16%)] Loss: 3.23 (3.21) Time: 0.407s, 2516.00/s (0.430s, 2383.15/s) LR: 4.326e-02 Data: 0.032 (0.052) +Train: 118 [ 100/312 ( 32%)] Loss: 3.25 (3.22) Time: 0.406s, 2519.57/s (0.418s, 2451.13/s) LR: 4.326e-02 Data: 0.028 (0.040) +Train: 118 [ 150/312 ( 48%)] Loss: 3.22 (3.23) Time: 0.414s, 2471.49/s (0.415s, 2466.82/s) LR: 4.326e-02 Data: 0.028 (0.036) +Train: 118 [ 200/312 ( 64%)] Loss: 3.25 (3.24) Time: 0.404s, 2532.76/s (0.414s, 2474.46/s) LR: 4.326e-02 Data: 0.029 (0.034) +Train: 118 [ 250/312 ( 80%)] Loss: 3.29 (3.25) Time: 0.404s, 2532.59/s (0.412s, 2485.96/s) LR: 4.326e-02 Data: 0.028 (0.032) +Train: 118 [ 300/312 ( 96%)] Loss: 3.30 (3.26) Time: 0.404s, 2536.47/s (0.410s, 2494.56/s) LR: 4.326e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 3.785 ( 3.785) Acc@1: 35.938 ( 35.938) Acc@5: 53.711 ( 53.711) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.553 ( 3.796) Acc@1: 36.910 ( 34.922) Acc@5: 58.726 ( 54.938) +Train: 119 [ 0/312 ( 0%)] Loss: 3.14 (3.14) Time: 1.563s, 655.00/s (1.563s, 655.00/s) LR: 4.069e-02 Data: 1.192 (1.192) +Train: 119 [ 50/312 ( 16%)] Loss: 3.30 (3.20) Time: 0.411s, 2494.36/s (0.429s, 2387.69/s) LR: 4.069e-02 Data: 0.028 (0.050) +Train: 119 [ 100/312 ( 32%)] Loss: 3.25 (3.21) Time: 0.410s, 2496.22/s (0.420s, 2439.29/s) LR: 4.069e-02 Data: 0.026 (0.039) +Train: 119 [ 150/312 ( 48%)] Loss: 3.26 (3.22) Time: 0.408s, 2510.89/s (0.416s, 2463.08/s) LR: 4.069e-02 Data: 0.028 (0.035) +Train: 119 [ 200/312 ( 64%)] Loss: 3.27 (3.23) Time: 0.405s, 2528.13/s (0.414s, 2476.31/s) LR: 4.069e-02 Data: 0.026 (0.033) +Train: 119 [ 250/312 ( 80%)] Loss: 3.33 (3.24) Time: 0.413s, 2480.16/s (0.413s, 2481.35/s) LR: 4.069e-02 Data: 0.029 (0.032) +Train: 119 [ 300/312 ( 96%)] Loss: 3.23 (3.24) Time: 0.407s, 2513.40/s (0.413s, 2482.31/s) LR: 4.069e-02 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 3.832 ( 3.832) Acc@1: 34.570 ( 34.570) Acc@5: 55.078 ( 55.078) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.542 ( 3.787) Acc@1: 35.377 ( 35.100) Acc@5: 57.311 ( 54.972) +Train: 120 [ 0/312 ( 0%)] Loss: 3.22 (3.22) Time: 1.625s, 630.30/s (1.625s, 630.30/s) LR: 3.820e-02 Data: 1.256 (1.256) +Train: 120 [ 50/312 ( 16%)] Loss: 3.30 (3.19) Time: 0.403s, 2539.00/s (0.428s, 2393.59/s) LR: 3.820e-02 Data: 0.023 (0.051) +Train: 120 [ 100/312 ( 32%)] Loss: 3.18 (3.20) Time: 0.410s, 2494.75/s (0.418s, 2452.46/s) LR: 3.820e-02 Data: 0.028 (0.040) +Train: 120 [ 150/312 ( 48%)] Loss: 3.30 (3.21) Time: 0.417s, 2457.27/s (0.415s, 2464.58/s) LR: 3.820e-02 Data: 0.028 (0.036) +Train: 120 [ 200/312 ( 64%)] Loss: 3.25 (3.22) Time: 0.414s, 2472.30/s (0.415s, 2469.78/s) LR: 3.820e-02 Data: 0.032 (0.034) +Train: 120 [ 250/312 ( 80%)] Loss: 3.31 (3.23) Time: 0.410s, 2498.41/s (0.414s, 2473.99/s) LR: 3.820e-02 Data: 0.028 (0.033) +Train: 120 [ 300/312 ( 96%)] Loss: 3.22 (3.23) Time: 0.410s, 2499.62/s (0.413s, 2476.69/s) LR: 3.820e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.410 (1.410) Loss: 3.808 ( 3.808) Acc@1: 33.789 ( 33.789) Acc@5: 54.492 ( 54.492) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.631 ( 3.843) Acc@1: 35.495 ( 34.616) Acc@5: 56.604 ( 54.060) +Train: 121 [ 0/312 ( 0%)] Loss: 3.29 (3.29) Time: 1.794s, 570.94/s (1.794s, 570.94/s) LR: 3.577e-02 Data: 1.420 (1.420) +Train: 121 [ 50/312 ( 16%)] Loss: 3.20 (3.16) Time: 0.411s, 2490.78/s (0.437s, 2342.17/s) LR: 3.577e-02 Data: 0.026 (0.055) +Train: 121 [ 100/312 ( 32%)] Loss: 3.32 (3.17) Time: 0.410s, 2496.59/s (0.423s, 2418.06/s) LR: 3.577e-02 Data: 0.029 (0.041) +Train: 121 [ 150/312 ( 48%)] Loss: 3.25 (3.18) Time: 0.412s, 2485.08/s (0.419s, 2443.82/s) LR: 3.577e-02 Data: 0.027 (0.037) +Train: 121 [ 200/312 ( 64%)] Loss: 3.31 (3.19) Time: 0.408s, 2511.85/s (0.417s, 2458.17/s) LR: 3.577e-02 Data: 0.027 (0.034) +Train: 121 [ 250/312 ( 80%)] Loss: 3.25 (3.20) Time: 0.408s, 2512.25/s (0.415s, 2466.59/s) LR: 3.577e-02 Data: 0.028 (0.033) +Train: 121 [ 300/312 ( 96%)] Loss: 3.33 (3.21) Time: 0.408s, 2512.52/s (0.414s, 2473.43/s) LR: 3.577e-02 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.418 (1.418) Loss: 3.811 ( 3.811) Acc@1: 35.254 ( 35.254) Acc@5: 54.883 ( 54.883) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.604 ( 3.844) Acc@1: 34.906 ( 34.194) Acc@5: 55.307 ( 54.210) +Train: 122 [ 0/312 ( 0%)] Loss: 3.10 (3.10) Time: 1.636s, 625.89/s (1.636s, 625.89/s) LR: 3.342e-02 Data: 1.262 (1.262) +Train: 122 [ 50/312 ( 16%)] Loss: 3.15 (3.15) Time: 0.409s, 2502.99/s (0.435s, 2353.77/s) LR: 3.342e-02 Data: 0.028 (0.052) +Train: 122 [ 100/312 ( 32%)] Loss: 3.18 (3.16) Time: 0.405s, 2530.81/s (0.420s, 2437.33/s) LR: 3.342e-02 Data: 0.028 (0.040) +Train: 122 [ 150/312 ( 48%)] Loss: 3.20 (3.17) Time: 0.402s, 2546.17/s (0.414s, 2472.96/s) LR: 3.342e-02 Data: 0.028 (0.035) +Train: 122 [ 200/312 ( 64%)] Loss: 3.25 (3.17) Time: 0.402s, 2550.34/s (0.411s, 2490.79/s) LR: 3.342e-02 Data: 0.028 (0.034) +Train: 122 [ 250/312 ( 80%)] Loss: 3.10 (3.18) Time: 0.404s, 2537.11/s (0.409s, 2500.87/s) LR: 3.342e-02 Data: 0.028 (0.032) +Train: 122 [ 300/312 ( 96%)] Loss: 3.29 (3.19) Time: 0.409s, 2504.00/s (0.409s, 2505.58/s) LR: 3.342e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 3.881 ( 3.881) Acc@1: 34.375 ( 34.375) Acc@5: 52.734 ( 52.734) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.579 ( 3.858) Acc@1: 37.028 ( 34.342) Acc@5: 57.075 ( 53.970) +Train: 123 [ 0/312 ( 0%)] Loss: 3.15 (3.15) Time: 1.766s, 579.76/s (1.766s, 579.76/s) LR: 3.113e-02 Data: 1.209 (1.209) +Train: 123 [ 50/312 ( 16%)] Loss: 3.06 (3.14) Time: 0.408s, 2507.61/s (0.441s, 2321.49/s) LR: 3.113e-02 Data: 0.026 (0.050) +Train: 123 [ 100/312 ( 32%)] Loss: 3.05 (3.14) Time: 0.413s, 2477.17/s (0.426s, 2402.24/s) LR: 3.113e-02 Data: 0.028 (0.039) +Train: 123 [ 150/312 ( 48%)] Loss: 3.04 (3.14) Time: 0.406s, 2522.43/s (0.421s, 2430.49/s) LR: 3.113e-02 Data: 0.028 (0.035) +Train: 123 [ 200/312 ( 64%)] Loss: 3.19 (3.15) Time: 0.415s, 2467.70/s (0.418s, 2447.59/s) LR: 3.113e-02 Data: 0.028 (0.033) +Train: 123 [ 250/312 ( 80%)] Loss: 3.09 (3.16) Time: 0.411s, 2492.05/s (0.417s, 2455.94/s) LR: 3.113e-02 Data: 0.023 (0.032) +Train: 123 [ 300/312 ( 96%)] Loss: 3.21 (3.17) Time: 0.412s, 2487.49/s (0.416s, 2460.87/s) LR: 3.113e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.442 (1.442) Loss: 3.847 ( 3.847) Acc@1: 34.570 ( 34.570) Acc@5: 52.539 ( 52.539) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.631 ( 3.845) Acc@1: 37.028 ( 34.716) Acc@5: 55.542 ( 54.140) +Train: 124 [ 0/312 ( 0%)] Loss: 3.06 (3.06) Time: 2.061s, 496.89/s (2.061s, 496.89/s) LR: 2.893e-02 Data: 1.685 (1.685) +Train: 124 [ 50/312 ( 16%)] Loss: 3.26 (3.11) Time: 0.407s, 2515.30/s (0.442s, 2316.80/s) LR: 2.893e-02 Data: 0.027 (0.060) +Train: 124 [ 100/312 ( 32%)] Loss: 3.15 (3.13) Time: 0.405s, 2528.44/s (0.425s, 2410.62/s) LR: 2.893e-02 Data: 0.027 (0.044) +Train: 124 [ 150/312 ( 48%)] Loss: 3.17 (3.14) Time: 0.410s, 2497.38/s (0.419s, 2442.79/s) LR: 2.893e-02 Data: 0.026 (0.038) +Train: 124 [ 200/312 ( 64%)] Loss: 3.09 (3.14) Time: 0.408s, 2510.10/s (0.417s, 2454.77/s) LR: 2.893e-02 Data: 0.027 (0.036) +Train: 124 [ 250/312 ( 80%)] Loss: 3.13 (3.15) Time: 0.408s, 2510.20/s (0.415s, 2465.16/s) LR: 2.893e-02 Data: 0.029 (0.034) +Train: 124 [ 300/312 ( 96%)] Loss: 3.18 (3.15) Time: 0.409s, 2506.54/s (0.414s, 2473.56/s) LR: 2.893e-02 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.822 ( 3.822) Acc@1: 35.059 ( 35.059) Acc@5: 54.004 ( 54.004) +Test: [ 48/48] Time: 0.088 (0.332) Loss: 3.608 ( 3.838) Acc@1: 36.321 ( 34.664) Acc@5: 56.368 ( 54.290) +Train: 125 [ 0/312 ( 0%)] Loss: 3.12 (3.12) Time: 1.641s, 624.17/s (1.641s, 624.17/s) LR: 2.679e-02 Data: 1.268 (1.268) +Train: 125 [ 50/312 ( 16%)] Loss: 3.03 (3.11) Time: 0.411s, 2489.54/s (0.435s, 2351.82/s) LR: 2.679e-02 Data: 0.027 (0.052) +Train: 125 [ 100/312 ( 32%)] Loss: 3.14 (3.11) Time: 0.407s, 2515.54/s (0.422s, 2423.78/s) LR: 2.679e-02 Data: 0.025 (0.040) +Train: 125 [ 150/312 ( 48%)] Loss: 3.06 (3.12) Time: 0.410s, 2498.45/s (0.418s, 2451.45/s) LR: 2.679e-02 Data: 0.027 (0.036) +Train: 125 [ 200/312 ( 64%)] Loss: 3.14 (3.12) Time: 0.410s, 2497.25/s (0.416s, 2463.41/s) LR: 2.679e-02 Data: 0.027 (0.034) +Train: 125 [ 250/312 ( 80%)] Loss: 3.12 (3.13) Time: 0.411s, 2490.11/s (0.415s, 2467.88/s) LR: 2.679e-02 Data: 0.028 (0.032) +Train: 125 [ 300/312 ( 96%)] Loss: 3.12 (3.13) Time: 0.412s, 2485.54/s (0.414s, 2472.24/s) LR: 2.679e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.443 (1.443) Loss: 3.813 ( 3.813) Acc@1: 34.766 ( 34.766) Acc@5: 54.297 ( 54.297) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.601 ( 3.835) Acc@1: 35.142 ( 34.566) Acc@5: 56.958 ( 54.220) +Train: 126 [ 0/312 ( 0%)] Loss: 3.13 (3.13) Time: 1.703s, 601.27/s (1.703s, 601.27/s) LR: 2.474e-02 Data: 1.330 (1.330) +Train: 126 [ 50/312 ( 16%)] Loss: 3.00 (3.08) Time: 0.403s, 2543.20/s (0.431s, 2375.93/s) LR: 2.474e-02 Data: 0.026 (0.052) +Train: 126 [ 100/312 ( 32%)] Loss: 3.01 (3.09) Time: 0.402s, 2545.29/s (0.417s, 2453.85/s) LR: 2.474e-02 Data: 0.028 (0.040) +Train: 126 [ 150/312 ( 48%)] Loss: 3.20 (3.10) Time: 0.402s, 2546.31/s (0.412s, 2482.53/s) LR: 2.474e-02 Data: 0.028 (0.036) +Train: 126 [ 200/312 ( 64%)] Loss: 3.14 (3.11) Time: 0.404s, 2534.84/s (0.410s, 2494.60/s) LR: 2.474e-02 Data: 0.027 (0.034) +Train: 126 [ 250/312 ( 80%)] Loss: 3.11 (3.11) Time: 0.410s, 2496.66/s (0.410s, 2497.37/s) LR: 2.474e-02 Data: 0.028 (0.033) +Train: 126 [ 300/312 ( 96%)] Loss: 3.09 (3.12) Time: 0.411s, 2493.02/s (0.410s, 2496.09/s) LR: 2.474e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.415 (1.415) Loss: 3.812 ( 3.812) Acc@1: 35.156 ( 35.156) Acc@5: 54.980 ( 54.980) +Test: [ 48/48] Time: 0.089 (0.326) Loss: 3.587 ( 3.810) Acc@1: 36.557 ( 35.162) Acc@5: 55.896 ( 54.578) +Train: 127 [ 0/312 ( 0%)] Loss: 3.09 (3.09) Time: 1.784s, 573.98/s (1.784s, 573.98/s) LR: 2.276e-02 Data: 1.408 (1.408) +Train: 127 [ 50/312 ( 16%)] Loss: 3.02 (3.08) Time: 0.413s, 2482.19/s (0.437s, 2341.77/s) LR: 2.276e-02 Data: 0.027 (0.054) +Train: 127 [ 100/312 ( 32%)] Loss: 3.12 (3.08) Time: 0.408s, 2509.13/s (0.423s, 2423.67/s) LR: 2.276e-02 Data: 0.028 (0.041) +Train: 127 [ 150/312 ( 48%)] Loss: 3.12 (3.09) Time: 0.403s, 2537.97/s (0.417s, 2456.39/s) LR: 2.276e-02 Data: 0.026 (0.037) +Train: 127 [ 200/312 ( 64%)] Loss: 3.12 (3.09) Time: 0.405s, 2526.61/s (0.414s, 2471.62/s) LR: 2.276e-02 Data: 0.028 (0.034) +Train: 127 [ 250/312 ( 80%)] Loss: 3.02 (3.10) Time: 0.410s, 2497.53/s (0.413s, 2477.23/s) LR: 2.276e-02 Data: 0.028 (0.033) +Train: 127 [ 300/312 ( 96%)] Loss: 3.17 (3.10) Time: 0.413s, 2479.98/s (0.413s, 2478.32/s) LR: 2.276e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 3.831 ( 3.831) Acc@1: 35.059 ( 35.059) Acc@5: 52.734 ( 52.734) +Test: [ 48/48] Time: 0.087 (0.331) Loss: 3.595 ( 3.843) Acc@1: 36.675 ( 34.792) Acc@5: 57.075 ( 54.230) +Train: 128 [ 0/312 ( 0%)] Loss: 3.05 (3.05) Time: 1.482s, 691.06/s (1.482s, 691.06/s) LR: 2.086e-02 Data: 1.110 (1.110) +Train: 128 [ 50/312 ( 16%)] Loss: 3.01 (3.07) Time: 0.403s, 2541.68/s (0.425s, 2408.35/s) LR: 2.086e-02 Data: 0.027 (0.048) +Train: 128 [ 100/312 ( 32%)] Loss: 3.05 (3.07) Time: 0.407s, 2514.51/s (0.415s, 2468.38/s) LR: 2.086e-02 Data: 0.026 (0.038) +Train: 128 [ 150/312 ( 48%)] Loss: 3.03 (3.07) Time: 0.412s, 2484.68/s (0.413s, 2480.75/s) LR: 2.086e-02 Data: 0.028 (0.034) +Train: 128 [ 200/312 ( 64%)] Loss: 3.02 (3.08) Time: 0.411s, 2490.48/s (0.413s, 2482.23/s) LR: 2.086e-02 Data: 0.028 (0.032) +Train: 128 [ 250/312 ( 80%)] Loss: 3.13 (3.08) Time: 0.405s, 2528.70/s (0.412s, 2488.41/s) LR: 2.086e-02 Data: 0.027 (0.031) +Train: 128 [ 300/312 ( 96%)] Loss: 3.08 (3.09) Time: 0.406s, 2524.42/s (0.411s, 2492.88/s) LR: 2.086e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.441 (1.441) Loss: 3.833 ( 3.833) Acc@1: 34.668 ( 34.668) Acc@5: 53.418 ( 53.418) +Test: [ 48/48] Time: 0.089 (0.331) Loss: 3.609 ( 3.833) Acc@1: 37.028 ( 34.760) Acc@5: 56.250 ( 54.252) +Train: 129 [ 0/312 ( 0%)] Loss: 2.99 (2.99) Time: 1.899s, 539.17/s (1.899s, 539.17/s) LR: 1.903e-02 Data: 1.261 (1.261) +Train: 129 [ 50/312 ( 16%)] Loss: 2.99 (3.05) Time: 0.407s, 2516.10/s (0.440s, 2327.58/s) LR: 1.903e-02 Data: 0.027 (0.052) +Train: 129 [ 100/312 ( 32%)] Loss: 3.10 (3.05) Time: 0.404s, 2533.73/s (0.424s, 2416.19/s) LR: 1.903e-02 Data: 0.027 (0.040) +Train: 129 [ 150/312 ( 48%)] Loss: 3.05 (3.06) Time: 0.412s, 2483.57/s (0.418s, 2447.70/s) LR: 1.903e-02 Data: 0.034 (0.036) +Train: 129 [ 200/312 ( 64%)] Loss: 3.14 (3.07) Time: 0.416s, 2463.20/s (0.416s, 2458.90/s) LR: 1.903e-02 Data: 0.028 (0.034) +Train: 129 [ 250/312 ( 80%)] Loss: 3.02 (3.07) Time: 0.410s, 2495.45/s (0.415s, 2464.80/s) LR: 1.903e-02 Data: 0.028 (0.032) +Train: 129 [ 300/312 ( 96%)] Loss: 3.04 (3.07) Time: 0.409s, 2502.40/s (0.414s, 2472.32/s) LR: 1.903e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.408 (1.408) Loss: 3.809 ( 3.809) Acc@1: 34.668 ( 34.668) Acc@5: 52.246 ( 52.246) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.599 ( 3.818) Acc@1: 36.557 ( 34.956) Acc@5: 56.722 ( 54.496) +Train: 130 [ 0/312 ( 0%)] Loss: 2.96 (2.96) Time: 1.833s, 558.78/s (1.833s, 558.78/s) LR: 1.729e-02 Data: 1.460 (1.460) +Train: 130 [ 50/312 ( 16%)] Loss: 3.00 (3.03) Time: 0.409s, 2503.53/s (0.435s, 2351.98/s) LR: 1.729e-02 Data: 0.027 (0.056) +Train: 130 [ 100/312 ( 32%)] Loss: 3.09 (3.04) Time: 0.411s, 2490.43/s (0.423s, 2421.67/s) LR: 1.729e-02 Data: 0.028 (0.042) +Train: 130 [ 150/312 ( 48%)] Loss: 3.00 (3.05) Time: 0.407s, 2517.39/s (0.419s, 2445.70/s) LR: 1.729e-02 Data: 0.027 (0.037) +Train: 130 [ 200/312 ( 64%)] Loss: 3.08 (3.05) Time: 0.405s, 2528.41/s (0.415s, 2464.93/s) LR: 1.729e-02 Data: 0.027 (0.035) +Train: 130 [ 250/312 ( 80%)] Loss: 3.10 (3.06) Time: 0.404s, 2533.61/s (0.413s, 2476.96/s) LR: 1.729e-02 Data: 0.026 (0.033) +Train: 130 [ 300/312 ( 96%)] Loss: 3.06 (3.06) Time: 0.408s, 2510.26/s (0.412s, 2483.39/s) LR: 1.729e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.446 (1.446) Loss: 3.791 ( 3.791) Acc@1: 34.766 ( 34.766) Acc@5: 54.004 ( 54.004) +Test: [ 48/48] Time: 0.089 (0.327) Loss: 3.556 ( 3.785) Acc@1: 37.736 ( 35.440) Acc@5: 56.132 ( 54.834) +Train: 131 [ 0/312 ( 0%)] Loss: 2.96 (2.96) Time: 1.520s, 673.86/s (1.520s, 673.86/s) LR: 1.563e-02 Data: 1.144 (1.144) +Train: 131 [ 50/312 ( 16%)] Loss: 3.04 (3.02) Time: 0.413s, 2478.85/s (0.434s, 2359.63/s) LR: 1.563e-02 Data: 0.027 (0.049) +Train: 131 [ 100/312 ( 32%)] Loss: 3.01 (3.03) Time: 0.409s, 2503.46/s (0.423s, 2420.20/s) LR: 1.563e-02 Data: 0.025 (0.038) +Train: 131 [ 150/312 ( 48%)] Loss: 3.02 (3.03) Time: 0.411s, 2490.50/s (0.419s, 2441.22/s) LR: 1.563e-02 Data: 0.029 (0.035) +Train: 131 [ 200/312 ( 64%)] Loss: 2.96 (3.04) Time: 0.409s, 2501.29/s (0.418s, 2452.22/s) LR: 1.563e-02 Data: 0.025 (0.033) +Train: 131 [ 250/312 ( 80%)] Loss: 2.99 (3.04) Time: 0.414s, 2472.93/s (0.416s, 2458.71/s) LR: 1.563e-02 Data: 0.028 (0.032) +Train: 131 [ 300/312 ( 96%)] Loss: 3.17 (3.05) Time: 0.413s, 2480.70/s (0.416s, 2463.28/s) LR: 1.563e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 3.781 ( 3.781) Acc@1: 35.547 ( 35.547) Acc@5: 54.980 ( 54.980) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.580 ( 3.791) Acc@1: 35.259 ( 35.124) Acc@5: 56.604 ( 54.838) +Train: 132 [ 0/312 ( 0%)] Loss: 3.00 (3.00) Time: 1.589s, 644.47/s (1.589s, 644.47/s) LR: 1.404e-02 Data: 1.212 (1.212) +Train: 132 [ 50/312 ( 16%)] Loss: 2.92 (3.02) Time: 0.408s, 2510.50/s (0.438s, 2335.91/s) LR: 1.404e-02 Data: 0.027 (0.050) +Train: 132 [ 100/312 ( 32%)] Loss: 3.03 (3.03) Time: 0.413s, 2482.24/s (0.424s, 2417.93/s) LR: 1.404e-02 Data: 0.028 (0.039) +Train: 132 [ 150/312 ( 48%)] Loss: 2.97 (3.03) Time: 0.408s, 2508.74/s (0.419s, 2443.98/s) LR: 1.404e-02 Data: 0.027 (0.035) +Train: 132 [ 200/312 ( 64%)] Loss: 3.01 (3.03) Time: 0.409s, 2505.79/s (0.417s, 2457.29/s) LR: 1.404e-02 Data: 0.028 (0.033) +Train: 132 [ 250/312 ( 80%)] Loss: 2.97 (3.03) Time: 0.408s, 2510.57/s (0.415s, 2467.86/s) LR: 1.404e-02 Data: 0.027 (0.032) +Train: 132 [ 300/312 ( 96%)] Loss: 2.98 (3.03) Time: 0.409s, 2503.72/s (0.414s, 2473.86/s) LR: 1.404e-02 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 3.861 ( 3.861) Acc@1: 35.059 ( 35.059) Acc@5: 53.320 ( 53.320) +Test: [ 48/48] Time: 0.089 (0.331) Loss: 3.592 ( 3.828) Acc@1: 36.910 ( 34.882) Acc@5: 56.486 ( 54.292) +Train: 133 [ 0/312 ( 0%)] Loss: 2.91 (2.91) Time: 1.649s, 621.02/s (1.649s, 621.02/s) LR: 1.254e-02 Data: 1.274 (1.274) +Train: 133 [ 50/312 ( 16%)] Loss: 3.05 (3.00) Time: 0.408s, 2507.50/s (0.434s, 2359.41/s) LR: 1.254e-02 Data: 0.027 (0.052) +Train: 133 [ 100/312 ( 32%)] Loss: 3.02 (3.01) Time: 0.407s, 2515.11/s (0.421s, 2431.15/s) LR: 1.254e-02 Data: 0.028 (0.040) +Train: 133 [ 150/312 ( 48%)] Loss: 3.01 (3.02) Time: 0.409s, 2502.35/s (0.417s, 2454.79/s) LR: 1.254e-02 Data: 0.027 (0.036) +Train: 133 [ 200/312 ( 64%)] Loss: 3.08 (3.02) Time: 0.405s, 2531.43/s (0.415s, 2466.48/s) LR: 1.254e-02 Data: 0.028 (0.034) +Train: 133 [ 250/312 ( 80%)] Loss: 3.02 (3.02) Time: 0.399s, 2564.58/s (0.413s, 2481.40/s) LR: 1.254e-02 Data: 0.026 (0.032) +Train: 133 [ 300/312 ( 96%)] Loss: 2.96 (3.02) Time: 0.400s, 2559.15/s (0.411s, 2493.61/s) LR: 1.254e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.422 (1.422) Loss: 3.857 ( 3.857) Acc@1: 33.789 ( 33.789) Acc@5: 52.832 ( 52.832) +Test: [ 48/48] Time: 0.087 (0.329) Loss: 3.621 ( 3.851) Acc@1: 35.613 ( 34.612) Acc@5: 55.542 ( 54.000) +Train: 134 [ 0/312 ( 0%)] Loss: 2.97 (2.97) Time: 2.036s, 502.95/s (2.036s, 502.95/s) LR: 1.112e-02 Data: 1.670 (1.670) +Train: 134 [ 50/312 ( 16%)] Loss: 3.00 (3.00) Time: 0.400s, 2558.06/s (0.432s, 2367.94/s) LR: 1.112e-02 Data: 0.026 (0.060) +Train: 134 [ 100/312 ( 32%)] Loss: 3.06 (3.01) Time: 0.402s, 2549.68/s (0.418s, 2451.63/s) LR: 1.112e-02 Data: 0.027 (0.044) +Train: 134 [ 150/312 ( 48%)] Loss: 3.03 (3.01) Time: 0.405s, 2528.91/s (0.414s, 2475.84/s) LR: 1.112e-02 Data: 0.026 (0.038) +Train: 134 [ 200/312 ( 64%)] Loss: 3.02 (3.01) Time: 0.413s, 2480.96/s (0.412s, 2482.79/s) LR: 1.112e-02 Data: 0.028 (0.036) +Train: 134 [ 250/312 ( 80%)] Loss: 2.93 (3.01) Time: 0.410s, 2495.35/s (0.412s, 2484.86/s) LR: 1.112e-02 Data: 0.029 (0.034) +Train: 134 [ 300/312 ( 96%)] Loss: 3.09 (3.02) Time: 0.410s, 2496.48/s (0.412s, 2487.99/s) LR: 1.112e-02 Data: 0.029 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.836 ( 3.836) Acc@1: 35.059 ( 35.059) Acc@5: 53.418 ( 53.418) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.612 ( 3.833) Acc@1: 35.142 ( 34.906) Acc@5: 56.250 ( 54.358) +Train: 135 [ 0/312 ( 0%)] Loss: 2.98 (2.98) Time: 1.466s, 698.65/s (1.466s, 698.65/s) LR: 9.789e-03 Data: 1.093 (1.093) +Train: 135 [ 50/312 ( 16%)] Loss: 3.01 (3.00) Time: 0.405s, 2527.52/s (0.427s, 2397.48/s) LR: 9.789e-03 Data: 0.025 (0.049) +Train: 135 [ 100/312 ( 32%)] Loss: 3.03 (3.00) Time: 0.405s, 2526.47/s (0.416s, 2461.10/s) LR: 9.789e-03 Data: 0.028 (0.038) +Train: 135 [ 150/312 ( 48%)] Loss: 2.93 (3.00) Time: 0.407s, 2513.19/s (0.413s, 2478.65/s) LR: 9.789e-03 Data: 0.027 (0.034) +Train: 135 [ 200/312 ( 64%)] Loss: 2.92 (3.00) Time: 0.414s, 2473.52/s (0.413s, 2481.80/s) LR: 9.789e-03 Data: 0.027 (0.033) +Train: 135 [ 250/312 ( 80%)] Loss: 2.97 (3.00) Time: 0.406s, 2521.13/s (0.412s, 2484.62/s) LR: 9.789e-03 Data: 0.028 (0.032) +Train: 135 [ 300/312 ( 96%)] Loss: 3.04 (3.01) Time: 0.406s, 2520.26/s (0.411s, 2489.69/s) LR: 9.789e-03 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.417 (1.417) Loss: 3.829 ( 3.829) Acc@1: 34.863 ( 34.863) Acc@5: 53.125 ( 53.125) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.568 ( 3.811) Acc@1: 36.321 ( 35.144) Acc@5: 55.307 ( 54.488) +Train: 136 [ 0/312 ( 0%)] Loss: 3.03 (3.03) Time: 1.739s, 588.92/s (1.739s, 588.92/s) LR: 8.536e-03 Data: 1.365 (1.365) +Train: 136 [ 50/312 ( 16%)] Loss: 3.11 (2.98) Time: 0.409s, 2503.16/s (0.443s, 2311.19/s) LR: 8.536e-03 Data: 0.026 (0.054) +Train: 136 [ 100/312 ( 32%)] Loss: 3.05 (2.98) Time: 0.408s, 2509.34/s (0.426s, 2401.84/s) LR: 8.536e-03 Data: 0.027 (0.041) +Train: 136 [ 150/312 ( 48%)] Loss: 2.87 (2.98) Time: 0.413s, 2477.01/s (0.421s, 2431.79/s) LR: 8.536e-03 Data: 0.027 (0.036) +Train: 136 [ 200/312 ( 64%)] Loss: 2.96 (2.99) Time: 0.415s, 2468.22/s (0.419s, 2443.91/s) LR: 8.536e-03 Data: 0.027 (0.034) +Train: 136 [ 250/312 ( 80%)] Loss: 3.05 (2.99) Time: 0.404s, 2537.34/s (0.417s, 2454.06/s) LR: 8.536e-03 Data: 0.025 (0.033) +Train: 136 [ 300/312 ( 96%)] Loss: 3.05 (2.99) Time: 0.405s, 2531.34/s (0.415s, 2465.80/s) LR: 8.536e-03 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 3.819 ( 3.819) Acc@1: 34.961 ( 34.961) Acc@5: 53.711 ( 53.711) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.614 ( 3.823) Acc@1: 36.085 ( 34.930) Acc@5: 56.722 ( 54.300) +Train: 137 [ 0/312 ( 0%)] Loss: 2.88 (2.88) Time: 1.605s, 638.11/s (1.605s, 638.11/s) LR: 7.367e-03 Data: 1.077 (1.077) +Train: 137 [ 50/312 ( 16%)] Loss: 3.08 (2.98) Time: 0.405s, 2525.94/s (0.428s, 2394.20/s) LR: 7.367e-03 Data: 0.027 (0.048) +Train: 137 [ 100/312 ( 32%)] Loss: 2.99 (2.98) Time: 0.408s, 2510.12/s (0.418s, 2452.34/s) LR: 7.367e-03 Data: 0.028 (0.038) +Train: 137 [ 150/312 ( 48%)] Loss: 2.94 (2.98) Time: 0.408s, 2509.99/s (0.415s, 2467.78/s) LR: 7.367e-03 Data: 0.028 (0.034) +Train: 137 [ 200/312 ( 64%)] Loss: 2.90 (2.98) Time: 0.411s, 2489.27/s (0.413s, 2477.02/s) LR: 7.367e-03 Data: 0.033 (0.033) +Train: 137 [ 250/312 ( 80%)] Loss: 2.93 (2.99) Time: 0.417s, 2455.10/s (0.413s, 2481.76/s) LR: 7.367e-03 Data: 0.035 (0.032) +Train: 137 [ 300/312 ( 96%)] Loss: 3.02 (2.99) Time: 0.406s, 2523.22/s (0.412s, 2484.43/s) LR: 7.367e-03 Data: 0.024 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.431 (1.431) Loss: 3.806 ( 3.806) Acc@1: 35.352 ( 35.352) Acc@5: 53.613 ( 53.613) +Test: [ 48/48] Time: 0.087 (0.333) Loss: 3.608 ( 3.820) Acc@1: 36.085 ( 35.026) Acc@5: 56.486 ( 54.444) +Train: 138 [ 0/312 ( 0%)] Loss: 2.95 (2.95) Time: 1.611s, 635.55/s (1.611s, 635.55/s) LR: 6.283e-03 Data: 1.239 (1.239) +Train: 138 [ 50/312 ( 16%)] Loss: 2.93 (2.97) Time: 0.405s, 2529.45/s (0.428s, 2394.87/s) LR: 6.283e-03 Data: 0.025 (0.051) +Train: 138 [ 100/312 ( 32%)] Loss: 2.93 (2.97) Time: 0.409s, 2502.41/s (0.417s, 2454.00/s) LR: 6.283e-03 Data: 0.027 (0.040) +Train: 138 [ 150/312 ( 48%)] Loss: 2.89 (2.96) Time: 0.409s, 2505.45/s (0.415s, 2468.71/s) LR: 6.283e-03 Data: 0.026 (0.036) +Train: 138 [ 200/312 ( 64%)] Loss: 2.92 (2.97) Time: 0.407s, 2514.47/s (0.413s, 2478.69/s) LR: 6.283e-03 Data: 0.028 (0.034) +Train: 138 [ 250/312 ( 80%)] Loss: 3.06 (2.97) Time: 0.406s, 2519.10/s (0.412s, 2487.07/s) LR: 6.283e-03 Data: 0.028 (0.032) +Train: 138 [ 300/312 ( 96%)] Loss: 2.91 (2.98) Time: 0.409s, 2501.03/s (0.411s, 2491.33/s) LR: 6.283e-03 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.435 (1.435) Loss: 3.836 ( 3.836) Acc@1: 35.645 ( 35.645) Acc@5: 53.027 ( 53.027) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.606 ( 3.838) Acc@1: 35.377 ( 34.848) Acc@5: 56.014 ( 54.144) +Train: 139 [ 0/312 ( 0%)] Loss: 2.93 (2.93) Time: 1.640s, 624.38/s (1.640s, 624.38/s) LR: 5.284e-03 Data: 1.267 (1.267) +Train: 139 [ 50/312 ( 16%)] Loss: 2.97 (2.94) Time: 0.405s, 2525.80/s (0.429s, 2387.24/s) LR: 5.284e-03 Data: 0.027 (0.051) +Train: 139 [ 100/312 ( 32%)] Loss: 2.98 (2.96) Time: 0.403s, 2539.28/s (0.416s, 2460.36/s) LR: 5.284e-03 Data: 0.028 (0.039) +Train: 139 [ 150/312 ( 48%)] Loss: 2.92 (2.96) Time: 0.403s, 2542.38/s (0.412s, 2485.79/s) LR: 5.284e-03 Data: 0.027 (0.035) +Train: 139 [ 200/312 ( 64%)] Loss: 2.95 (2.96) Time: 0.408s, 2507.90/s (0.410s, 2495.72/s) LR: 5.284e-03 Data: 0.026 (0.033) +Train: 139 [ 250/312 ( 80%)] Loss: 3.09 (2.97) Time: 0.409s, 2503.13/s (0.410s, 2495.46/s) LR: 5.284e-03 Data: 0.026 (0.032) +Train: 139 [ 300/312 ( 96%)] Loss: 3.00 (2.97) Time: 0.414s, 2475.73/s (0.411s, 2493.38/s) LR: 5.284e-03 Data: 0.030 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.450 (1.450) Loss: 3.849 ( 3.849) Acc@1: 34.961 ( 34.961) Acc@5: 52.832 ( 52.832) +Test: [ 48/48] Time: 0.088 (0.331) Loss: 3.617 ( 3.843) Acc@1: 35.259 ( 34.790) Acc@5: 55.778 ( 54.112) +Train: 140 [ 0/312 ( 0%)] Loss: 2.89 (2.89) Time: 1.702s, 601.79/s (1.702s, 601.79/s) LR: 4.370e-03 Data: 1.330 (1.330) +Train: 140 [ 50/312 ( 16%)] Loss: 3.02 (2.95) Time: 0.402s, 2546.01/s (0.428s, 2390.59/s) LR: 4.370e-03 Data: 0.026 (0.052) +Train: 140 [ 100/312 ( 32%)] Loss: 2.92 (2.95) Time: 0.405s, 2531.29/s (0.416s, 2460.73/s) LR: 4.370e-03 Data: 0.028 (0.040) +Train: 140 [ 150/312 ( 48%)] Loss: 2.96 (2.95) Time: 0.406s, 2521.48/s (0.413s, 2479.15/s) LR: 4.370e-03 Data: 0.026 (0.036) +Train: 140 [ 200/312 ( 64%)] Loss: 2.93 (2.96) Time: 0.412s, 2483.17/s (0.412s, 2482.44/s) LR: 4.370e-03 Data: 0.028 (0.034) +Train: 140 [ 250/312 ( 80%)] Loss: 2.97 (2.96) Time: 0.410s, 2496.49/s (0.412s, 2485.05/s) LR: 4.370e-03 Data: 0.029 (0.033) +Train: 140 [ 300/312 ( 96%)] Loss: 2.96 (2.96) Time: 0.405s, 2526.73/s (0.411s, 2491.06/s) LR: 4.370e-03 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 3.828 ( 3.828) Acc@1: 34.473 ( 34.473) Acc@5: 53.027 ( 53.027) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.594 ( 3.820) Acc@1: 35.731 ( 35.016) Acc@5: 56.486 ( 54.416) +Train: 141 [ 0/312 ( 0%)] Loss: 2.83 (2.83) Time: 1.475s, 694.30/s (1.475s, 694.30/s) LR: 3.543e-03 Data: 1.103 (1.103) +Train: 141 [ 50/312 ( 16%)] Loss: 2.97 (2.95) Time: 0.406s, 2521.83/s (0.427s, 2399.89/s) LR: 3.543e-03 Data: 0.028 (0.049) +Train: 141 [ 100/312 ( 32%)] Loss: 3.15 (2.96) Time: 0.410s, 2496.28/s (0.418s, 2449.26/s) LR: 3.543e-03 Data: 0.027 (0.038) +Train: 141 [ 150/312 ( 48%)] Loss: 2.88 (2.96) Time: 0.413s, 2479.96/s (0.416s, 2460.21/s) LR: 3.543e-03 Data: 0.025 (0.035) +Train: 141 [ 200/312 ( 64%)] Loss: 2.95 (2.96) Time: 0.407s, 2518.79/s (0.414s, 2470.46/s) LR: 3.543e-03 Data: 0.027 (0.033) +Train: 141 [ 250/312 ( 80%)] Loss: 2.99 (2.96) Time: 0.404s, 2532.61/s (0.413s, 2480.10/s) LR: 3.543e-03 Data: 0.028 (0.032) +Train: 141 [ 300/312 ( 96%)] Loss: 2.94 (2.96) Time: 0.407s, 2512.90/s (0.412s, 2486.16/s) LR: 3.543e-03 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.454 (1.454) Loss: 3.834 ( 3.834) Acc@1: 35.059 ( 35.059) Acc@5: 52.930 ( 52.930) +Test: [ 48/48] Time: 0.088 (0.333) Loss: 3.592 ( 3.824) Acc@1: 36.910 ( 34.952) Acc@5: 55.071 ( 54.322) +Train: 142 [ 0/312 ( 0%)] Loss: 2.96 (2.96) Time: 1.681s, 609.24/s (1.681s, 609.24/s) LR: 2.801e-03 Data: 1.164 (1.164) +Train: 142 [ 50/312 ( 16%)] Loss: 2.97 (2.96) Time: 0.412s, 2484.54/s (0.435s, 2352.96/s) LR: 2.801e-03 Data: 0.032 (0.049) +Train: 142 [ 100/312 ( 32%)] Loss: 2.98 (2.95) Time: 0.404s, 2537.28/s (0.422s, 2428.44/s) LR: 2.801e-03 Data: 0.023 (0.038) +Train: 142 [ 150/312 ( 48%)] Loss: 3.03 (2.95) Time: 0.407s, 2515.88/s (0.417s, 2458.30/s) LR: 2.801e-03 Data: 0.028 (0.035) +Train: 142 [ 200/312 ( 64%)] Loss: 2.86 (2.95) Time: 0.409s, 2505.67/s (0.415s, 2469.28/s) LR: 2.801e-03 Data: 0.027 (0.033) +Train: 142 [ 250/312 ( 80%)] Loss: 2.92 (2.95) Time: 0.410s, 2494.54/s (0.414s, 2473.73/s) LR: 2.801e-03 Data: 0.027 (0.032) +Train: 142 [ 300/312 ( 96%)] Loss: 2.85 (2.95) Time: 0.410s, 2500.47/s (0.413s, 2480.52/s) LR: 2.801e-03 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.499 (1.499) Loss: 3.832 ( 3.832) Acc@1: 35.059 ( 35.059) Acc@5: 53.516 ( 53.516) +Test: [ 48/48] Time: 0.088 (0.330) Loss: 3.595 ( 3.819) Acc@1: 36.557 ( 35.068) Acc@5: 56.604 ( 54.410) +Train: 143 [ 0/312 ( 0%)] Loss: 2.97 (2.97) Time: 1.545s, 662.74/s (1.545s, 662.74/s) LR: 2.146e-03 Data: 1.172 (1.172) +Train: 143 [ 50/312 ( 16%)] Loss: 2.96 (2.95) Time: 0.409s, 2504.58/s (0.430s, 2378.96/s) LR: 2.146e-03 Data: 0.026 (0.050) +Train: 143 [ 100/312 ( 32%)] Loss: 3.00 (2.95) Time: 0.407s, 2514.75/s (0.420s, 2436.75/s) LR: 2.146e-03 Data: 0.028 (0.039) +Train: 143 [ 150/312 ( 48%)] Loss: 3.03 (2.95) Time: 0.405s, 2530.81/s (0.416s, 2461.85/s) LR: 2.146e-03 Data: 0.027 (0.035) +Train: 143 [ 200/312 ( 64%)] Loss: 2.96 (2.95) Time: 0.408s, 2512.09/s (0.414s, 2474.38/s) LR: 2.146e-03 Data: 0.026 (0.033) +Train: 143 [ 250/312 ( 80%)] Loss: 2.98 (2.95) Time: 0.413s, 2476.94/s (0.413s, 2478.72/s) LR: 2.146e-03 Data: 0.027 (0.032) +Train: 143 [ 300/312 ( 96%)] Loss: 2.91 (2.95) Time: 0.406s, 2524.92/s (0.412s, 2485.53/s) LR: 2.146e-03 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.410 (1.410) Loss: 3.826 ( 3.826) Acc@1: 35.156 ( 35.156) Acc@5: 53.125 ( 53.125) +Test: [ 48/48] Time: 0.087 (0.330) Loss: 3.601 ( 3.818) Acc@1: 36.085 ( 35.034) Acc@5: 55.425 ( 54.342) +Train: 144 [ 0/312 ( 0%)] Loss: 2.93 (2.93) Time: 1.748s, 585.80/s (1.748s, 585.80/s) LR: 1.577e-03 Data: 1.063 (1.063) +Train: 144 [ 50/312 ( 16%)] Loss: 2.96 (2.94) Time: 0.397s, 2580.20/s (0.424s, 2412.50/s) LR: 1.577e-03 Data: 0.027 (0.048) +Train: 144 [ 100/312 ( 32%)] Loss: 2.85 (2.94) Time: 0.398s, 2570.92/s (0.412s, 2487.88/s) LR: 1.577e-03 Data: 0.028 (0.038) +Train: 144 [ 150/312 ( 48%)] Loss: 2.87 (2.94) Time: 0.405s, 2528.92/s (0.407s, 2513.25/s) LR: 1.577e-03 Data: 0.026 (0.034) +Train: 144 [ 200/312 ( 64%)] Loss: 2.94 (2.94) Time: 0.403s, 2540.22/s (0.406s, 2523.20/s) LR: 1.577e-03 Data: 0.028 (0.033) +Train: 144 [ 250/312 ( 80%)] Loss: 3.00 (2.95) Time: 0.407s, 2515.75/s (0.406s, 2524.95/s) LR: 1.577e-03 Data: 0.027 (0.032) +Train: 144 [ 300/312 ( 96%)] Loss: 2.94 (2.95) Time: 0.407s, 2515.59/s (0.406s, 2523.07/s) LR: 1.577e-03 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.416 (1.416) Loss: 3.814 ( 3.814) Acc@1: 35.254 ( 35.254) Acc@5: 54.492 ( 54.492) +Test: [ 48/48] Time: 0.089 (0.328) Loss: 3.580 ( 3.805) Acc@1: 36.439 ( 35.154) Acc@5: 57.193 ( 54.614) +Train: 145 [ 0/312 ( 0%)] Loss: 2.90 (2.90) Time: 1.860s, 550.41/s (1.860s, 550.41/s) LR: 1.096e-03 Data: 1.483 (1.483) +Train: 145 [ 50/312 ( 16%)] Loss: 3.10 (2.94) Time: 0.411s, 2494.44/s (0.442s, 2316.83/s) LR: 1.096e-03 Data: 0.026 (0.056) +Train: 145 [ 100/312 ( 32%)] Loss: 2.96 (2.94) Time: 0.415s, 2465.30/s (0.428s, 2391.33/s) LR: 1.096e-03 Data: 0.027 (0.042) +Train: 145 [ 150/312 ( 48%)] Loss: 2.89 (2.94) Time: 0.405s, 2528.93/s (0.423s, 2423.35/s) LR: 1.096e-03 Data: 0.027 (0.037) +Train: 145 [ 200/312 ( 64%)] Loss: 2.91 (2.93) Time: 0.404s, 2533.37/s (0.418s, 2447.03/s) LR: 1.096e-03 Data: 0.028 (0.035) +Train: 145 [ 250/312 ( 80%)] Loss: 2.88 (2.93) Time: 0.406s, 2523.65/s (0.416s, 2461.79/s) LR: 1.096e-03 Data: 0.027 (0.033) +Train: 145 [ 300/312 ( 96%)] Loss: 2.95 (2.94) Time: 0.406s, 2519.14/s (0.415s, 2470.07/s) LR: 1.096e-03 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.434 (1.434) Loss: 3.827 ( 3.827) Acc@1: 35.156 ( 35.156) Acc@5: 54.102 ( 54.102) +Test: [ 48/48] Time: 0.088 (0.329) Loss: 3.595 ( 3.825) Acc@1: 35.731 ( 34.918) Acc@5: 56.722 ( 54.348) +Train: 146 [ 0/312 ( 0%)] Loss: 2.96 (2.96) Time: 1.897s, 539.76/s (1.897s, 539.76/s) LR: 7.014e-04 Data: 1.522 (1.522) +Train: 146 [ 50/312 ( 16%)] Loss: 2.85 (2.94) Time: 0.409s, 2505.91/s (0.441s, 2322.00/s) LR: 7.014e-04 Data: 0.028 (0.057) +Train: 146 [ 100/312 ( 32%)] Loss: 2.77 (2.94) Time: 0.406s, 2524.72/s (0.424s, 2416.23/s) LR: 7.014e-04 Data: 0.028 (0.042) +Train: 146 [ 150/312 ( 48%)] Loss: 2.94 (2.94) Time: 0.406s, 2522.77/s (0.417s, 2455.26/s) LR: 7.014e-04 Data: 0.029 (0.037) +Train: 146 [ 200/312 ( 64%)] Loss: 2.95 (2.94) Time: 0.406s, 2524.23/s (0.414s, 2473.95/s) LR: 7.014e-04 Data: 0.027 (0.035) +Train: 146 [ 250/312 ( 80%)] Loss: 2.87 (2.94) Time: 0.411s, 2493.87/s (0.413s, 2482.08/s) LR: 7.014e-04 Data: 0.028 (0.033) +Train: 146 [ 300/312 ( 96%)] Loss: 2.99 (2.94) Time: 0.412s, 2482.82/s (0.412s, 2483.55/s) LR: 7.014e-04 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.419 (1.419) Loss: 3.816 ( 3.816) Acc@1: 35.254 ( 35.254) Acc@5: 53.809 ( 53.809) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.592 ( 3.812) Acc@1: 35.495 ( 35.136) Acc@5: 56.486 ( 54.472) +Train: 147 [ 0/312 ( 0%)] Loss: 3.04 (3.04) Time: 1.554s, 659.04/s (1.554s, 659.04/s) LR: 3.947e-04 Data: 1.158 (1.158) +Train: 147 [ 50/312 ( 16%)] Loss: 2.87 (2.94) Time: 0.408s, 2511.85/s (0.428s, 2389.93/s) LR: 3.947e-04 Data: 0.029 (0.050) +Train: 147 [ 100/312 ( 32%)] Loss: 2.91 (2.93) Time: 0.408s, 2507.59/s (0.418s, 2451.29/s) LR: 3.947e-04 Data: 0.025 (0.039) +Train: 147 [ 150/312 ( 48%)] Loss: 2.87 (2.93) Time: 0.415s, 2466.27/s (0.416s, 2464.38/s) LR: 3.947e-04 Data: 0.026 (0.035) +Train: 147 [ 200/312 ( 64%)] Loss: 2.96 (2.93) Time: 0.414s, 2472.93/s (0.415s, 2469.30/s) LR: 3.947e-04 Data: 0.028 (0.033) +Train: 147 [ 250/312 ( 80%)] Loss: 2.95 (2.94) Time: 0.412s, 2486.78/s (0.414s, 2473.61/s) LR: 3.947e-04 Data: 0.027 (0.032) +Train: 147 [ 300/312 ( 96%)] Loss: 2.93 (2.94) Time: 0.409s, 2505.43/s (0.414s, 2475.56/s) LR: 3.947e-04 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.454 (1.454) Loss: 3.813 ( 3.813) Acc@1: 35.449 ( 35.449) Acc@5: 53.809 ( 53.809) +Test: [ 48/48] Time: 0.089 (0.330) Loss: 3.578 ( 3.806) Acc@1: 35.377 ( 35.134) Acc@5: 57.075 ( 54.550) +Train: 148 [ 0/312 ( 0%)] Loss: 2.90 (2.90) Time: 1.804s, 567.48/s (1.804s, 567.48/s) LR: 1.754e-04 Data: 1.177 (1.177) +Train: 148 [ 50/312 ( 16%)] Loss: 3.06 (2.94) Time: 0.410s, 2495.47/s (0.437s, 2344.98/s) LR: 1.754e-04 Data: 0.028 (0.050) +Train: 148 [ 100/312 ( 32%)] Loss: 2.92 (2.93) Time: 0.408s, 2512.81/s (0.424s, 2412.98/s) LR: 1.754e-04 Data: 0.028 (0.039) +Train: 148 [ 150/312 ( 48%)] Loss: 2.91 (2.93) Time: 0.407s, 2515.36/s (0.419s, 2445.24/s) LR: 1.754e-04 Data: 0.027 (0.035) +Train: 148 [ 200/312 ( 64%)] Loss: 2.94 (2.94) Time: 0.405s, 2525.77/s (0.416s, 2463.34/s) LR: 1.754e-04 Data: 0.029 (0.033) +Train: 148 [ 250/312 ( 80%)] Loss: 2.93 (2.94) Time: 0.417s, 2457.62/s (0.414s, 2473.47/s) LR: 1.754e-04 Data: 0.036 (0.032) +Train: 148 [ 300/312 ( 96%)] Loss: 2.89 (2.94) Time: 0.413s, 2479.42/s (0.413s, 2476.57/s) LR: 1.754e-04 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 3.821 ( 3.821) Acc@1: 34.961 ( 34.961) Acc@5: 53.613 ( 53.613) +Test: [ 48/48] Time: 0.087 (0.327) Loss: 3.601 ( 3.817) Acc@1: 35.613 ( 34.988) Acc@5: 56.132 ( 54.476) +Train: 149 [ 0/312 ( 0%)] Loss: 2.97 (2.97) Time: 1.765s, 580.31/s (1.765s, 580.31/s) LR: 4.386e-05 Data: 1.394 (1.394) +Train: 149 [ 50/312 ( 16%)] Loss: 2.94 (2.95) Time: 0.400s, 2560.46/s (0.428s, 2394.33/s) LR: 4.386e-05 Data: 0.027 (0.054) +Train: 149 [ 100/312 ( 32%)] Loss: 2.91 (2.94) Time: 0.399s, 2564.34/s (0.413s, 2477.09/s) LR: 4.386e-05 Data: 0.028 (0.041) +Train: 149 [ 150/312 ( 48%)] Loss: 2.90 (2.94) Time: 0.402s, 2548.04/s (0.408s, 2507.38/s) LR: 4.386e-05 Data: 0.033 (0.037) +Train: 149 [ 200/312 ( 64%)] Loss: 2.94 (2.94) Time: 0.400s, 2560.82/s (0.406s, 2521.94/s) LR: 4.386e-05 Data: 0.028 (0.034) +Train: 149 [ 250/312 ( 80%)] Loss: 3.00 (2.94) Time: 0.399s, 2567.49/s (0.405s, 2530.39/s) LR: 4.386e-05 Data: 0.027 (0.033) +Train: 149 [ 300/312 ( 96%)] Loss: 2.82 (2.93) Time: 0.401s, 2551.61/s (0.404s, 2533.63/s) LR: 4.386e-05 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.439 (1.439) Loss: 3.834 ( 3.834) Acc@1: 34.863 ( 34.863) Acc@5: 53.809 ( 53.809) +Test: [ 48/48] Time: 0.088 (0.328) Loss: 3.602 ( 3.823) Acc@1: 35.495 ( 34.894) Acc@5: 56.368 ( 54.404) +*** Best metric: 41.433999997558594 (epoch 52) +--result +[ + { + "epoch": 55, + "train": { + "loss": 4.632839679718018 + }, + "validation": { + "loss": 3.225374926071167, + "top1": 40.43199999755859, + "top5": 64.7759999975586 + } + }, + { + "epoch": 70, + "train": { + "loss": 4.318325996398926 + }, + "validation": { + "loss": 3.291542735748291, + "top1": 40.44399999755859, + "top5": 63.37799990966797 + } + }, + { + "epoch": 54, + "train": { + "loss": 4.649861812591553 + }, + "validation": { + "loss": 3.2325782968139647, + "top1": 40.596, + "top5": 64.64200002441406 + } + }, + { + "epoch": 58, + "train": { + "loss": 4.566425323486328 + }, + "validation": { + "loss": 3.2375895790863036, + "top1": 40.74600000488281, + "top5": 64.89999996826172 + } + }, + { + "epoch": 63, + "train": { + "loss": 4.463349342346191 + }, + "validation": { + "loss": 3.2511073503112793, + "top1": 40.76000002685547, + "top5": 64.48399997802734 + } + }, + { + "epoch": 57, + "train": { + "loss": 4.585275650024414 + }, + "validation": { + "loss": 3.2218094375610353, + "top1": 40.771999975585935, + "top5": 64.49400004638672 + } + }, + { + "epoch": 50, + "train": { + "loss": 4.7323479652404785 + }, + "validation": { + "loss": 3.214202807006836, + "top1": 40.79600005126953, + "top5": 65.56000002929687 + } + }, + { + "epoch": 56, + "train": { + "loss": 4.607300281524658 + }, + "validation": { + "loss": 3.2064396517944336, + "top1": 40.981999959716795, + "top5": 64.99800004638672 + } + }, + { + "epoch": 61, + "train": { + "loss": 4.507087707519531 + }, + "validation": { + "loss": 3.2332502903747558, + "top1": 41.02999997802734, + "top5": 64.60199997314453 + } + }, + { + "epoch": 52, + "train": { + "loss": 4.688541412353516 + }, + "validation": { + "loss": 3.14884043838501, + "top1": 41.433999997558594, + "top5": 65.80999999023437 + } + } +] diff --git a/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/requirements.txt b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..d388cd950a4a88b1d9f37efc5c83fee7de76a1be --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/requirements.txt @@ -0,0 +1,108 @@ +GitPython==3.1.44 +MarkupSafe==2.1.5 +PyYAML==6.0.2 +aiofiles==23.2.1 +aiohappyeyeballs==2.4.6 +aiohttp==3.11.12 +aiosignal==1.3.2 +annotated-types==0.7.0 +anyio==4.8.0 +async-timeout==5.0.1 +attrs==25.1.0 +certifi==2025.1.31 +charset-normalizer==3.4.1 +click==8.1.8 +contourpy==1.3.0 +cycler==0.12.1 +datasets==3.3.2 +dill==0.3.8 +docker-pycreds==0.4.0 +eval_type_backport==0.2.2 +exceptiongroup==1.2.2 +fastapi==0.115.8 +ffmpy==0.5.0 +filelock==3.17.0 +fonttools==4.56.0 +frozenlist==1.5.0 +fsspec==2024.12.0 +gitdb==4.0.12 +gradio==4.44.1 +gradio_client==1.3.0 +h11==0.14.0 +httpcore==1.0.7 +httpx==0.28.1 +huggingface-hub==0.29.1 +idna==3.10 +importlib_metadata==8.6.1 +importlib_resources==6.5.2 +Jinja2==3.1.5 +kiwisolver==1.4.7 +markdown-it-py==3.0.0 +matplotlib==3.9.4 +mdurl==0.1.2 +multidict==6.1.0 +multiprocess==0.70.16 +numpy==2.0.2 +orjson==3.10.15 +packaging==24.2 +pandas==2.2.3 +pillow==10.4.0 +platformdirs==4.3.6 +propcache==0.3.0 +protobuf==5.29.3 +psutil==7.0.0 +pyarrow==19.0.1 +pydantic==2.10.6 +pydantic_core==2.27.2 +pydub==0.25.1 +Pygments==2.19.1 +pyparsing==3.2.1 +python-dateutil==2.9.0.post0 +python-multipart==0.0.20 +pytz==2025.1 +requests==2.32.3 +rich==13.9.4 +ruff==0.9.7 +semantic-version==2.10.0 +sentry-sdk==2.22.0 +setproctitle==1.3.4 +shellingham==1.5.4 +six==1.17.0 +smmap==5.0.2 +sniffio==1.3.1 +starlette==0.45.3 +tomlkit==0.12.0 +tqdm==4.67.1 +typer==0.15.1 +typing_extensions==4.12.2 +tzdata==2025.1 +urllib3==2.3.0 +uvicorn==0.34.0 +wandb==0.19.7 +websockets==12.0 +xxhash==3.5.0 +yarl==1.18.3 +zipp==3.21.0 +mpmath==1.3.0 +networkx==3.2.1 +nvidia-cublas-cu12==12.4.5.8 +nvidia-cuda-cupti-cu12==12.4.127 +nvidia-cuda-nvrtc-cu12==12.4.127 +nvidia-cuda-runtime-cu12==12.4.127 +nvidia-cudnn-cu12==9.1.0.70 +nvidia-cufft-cu12==11.2.1.3 +nvidia-curand-cu12==10.3.5.147 +nvidia-cusolver-cu12==11.6.1.9 +nvidia-cusparse-cu12==12.3.1.170 +nvidia-cusparselt-cu12==0.6.2 +nvidia-nccl-cu12==2.21.5 +nvidia-nvjitlink-cu12==12.4.127 +nvidia-nvtx-cu12==12.4.127 +safetensors==0.5.2 +sympy==1.13.1 +torch==2.6.0 +torchvision==0.21.0 +triton==3.2.0 +pip==23.0.1 +setuptools==58.1.0 +wheel==0.45.1 diff --git a/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/wandb-metadata.json b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/wandb-metadata.json new file mode 100644 index 0000000000000000000000000000000000000000..6ebe1db1e55449002647bccebd516e9957915239 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/files/wandb-metadata.json @@ -0,0 +1,88 @@ +{ + "os": "Linux-5.10.233-224.894.amzn2.x86_64-x86_64-with-glibc2.36", + "python": "CPython 3.9.21", + "startedAt": "2025-02-24T01:57:23.358427Z", + "args": [ + "--dataset", + "hfds/datacomp/imagenet-1k-random-40.0-frac-1over4", + "--log-wandb", + "--wandb-project", + "ImageNetTraining40.0-frac-1over4", + "--experiment", + "ImageNetTraining40.0-frac-1over4", + "--model", + "seresnet34", + "--sched", + "cosine", + "--epochs", + "150", + "--warmup-epochs", + "5", + "--lr", + "0.4", + "--reprob", + "0.5", + "--remode", + "pixel", + "--batch-size", + "256", + "--amp", + "-j", + "4" + ], + "program": "/app/pytorch-image-models/train.py", + "codePath": "train.py", + "git": { + "remote": "https://github.com/huggingface/pytorch-image-models.git", + "commit": "e76ea5474db7c0f3cc00424efc6a4e52fb4e945e" + }, + "email": "meg@huggingface.co", + "root": "/app/pytorch-image-models", + "host": "r-datacomp-imagenettraining40-0-frac-1over4-gyrglxhp-d5b38-62uu", + "executable": "/usr/local/bin/python3.9", + "codePathLocal": "train.py", + "cpu_count": 24, + "cpu_count_logical": 48, + "gpu": "NVIDIA L4", + "gpu_count": 4, + "disk": { + "/": { + "total": "3757625933824", + "used": "129832423424" + } + }, + "memory": { + "total": "195171028992" + }, + "cpu": { + "count": 24, + "countLogical": 48 + }, + "gpu_nvidia": [ + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + }, + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + }, + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + }, + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + } + ], + "cudaVersion": "12.4" +} \ No newline at end of file diff --git a/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-core.log b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-core.log new file mode 100644 index 0000000000000000000000000000000000000000..74215592638233c40128a48a4ae24d8a810b794b --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-core.log @@ -0,0 +1,7 @@ +{"time":"2025-02-24T01:06:37.55207546Z","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpj4shex4_/port-1.txt","pid":1,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false} +{"time":"2025-02-24T01:06:37.553237811Z","level":"INFO","msg":"Will exit if parent process dies.","ppid":1} +{"time":"2025-02-24T01:06:37.553225282Z","level":"INFO","msg":"server is running","addr":{"IP":"127.0.0.1","Port":34547,"Zone":""}} +{"time":"2025-02-24T01:06:37.743257638Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:52896"} +{"time":"2025-02-24T01:57:23.208034251Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:42904"} +{"time":"2025-02-24T01:57:23.359680664Z","level":"INFO","msg":"handleInformInit: received","streamId":"igbnn5u2","id":"127.0.0.1:42904"} +{"time":"2025-02-24T01:57:23.465269122Z","level":"INFO","msg":"handleInformInit: stream started","streamId":"igbnn5u2","id":"127.0.0.1:42904"} diff --git a/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-internal.log b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-internal.log new file mode 100644 index 0000000000000000000000000000000000000000..c873b27afac9247fba521fc35d97d1752ceb2799 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-internal.log @@ -0,0 +1,12 @@ +{"time":"2025-02-24T01:57:23.359826036Z","level":"INFO","msg":"stream: starting","core version":"0.19.7","symlink path":"/app/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-core.log"} +{"time":"2025-02-24T01:57:23.465214531Z","level":"INFO","msg":"created new stream","id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465261892Z","level":"INFO","msg":"stream: started","id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465305653Z","level":"INFO","msg":"writer: Do: started","stream_id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465321763Z","level":"INFO","msg":"handler: started","stream_id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.465352523Z","level":"INFO","msg":"sender: started","stream_id":"igbnn5u2"} +{"time":"2025-02-24T01:57:23.611998175Z","level":"INFO","msg":"Starting system monitor"} +{"time":"2025-02-24T07:06:45.361263979Z","level":"INFO","msg":"api: retrying HTTP error","status":500,"url":"https://api.wandb.ai/files/quality-is-all-you-need/ImageNetTraining40.0-frac-1over4/igbnn5u2/file_stream","body":"{\"error\":\"context deadline exceeded\"}"} +{"time":"2025-02-24T08:00:03.613039509Z","level":"ERROR","msg":"monitor: cpu: error sampling metrics: open /proc/158/stat: no such file or directory\nopen /proc/158/status: no such file or directory"} +{"time":"2025-02-24T08:00:03.613225502Z","level":"ERROR","msg":"monitor: memory: error sampling metrics: open /proc/158/statm: no such file or directory"} +{"time":"2025-02-24T08:00:13.613153147Z","level":"ERROR","msg":"monitor: memory: error sampling metrics: open /proc/158/statm: no such file or directory"} +{"time":"2025-02-24T08:00:13.613153037Z","level":"ERROR","msg":"monitor: cpu: error sampling metrics: open /proc/158/stat: no such file or directory\nopen /proc/158/status: no such file or directory"} diff --git a/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug.log b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug.log new file mode 100644 index 0000000000000000000000000000000000000000..6d1c2e8833f0fbe361b626f042289fcc3fb2fce5 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug.log @@ -0,0 +1,22 @@ +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Current SDK version is 0.19.7 +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Configure stats pid to 158 +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Loading settings from /home/user/.config/wandb/settings +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Loading settings from /app/pytorch-image-models/wandb/settings +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_setup.py:_flush():67] Loading settings from environment variables +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:setup_run_log_directory():647] Logging user logs to /app/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug.log +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:setup_run_log_directory():648] Logging internal logs to /app/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/logs/debug-internal.log +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():761] calling init triggers +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():766] wandb.init called with sweep_config: {} +config: {'data': None, 'data_dir': None, 'dataset': 'hfds/datacomp/imagenet-1k-random-40.0-frac-1over4', 'train_split': 'train', 'val_split': 'validation', 'train_num_samples': None, 'val_num_samples': None, 'dataset_download': False, 'class_map': '', 'input_img_mode': None, 'input_key': None, 'target_key': None, 'dataset_trust_remote_code': False, 'model': 'seresnet34', 'pretrained': False, 'pretrained_path': None, 'initial_checkpoint': '', 'resume': '', 'no_resume_opt': False, 'num_classes': 1000, 'gp': None, 'img_size': None, 'in_chans': None, 'input_size': None, 'crop_pct': None, 'mean': None, 'std': None, 'interpolation': '', 'batch_size': 256, 'validation_batch_size': None, 'channels_last': False, 'fuser': '', 'grad_accum_steps': 1, 'grad_checkpointing': False, 'fast_norm': False, 'model_kwargs': {}, 'head_init_scale': None, 'head_init_bias': None, 'torchcompile_mode': None, 'torchscript': False, 'torchcompile': None, 'device': 'cuda:0', 'amp': True, 'amp_dtype': 'float16', 'amp_impl': 'native', 'model_dtype': None, 'no_ddp_bb': False, 'synchronize_step': False, 'local_rank': 0, 'device_modules': None, 'opt': 'sgd', 'opt_eps': None, 'opt_betas': None, 'momentum': 0.9, 'weight_decay': 2e-05, 'clip_grad': None, 'clip_mode': 'norm', 'layer_decay': None, 'opt_kwargs': {}, 'sched': 'cosine', 'sched_on_updates': False, 'lr': 0.4, 'lr_base': 0.1, 'lr_base_size': 256, 'lr_base_scale': '', 'lr_noise': None, 'lr_noise_pct': 0.67, 'lr_noise_std': 1.0, 'lr_cycle_mul': 1.0, 'lr_cycle_decay': 0.5, 'lr_cycle_limit': 1, 'lr_k_decay': 1.0, 'warmup_lr': 1e-05, 'min_lr': 0, 'epochs': 150, 'epoch_repeats': 0.0, 'start_epoch': None, 'decay_milestones': [90, 180, 270], 'decay_epochs': 90, 'warmup_epochs': 5, 'warmup_prefix': False, 'cooldown_epochs': 0, 'patience_epochs': 10, 'decay_rate': 0.1, 'no_aug': False, 'train_crop_mode': None, 'scale': [0.08, 1.0], 'ratio': [0.75, 1.3333333333333333], 'hflip': 0.5, 'vflip': 0.0, 'color_jitter': 0.4, 'color_jitter_prob': None, 'grayscale_prob': None, 'gaussian_blur_prob': None, 'aa': None, 'aug_repeats': 0, 'aug_splits': 0, 'jsd_loss': False, 'bce_loss': False, 'bce_sum': False, 'bce_target_thresh': None, 'bce_pos_weight': None, 'reprob': 0.5, 'remode': 'pixel', 'recount': 1, 'resplit': False, 'mixup': 0.0, 'cutmix': 0.0, 'cutmix_minmax': None, 'mixup_prob': 1.0, 'mixup_switch_prob': 0.5, 'mixup_mode': 'batch', 'mixup_off_epoch': 0, 'smoothing': 0.1, 'train_interpolation': 'random', 'drop': 0.0, 'drop_connect': None, 'drop_path': None, 'drop_block': None, 'bn_momentum': None, 'bn_eps': None, 'sync_bn': False, 'dist_bn': 'reduce', 'split_bn': False, 'model_ema': False, 'model_ema_force_cpu': False, 'model_ema_decay': 0.9998, 'model_ema_warmup': False, 'seed': 42, 'worker_seeding': 'all', 'log_interval': 50, 'recovery_interval': 0, 'checkpoint_hist': 10, 'workers': 4, 'save_images': False, 'pin_mem': False, 'no_prefetcher': False, 'output': '', 'experiment': 'ImageNetTraining40.0-frac-1over4', 'eval_metric': 'top1', 'tta': 0, 'use_multi_epochs_loader': False, 'log_wandb': True, 'wandb_project': 'ImageNetTraining40.0-frac-1over4', 'wandb_tags': [], 'wandb_resume_id': '', 'prefetcher': True, 'distributed': True, 'world_size': 4, 'rank': 0, '_wandb': {}} +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():784] starting backend +2025-02-24 01:57:23,338 INFO MainThread:158 [wandb_init.py:init():788] sending inform_init request +2025-02-24 01:57:23,357 INFO MainThread:158 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn +2025-02-24 01:57:23,358 INFO MainThread:158 [wandb_init.py:init():803] backend started and connected +2025-02-24 01:57:23,361 INFO MainThread:158 [wandb_init.py:init():896] updated telemetry +2025-02-24 01:57:23,383 INFO MainThread:158 [wandb_init.py:init():920] communicating run to backend with 90.0 second timeout +2025-02-24 01:57:23,608 INFO MainThread:158 [wandb_init.py:init():995] starting run threads in backend +2025-02-24 01:57:23,711 INFO MainThread:158 [wandb_run.py:_console_start():2377] atexit reg +2025-02-24 01:57:23,712 INFO MainThread:158 [wandb_run.py:_redirect():2227] redirect: wrap_raw +2025-02-24 01:57:23,712 INFO MainThread:158 [wandb_run.py:_redirect():2292] Wrapping output streams. +2025-02-24 01:57:23,712 INFO MainThread:158 [wandb_run.py:_redirect():2317] Redirects installed. +2025-02-24 01:57:23,714 INFO MainThread:158 [wandb_init.py:init():1037] run started, returning control to user process diff --git a/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/run-igbnn5u2.wandb b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/run-igbnn5u2.wandb new file mode 100644 index 0000000000000000000000000000000000000000..7959e156c8297c24a3c688d37dcb5c856159ff19 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_015723-igbnn5u2/run-igbnn5u2.wandb @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:55d9b16e188c6c5224bcd2631f341b664024d45441244685b006ef09384bc7ce +size 4947968 diff --git a/requirements.txt b/requirements.txt index 32191d5a0fb9f649cdf72c1ec245baac3c1c6212..3f839a7d886a627e58a4da5438bf7180761e5a1a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,4 @@ gradio datasets -wandb \ No newline at end of file +wandb +importlib_metadata \ No newline at end of file