ImageNetTraining40.0-frac-1over4
/
pytorch-image-models
/timm
/data
/readers
/reader_image_in_tar.py
| """ A dataset reader that reads tarfile based datasets | |
| This reader can extract image samples from: | |
| * a single tar of image files | |
| * a folder of multiple tarfiles containing imagefiles | |
| * a tar of tars containing image files | |
| Labels are based on the combined folder and/or tar name structure. | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| """ | |
| import logging | |
| import os | |
| import pickle | |
| import tarfile | |
| from glob import glob | |
| from typing import List, Tuple, Dict, Set, Optional, Union | |
| import numpy as np | |
| from timm.utils.misc import natural_key | |
| from .class_map import load_class_map | |
| from .img_extensions import get_img_extensions | |
| from .reader import Reader | |
| _logger = logging.getLogger(__name__) | |
| CACHE_FILENAME_SUFFIX = '_tarinfos.pickle' | |
| class TarState: | |
| def __init__(self, tf: tarfile.TarFile = None, ti: tarfile.TarInfo = None): | |
| self.tf: tarfile.TarFile = tf | |
| self.ti: tarfile.TarInfo = ti | |
| self.children: Dict[str, TarState] = {} # child states (tars within tars) | |
| def reset(self): | |
| self.tf = None | |
| def _extract_tarinfo(tf: tarfile.TarFile, parent_info: Dict, extensions: Set[str]): | |
| sample_count = 0 | |
| for i, ti in enumerate(tf): | |
| if not ti.isfile(): | |
| continue | |
| dirname, basename = os.path.split(ti.path) | |
| name, ext = os.path.splitext(basename) | |
| ext = ext.lower() | |
| if ext == '.tar': | |
| with tarfile.open(fileobj=tf.extractfile(ti), mode='r|') as ctf: | |
| child_info = dict( | |
| name=ti.name, path=os.path.join(parent_info['path'], name), ti=ti, children=[], samples=[]) | |
| sample_count += _extract_tarinfo(ctf, child_info, extensions=extensions) | |
| _logger.debug(f'{i}/?. Extracted child tarinfos from {ti.name}. {len(child_info["samples"])} images.') | |
| parent_info['children'].append(child_info) | |
| elif ext in extensions: | |
| parent_info['samples'].append(ti) | |
| sample_count += 1 | |
| return sample_count | |
| def extract_tarinfos( | |
| root, | |
| class_name_to_idx: Optional[Dict] = None, | |
| cache_tarinfo: Optional[bool] = None, | |
| extensions: Optional[Union[List, Tuple, Set]] = None, | |
| sort: bool = True | |
| ): | |
| extensions = get_img_extensions(as_set=True) if not extensions else set(extensions) | |
| root_is_tar = False | |
| if os.path.isfile(root): | |
| assert os.path.splitext(root)[-1].lower() == '.tar' | |
| tar_filenames = [root] | |
| root, root_name = os.path.split(root) | |
| root_name = os.path.splitext(root_name)[0] | |
| root_is_tar = True | |
| else: | |
| root_name = root.strip(os.path.sep).split(os.path.sep)[-1] | |
| tar_filenames = glob(os.path.join(root, '*.tar'), recursive=True) | |
| num_tars = len(tar_filenames) | |
| tar_bytes = sum([os.path.getsize(f) for f in tar_filenames]) | |
| assert num_tars, f'No .tar files found at specified path ({root}).' | |
| _logger.info(f'Scanning {tar_bytes/1024**2:.2f}MB of tar files...') | |
| info = dict(tartrees=[]) | |
| cache_path = '' | |
| if cache_tarinfo is None: | |
| cache_tarinfo = True if tar_bytes > 10*1024**3 else False # FIXME magic number, 10GB | |
| if cache_tarinfo: | |
| cache_filename = '_' + root_name + CACHE_FILENAME_SUFFIX | |
| cache_path = os.path.join(root, cache_filename) | |
| if os.path.exists(cache_path): | |
| _logger.info(f'Reading tar info from cache file {cache_path}.') | |
| with open(cache_path, 'rb') as pf: | |
| info = pickle.load(pf) | |
| assert len(info['tartrees']) == num_tars, "Cached tartree len doesn't match number of tarfiles" | |
| else: | |
| for i, fn in enumerate(tar_filenames): | |
| path = '' if root_is_tar else os.path.splitext(os.path.basename(fn))[0] | |
| with tarfile.open(fn, mode='r|') as tf: # tarinfo scans done in streaming mode | |
| parent_info = dict(name=os.path.relpath(fn, root), path=path, ti=None, children=[], samples=[]) | |
| num_samples = _extract_tarinfo(tf, parent_info, extensions=extensions) | |
| num_children = len(parent_info["children"]) | |
| _logger.debug( | |
| f'{i}/{num_tars}. Extracted tarinfos from {fn}. {num_children} children, {num_samples} samples.') | |
| info['tartrees'].append(parent_info) | |
| if cache_path: | |
| _logger.info(f'Writing tar info to cache file {cache_path}.') | |
| with open(cache_path, 'wb') as pf: | |
| pickle.dump(info, pf) | |
| samples = [] | |
| labels = [] | |
| build_class_map = False | |
| if class_name_to_idx is None: | |
| build_class_map = True | |
| # Flatten tartree info into lists of samples and targets w/ targets based on label id via | |
| # class map arg or from unique paths. | |
| # NOTE: currently only flattening up to two-levels, filesystem .tars and then one level of sub-tar children | |
| # this covers my current use cases and keeps things a little easier to test for now. | |
| tarfiles = [] | |
| def _label_from_paths(*path, leaf_only=True): | |
| path = os.path.join(*path).strip(os.path.sep) | |
| return path.split(os.path.sep)[-1] if leaf_only else path.replace(os.path.sep, '_') | |
| def _add_samples(info, fn): | |
| added = 0 | |
| for s in info['samples']: | |
| label = _label_from_paths(info['path'], os.path.dirname(s.path)) | |
| if not build_class_map and label not in class_name_to_idx: | |
| continue | |
| samples.append((s, fn, info['ti'])) | |
| labels.append(label) | |
| added += 1 | |
| return added | |
| _logger.info(f'Collecting samples and building tar states.') | |
| for parent_info in info['tartrees']: | |
| # if tartree has children, we assume all samples are at the child level | |
| tar_name = None if root_is_tar else parent_info['name'] | |
| tar_state = TarState() | |
| parent_added = 0 | |
| for child_info in parent_info['children']: | |
| child_added = _add_samples(child_info, fn=tar_name) | |
| if child_added: | |
| tar_state.children[child_info['name']] = TarState(ti=child_info['ti']) | |
| parent_added += child_added | |
| parent_added += _add_samples(parent_info, fn=tar_name) | |
| if parent_added: | |
| tarfiles.append((tar_name, tar_state)) | |
| del info | |
| if build_class_map: | |
| # build class index | |
| sorted_labels = list(sorted(set(labels), key=natural_key)) | |
| class_name_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} | |
| _logger.info(f'Mapping targets and sorting samples.') | |
| samples_and_targets = [(s, class_name_to_idx[l]) for s, l in zip(samples, labels) if l in class_name_to_idx] | |
| if sort: | |
| samples_and_targets = sorted(samples_and_targets, key=lambda k: natural_key(k[0][0].path)) | |
| samples, targets = zip(*samples_and_targets) | |
| samples = np.array(samples) | |
| targets = np.array(targets) | |
| _logger.info(f'Finished processing {len(samples)} samples across {len(tarfiles)} tar files.') | |
| return samples, targets, class_name_to_idx, tarfiles | |
| class ReaderImageInTar(Reader): | |
| """ Multi-tarfile dataset reader where there is one .tar file per class | |
| """ | |
| def __init__(self, root, class_map='', cache_tarfiles=True, cache_tarinfo=None): | |
| super().__init__() | |
| class_name_to_idx = None | |
| if class_map: | |
| class_name_to_idx = load_class_map(class_map, root) | |
| self.root = root | |
| self.samples, self.targets, self.class_name_to_idx, tarfiles = extract_tarinfos( | |
| self.root, | |
| class_name_to_idx=class_name_to_idx, | |
| cache_tarinfo=cache_tarinfo | |
| ) | |
| self.class_idx_to_name = {v: k for k, v in self.class_name_to_idx.items()} | |
| if len(tarfiles) == 1 and tarfiles[0][0] is None: | |
| self.root_is_tar = True | |
| self.tar_state = tarfiles[0][1] | |
| else: | |
| self.root_is_tar = False | |
| self.tar_state = dict(tarfiles) | |
| self.cache_tarfiles = cache_tarfiles | |
| def __len__(self): | |
| return len(self.samples) | |
| def __getitem__(self, index): | |
| sample = self.samples[index] | |
| target = self.targets[index] | |
| sample_ti, parent_fn, child_ti = sample | |
| parent_abs = os.path.join(self.root, parent_fn) if parent_fn else self.root | |
| tf = None | |
| cache_state = None | |
| if self.cache_tarfiles: | |
| cache_state = self.tar_state if self.root_is_tar else self.tar_state[parent_fn] | |
| tf = cache_state.tf | |
| if tf is None: | |
| tf = tarfile.open(parent_abs) | |
| if self.cache_tarfiles: | |
| cache_state.tf = tf | |
| if child_ti is not None: | |
| ctf = cache_state.children[child_ti.name].tf if self.cache_tarfiles else None | |
| if ctf is None: | |
| ctf = tarfile.open(fileobj=tf.extractfile(child_ti)) | |
| if self.cache_tarfiles: | |
| cache_state.children[child_ti.name].tf = ctf | |
| tf = ctf | |
| return tf.extractfile(sample_ti), target | |
| def _filename(self, index, basename=False, absolute=False): | |
| filename = self.samples[index][0].name | |
| if basename: | |
| filename = os.path.basename(filename) | |
| return filename | |