ImageNetTraining40.0-frac-1over4
/
pytorch-image-models
/hfdocs
/source
/models
/inception-resnet-v2.mdx
| # Inception ResNet v2 | |
| **Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). | |
| ## How do I use this model on an image? | |
| To load a pretrained model: | |
| ```py | |
| import timm | |
| model = timm.create_model('inception_resnet_v2', pretrained=True) | |
| model.eval() | |
| ``` | |
| To load and preprocess the image: | |
| ```py | |
| import urllib | |
| from PIL import Image | |
| from timm.data import resolve_data_config | |
| from timm.data.transforms_factory import create_transform | |
| config = resolve_data_config({}, model=model) | |
| transform = create_transform(**config) | |
| url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") | |
| urllib.request.urlretrieve(url, filename) | |
| img = Image.open(filename).convert('RGB') | |
| tensor = transform(img).unsqueeze(0) # transform and add batch dimension | |
| ``` | |
| To get the model predictions: | |
| ```py | |
| import torch | |
| with torch.no_grad(): | |
| out = model(tensor) | |
| probabilities = torch.nn.functional.softmax(out[0], dim=0) | |
| print(probabilities.shape) | |
| # prints: torch.Size([1000]) | |
| ``` | |
| To get the top-5 predictions class names: | |
| ```py | |
| # Get imagenet class mappings | |
| url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") | |
| urllib.request.urlretrieve(url, filename) | |
| with open("imagenet_classes.txt", "r") as f: | |
| categories = [s.strip() for s in f.readlines()] | |
| # Print top categories per image | |
| top5_prob, top5_catid = torch.topk(probabilities, 5) | |
| for i in range(top5_prob.size(0)): | |
| print(categories[top5_catid[i]], top5_prob[i].item()) | |
| # prints class names and probabilities like: | |
| # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] | |
| ``` | |
| Replace the model name with the variant you want to use, e.g. `inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. | |
| To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. | |
| ## How do I finetune this model? | |
| You can finetune any of the pre-trained models just by changing the classifier (the last layer). | |
| ```py | |
| model = timm.create_model('inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) | |
| ``` | |
| To finetune on your own dataset, you have to write a training loop or adapt [timm's training | |
| script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. | |
| ## How do I train this model? | |
| You can follow the [timm recipe scripts](../training_script) for training a new model afresh. | |
| ## Citation | |
| ```BibTeX | |
| @misc{szegedy2016inceptionv4, | |
| title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, | |
| author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, | |
| year={2016}, | |
| eprint={1602.07261}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CV} | |
| } | |
| ``` | |
| <!-- | |
| Type: model-index | |
| Collections: | |
| - Name: Inception ResNet v2 | |
| Paper: | |
| Title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on | |
| Learning | |
| URL: https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact | |
| Models: | |
| - Name: inception_resnet_v2 | |
| In Collection: Inception ResNet v2 | |
| Metadata: | |
| FLOPs: 16959133120 | |
| Parameters: 55850000 | |
| File Size: 223774238 | |
| Architecture: | |
| - Average Pooling | |
| - Dropout | |
| - Inception-ResNet-v2 Reduction-B | |
| - Inception-ResNet-v2-A | |
| - Inception-ResNet-v2-B | |
| - Inception-ResNet-v2-C | |
| - Reduction-A | |
| - Softmax | |
| Tasks: | |
| - Image Classification | |
| Training Techniques: | |
| - Label Smoothing | |
| - RMSProp | |
| - Weight Decay | |
| Training Data: | |
| - ImageNet | |
| Training Resources: 20x NVIDIA Kepler GPUs | |
| ID: inception_resnet_v2 | |
| LR: 0.045 | |
| Dropout: 0.2 | |
| Crop Pct: '0.897' | |
| Momentum: 0.9 | |
| Image Size: '299' | |
| Interpolation: bicubic | |
| Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_resnet_v2.py#L343 | |
| Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/inception_resnet_v2-940b1cd6.pth | |
| Results: | |
| - Task: Image Classification | |
| Dataset: ImageNet | |
| Metrics: | |
| Top 1 Accuracy: 0.95% | |
| Top 5 Accuracy: 17.29% | |
| --> |