ImageNetTraining40.0-frac-1over4
/
pytorch-image-models
/hfdocs
/source
/models
/inception-resnet-v2.mdx
# Inception ResNet v2 | |
**Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). | |
## How do I use this model on an image? | |
To load a pretrained model: | |
```py | |
import timm | |
model = timm.create_model('inception_resnet_v2', pretrained=True) | |
model.eval() | |
``` | |
To load and preprocess the image: | |
```py | |
import urllib | |
from PIL import Image | |
from timm.data import resolve_data_config | |
from timm.data.transforms_factory import create_transform | |
config = resolve_data_config({}, model=model) | |
transform = create_transform(**config) | |
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") | |
urllib.request.urlretrieve(url, filename) | |
img = Image.open(filename).convert('RGB') | |
tensor = transform(img).unsqueeze(0) # transform and add batch dimension | |
``` | |
To get the model predictions: | |
```py | |
import torch | |
with torch.no_grad(): | |
out = model(tensor) | |
probabilities = torch.nn.functional.softmax(out[0], dim=0) | |
print(probabilities.shape) | |
# prints: torch.Size([1000]) | |
``` | |
To get the top-5 predictions class names: | |
```py | |
# Get imagenet class mappings | |
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") | |
urllib.request.urlretrieve(url, filename) | |
with open("imagenet_classes.txt", "r") as f: | |
categories = [s.strip() for s in f.readlines()] | |
# Print top categories per image | |
top5_prob, top5_catid = torch.topk(probabilities, 5) | |
for i in range(top5_prob.size(0)): | |
print(categories[top5_catid[i]], top5_prob[i].item()) | |
# prints class names and probabilities like: | |
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] | |
``` | |
Replace the model name with the variant you want to use, e.g. `inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. | |
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. | |
## How do I finetune this model? | |
You can finetune any of the pre-trained models just by changing the classifier (the last layer). | |
```py | |
model = timm.create_model('inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) | |
``` | |
To finetune on your own dataset, you have to write a training loop or adapt [timm's training | |
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. | |
## How do I train this model? | |
You can follow the [timm recipe scripts](../training_script) for training a new model afresh. | |
## Citation | |
```BibTeX | |
@misc{szegedy2016inceptionv4, | |
title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, | |
author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, | |
year={2016}, | |
eprint={1602.07261}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
``` | |
<!-- | |
Type: model-index | |
Collections: | |
- Name: Inception ResNet v2 | |
Paper: | |
Title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on | |
Learning | |
URL: https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact | |
Models: | |
- Name: inception_resnet_v2 | |
In Collection: Inception ResNet v2 | |
Metadata: | |
FLOPs: 16959133120 | |
Parameters: 55850000 | |
File Size: 223774238 | |
Architecture: | |
- Average Pooling | |
- Dropout | |
- Inception-ResNet-v2 Reduction-B | |
- Inception-ResNet-v2-A | |
- Inception-ResNet-v2-B | |
- Inception-ResNet-v2-C | |
- Reduction-A | |
- Softmax | |
Tasks: | |
- Image Classification | |
Training Techniques: | |
- Label Smoothing | |
- RMSProp | |
- Weight Decay | |
Training Data: | |
- ImageNet | |
Training Resources: 20x NVIDIA Kepler GPUs | |
ID: inception_resnet_v2 | |
LR: 0.045 | |
Dropout: 0.2 | |
Crop Pct: '0.897' | |
Momentum: 0.9 | |
Image Size: '299' | |
Interpolation: bicubic | |
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_resnet_v2.py#L343 | |
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/inception_resnet_v2-940b1cd6.pth | |
Results: | |
- Task: Image Classification | |
Dataset: ImageNet | |
Metrics: | |
Top 1 Accuracy: 0.95% | |
Top 5 Accuracy: 17.29% | |
--> |