File size: 5,944 Bytes
			
			| df763d5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops.misc import FrozenBatchNorm2d
import timm
import pytest
from timm.utils.model import freeze, unfreeze
from timm.utils.model import ActivationStatsHook
from timm.utils.model import extract_spp_stats
from timm.utils.model import _freeze_unfreeze
from timm.utils.model import avg_sq_ch_mean, avg_ch_var, avg_ch_var_residual
from timm.utils.model import reparameterize_model
from timm.utils.model import get_state_dict
def test_freeze_unfreeze():
    model = timm.create_model('resnet18')
    # Freeze all
    freeze(model)
    # Check top level module
    assert model.fc.weight.requires_grad == False
    # Check submodule
    assert model.layer1[0].conv1.weight.requires_grad == False
    # Check BN
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
    # Unfreeze all
    unfreeze(model)
    # Check top level module
    assert model.fc.weight.requires_grad == True
    # Check submodule
    assert model.layer1[0].conv1.weight.requires_grad == True
    # Check BN
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)
    # Freeze some
    freeze(model, ['layer1', 'layer2.0'])
    # Check frozen
    assert model.layer1[0].conv1.weight.requires_grad == False
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
    assert model.layer2[0].conv1.weight.requires_grad == False
    # Check not frozen
    assert model.layer3[0].conv1.weight.requires_grad == True
    assert isinstance(model.layer3[0].bn1, BatchNorm2d)
    assert model.layer2[1].conv1.weight.requires_grad == True
    # Unfreeze some
    unfreeze(model, ['layer1', 'layer2.0'])
    # Check not frozen
    assert model.layer1[0].conv1.weight.requires_grad == True
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)
    assert model.layer2[0].conv1.weight.requires_grad == True
    # Freeze/unfreeze BN
    # From root
    freeze(model, ['layer1.0.bn1'])
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
    unfreeze(model, ['layer1.0.bn1'])
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)
    # From direct parent
    freeze(model.layer1[0], ['bn1'])
    assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)    
    unfreeze(model.layer1[0], ['bn1'])
    assert isinstance(model.layer1[0].bn1, BatchNorm2d)
def test_activation_stats_hook_validation():
    model = timm.create_model('resnet18')
    
    def test_hook(model, input, output):
        return output.mean().item()
    
    # Test error case with mismatched lengths
    with pytest.raises(ValueError, match="Please provide `hook_fns` for each `hook_fn_locs`"):
        ActivationStatsHook(
            model,
            hook_fn_locs=['layer1.0.conv1', 'layer1.0.conv2'],
            hook_fns=[test_hook]
        )
def test_extract_spp_stats():
    model = timm.create_model('resnet18')
    
    def test_hook(model, input, output):
        return output.mean().item()
    
    stats = extract_spp_stats(
        model,
        hook_fn_locs=['layer1.0.conv1'],
        hook_fns=[test_hook],
        input_shape=[2, 3, 32, 32]
    )
    
    assert isinstance(stats, dict)
    assert test_hook.__name__ in stats
    assert isinstance(stats[test_hook.__name__], list)
    assert len(stats[test_hook.__name__]) > 0
def test_freeze_unfreeze_bn_root():
    import torch.nn as nn
    from timm.layers import BatchNormAct2d
    
    # Create batch norm layers
    bn = nn.BatchNorm2d(10)
    bn_act = BatchNormAct2d(10)
    
    # Test with BatchNorm2d as root
    with pytest.raises(AssertionError):
        _freeze_unfreeze(bn, mode="freeze")
    
    # Test with BatchNormAct2d as root
    with pytest.raises(AssertionError):
        _freeze_unfreeze(bn_act, mode="freeze")
def test_activation_stats_functions():
    import torch
    
    # Create sample input tensor [batch, channels, height, width]
    x = torch.randn(2, 3, 4, 4)
    
    # Test avg_sq_ch_mean
    result1 = avg_sq_ch_mean(None, None, x)
    assert isinstance(result1, float)
    
    # Test avg_ch_var
    result2 = avg_ch_var(None, None, x)
    assert isinstance(result2, float)
    
    # Test avg_ch_var_residual
    result3 = avg_ch_var_residual(None, None, x)
    assert isinstance(result3, float)
def test_reparameterize_model():
    import torch.nn as nn
    
    class FusableModule(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)
        
        def fuse(self):
            return nn.Identity()
    
    class ModelWithFusable(nn.Module):
        def __init__(self):
            super().__init__()
            self.fusable = FusableModule()
            self.normal = nn.Linear(10, 10)
    
    model = ModelWithFusable()
    
    # Test with inplace=False (should create a copy)
    new_model = reparameterize_model(model, inplace=False)
    assert isinstance(new_model.fusable, nn.Identity)
    assert isinstance(model.fusable, FusableModule)  # Original unchanged
    
    # Test with inplace=True
    reparameterize_model(model, inplace=True)
    assert isinstance(model.fusable, nn.Identity)
def test_get_state_dict_custom_unwrap():
    import torch.nn as nn
    
    class CustomModel(nn.Module):
        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(10, 10)
    
    model = CustomModel()
    
    def custom_unwrap(m):
        return m
    
    state_dict = get_state_dict(model, unwrap_fn=custom_unwrap)
    assert 'linear.weight' in state_dict
    assert 'linear.bias' in state_dict
def test_freeze_unfreeze_string_input():
    model = timm.create_model('resnet18')
    
    # Test with string input
    _freeze_unfreeze(model, 'layer1', mode='freeze')
    assert model.layer1[0].conv1.weight.requires_grad == False
    
    # Test unfreezing with string input
    _freeze_unfreeze(model, 'layer1', mode='unfreeze')
    assert model.layer1[0].conv1.weight.requires_grad == True
 |