File size: 5,663 Bytes
df763d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# SK-ResNet

**SK ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNet are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner.

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('skresnet18', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `skresnet18`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('skresnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../training_script) for training a new model afresh.

## Citation

```BibTeX
@misc{li2019selective,
      title={Selective Kernel Networks}, 
      author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang},
      year={2019},
      eprint={1903.06586},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: SKResNet
  Paper:
    Title: Selective Kernel Networks
    URL: https://paperswithcode.com/paper/selective-kernel-networks
Models:
- Name: skresnet18
  In Collection: SKResNet
  Metadata:
    FLOPs: 2333467136
    Parameters: 11960000
    File Size: 47923238
    Architecture:
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Residual Connection
    - Selective Kernel
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x GPUs
    ID: skresnet18
    LR: 0.1
    Epochs: 100
    Layers: 18
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L148
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 73.03%
      Top 5 Accuracy: 91.17%
- Name: skresnet34
  In Collection: SKResNet
  Metadata:
    FLOPs: 4711849952
    Parameters: 22280000
    File Size: 89299314
    Architecture:
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - Residual Connection
    - Selective Kernel
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x GPUs
    ID: skresnet34
    LR: 0.1
    Epochs: 100
    Layers: 34
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L165
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 76.93%
      Top 5 Accuracy: 93.32%
-->